IL147301A - Method of projecting an underlying wiring layer during dual damascene processing - Google Patents
Method of projecting an underlying wiring layer during dual damascene processingInfo
- Publication number
- IL147301A IL147301A IL147301A IL14730101A IL147301A IL 147301 A IL147301 A IL 147301A IL 147301 A IL147301 A IL 147301A IL 14730101 A IL14730101 A IL 14730101A IL 147301 A IL147301 A IL 147301A
- Authority
- IL
- Israel
- Prior art keywords
- sacrificial material
- photoresist
- sacrificial
- dielectric
- over
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
- H01L21/76808—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76834—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
METHOD OF PROTECTING AN UNDERLYING WIRING LAYER DURING DUAL DAMASCENE PROCESSING i niD ΝΧΗΠΙ n υτρη nnovy rnnoni rmn novy BACKGROUND OF THE INVENTION Cross-Reference to Related Application This application is a continuation-in-part of co-pending application Serial No. 09/164,508, filed September 30, 1998 by applicants, Peter K. Moon, Makarem A. Hussein, Alan Myers, Charles Recchia, Sam Sivakumar, and Angelo Kandas, entitled "A Pattern-Sensitive Deposition for Damascene Processing. " Field of the Invention The invention relates to integrated circuit processing and, more particularly, to the patterning of interconnections on an integrated circuit.
Background of the Invention Modern integrated circuits use conductive interconnections to connect the individual devices on a chip or to send or receive signals external to the chip. Popular types of interconnection include aluminum alloy interconnections and copper interconnections.
One significant difference between aluminum and copper interconnections is the rate of oxidation of the metals.
Pure aluminum is oxidized to aluminum oxide in the presence of oxygen. However, aluminum has a fairly low diffusion coefficient for oxygen in aluminum oxide, such that as soon as the aluminum oxide is formed, the pure metal (Al) underneath the aluminum oxide layer does not react with oxygen. The reaction between aluminum and oxygen is described as a self-limiting oxidation- reaction.
Copper oxidation, on the other hand, is not self limiting. In the presence of oxygen, pure copper will continue to oxidize until substantially all the copper is oxidized to a copper oxide. Thus, once a copper interconnection is formed and patterned, an additional step of adding a passivation layer, typically silicon nitride (Si3 ,,), is employed to protect the exposed interconnection material from air or moisture.
One process used to form interconnections, particularly copper interconnections is a damascene process . In a damascene process, a trench is cut in a dielectric and filled with copper to form the interconnection. A via may be in the dielectric beneath the trench with a conductive material in the via to couple the interconnection to underlying integrated circuit devices or underlying interconnections.
A photoresist is typically used over the dielectric to pattern.- a via or a trench or both in the dielectric for the interconnection. After patterning, the photoresist is removed. The photoresist is typically removed by an oxygen plasma (oxygen ashing) . The oxygen used in the oxygen ashing step can react with an underlying copper interconnection and oxidize the interconnection. Accordingly, damascene processes typically employ a thin hard mask or barrier layer of Si3N4 directly over the copper interconnection to protect the copper from oxidation during oxygen ashing in the formation of a subsequent level interconnection. In general, the Si3N4 hard mask layer is very thin, for example, roughly 10% of the thickness of the dielectric layer. Thus, when, for example, the via is cut through the oxide by way of an etch, prior art processes require that the etch stops at the underlying Si3N4. When the trench is then formed in the dielectric above the via, prior art processes require that the etch not remove the Si3N4 exposed by the via. .The ' ability to etch the via and trench and preserve Si3N< requires great selectivity of the etchant such that the thin Si3N< layer is not etched away.
What is needed is a process, particularly useful with damascene processes, that does not require unrealistic expectations of etch selectivity.
SUMMARY OF THE INVENTION A method of forming an interconnection is disclosed. In one aspect of the method, a sacrificial material that comprises a property that is generally insensitive to a photo-reaction is formed in a via through a dielectric material to a masking material over a conductive material. A trench is formed in the dielectric material over the via and the sacrificial material is removed from. the via.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates a cross-sectional side view of a portion of an integrated circuit substrate showing an interconnection insulated by a dielectric material, a hard mask directly overlying the interconnection and a dielectric material overlying the hard mask in accordance with an embodiment of the invention.
Figure 2 shows the substrate of Figure 1 after the further processing step of patterning a photoresist mask over the dielectric material in accordance with an embodiment of the invention.
Figure 3 shows the substrate of Figure 1 after the further processing step of opening a via through the dielectric material and stopping at the hard mask layer in accordance with .an embodiment of the invention.
Figure 4 shows the substrate of Figure 1 after the further processing step of cleaning the substrate to remove the photoresist mask in accordance with an embodiment of the invention.
Figure 5 shows the substrate of Figure 1 after depositing a sacrificial material in the via in accordance with an embodiment of the invention and the step of rendering the sacrificial material insensitive to a photo-reaction.
Figure 6 shows the substrate of Figure 1 after the cleaning the surface of the substrate and retaining sacrificial material in the via in accordance with an embodiment of the invention.
Figure 7 shows the substrate of Figure 1 after the further processing step of patterning a .masking material-..-over the dielectric material in accordance with an embodiment of the invention.
Figure 8 shows the substrate of Figure 1 after the further processing step of opening a trench in the dielectric material in accordance with an embodiment of the invention.
Figure 9 shows the substrate of Figure 1 after the further processing step of removing the material patterned for the trench and the sacrificial material in accordance with an embodiment of the invention.
Figure 10 shows the substrate of Figure 1 after the further processing step of extending the via through the hard mask material to expose the copper interconnection in accordance with an embodiment of the invention.
Figure 11 shows the substrate of Figure 1 after the further processing step of depositing a copper material in the trench and via openings and pianarizing the copper with the dielectric material in accordance with an embodiment of the invention.
Figure 12 is a graphical representation of sacrificial material relative to the surface of a dielectric versus ashing time.
DETAILED DESCRIPTION OF THE INVENTION The invention relates in one aspect to a method of forming an interconnection. The invention is useful in one embodiment in protecting underlying interconnections during the formation of subsequent or higher level interconnections. The invention also alleviates the burden of unrealistic etch characteristics between a dielectric material and an underlying hard mask incorporated to protect an underlying interconnection such as .copper ....... .., interconnection that might be used as part of a damascene process. The invention alleviates this concern by incorporating a second masking · material or a sacrificial material in the via over a hard mask. In this manner, photoresist material used to pattern, for example, a via or trench in a dielectric, may be removed without concern of oxidizing an underlying copper interconnection.
Figures 1-11 illustrate a dual damascene process for forming an interconnection over an underlying copper interconnection. A typical integrated circuit may have, for example, four or five interconnection layers or lines each insulated form one and another by dielectric material. Figures 1-11 illustrate, for example, the formation of a second interconnection layer or line over and to be electrically connected to a first interconnection layer or line. It is to be appreciated that the method of the invention may be used for each interconnection layer or line. ■ Figure 1 illustrates a cross-sectional side view of a portion of an integrated circuit substrate or wafer having a first copper interconnection line 110 formed in dielectric material 100.- Copper interconnection line 110 is, for example, coupled to an underlying device or devices formed in and on a semiconductor substrate. The dielectric material is, for example, SiC>2 formed by a tetraethyl orthbsilicate (TEOS) or plasma enhanced chemical vapor deposition (PECVD) source. In this example, dielectric layer 100 and copper interconnection 110 are planarized.
Overlying the planarized dielectric layer 100/copper interconnection line 110 is first mask layer 120. First mask layer 120 serves, in one aspect, as a mask or barrier-to prevent oxidation ..of. copper, .interconnection .line 110-. -In one embodiment, first mask layer 120 is a layer of silicon nitride (Si N,,) or silicon oxynitride (SixNOz) . It is to be appreciated that other dielectric materials, including organic polymers, may be suitable for first mask layer 120.
In the example where first mask layer 120 is Si3N,t or SixNY0Z/ the material is deposited, for example, by chemical vapor deposition (CVD) to a suitable thickness of approximately 100 nm to mask copper interconnection line 110 during subsequent etching steps. Si3N4 and SixNYOz generally have chemical properties, including dielectric constants, that tend to increase the capacitance between interconnection lines and integrated circuits.
Accordingly, a thin amount, e.g., less than or equal to 100 nm, is generally deposited to protect copper interconnection line 110 but not to unacceptably increase the capacitance between interconnection lines. For the remainder of this description, an example of first mask laye 120 of Si3N4 material will be described.
Overlying first mask layer 120 is dielectric layer 130. Dielectric layer 130 is, for example, a TEOS or PECVD formed Si02 deposited to a thickness of approximately 1,000 nm. The thickness of dielectric layer 130 will depend, in part, on size characteristics and scaling considerations for the device. Once dielectric layer 130 is deposited and formed, the material is planarized for example with a chemical-mechanical polish.
Next, as shown in Figure 2, via pattern or second mask layer 140 is patterned over dielectric layer 130. Second mask layer 140 is, for example, a photo-imageable material such as a photoresist. A positive photoresist, for example,' is spun onto- the surface of-dielectric layer 130· .-, generally across the wafer. A mask or reticle is then used to expose a portion of the photoresist to a light source. In this case, the reticle or mask defines an area for via or opening 145 over dielectric layer 130. Once the photoresist material of second mask layer 140 is exposed to light, the exposed material is removed in a conventional manner such as for example, by a developer, and the substrate is baked to harden the remaining photoresist.
The process leaves second mask layer 140 of photoresist having an opening 145 over dielectric layer 130.
As shown in Figure 3, once second mask layer 140 is patterned, an etchant is used to open via 150 through dielectric layer 130. An etchant is chosen that does not substantially react or disrupt underlying first mask layer 120. In the case of a Si02 dielectric layer 130, for example, overlying a Si3N4 first mask layer 120, a suitable etchant to selectively etch Si02 without substantially etching Si3N«, is, for example, a C,Fa etch chemistry. One objective of the via etch is to etch the via through dielectric layer 130 and stop the etching prior to etching through Si3W1 first mask layer 120. It is to be. appreciated that some of the Si3N Once via 150 is opened through dielectric layer 130, via pattern or second mask layer 140 is removed from the surface of dielectric' layer 130. In the example where via pattern or second mask layer 140 is a photoresist, the material may be removed through a conventional oxygen plasma '(e.g.,. oxygen ashing) . At this -point, a wet. clean...-.-.-' step as known in the art may also be used to remove any residual particles.
Next, as shown in Figure 5, sacrificial material 160 is introduced over dielectric layer .130 and in via 150. In one embodiment, sacrificial material 160 is a material that is capable of uniformly filling small vias (e.g., via having diameter less than 0.25 microns) . In this embodiment, sacrificial material 160 is also either generally insensitive to or capable of being made generally insensitive to a development step such as a photoreaction . In other words, once introduced in via 150, a significant portion of sacrificial material 160 should not change its chemical properties. One example is a material that is insoluble in photoresist developer upon exposure to light, particularly light having a wavelength in the ultraviolet (UV) range.
One suitable material for sacrificial material 160 is heat-treated positive photoresist. Figure 5 shows an example where photoresist, such as conventional positive photoresist, is spun-coated on the surface of dielectric layer 130 and fills via 150. Positive photoresist is generally sensitive to light exposure, as described above with reference to Figure 2. After coating of. the photoresist material, the substrate is heated to cure the photoresist material. The heat treatment is, for example, ■ on the order of 150-200 C. In addition to curing the photoresist, the heat treatment performs a second function in this embodiment, in that it generally renders the photoresist material insensitive to a photoreaction in the presence of light exposure, e.g., UV light exposure.
As an alternative to heat-treated photoresist, other , suitable materials, for. sacrificial-material 160 include dyed photoresist or photoresist material with no photoactive compound, i.e., photoresist resin. One suitable dyed photoresist is a dye material with light-absorbing properties. Upon exposure to light,-, including UV light, the dye in the- dyed photoresist material will absorb a majority of the light in a region near the superior or top portion of sacrificial material 160 in via 150 (relative to dielectric layer 100/copper interconnection line 110) to inhibit a photo-reactive change of the physical property of the majority of the dyed, photoresist and thereby rendering a plug of photoresist material in via 150 after the exposure step. One type of dyed photoresist is commercially available from Tokyo Ohka ogyo of Japan. The material may be spun on the surface of dielectric layer 130 and cured by a conventional heat treatment. A similar process may be utilized for photoresist resin (i.e., without a photo-active compound) , such as DP- esin, commercially available from Tokyo Ohka ogyo. Absent a photo-active compound, subsequent exposure to light, including UV light, will not change the physical properties of the compound as an etch-resistant plug material of via 150.
Figure 6 shows the substrate after the processing step of controlled removal of sacrificial material 160 from the surface of dielectric layer 130. In the embodiment, where sacrificial material 160 is a photoresist, the controlled removal of photoresist material from the surface of dielectric layer 130 may be accomplished using an oxygen plasma (e.g., oxygen ashing) as known in the art. The end point of the removal step is the surface of dielectric layer 130. This may followed by an optional wet clean step. as...known..;in' the..art .to,.remo.ve. any . residual particles.
In one embodiment, sacrificial material 160 serves the objective of protecting first mask layer 120 during a subsequent etch to, for example, form a trench pattern for a subsequent interconnection line. Accordingly, sacrificial material 160 does not need to completely fill via 150. Still further, sacrificial material 160 should not impede a subsequent etch, such as a subsequent trench etch of dielectric layer 130 around via 150. Thus, in certain situations, it may be desirable to remove a portion of sacrificial material 160 that is in via 150.
In the example where sacrificial material 160 is photoresist, a portion of the photoresist material in via 150 may be removed by continuing the etch with the oxygen plasma (i.e., over-ashing) after the endpoint of the surface of dielectric layer 130 is reached. Figure 6 shows an embodied step of the method of the invention wherein a portion of sacrificial material 160 is removed from via 150. It is also to be appreciated that, in another embodiment, sacrificial material 160 is not patterned to completely fill via 150. In such an embodiment, a portion of sacrificial material 160 would not need to be removed, for example, in an over-ashing step.
Figure 12 is a graphical representation of- the controlled height from the surface of dielectric layer 130 into a via having a depth of 1300 nanometers. The height of sacrificial material 160 relative to the surface of dielectric layer 130 is compared to the ashing time in seconds beyond the endpoint (i.e., beyond the surface of' dielectric layer 130) . In this embodiment, a photoresist is utilized as photoresist material 160 and the substrate is exposed to an oxygen/nitrogen plasma mixed under low temperature · condition (about 200°.C) ia. photoresist removing equipment. The low temperature during ash process helps control the PR removal process. Thus, according to one embodiment of the invention, sacrificial material .160 may be formed with a controlled height in via 150 (e.g., a predetermined height over first mask layer 120) based on over-ashing. In this manner, the within-wafer and wafer-to-wafer variability of the height of sacrificial material 160 in a via may be significantly reduced, compared to the performance obtained by using a longer develop process, for example.
Once sacrificial material 160 is formed as desired in via 150, pattern mask or third mask layer 170 is patterned over dielectric layer 130 to pattern a trench in oxide 130. Figure 7 shows pattern mask or third mask layer 170 patterned over dielectric layer 130 in such a way as to leave an area 175 exposed for trench patterning. A suitable pattern or third mask layer 170 is, for example, a photoresist formed as described above with respect to second mask layer 140.
In the embodiment where third mask layer 170 is a positive photoresist, the photoresist is coated over dielectric layer 130. A mask or reticle .is then used to expose a portion of the photoresist to a light source. The exposed portion defines a trench over via 150. The exposed portion includes an area over sacrificial material 160. Because sacrificial material 160 is generally insensitive to a photoreaction, sacrificial material 160 is not affected by the exposure to, for example, an UV light source. Sacrificial material 160 is insensitive either in that it does not contain any photo-active components or has been treated, for example, by heat, to inactivate its sensitivity to a photoreaction. Alternatively, a photoresist containing a light-absorbing dye (e.g., a dyed photoresist) may be used as sacrificial material 160. In this embodiment, upon light exposure to define an etch pattern for a subsequent trench in dielectric layer 130, the light-absorbing dye absorbs any UV light striking sacrificial material 160. Thus, a trench patterning step to pattern a photoresist mask over dielectric layer 130 will not significantly effect sacrificial material 160.
Once third mask layer 170 is formed, trench 180 is formed in dielectric layer 130. Trench 180 is patterned to a depth suitable for a conductive interconnection. In one embodiment, for example, trench 180 has a depth of approximately 500 nm. Again, the precise dimensions of trench 180 will vary depending on the scale of the integrated circuit to be formed. In the case of dielectric layer 130 of Si02, a suitable etchant to form trench 180 is, for example C^Fs/CN/Ar etch chemistry.
By incorporating sacrificial material 160 in via 150, underlying first mask layer 120 is protected during the trench etch described above. If concerns of removing underlying first mask layer 120 (such as, for example, Si3N4 layer) are removed, a suitable etchant may be chosen for the trench- etch without concern for selectivity between dielectric layer 130 and first mask layer 120.
Accordingly, a suitable etchant can be chosen based on other parameters, for example, the etch rate, the verticalness of the etch, etc.
Figure 9 shows the substrate after the subsequent processing step of removing third mask layer 170. Figure 9 also shows the substrate after the step of removing sacrificial material 160 and exposing underlying first mask layer 120.
By incorporating sacrificial material 160 in via 150, the concerns of the prior art of removing underlying first mask layer 120 during trench etch are alleviated.
Accordingly, sacrificial material 160 is selected, in one embodiment, to have a low etch rate during trench etch. In one embodiment, sacrificial material 160 and third mask layer 170 are each photoresist thus allowing the simultaneous removal of sacrificial material 160 and third mask layer 170. In this manner, when third mask layer 170 is also photoresist, both third mask layer 170 and sacrificial material 160 may be removed by, for example, an* oxygen ashing. Since first mask layer 120 overlies copper interconnection line in via 150, copper interconnection line 110 is protected from oxidation by the presence of oxygen during the oxygen ashing step.
Once sacrificial material 160 is removed from via 150, a subsequent etch may be used to remove the exposed Si3W4 material of first mask layer 120. Removing exposed first mask layer 120 in via 150· exposes underlying copper interconnection 110 as shown in Figure 10. A suitable etchant to remove first mask layer 120 of Si3N<, is, for example, a CF4/O2 etch chemistry.
After exposing underlying copper interconnection 110, Figure 11 shows the substrate after the subsequent processing step of depositing copper material 190 in trench 180 and via 150. . The deposition precedes via a conventional damascene process. Once copper material 190 is deposited in via 150 and trench 180, 'the substrate may be planarized according to conventional damascene processing techniques to form a subsequent level interconnection; The process steps described above with respect to Figures 1-11 may then be repeated for a subsequent interconnection layer.
In the preceding detailed, description, the invention is described with reference to specific embodiments thereof. It will, however, be evident tha various modifications and changes may be made thereto without departing from the broader' spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims (23)
1. A method comprising: forming a sacrificial material that comprises a chemical property that is generally insensitive to a photo-reaction in a via through a dielectric material to a masking material over a conductive material; forming a trench in the dielectric material over the via;' and removing the sacrificial material from the via.
2. The method of claim 1, wherein the formation of a sacrificial material comprises: depositing a sacrificial material comprising a photosensitive material; and rendering a portion of the sacrificial material insensitive to a photo-reaction.
3. The method of claim 2, wherein the sacrificial material comprises photoresist, and the rendering of the sacrificial material insensitive comprises exposing the photoresist to heat.
4. The method of claim 2, wherein the sacrificial material is a photoresist and the formation of the sacrificial material comprises: coating the photoresist over a surface of the dielectric material; exposing the substrate to a sufficient temperature to render a portion of the photoresist insensitive to a photo- reaction; and removing the photoresist from the surface of the dielectric material.
5. The method of cl.aim 4, wherein the exposure of the substrate to a sufficient temperature comprises a sufficient temperature to harden a portion of the photoresist material.
6. The method of claim 5, wherein the removal of the photoresist material from the surface of the dielectric comprises : . exposing the photoresist material to a plasma or gas of one of oxygen, hydrogen, oxygen/nitrogen, and hydrogen/nitrogen .
7. The method of claim 1, wherein the sacrificial material is photoresist comprising a light absorbing material, and the method further comprises: prior to the formation of the trench, depositing a photosensitive masking material over the surface of the dielectric material; and subjecting the photosensitive masking material to a light source to expose an area in the masking material for the trench.
8. The method of claim 1, wherein the formation of the sacrificial material comprises: coating the sacrificial material over a surface of the dielectric material; and removing a portion of the sacrificial material from the via to establish a predetermined height of the sacrificial material in the via over the masking material.
9. The method of claim 8, wherein the removal of a portion of the sacrificial material comprises: etching for a predetermined amount of time beyond a time sufficient to remove the sacrificial material from the surface of the dielectric material.
10. In an integrated circuit device including a first interconnection, a method of forming a second interconnection comprising: forming a sacrificial material in a via through a dielectric material to a masking material over the first interconnection; forming a trench in the dielectric material over, the via, the sacrificial material comprising a physical property that is generally insensitive to a photo-reaction; removing the sacrificial material from the via; extending the via through the first masking material; and depositing a conductive material in the via.
11. The method of claim 10 wherein the step of forming a sacrificial material comprises rendering a portion of the sacrificial material insensitive to a photo-reaction.
12. The method of claim 11, wherein the sacrificial material comprises photoresist, and the rendering step comprises exposing the photoresist to heat.
13. The method of claim 10, wherein the sacrificial material is a photoresist and the formation of the sacrificial material comprises: coating the photoresist over a surface of the dielectric material; exposing the substrate to a sufficient temperature to render a portion of the photoresist insensitive to a photo-, reaction; and • removing the photoresist from the surface of the dielectric material.
14. The method of claim 13, wherein the exposure of the substrate to a sufficient temperature comprises a sufficient temperature to harden a. portion of the. photoresist material.
15. The method of claim 14, wherein the removal of the photoresist material from the surface of the dielectric comprises : exposing the photoresist material to a plasma or gas of one of oxygen, hydrogen, oxygen/hydrogen, and hydrogen/nitrogen.
16. The method of claim 10, wherein the sacrificial material is photoresist comprising a light absorbing material, and the method further comprises: prior to the formation of the trench, depositing a photosensitive masking material over the surface of the dielectric material; and subjecting the photosensitive masking material to a light source to expose an area in the masking material for the trench.
17. The method of claim 10, wherein the formation of the sacrificial material comprises: coating the sacrificial material over a surface of the dielectric material; and removing a portion of the sacrificial material from the via .to establish a predetermined height of the sacrificial material in the via over the masking material.
18. The method of claim 17, wherein the removal of a portion of the sacrificial material comprises: etching for a predetermined amount of time beyond a time sufficient to remove the sacrificial material from the surface of the dielectric material.
19. A damascene method comprising: forming a via through a dielectric material to expose a masking material over an interconnection of a substrate; forming a sacrificial material in the via that comprises a physical property that is generally insensitive to a photo-reaction; forming a trench in the dielectric material over a portion of the via; removing the sacrificial material from the via; extending the via through the first masking material; and depositing a conductive material in the via and the trench.
20. The method of claim 19, wherein the formation of a sacrificial material comprises: depositing a sacrificial material comprising a photosensitive material; and rendering a portion of the sacrificial material insensitive, to a photo-reaction.
21. A method according to claim 1 , substantially as hereinbefore described and with reference to the accompanying drawings.
22. A method of forming a second interconnection according to claim 10, substan ially as hereinbefore described and with reference to the accompanying drawings.
23. A damascene method according to claim 19, substantially as hereinbefore described and with reference to the accompanying drawings . FOR THE APPLICANT WOLFF, BREGMAN AND GOLLER
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/345,586 US6406995B1 (en) | 1998-09-30 | 1999-06-30 | Pattern-sensitive deposition for damascene processing |
PCT/US2000/040108 WO2001001480A1 (en) | 1999-06-30 | 2000-06-05 | Method of protecting an underlying wiring layer during dual damascene processing |
Publications (1)
Publication Number | Publication Date |
---|---|
IL147301A true IL147301A (en) | 2006-07-05 |
Family
ID=23355627
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL14730100A IL147301A0 (en) | 1999-06-30 | 2000-06-05 | Method of projecting an underlying wiring layer during dual damascene processing |
IL147301A IL147301A (en) | 1999-06-30 | 2001-12-25 | Method of projecting an underlying wiring layer during dual damascene processing |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL14730100A IL147301A0 (en) | 1999-06-30 | 2000-06-05 | Method of projecting an underlying wiring layer during dual damascene processing |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1192656A1 (en) |
JP (1) | JP4675534B2 (en) |
KR (1) | KR100452418B1 (en) |
AU (1) | AU5790800A (en) |
HK (1) | HK1042380A1 (en) |
IL (2) | IL147301A0 (en) |
TW (1) | TW531789B (en) |
WO (1) | WO2001001480A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW519725B (en) * | 2000-06-30 | 2003-02-01 | Infineon Technologies Corp | Via first dual damascene process for copper metallization |
US6576550B1 (en) | 2000-06-30 | 2003-06-10 | Infineon, Ag | ‘Via first’ dual damascene process for copper metallization |
KR100393974B1 (en) * | 2001-01-12 | 2003-08-06 | 주식회사 하이닉스반도체 | Forming Method for Dual Damascene |
KR100419901B1 (en) * | 2001-06-05 | 2004-03-04 | 삼성전자주식회사 | Method of fabricating semiconductor device having dual damascene interconnection |
JP2002373936A (en) * | 2001-06-14 | 2002-12-26 | Nec Corp | Wiring formation method by dual damascene method |
KR100545220B1 (en) | 2003-12-31 | 2006-01-24 | 동부아남반도체 주식회사 | Method for fabricating the dual damascene interconnection in semiconductor device |
JP5096669B2 (en) | 2005-07-06 | 2012-12-12 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor integrated circuit device |
KR100691105B1 (en) * | 2005-09-28 | 2007-03-09 | 동부일렉트로닉스 주식회사 | Method of forming copper interconnection using dual damascene process |
JP2009016596A (en) * | 2007-07-05 | 2009-01-22 | Elpida Memory Inc | Semiconductor device and its manufacturing method |
JP4891296B2 (en) * | 2008-07-03 | 2012-03-07 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor integrated circuit device |
JP5641681B2 (en) * | 2008-08-08 | 2014-12-17 | ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. | Manufacturing method of semiconductor device |
JP6737991B2 (en) * | 2015-04-12 | 2020-08-12 | 東京エレクトロン株式会社 | Subtractive method to create dielectric isolation structure in open features |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59308407D1 (en) * | 1993-01-19 | 1998-05-20 | Siemens Ag | Method for producing a contact and a metallization level comprising these interconnects |
US5705430A (en) * | 1995-06-07 | 1998-01-06 | Advanced Micro Devices, Inc. | Dual damascene with a sacrificial via fill |
JPH08335634A (en) * | 1995-06-08 | 1996-12-17 | Toshiba Corp | Manufacturing method for semiconductor device |
US5702982A (en) * | 1996-03-28 | 1997-12-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for making metal contacts and interconnections concurrently on semiconductor integrated circuits |
JPH10223755A (en) * | 1997-02-03 | 1998-08-21 | Hitachi Ltd | Manufacture of semiconductor integrated circuit device |
JP3183238B2 (en) * | 1997-11-27 | 2001-07-09 | 日本電気株式会社 | Method for manufacturing semiconductor device |
US6057239A (en) * | 1997-12-17 | 2000-05-02 | Advanced Micro Devices, Inc. | Dual damascene process using sacrificial spin-on materials |
US6387819B1 (en) * | 1998-04-29 | 2002-05-14 | Applied Materials, Inc. | Method for etching low K dielectric layers |
US6245662B1 (en) * | 1998-07-23 | 2001-06-12 | Applied Materials, Inc. | Method of producing an interconnect structure for an integrated circuit |
JP3734390B2 (en) * | 1998-10-21 | 2006-01-11 | 東京応化工業株式会社 | Embedding material and wiring forming method using the embedding material |
JP2000150644A (en) * | 1998-11-10 | 2000-05-30 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JP4082812B2 (en) * | 1998-12-21 | 2008-04-30 | 富士通株式会社 | Semiconductor device manufacturing method and multilayer wiring structure forming method |
-
2000
- 2000-06-05 IL IL14730100A patent/IL147301A0/en active IP Right Grant
- 2000-06-05 KR KR10-2001-7016608A patent/KR100452418B1/en not_active IP Right Cessation
- 2000-06-05 AU AU57908/00A patent/AU5790800A/en not_active Abandoned
- 2000-06-05 JP JP2001506606A patent/JP4675534B2/en not_active Expired - Fee Related
- 2000-06-05 EP EP00943434A patent/EP1192656A1/en not_active Ceased
- 2000-06-05 WO PCT/US2000/040108 patent/WO2001001480A1/en active IP Right Grant
- 2000-08-19 TW TW089112999A patent/TW531789B/en not_active IP Right Cessation
-
2001
- 2001-12-25 IL IL147301A patent/IL147301A/en not_active IP Right Cessation
-
2002
- 2002-05-31 HK HK02104146.3A patent/HK1042380A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
KR20020020921A (en) | 2002-03-16 |
IL147301A0 (en) | 2002-08-14 |
WO2001001480A1 (en) | 2001-01-04 |
TW531789B (en) | 2003-05-11 |
KR100452418B1 (en) | 2004-10-12 |
EP1192656A1 (en) | 2002-04-03 |
HK1042380A1 (en) | 2002-08-09 |
JP4675534B2 (en) | 2011-04-27 |
JP2003528442A (en) | 2003-09-24 |
AU5790800A (en) | 2001-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6406995B1 (en) | Pattern-sensitive deposition for damascene processing | |
US6649515B2 (en) | Photoimageable material patterning techniques useful in fabricating conductive lines in circuit structures | |
US7364836B2 (en) | Dual damascene process | |
KR100321571B1 (en) | Method of manufacturing semiconductor device having multilayer wiring | |
KR100690881B1 (en) | Fabrication method of dual damascene interconnections of microelectronics and microelectronics having dual damascene interconnections fabricated thereby | |
US7563719B2 (en) | Dual damascene process | |
JP2001077196A (en) | Manufacture of semiconductor device | |
US20050079705A1 (en) | Process for producing semiconductor device and semiconductor device | |
US6589711B1 (en) | Dual inlaid process using a bilayer resist | |
US20010016414A1 (en) | Use of PE-SiON or PE-Oxide for contact or via photo and for defect reduction with oxide and w chemical-mechanical polish | |
JP2008502142A (en) | Method for manufacturing an interconnect structure | |
IL147301A (en) | Method of projecting an underlying wiring layer during dual damascene processing | |
US6638853B1 (en) | Method for avoiding photoresist resist residue on semioconductor feature sidewalls | |
US6521542B1 (en) | Method for forming dual damascene structure | |
US20080020327A1 (en) | Method of formation of a damascene structure | |
JP4058327B2 (en) | Manufacturing method of semiconductor device | |
TW202038304A (en) | Method for forming multi-layer mask | |
JP4278497B2 (en) | Manufacturing method of semiconductor device | |
US7192880B2 (en) | Method for line etch roughness (LER) reduction for low-k interconnect damascene trench etching | |
US6686272B1 (en) | Anti-reflective coatings for use at 248 nm and 193 nm | |
US6287960B1 (en) | Self aligned dual inlaid patterning and etching | |
US6861376B1 (en) | Photoresist scum free process for via first dual damascene process | |
US6579791B1 (en) | Method to form dual damascene structure | |
US6551938B1 (en) | N2/H2 chemistry for dry development in top surface imaging technology | |
US20070190778A1 (en) | Via plug formation in dual damascene process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXP | Patent expired |