IE53305B1 - Silver-filled glass - Google Patents
Silver-filled glassInfo
- Publication number
- IE53305B1 IE53305B1 IE1840/82A IE184082A IE53305B1 IE 53305 B1 IE53305 B1 IE 53305B1 IE 1840/82 A IE1840/82 A IE 1840/82A IE 184082 A IE184082 A IE 184082A IE 53305 B1 IE53305 B1 IE 53305B1
- Authority
- IE
- Ireland
- Prior art keywords
- silver
- glass
- range
- paste
- gold
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5116—Ag or Au
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/4827—Materials
- H01L23/4828—Conductive organic material or pastes, e.g. conductive adhesives, inks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/832—Applying energy for connecting
- H01L2224/83201—Compression bonding
- H01L2224/83205—Ultrasonic bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8389—Bonding techniques using an inorganic non metallic glass type adhesive, e.g. solder glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01011—Sodium [Na]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01018—Argon [Ar]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01025—Manganese [Mn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01052—Tellurium [Te]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01058—Cerium [Ce]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01327—Intermediate phases, i.e. intermetallics compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/0665—Epoxy resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/15786—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2924/15787—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Conductive Materials (AREA)
- Glass Compositions (AREA)
- Die Bonding (AREA)
Abstract
A silver metallizing paste for attachment of silicon semi-conductive devices in lead-frame packages, specifically ceramic packages, which is less expensive than a gold preform but useable in hermetic packages, and provides better electrical and thermal conductivity, and higher bond strength, than silver polyimides. From 25 to 95% of silver is blended with a low-melting glass, preferably one having 95-96% PbO, and a paste or ink is formed with a suitable vehicle at 75-86% solids. Use of the paste follows conventional practice. Selection of Ag:glass ratio depends on the type of die bonding to be used. The paste is particularly useful in MOS technology, where low contact resistance is required, and also finds applications as a solder substitute and bonding chip capacitors. It is most advantageous in attachment of larger- area integrated circuits in that stress cracking associated with the gold silicon eutectic is avoided.
Description
The present invention relates generally to a method of bonding a a semiconductive device to a ceramic substrate using a silver-filled glass metallizing composition.
Silver metallization compositions had their origins in 5 decorative enamelling, but were adapted early on for use in thick film hybrid circuitry. The attention of early workers was, however, concentrated on designing compositions that would adhere strongly to the ceramic substrate. The so-called Scotch tape test became an early standard of adhesion. Knox, U.S. Pat. No.
2,385,580 disclosed high proportions of bismuth oxide in lead borosilicate glasses which was widely used with silver, but was not satisfactory with other noble metals. Hoffman, U.S. Pat.
No. 3,440,182 disclosed additions of vanadium and copper oxides as improving adhesion, solderability and conductivity of noble metal metallizing compositions generally. These compositions were used as conductors, rather than as a medium for attachment of devices such as silicon integrated circuits to the substrates.
In the latter category, gold-based inks or preforms have been the most common, taking advantage of the low-temperature gold-silicon eutectic to achieve a good bond. Even though very substantial efforts have been made to reduce the amount of gold used to make such bonds, its expense mitigates against its use wherever possible.
There has been a great deal of effort over the years to eliminate gold from hermetic packages in the electronics industry. One of the more difficult areas to eliminate gold has been in MOS technology, due to the necessity of having backside low resistance contact; as of now, gold is still the material of choice in this application.
Plastic packaging has nearly eliminated the necessity for gold, with the exceptions of gold bonding wire and gold evaporated on the backside of the wafer. The gold on the frame and gold preform have been eliminated by the use of epoxy and polyimides filled with silver flake in such packages..
Silver-filled polyimides have been used for die attachment in hermetic packages. Because of the problem of final cross linking of polyimides, and the generation of CO2 and H2O during sealing, this has not achieved significant volume.
There are no low-temperature phases in the silver-gold system, which is a continuous series of solid solutions, and the silver-silicon system has a eutectic, but a high temperature one (over 800° C.), so systems based on silver must employ a fundamentally different bonding mechanism, indeed one where the silver per se plays little or no part.
Thus, where a gold preform is used to attach a silicon die to a silver metallized surface, the mechanism on one side is the gold-silicon eutectic and on the other it is a solid-liquid diffusion, with the glass playing the major role in terms of bond strength. Being less than a metallurgical bond, the thermal and electrical conductivity are not as good as desired.
Pure glass bonds have also been used in this service, but without a conductive element both conductivities suffer, as would be expected.
Regarding silver polyimide compositions, the quantity of silver that can be incorporated is limited, and special processing is necessary (for high-volume manufacturing, uniformity of processing is an important cost consideration). The biggest drawback of polyimides, or any organic bonding system, is that they can not be used in hermetic packages such as Cerdips, because they are moisture getters, can not be outgassed, and generally can not withstand high temperature used in assembling these packages.
The present invention provides a method of bonding a semiconductive device to a ceramic substrate using a silver-filled glass that produces strong bonds between a silicon die and a substrate, whether or not the latter is metallized, with controllable thermal and electrical conductivity, and which may be used in hermetic packages.
According to one aspect the invention provides a method of bonding a semiconductive device to a ceramic substrate comprising:
(i) applying a silver-filled glass metallizing composition onto said substrate, said composition having a solids content comprising:10 (a) 25 to 95% of silver powder having a surface area of 0.2 to
1.0 m /gra and a tap density of at least 2.2, preferably 2.2 to 2.8 gm/cc; (b) 75 to 5% of substantially sodium-free glass frit, preferably a borosilicate substantially sodium-free glass frit, having a softening temperature in the range of 325° to 425°C., a coefficient of thermal expansion no higher than 13 ppm/°C, a surface area of at least 0.3 m /gm, preferably in the range of 0.3 to 0.6 m /gm, and a tap density of up to 3.6 gm/cc, preferably in the range of 2.8 to 3.6 gm/cc;
said composition also including a liquid organic vehicle in an amount sufficient to establish a percent solids in said paste in the range of 75 to 85%;
(ii) setting said device into said metallizing composition with pressure to form an assembly;
(iii) drying said assembly; and (iv) firing said assembly at peak temperature in the range of 425 to 525°C.
In a modificiation of the method of the invention, a portion of the silver in the metallizing composition may be replaced by other metals, in particular:
4.
(i) (ii) (iii) (iv) as gold.
up to 10% of up to 60% of up to 20% of a portion of said silver may said silver may said silver may said silver may be be be be replaced by nickel; replaced by tin; replaced by copper; replaced by a nobel metal such
The method of the invention is particularly suitable for bonding a silicon semiconductive device to a ceramic substrate.
According to another aspect, the invention provides an electronic assembly comprising a ceramic substrate, and a semiconductive device, preferably a silicon semiconductive device, attached to said substrate by a bond, wherein said bond is formed from a silver-filled glass metallizing composition as used in the method of the invention.
Reference will hereinafter be made to the accompanying drawing, which shows by way of example a cross-sectional elevation of a silicon die bonded on a ceramic substrate in accordance with the invention.
Preferred embodiments of the invention will now be described.
.
In the selection of a silver powder for use with the invention, it has been determined that both spherical and flake powders function well, though the latter produces a shinier, more metallic-looking finish. It is of interest that some prior workers specified flake for silver conductives, but that was for a current-carrying wire rather than a bonding medium, where conductivity is through the thickness, rather than along the length.
1C Satisfactory silvers for the invention are those having a surface area in the range of 0.2 to 1 m2/gm, and a tap density of 2.2 to 2.8 g/cc.
The glass is the second key component, and it is essential that it be low-melting, so as to be molten at the die-attach temperature, 425-450° C. The preferred glass selected meets this requirement, has a softening temperature of 325° C., and the following composition:
PbO 95-96%
SiO2 0.25-2.5% B2°3 remainder
It has been found that small quantities of ZnO,unt*er θ·5%, are not deleterious, but any sodium should be rigorously avoided, as it attacks silicon. While bismuth oxide can also tie incorJ porated in low-melting glasses, it is harder to mill than lead oxide, and will attack platinum used in formulation procedures. Thus, substitution of bismuth for lead is not advised.
The glass is fritted and ground in a high-purity alumina jar mill to meet the following specifications:
surface area: 0.3-0.6 m2/gm tap density: 2.8-3.6 g/cc
Generally, glasses having a softening point in the range of 325° to 425° C., and a coefficient of thermal expansion no higher than about 13 ppm/°C., preferably in the range of 8-13 ppm/°C., may be used.
The softening point should be at least 325°C. to insure that all organics are burned off. If the softening point is higher than 425° C., the glass will not be sufficiently fluid at the die attach temperature. The glass is then mixed with the vehicle described hereinbelow (80% solids) and milled on a 3-roll mill to a particle size (F.O.G.) of 7-8 microns.
Those skilled in the art appreciate that the selection of vehicle is not critical, and a variety of appropriate vehicles are readily available. Of'course, burn-out must be complete at the indicated temperatures. In this case the vehicle selected comprised:
Ethyl methacrylate 12%
Terpineol 88%
The silver is then added to the glass paste in a desired silver: 15 glass ratio-as discussed below, but falling within the limits
:75 to 95:5. The percent (total) solids is then adjusted to within the range of 75-86% by addition of more of the vehicle. Outside of this range, rheological problems are likely to be encountered; generally a solid content in the range of 80-83% is preferred. At this level, typically, the paste will have a viscosity of 20-22 Kcps, as measured on a Brookfield RVT Viscometer, with a TF spindle, at 20 RPM and 25° C.
Use of the paste is essentially conventional, use, a dot, square or screened area of the paste is applied on a metallized or bare film (ceramic) substrate, machine dispensing, screen printing or stamping techniques all being useable. If it is dotted, the size of the dot is about 25% larger than the die. The die is attached by placing the die in the center of the wet paste and setting it by applying pressure, so that the paste flows about half way up the side of the die and leaves a thin film under the die. Drying in an oven is carried out at 50-75°C for 20-40 minutes. Organic burn-out is done on a cycle time of 15-20 minutes, with 2-3 minutes at a peak temperature in the range
533 OS of 325-450° C. In the accompanying drawing, a substrate 10 is shown with a die 12 attached thereto with a layer of silver filled glass 14, which lias flowed up around the edges during setting. For test purposes, the package is subjected to a 5 simulated (package) sealing cycle in the range of 430° to 525°C., with 15 minutes at 430° C.
Alternatively, the die may be attached by known scrubbing techniques, or hot-stage vibratory bonding may be employed.
A surprising aspect of the invention is that the mechanical strength of the bond is-proportional to the silver content. Using a standard push test (Mil. Spec. 883B, method 2019.1), a range of 5 to 17 lbs. was recorded through the silver range of 30 to 95%. As would be expected, electrical conductivity also improves with silver content. At the low end-, resistivity is comparable to the commercial epoxies (25-35 pohm. cm) for example EPO-TEK P-10, and this drops to 5-10 yjohm. cm at high silver levels.
When the substrate has been metallized, acceptable bonds are achieved at Ag:glass ratios of 25;75 to 95:5. On bare alumina, it is preferred to keep the ratio between 50:50 an
90:10. Note that acceptable is here defined as well above the mil spec of 4.2 lhs.
With both bond strength and conductivity rising with silver content a question could be raised as to utility of the lowsilver, high-glass compositions. The answer, generally, depends
2ϊ on intended use. More particularly, when the die is to be attached by mechanical scrubbing means, very good bonds are achieved with silver in the 23-40% range. In situations where it is desired to' have the die sink into -the ink to a degree, the higher silver ratios are preferred. At the very high silver end (e.g. 75-95%), tests indicate that the ink can be applied to a bare substrate and the chip can be ultrasonically down-bonded with good results. One would not want to go much above 90% silver , 8 as adhesion will start to drop off. TherS ire thus a variety of possibilities, including elimination of certain processing steps, by, for example; attaching lead frames and dies at the s,ame time.
It Js possible to substitute certain base metals for a !
portion pf the silver but, generally, adhesion will drop and resistivity will rise with such substitution. Specifically, up to 10% Ni, up to 60% Sn and up to about 20% Cu were substituted and resulted in acceptable bond strengths, providing firing was carried out in air, not nitrogen, and at a combined metal:glass ratio of 80:20 (nitrogen firing reduces the lead oxide and destroys the glass).
An important aspect of the invention is its applicability to the larger integrated circuits now coming into use. More particularly, it is known that the gold-silicon eutectic is a brittle intermetallic, and that any bonding material must accommodate the different thermal expansion rates of the die and the substrate. This is not a notable problem with small chips, but in the VLSIC range the sealing cycle temperature can cause both bond failure and chip cracking due to thermal stress. Because the composition of the present invention softens rather than melts, such thermal stresses are avoided, as has been shown by thermal shock test (mil spec standard 883B, condition A).
Lastly, the question arises as to whether there might be applications of the invention where it would be desireable to substitute a noble metal, particularly gold, for a.portion of the silver. It was found that'no particular advantages accrued by this, expedient. More particularly, a standard gold paste was mixed with an 80:20 Ag:glass paste of the invention in proportions that ranged from a Au:Ag ratio of 10/90 to 80/20. While the conductivity of bonds to chips showed some tendency to rise 9 with higher gold, results were inconclusive, and there was clearly no cost justification for such substitution. Moreover, the shear strength of the bonds tended to drop at higher gold, though it was acceptable at any level. No gold-silicon eutectic was observed, presumably due to features of the Au-Ag-Si ternary phase diagram. There is thus no apparent reason to sacrifice the considerable economics of the invention by trading-off silver for gold.
A further important application of the invention is in bonding chip capacitors to substrates. For example, a 120x90x35 mil capacitor is “set11 in a 5-7 mil pad of the silver-filled glass dried and fired as noted above. Shear strength was 13.8 lbs, and a good electrical contact was made around the sides. In terms of hybrid circuit manufacture, this has important ramifications, to wit, circuit chips and capacitors can be attached, dried and fired in a single cycle, with good bonds. Moreover, subsequent processing or operation may be carried out at temperatures that would melt conventional solder pastes.
In accordance with the invention the silver-filled glass composition may be used as a substitute for solder. More particularly, at the preferred 80:20 Ag:glass ratio, and the 80-85% solids content, the composition will “hold the device to be soldered through the firing cycle, whereas solders will allow movement.
It will thus be seen that the silver-filled glass compositions for use according to the invention provide inter alia:(a) an improved medium for bonding silicon dies to substrates.
(b) a silver-filled glass adapted to make strong bonds between silicon dies and metallized or bare substrates under normal processing conditions.
(c) a silver-filled glass for bonding silicon dies to substrates that is lower in cost than gold-based systems, higher in conductivity and bond strength than other silver or non-metallic systems, and which is adapted for use in hermetic packages.
.
(d) a silver-filled glass useful as a solder-substitute and for bonding capacitor chips to substrates.
(e) a silver-filled glass for bonding silicon dies to alumina substrates that is as good as gold-silicon eutectic bonds in terms of adhesion but which is lower in thermally Induced stresses than eutectic bonds.
Percentages and proportion in this specification are by weight.
Claims (11)
1. A method of bonding a semiconductive device to a ceramic substrate comprising: (i) applying a silver-filled glass metallizing composition onto 5 said substrate, said composition having a solids content comprising:(a) 25 to 95% of silver powder having a surface area of 0.
2. To 1.0 ? m /gm and a tap density of at least 2.2 gm/cc; (b) 75 to 5% of substantially sodium free glass frit having a softening temperature in the range of 325° to 425°C., a coefficient of 10 thermal expansion no higher than 13 ppm/°C, a surface area of at least 2 0.3 m /gm, and a tap density of up to 3.6 gm/cc; said composition also including a liquid organic vehicle in an amount sufficient to establish the percent solids in said paste in the range of 75 to 85%; 15 (ii) setting the device into said metallizing composition with pressure to form an assembly; (iii) drying said assembly; and (iv) firing said assembly at peak temperature in the range of 425 to 525°C. 20 2. A method according to claim 1 wherein the silver powder has a top density of 2.2 to 2.8 gm/cc.
3. A method according to either claim 1 or claim 2 wherein the glass frit is a borosilicate glass frit having a surface area in the range of 0.3 to 0.6 m /gm, and a tap density in the range of 2.8 to 3.6 gm/cc. 25
4. A method according to any one of the preceding claims wherein said glass frit consists essentially of 95-96% of PbO, 0.25-2.5% Si0 2 and the remainder is B 2 0 3 . 12. S3305
5. A modification of a method as claimed in any one of the preceding claims, wherein a portion of the silver in said metallizing composition is replaced by a metal selected from nickel, tin and copper, up to the following limits: Ni Sn Cu up to 10% up to 60% up to 20%
6. An electronic assembly comprising: a ceramic substrate; a semiconductive device attached to said substrate by a bond; said bond being formed from a silver-filled glass metallizing composition as defined in any one of claims 1 to 4.
7. An electronic assembly as claimed in Claim 6, wherein said semiconductive device is selected from silicon devices and chip capacitors.
8. An electronic assembly as claimed in Claim 6 or 7, wherein said glass has a silver-to-glass ratio of 80:20.
9. A modification of an electronic assembly as claimed in Claim 6, 7 or 8, wherein a portion of the silver in said glass is replaced by a metal selected from nickel, tin and copper, up to the following limits: Nl Sn Cu up to 10% up to 60% up to 20%
10. A method as claimed in any one of claims 1 to 5 substantially as herein described.
11. An electronic assembly as claimed in any one of claims 6 to 9 substantially as hereinbefore described.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28789281A | 1981-08-03 | 1981-08-03 | |
US06/355,719 US4401767A (en) | 1981-08-03 | 1982-03-08 | Silver-filled glass |
Publications (2)
Publication Number | Publication Date |
---|---|
IE821840L IE821840L (en) | 1983-02-03 |
IE53305B1 true IE53305B1 (en) | 1988-10-12 |
Family
ID=26964708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IE1840/82A IE53305B1 (en) | 1981-08-03 | 1982-07-30 | Silver-filled glass |
Country Status (7)
Country | Link |
---|---|
CH (1) | CH652737A5 (en) |
DE (1) | DE3227815A1 (en) |
FR (1) | FR2513240B1 (en) |
GB (1) | GB2103250B (en) |
IE (1) | IE53305B1 (en) |
NL (1) | NL8203081A (en) |
PH (1) | PH19754A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3414065A1 (en) * | 1984-04-13 | 1985-12-12 | Siemens AG, 1000 Berlin und 8000 München | Configuration comprising at least one electronic component fixed on a substrate, and process for fabricating a configuration of this type |
US4699888A (en) * | 1985-09-16 | 1987-10-13 | Technology Glass Corporation | Die/attach composition |
US4906596A (en) * | 1987-11-25 | 1990-03-06 | E. I. Du Pont De Nemours & Co. | Die attach adhesive composition |
GB8730196D0 (en) * | 1987-12-24 | 1988-02-03 | Johnson Matthey Plc | Silver-filled glass |
DE3837300A1 (en) * | 1988-11-03 | 1990-05-23 | Messerschmitt Boelkow Blohm | Method for producing microelectronic circuits and hybrids |
US5180523A (en) * | 1989-11-14 | 1993-01-19 | Poly-Flex Circuits, Inc. | Electrically conductive cement containing agglomerate, flake and powder metal fillers |
DE19816309B4 (en) * | 1997-04-14 | 2008-04-03 | CiS Institut für Mikrosensorik gGmbH | Method for direct mounting of silicon sensors and sensors manufactured thereafter |
DE102012206362B4 (en) | 2012-04-18 | 2021-02-25 | Rohde & Schwarz GmbH & Co. Kommanditgesellschaft | Circuit arrangement for thermally conductive chip assembly and manufacturing process |
CN116018884B (en) * | 2020-10-20 | 2024-10-18 | 株式会社东芝 | Bonded body, ceramic circuit board using the same, and semiconductor device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2385580A (en) * | 1944-07-01 | 1945-09-25 | Du Pont | Vitrifiable flux and bonding composition containing same |
DE1646882B1 (en) * | 1965-07-29 | 1970-11-19 | Du Pont | Precious metal mass to be burned onto ceramic carriers |
SU391187A1 (en) * | 1971-04-06 | 1973-07-25 | PASTE FOR METALIZATION OF CERAMICS | |
US3824127A (en) * | 1971-12-22 | 1974-07-16 | Du Pont | Disc capacitor silver compositions |
JPS5116344A (en) * | 1974-07-31 | 1976-02-09 | Fujikura Kasei Kk | Bodongarasuno netsusenyotoryo |
-
1982
- 1982-07-26 DE DE19823227815 patent/DE3227815A1/en not_active Withdrawn
- 1982-07-27 PH PH27636A patent/PH19754A/en unknown
- 1982-07-29 CH CH4606/82A patent/CH652737A5/en not_active IP Right Cessation
- 1982-07-30 IE IE1840/82A patent/IE53305B1/en unknown
- 1982-07-30 FR FR8213366A patent/FR2513240B1/en not_active Expired
- 1982-07-30 GB GB08222054A patent/GB2103250B/en not_active Expired
- 1982-08-03 NL NL8203081A patent/NL8203081A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
GB2103250B (en) | 1986-02-26 |
GB2103250A (en) | 1983-02-16 |
FR2513240B1 (en) | 1986-07-25 |
NL8203081A (en) | 1983-03-01 |
CH652737A5 (en) | 1985-11-29 |
IE821840L (en) | 1983-02-03 |
DE3227815A1 (en) | 1983-02-24 |
PH19754A (en) | 1986-06-26 |
FR2513240A1 (en) | 1983-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4459166A (en) | Method of bonding an electronic device to a ceramic substrate | |
US4401767A (en) | Silver-filled glass | |
US4436785A (en) | Silver-filled glass | |
US4656499A (en) | Hermetically sealed semiconductor casing | |
US4784974A (en) | Method of making a hermetically sealed semiconductor casing | |
EP0153737B1 (en) | Circuit substrate having high thermal conductivity | |
JP3226213B2 (en) | Solder material and electronic component using the same | |
CA1200625A (en) | Semiconductor die-attach technique and composition therefor | |
US4517584A (en) | Ceramic packaged semiconductor device | |
US5165986A (en) | Copper conductive composition for use on aluminum nitride substrate | |
JPS6254206B2 (en) | ||
JPS5873904A (en) | Silver-filled glass | |
IE53305B1 (en) | Silver-filled glass | |
JPH04152642A (en) | Paste for adhesion use | |
JPS61248302A (en) | Metalization base for silica carbide sintered body | |
US4963187A (en) | Metallizing paste for circuit board having low thermal expansion coefficient | |
EP0100817B1 (en) | A hermetically sealed casing of an electrical device and process of manufacturing | |
KR900006013B1 (en) | Silver-filled glass | |
US4659406A (en) | Method of bonding to ceramic and glass | |
JPH05259201A (en) | Semiconductor device and its production | |
US4816216A (en) | Interdiffusion resistant Fe--Ni alloys having improved glass sealing | |
CN101752335B (en) | Semiconductor device and method for producing semiconductor device | |
US4905074A (en) | Interdiffusion resistant Fe-Ni alloys having improved glass sealing property | |
JPH01317183A (en) | Metallizing composition for base plate having low thermal expansion | |
JPH01273690A (en) | Material for brazing |