DE3837300A1 - Method for producing microelectronic circuits and hybrids - Google Patents

Method for producing microelectronic circuits and hybrids

Info

Publication number
DE3837300A1
DE3837300A1 DE3837300A DE3837300A DE3837300A1 DE 3837300 A1 DE3837300 A1 DE 3837300A1 DE 3837300 A DE3837300 A DE 3837300A DE 3837300 A DE3837300 A DE 3837300A DE 3837300 A1 DE3837300 A1 DE 3837300A1
Authority
DE
Germany
Prior art keywords
glass solder
glass
silver
solder paste
pressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE3837300A
Other languages
German (de)
Inventor
Werner Dipl Chem Dr Moeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE3837300A priority Critical patent/DE3837300A1/en
Publication of DE3837300A1 publication Critical patent/DE3837300A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • H01L23/4828Conductive organic material or pastes, e.g. conductive adhesives, inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8122Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/81224Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8389Bonding techniques using an inorganic non metallic glass type adhesive, e.g. solder glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0106Neodymium [Nd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Abstract

The invention relates to a method for producing microelectronic circuits and hybrids by means of multistage soldering of semiconductor components, hybrids and substrates composed of glass, ceramic, enamel/metal using thermally and electrically conductive glass solder composed of lead borate glass, silver flakes and other metal-mineral powders, binding agents and solvents under pressure and specific conditions. The method and the advantages achieved using it are explained with reference to exemplary embodiments.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von mikro­ elektronischen Schaltungen und Hybriden gemäß dem Gattungsbegriff des Anspruchs 1.The invention relates to a method for producing micro electronic circuits and hybrids according to the generic term of Claim 1.

Hochkomplexe mikroelektronische Schaltungen hoher Zuverlässigkeit werden durch hermetische Verkapselung gegen äußere Feuchte, aggressive Gase und schädliche Umwelteinflüsse vor Korrosion geschützt. Hierbei müssen aber auch in der Verkapselung selbst für die Schaltung aggresive Stoffe ver­ mieden bzw. ausgeschlossen werden. Dies ist aber bei dem zunehmenden Einsatz von Kunststoffen zum Verkleben, Verkapseln und Abdecken bei sol­ chen hermetisch verschlossenen Mikroelektronik-Schaltungen nicht mit Sicherheit gewährleistet, vor allem dann, wenn sie thermisch beansprucht werden, wie beispielsweise beim Verlöten von CERDIP-Gehäusen oder beim Einsatz von Leistungschips.Highly complex microelectronic circuits with high reliability through hermetic encapsulation against external moisture, aggressive gases and harmful environmental influences protected against corrosion. Here, however also in the encapsulation itself for switching aggressive substances avoided or excluded. But this is with the increasing Use of plastics for gluing, encapsulating and covering sol hermetically sealed microelectronic circuits Security guaranteed, especially when it is thermally stressed such as when soldering CERDIP housings or when Use of performance chips.

Bei der Verwendung von sogenannten Lotpasten ist eine erhebliche Ein­ schränkung durch die organischen Anteile solcher Pasten, insbesondere der aggresiven Flußmittel gegeben. Dies gilt auch für das Verlöten mit Preforms, Lötfolien usw., da sie aufwendige bzw. sehr anspruchsvolle Metallisierung - wie beispielsweise Vorverzinnung der Bauteile - erfor­ dern. Auch die laufende Weiterentwicklung von hitzebeständigen, hochge­ füllten Silberleitklebern brachte bisher keine Lösung.When using so-called solder pastes, there is a considerable restriction due to the organic proportions of such pastes, in particular the aggressive flux. This is true and so also for soldering with preforms, solder foils as they elaborate and highly sophisticated metallization - such as pre-tinning of components - erfor countries. The ongoing further development of heat-resistant, highly filled silver conductive adhesives has so far brought no solution.

Aus der Hochvakuumtechnik der Elektronenstrahlröhren sind zum Verlöten von Glas- und Metallteilen sogenannte Glaslotpasten bekannt geworden, beispielsweise in der US-PS 35 20 831 oder DE-PS 27 46 320. In dem Arti­ kel "Development of adhesive DIE Attach Technology in Cerdip Packages", von F. K. Moghadam in "Solid State Technology", Jan. 84, Seiten 149- 157, wird eine Paste aus Glaslot mit 70-80% Silberpulver (bezogen auf Feststoff) und einer Bindemittel-Lösung auf Terpineol-Basis be­ schrieben. Durchgeführte Versuche ergaben jedoch, daß solche Sil­ ber-Glaslot-Pasten gemäß des Standes der Technik erhebliche Haftfestig­ keitseinbußen von über 50% schon nach wenigen Thermoschocks aufweisen. Hinzu kommt noch, daß die Zugscherfestigkeit nur 30-40% der sonst an Silberglaslotverbindungen ermittelten Werte erreichte. Untersuchungen ergaben, daß sowohl Abkühlungsrisse als auch Lunker auftreten, die für diese Festigkeitsminderung verantwortlich sind. Die Lösungsmittel-Ver­ dampfung dieser Silberglaslot-Pasten und die Bindemittel-Zersetzung er­ geben hohe Porosität und ein Aufschäumen des Glases.From the high vacuum technology of electron beam tubes are to be soldered so-called glass solder pastes have become known for glass and metal parts, for example in US-PS 35 20 831 or DE-PS 27 46 320. In the Arti "Development of adhesive DIE Attach Technology in Cerdip Packages", by F. K. Moghadam in Solid State Technology, Jan. 84, pages 149- 157, a paste of glass solder with 70-80% silver powder (obtained on solid) and a binder solution based on terpineol wrote. Experiments carried out, however, have shown that such Sil  Prior to glass solder pastes considerable adhesive strength show a loss of over 50% after just a few thermal shocks. In addition, the tensile shear strength is only 30-40% of that otherwise Silver glass solder connections reached values. Investigations showed that both cooling cracks and voids occur, which for are responsible for this reduction in strength. The solvent ver vaporization of these silver glass solder pastes and the binder decomposition give high porosity and foaming of the glass.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, das die Verarbeitungsvorteile der Klebetechnik und des Epoxy-DIE-Bondens bietet und thermisch wie elek­ trisch leitende, gut haftende, gegenüber mechanischen und thermischen Schocks stabile Fügeverbindungen zwischen Chip und Substrat gewähr­ leistet.The present invention has for its object a method of to create the kind mentioned that the processing advantages of Adhesive technology and epoxy DIE bonding offers and thermal as elek trically conductive, well adhering to mechanical and thermal Shocks ensure stable joint connections between chip and substrate accomplishes.

Diese Aufgabe wird durch die im Anspruch 1 aufgezeigte Lehre gelöst. In den Unteransprüchen sind Weiterbildungen und Ausgestaltungen angegeben und in der nachfolgenden Beschreibung sind Ausführungsbeispiele ge­ bracht.This object is achieved by the teaching set out in claim 1. In Further developments and refinements are specified in the subclaims and in the following description, embodiments are ge brings.

Das hier vorgeschlagene Verfahren sieht vor, daß die Glaslotpaste zu­ nächst wie ein Epoxy-Kleber nach dem Siebdruck- , Stempel- oder DIE-Bond-Verfahren aufgetragen, dann bis auf 300°C aufgeheizt, entgast und heiß angepreßt wird und erst dann die Chips bzw. Bauteile aufge­ drückt werden. Die Paste wird im Viskositätsverhalten mit Hilfe der Bindemittellösung - hier 1%-ige Nitrocellulose/Butylacetat-Lösung - der bisher üblichen Epoxy-Kleberpaste angepaßt, so daß nebeneinander mit den gleichen Maschinen und Vorrichtungen eine Verarbeitung möglich ist. Bei großflächigen Glaslot-Beschichtungen, z.B. zum Anlöten des Bauteils auf das Substrat erweist sich die Heißstempel- oder Bügeltechnik als sehr vorteilhaft. The method proposed here provides that the glass solder paste is first applied like an epoxy adhesive using the screen printing, stamping or DIE bonding method, then heated to 300 ° C., degassed and hot pressed, and only then is the chips or components are pressed up. The viscosity of the paste is adjusted with the aid of the binder solution - here 1% nitrocellulose / butyl acetate solution - to the epoxy adhesive paste which has been customary so far, so that processing can be carried out side by side with the same machines and devices. With large-area glass solder coatings, for example for soldering the component onto the substrate, the hot stamping or ironing technique has proven to be very advantageous.

Nun konnte überraschend festgestellt werden, daß die elektrische und thermische Leitfähigkeit bei Silberglaslot nahezu sprunghaft von 1 Ω auf den erforderlichen Wert von 0,05 Ω ansteigt, wenn der Silberanteil des Lots zwischen 25 und 45% beträgt. Bei einer weiteren Erhöhung auf den üblichen Anteil von 80% Silber jedoch ist der Anstieg nur noch ge­ ring. Durch den hier im Verfahren vorgeschlagenen Silberanteil von 25 bis 40%, der die gleiche Leitfähigkeit wie das Epoxy-Silberglaslot des Standes der Technik erbringt, wird nicht nur eine beachtliche Silberer­ sparnis erzielt, sondern auch eine Erhöhung des Binderanteils erreicht, d.h. eine niedrigere Schmelzviskosität, eine bessere Benetzung und Ver­ schmelzung und damit auch eine höhere Haftung.Now it was surprisingly found that the electrical and Thermal conductivity with silver glass solder almost abruptly from 1 Ω increases to the required value of 0.05 Ω when the silver content of the solder is between 25 and 45%. With a further increase on the usual share of 80% silver, however, is only an increase ring. Due to the silver content of 25 suggested here in the process up to 40%, which has the same conductivity as the epoxy silver glass solder of the Providing state of the art is not only a remarkable silver achieved savings, but also achieved an increase in the proportion of binder, i.e. a lower melt viscosity, better wetting and Ver melting and thus a higher adhesion.

Nun kann allerdings ein erhöhter Glaslotanteil, wie er sich aus der Re­ duzierung des Silberanteils ergibt, bei unangepaßten Ausdehnungskoeffi­ zienten die Schockfestigkeit vermindern. Deshalb wird vorgeschlagen, nicht mit Glaslot, sondern mit Aluminiumoxid auszugleichen und so den Ausdehnungskoeffizienten anzupassen.However, an increased proportion of glass solder, as can be seen in the Re Reduction of the silver content results in an unadjusted expansion coefficient reduce the shock resistance. Therefore it is suggested not with glass solder, but with aluminum oxide and so the Expansion coefficients to adjust.

Es sind Ag-Composit-Lote mit einem Ausdehnungkoeffizienten von 10× 10-6 °C und damit spannungsarme Keramik/Silizium-Chip-Verlötungen herstellbar. Weiterhin kann es vorteilhaft sein, das Silber durch andere Metallpulver teilweise zu ersetzen. So vermindern beispielsweise Palla­ dium-Zusätze die bei Silber-Klebern und -Loten mögliche Migrationsge­ fahr. Aluminiumnitrid-Pulverzusätze verbessern dagegen infolge der außerordentlich hohen Wärmeleitfähigkeit das thermische Verhalten.Ag composite solders with an expansion coefficient of 10 × 10 -6 ° C and thus low-stress ceramic / silicon chip soldering can be produced. Furthermore, it can be advantageous to partially replace the silver with other metal powders. For example, palladium additives reduce the risk of migration that can occur with silver adhesives and solders. Aluminum nitride powder additives, on the other hand, improve the thermal behavior due to the extraordinarily high thermal conductivity.

Allerdings erfordert eine Verringerung des Glasanteils erhöhte Applika­ tionsdrücke. Um trotz der hohen Viskosität eine Schrumpfung bzw. Ver­ festigung des Glaslotes zu ermöglichen, wird die Paste in bekannter Weise auf das vorgewärmte (150°C) Substrat gepreßt. Je nach Größe des Glaslot-Preforms ist eine Preßzeit von 1-30 sec. bei einem Preßdruck von 2-4 bar erforderlich. Anschließend wird mit einem temperaturge­ steuerten Laserlötgerät das Glaslot-Preform auf 400°C, d.h. bis zum Auf­ schmelzen aufgeheizt und das Bauteil, z.B. Silicium-Chips, heiß aufge­ drückt. Hierzu kann ein modifizierter Epoxy-DIE-Bonder verwendet werden. However, reducing the proportion of glass requires increased applications tion pressures. In order to prevent shrinkage or ver To enable the glass solder to strengthen, the paste is known in the Pressed onto the preheated (150 ° C) substrate. Depending on the size of the Glass solder preforms are a pressing time of 1-30 seconds with a pressing pressure of 2-4 bar required. Then with a Temperaturge the laser soldering device controlled the glass solder preform to 400 ° C, i.e. until the opening melt heated and the component, e.g. Silicon chips, heated up presses. A modified epoxy DIE bonder can be used for this.  

Beim Laserlöten mit Nd = YAG-Geräten kann die Aufheizung rückseitig durch die für Laserlicht (λ = 1,06 µm) transparente Keramiksubstrate bestrahlt werden.When laser soldering with Nd = YAG devices, the back of the heater can be irradiated through the ceramic substrates that are transparent to laser light ( λ = 1.06 µm).

Nun wird weiterhin vorgeschlagen, um die Kontaktierung und Haftung zu verbessern, daß anschließend an den vorbeschriebenen Arbeitsgang, 30 -60 Minuten bei 400°C ± 30°C in einem Trockenofen getempert wird.Now it continues to suggest contacting and liability improve that after the above-described operation, 30 -60 minutes at 400 ° C ± 30 ° C in a drying oven.

Die Glaslot-Viskosität ist bei 400°C noch so hoch, daß eine bestimmte Zeit bis zur völligen Benetzung benötigt wird. Bei hohen Glaslotanteilen bzw. unangepaßten Ausdehnungskoeffizienten muß anschließend auf eine langsame Abkühlung auf 300°C geachtet werden, vorgeschlagen werden 2 bis 50°C pro Minute.The glass solder viscosity at 400 ° C is still so high that a certain Time until complete wetting is required. With high proportions of glass solder or unadjusted expansion coefficient must then be on a slow cooling to 300 ° C should be observed, 2 to 2 are suggested 50 ° C per minute.

Die Homogenisierung der vorgeschlagenen Glaslotpasten geschieht durch etwa eintägiges Rühren in einem verschlossenen Rührwerk. Die Paste wird anschließend auf einem Walzenstuhl rollend in einer verschlossenen Glas­ flasche aufbewahrt, evtl. in der Viskosität durch entsprechenden Lösungszusatz den Verarbeitungsanforderungen angepaßt. Die Pastenappli­ kation kann durch die an sich bekannten Verfahren durchgeführt werden, wie beispielsweise Aufstreichen mittels Spatel, Siebdrucken oder Stem­ peln mittels einer Stempelvorrichtung, wobei z.B. die Bonder in einer Dicke von 100 ± 50 µm ausgeführt werden.The proposed glass solder pastes are homogenized by stirring for about a day in a closed agitator. The paste will then rolling on a roller mill in a sealed jar bottle kept, possibly in viscosity by appropriate Solution addition adapted to the processing requirements. The paste appli cation can be carried out by the processes known per se, such as spreading with a spatula, screen printing or stem peeling by means of a stamping device, e.g. the bonders in one Thickness of 100 ± 50 microns.

Das weitere Verfahren sieht vor, daß der Pastenaufdruck mit IR-Dunkel­ strahlung eine Minute lang oder im Trockenschrank bei 150°C getrocknet wird. Chips und kleine Bauelemente werden sofort aufgelegt. Anschließend wird die Schaltung mit einer Quarzglasscheibe oder Glimmerfolie abge­ deckt mit etwa 1 bar angepreßt und im Trockenschrank zwischen 10 und 30 Minuten lang bei etwa 320°C entgast. Schließlich wird etwa 30 ± 15 Minuten bei 400 ± 20°C unter 1-4 bar Druck angeglast.The further process provides that the paste print with IR dark radiation for one minute or dried in a drying cabinet at 150 ° C becomes. Chips and small components are put on immediately. Subsequently the circuit is abge with a quartz glass plate or mica foil covers with about 1 bar and in the drying cabinet between 10 and 30 Degassed at about 320 ° C for minutes. Eventually, about 30 ± 15 Minutes at 400 ± 20 ° C under 1-4 bar pressure.

Beim automatischen Laser-Glaschipbonden mit dem DIE-Bonder wird im Fer­ tigungstakt, z.B. 2′′, Silberglaslotpaste dosiert, der Chip aufgebracht, gepreßt und mit dem Lötlaser unter Schutzgas angelötet. Anschließend werden die gebondeten Chips im Wäremeschrank getempert. With automatic laser glass chip bonding with the DIE bonder, Fer clock, e.g. 2 ′ ′, silver glass solder paste dosed, the chip applied, pressed and soldered with the soldering laser under protective gas. Subsequently the bonded chips are annealed in the oven.  

Auch die Trocknung, Entgasung, und Anglasung kann in einem Durchlaufofen mit entsprechendem Profil in einem Arbeitsprozeß erfolgen. Bei der nach­ folgenden CERDIP-Einglasung ist darauf zu achten, daß die Fließtempera­ tur des Glases von 420°C nicht erreicht wird. Die Abkühlung bei Verwen­ dung von Silberglaslot mit hohem Ausdehnungskoeffizienten erfolgt von 400° auf 350°C mit 2°C/min, unter 350°C mit 10°C/min und unter 150°C mit 25°C/min.Drying, degassing and glazing can also be carried out in a continuous furnace done with a corresponding profile in one work process. At the after following CERDIP glazing, make sure that the flow tempera of the glass of 420 ° C is not reached. Cooling down at Verwen Silver glass solder with a high expansion coefficient is made by 400 ° to 350 ° C with 2 ° C / min, below 350 ° C with 10 ° C / min and under 150 ° C with 25 ° C / min.

Claims (10)

1. Verfahren zur Herstellung von mikroelektronischen Schaltungen und Hybriden, wobei zum Befestigen der mikroelektronischen Bauelemente und/oder Baugruppen auf Metall- , Keramik- , Glas- oder Emaille-Sub­ straten thermisch und elektrisch leitende Gläser, Glaslotpasten bzw. Composit-Glaslote verwendet und die IC′s bzw. Hybriden hermetisch ver­ schlossen werden, dadurch gekennzeichnet, daß
  • a) die Glaslotpaste mit einer Bindemittellösung, z.B. 1%ige Nitrocellu­ lose/Butylacetat-Lösung, versetzt wird,
  • b) diese so versetzte Glaslotpaste nach dem Siebdruck-, Stempel- oder DIE-BOND-Verfahren aufgetragen,
  • c) bis auf 300°C aufgeheizt und entgast wird,
  • d) dann heiß angepreßt und anschließend die Chips bzw. Bauteile aufge­ drückt und die sich so ergebende Schaltung verglast wird.
1. Process for the production of microelectronic circuits and hybrids, wherein for attaching the microelectronic components and / or assemblies on metal, ceramic, glass or enamel sub strates, thermally and electrically conductive glasses, glass solder pastes or composite glass solders are used and the IC's or hybrids are hermetically sealed, characterized in that
  • a) the glass solder paste is mixed with a binder solution, for example 1% nitrocellulose / butyl acetate solution,
  • b) this so-added glass solder paste is applied by screen printing, stamping or DIE-BOND process,
  • c) is heated up to 300 ° C and degassed,
  • d) then pressed hot and then pressed on the chips or components and the resulting circuit is glazed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zum An­ löten des Bauteils auf das Substrat bei großflächiger Glaslotbeschich­ tung die an sich bekannte Heißstempel- oder die Bügeltechnik verwendet wird.2. The method according to claim 1, characterized in that to the solder the component to the substrate with a large glass solder coating tion uses the known hot stamping or ironing technology becomes. 3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß als Glaslotpaste eine Silberglaslotpaste verwendet wird, die nur einen Silberanteil von 25 bis 40% aufweist. 3. The method according to claims 1 or 2, characterized in that that a silver glass solder paste is used as the glass solder paste, the only has a silver content of 25 to 40%.   4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Glaslotanteil der Silberglaslotpaste zur Anpassung der Ausdehnungs­ koeffizienten prozentual durch Zusatz von Aluminiumoxid reduziert wird.4. The method according to claim 3, characterized in that the Glass solder portion of the silver glass solder paste to adjust the expansion coefficient is reduced as a percentage by adding aluminum oxide. 5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, da­ durch gekennzeichnet, daß der Silberanteil der Silberglaslotpaste teil­ weise durch Zusatz anderer Metallpulver - beispielsweise Palladium - er­ setzt wird.5. The method according to one or more of claims 1 to 4, because characterized in that the silver portion of the silver glass solder paste wise by adding other metal powders - for example palladium - he is set. 6. Verfahren nach einem oder mehreren der Ansprüche 1-4, dadurch gekennzeichnet, daß der Glasanteil der Silberglaslotpaste in einem be­ stimmten Prozentsatz reduziert und durch Aluminiumnitrid-Pulverzusätze ergänzt wird.6. The method according to one or more of claims 1-4, characterized characterized in that the glass portion of the silver glass solder paste in a be agreed percentage reduced and by aluminum nitride powder additives is added. 7. Verfahren nach einem oder mehreren der Ansprüche 1-6, dadurch gekennzeichnet, daß die in ihrem Glaslotanteil verringerte und durch Metallpulver ergänzte Silberglaslotpaste in an sich bekannter Weise auf das auf 150°C vorgewärmte Substrat aufgepreßt wird.7. The method according to one or more of claims 1-6, characterized characterized in that the proportion of glass solder reduced and by Silver powder solder paste added to metal powder in a manner known per se the substrate preheated to 150 ° C. is pressed on. 8. Verfahren nach einem oder mehreren der Ansprüche 1-7, dadurch gekennzeichnet, daß das bei einem Preßdruck von 2-4 bar erzeugte Glaslot-Preform mit einem temperaturgesteuerten Laserlötgerät (P 36 06 764.4 oder G 86 05 658.1) bis zum Aufschmelzen (400°C) aufge­ heizt und das Bauteil, beispielsweise Silicium-Chip, heiß aufgedrückt und anschließend 30 bis 60 Minuten bei 400°C ± 30° in einem Trocken­ ofen getempert wird.8. The method according to one or more of claims 1-7, characterized characterized in that the generated at a pressure of 2-4 bar Glass solder preform with a temperature-controlled laser soldering device (P 36 06 764.4 or G 86 05 658.1) until melting (400 ° C) heats and the component, for example silicon chip, is hot pressed on and then for 30 to 60 minutes at 400 ° C ± 30 ° in a dry is annealed. 9. Verfahren nach einem oder mehreren der Ansprüche 1-8, dadurch gekennzeichnet, daß zum Trocknen, Entgasen und Anglasen der Pastenauf­ druck entweder 1 Minute mit IR-Dunkelstrahlung oder mit 150°C im Trockenofen getrocknet, Chips und kleinere Bauelemente sofort aufgelegt und anschließend die Schaltung mit einer Quarzglasscheibe oder Glimmer­ folie abgedeckt, leicht gepreßt und im Trockenschrank bei etwa 320°C entgast wird und daß anschließend die Anglasung bei etwa 400°C unter 1- 4 bar Andruck in einer Zeit von 30 ± 15 Minuten durchgeführt wird. 9. The method according to one or more of claims 1-8, characterized characterized in that for drying, degassing and glazing the pastes print either for 1 minute with IR dark radiation or at 150 ° C in Drying oven dried, chips and smaller components put on immediately and then the circuit with a quartz glass plate or mica foil covered, lightly pressed and in a drying cabinet at about 320 ° C is degassed and that the glazing at about 400 ° C below 1- 4 bar pressure is carried out in a time of 30 ± 15 minutes.   10. Verfahren nach einem oder mehreren der Ansprüche 1-9, dadurch gekennzeichnet, daß die Abkühlzeit entsprechend der jeweils gewählten Silberglaslot-Zusammensetzung gewählt wird.10. The method according to one or more of claims 1-9, characterized characterized in that the cooling time according to the selected one Silver glass solder composition is chosen.
DE3837300A 1988-11-03 1988-11-03 Method for producing microelectronic circuits and hybrids Ceased DE3837300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE3837300A DE3837300A1 (en) 1988-11-03 1988-11-03 Method for producing microelectronic circuits and hybrids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3837300A DE3837300A1 (en) 1988-11-03 1988-11-03 Method for producing microelectronic circuits and hybrids

Publications (1)

Publication Number Publication Date
DE3837300A1 true DE3837300A1 (en) 1990-05-23

Family

ID=6366387

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3837300A Ceased DE3837300A1 (en) 1988-11-03 1988-11-03 Method for producing microelectronic circuits and hybrids

Country Status (1)

Country Link
DE (1) DE3837300A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063566A2 (en) * 1998-06-03 1999-12-09 Siemens Aktiengesellschaft Device for shaping an electron beam, method for producing said device and use thereof
DE10219951A1 (en) * 2002-05-03 2003-11-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Process for encapsulating a component based on organic semiconductors
DE10350460A1 (en) * 2003-10-29 2005-06-30 X-Fab Semiconductor Foundries Ag Method for connecting processed semiconductor wafers in which an electrical connection is made in addition to the fixed insulating assembly and corresponding arrangement
US8021906B2 (en) 2006-08-26 2011-09-20 X-Fab Semiconductor Foundries Ag Hermetic sealing and electrical contacting of a microelectromechanical structure, and microsystem (MEMS) produced therewith

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2735231A1 (en) * 1977-08-04 1979-02-15 Siemens Ag Laser beam soldering of electronic components - which are preheated to reduce laser energy required in multiple soldering operations
EP0006810B1 (en) * 1978-06-29 1982-05-19 L.C.C.-C.I.C.E. - Compagnie Europeenne De Composants Electroniques Method of producing an integrated hybrid circuit
DE3227815A1 (en) * 1981-08-03 1983-02-24 Johnson Matthey Inc., Malvern, Pa. METALIZING PASTE CONTAINING SILVER AND THE USE THEREOF FOR GLUING SILICON SEMICONDUCTORS ON SUBSTRATES
DD206274A1 (en) * 1982-05-05 1984-01-18 Renate Gesemann SPINE SURFACES FOR HERMETIZING MODULES WITH GLASS POWDERS
DE3625873A1 (en) * 1986-07-31 1988-02-04 Siemens Ag solder glass, and process for the production of a solder connection between silicon substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2735231A1 (en) * 1977-08-04 1979-02-15 Siemens Ag Laser beam soldering of electronic components - which are preheated to reduce laser energy required in multiple soldering operations
EP0006810B1 (en) * 1978-06-29 1982-05-19 L.C.C.-C.I.C.E. - Compagnie Europeenne De Composants Electroniques Method of producing an integrated hybrid circuit
DE3227815A1 (en) * 1981-08-03 1983-02-24 Johnson Matthey Inc., Malvern, Pa. METALIZING PASTE CONTAINING SILVER AND THE USE THEREOF FOR GLUING SILICON SEMICONDUCTORS ON SUBSTRATES
DD206274A1 (en) * 1982-05-05 1984-01-18 Renate Gesemann SPINE SURFACES FOR HERMETIZING MODULES WITH GLASS POWDERS
DE3625873A1 (en) * 1986-07-31 1988-02-04 Siemens Ag solder glass, and process for the production of a solder connection between silicon substrates

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dr. W. Espe "Werkstoffkunde der Hochvakuumtechnik"Bd. II, VEB Deutscher Verl. der Wissenschaften in Berlin (1962) S. 389-394 *
F.K. Moghandam in Solid State Techn., Jan. 1984, S. 149-157 *
Hg. F.N. Sinnadurai: "Handbook of MicroelectronicsPackaging and Intercomection Technologies" Verl. Electrochem. Publications Ltd. ind Ayr /Scotland (1985) S. 39-45 u. 58-61 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063566A2 (en) * 1998-06-03 1999-12-09 Siemens Aktiengesellschaft Device for shaping an electron beam, method for producing said device and use thereof
WO1999063566A3 (en) * 1998-06-03 2000-08-24 Siemens Ag Device for shaping an electron beam, method for producing said device and use thereof
US6570320B1 (en) 1998-06-03 2003-05-27 Siemens Aktiengesellschaft Device for shaping an electron beam, method for producing said device and use thereof
DE10219951A1 (en) * 2002-05-03 2003-11-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Process for encapsulating a component based on organic semiconductors
US6936963B2 (en) 2002-05-03 2005-08-30 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Process for encapsulating a component made of organic semiconductors
DE10350460A1 (en) * 2003-10-29 2005-06-30 X-Fab Semiconductor Foundries Ag Method for connecting processed semiconductor wafers in which an electrical connection is made in addition to the fixed insulating assembly and corresponding arrangement
DE10350460B4 (en) * 2003-10-29 2006-07-13 X-Fab Semiconductor Foundries Ag Method for producing semiconductor devices having micromechanical and / or microelectronic structures, which result from the fixed connection of at least two semiconductor wafers, and corresponding arrangement
US8129255B2 (en) 2003-10-29 2012-03-06 X-Fab Semiconductors Foundries Ag Firm, insulating and electrically conducting connection of processed semiconductor wafers
US8021906B2 (en) 2006-08-26 2011-09-20 X-Fab Semiconductor Foundries Ag Hermetic sealing and electrical contacting of a microelectromechanical structure, and microsystem (MEMS) produced therewith

Similar Documents

Publication Publication Date Title
DE69103807T2 (en) Process for soldering metallized components to ceramic substrates.
KR880000508B1 (en) Conductor compositions
EP1772900B1 (en) Fabrication method of a device with power semiconductor components including a pressure sintering step
DE3414065A1 (en) Configuration comprising at least one electronic component fixed on a substrate, and process for fabricating a configuration of this type
DE102007046901A1 (en) Production of electrically conductive or heat-conductive component for producing metallic contact between two elements e.g. cooling bodies or solar cells, comprises forming elemental silver from silver compound between contact areas
WO2007016908A1 (en) Method for producing semiconductor components and thin-film semiconductor component
DE102012105840B4 (en) A method of attaching a metal surface to a carrier and method of attaching a chip to a chip carrier
DE3725269A1 (en) METHOD FOR ENCODING MICROELECTRONIC SEMICONDUCTOR AND LAYER CIRCUITS
EP2743973A2 (en) Method for contacting a semiconductor element by welding a contact element to a sintered layer on the semiconductor element and semiconductor component with increased stability against thermomechanical influence
KR101503451B1 (en) Joint material, jointed body
DE2132939A1 (en) Process for making thick film hybrid circuits
DE102011088218B4 (en) Electronic power module with thermal coupling layers to a cooling element and method of manufacture
DE102010024520B4 (en) Method for increasing the thermo-mechanical resistance of a metal-ceramic substrate
DE1956501C3 (en) Integrated circuit arrangement
EP3583621A1 (en) Electronic assembly with a component located between two substrates, and method for producing same
EP0215462A2 (en) Paste for bonding semi-conductors to ceramic underlayers
DE3837300A1 (en) Method for producing microelectronic circuits and hybrids
EP2844414B1 (en) Method of producing a metallised substrate consisting of aluminium
DE102013013842B4 (en) Process for producing metal-ceramic substrates and metal-ceramic substrate
DE102008034946B4 (en) Production method of a noble metal compound
CH652737A5 (en) METALLIC, SILVER-CONTAINING PASTE WITH GLASS AND THEIR USE FOR FASTENING ELECTRONIC COMPONENTS.
DE102010036217B4 (en) Method for the hermetic encapsulation of a microsystem
EP0818061A1 (en) System and process for producing electrically conductive connecting structures and a process for producing circuits and printed circuits
DE102008030816B4 (en) Method for producing a component with at least one organic material
DE1590251A1 (en) Enclosed electrical device and method for making the same

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection