IE20060441A1 - An insulating panel - Google Patents

An insulating panel Download PDF

Info

Publication number
IE20060441A1
IE20060441A1 IE20060441A IE20060441A IE20060441A1 IE 20060441 A1 IE20060441 A1 IE 20060441A1 IE 20060441 A IE20060441 A IE 20060441A IE 20060441 A IE20060441 A IE 20060441A IE 20060441 A1 IE20060441 A1 IE 20060441A1
Authority
IE
Ireland
Prior art keywords
panel
insulating
panels
vacuum
foam
Prior art date
Application number
IE20060441A
Other versions
IE85688B1 (en
Inventor
Gregory Flynn
James Carolan
Original Assignee
Kingspan Res & Dev Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kingspan Res & Dev Ltd filed Critical Kingspan Res & Dev Ltd
Priority to IE2006/0441A priority Critical patent/IE85688B1/en
Priority claimed from IE2006/0441A external-priority patent/IE85688B1/en
Publication of IE20060441A1 publication Critical patent/IE20060441A1/en
Publication of IE85688B1 publication Critical patent/IE85688B1/en

Links

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

An insulating panel comprises sheets 1, 2 with a body 3 of insulating foam between the sheets. The insulating material has a vacuum insulated panel 4 embedded therein. The panel is substantially thinner than corresponding panels without a vacuum insulated panel 4. <Figure 2>

Description

The invention relates to an insulating body and in particular to an insulating panel of the type comprising a body of insulating foam material.
There is an increasing need to provide insulating panels with improved thermal 10 performance in a cost efficient manner.
This invention is directed towards providing such an improved insulating panel.
Statements of Invention 15 According to the invention there is provided an insulating panel comprising an external facing, an internal facing, and a body of insulating material between the facings, wherein the insulating material has a vacuum insulated panel embedded therein. ln one embodiment the insulating material is a foam material.
In one case a plurality of vacuum insulated panels are embedded in the insulating foam.
At least some of the vacuum insulated panels are connected to one another.
In one embodiment the vacuum insulated panels extend longitudinally substantially the length of the insulated panel. ίΐΜτηΐ^/ϊ INT CL OPEN TO PUBLIC INSPECTION UNDER SECTION 28 AND RULE 23 JNL No. of d ΙΕ ο 6 0 4 4 1 -2In one embodiment the vacuum insulated panels extend laterally substantially the width of the insulating panel.
The vacuum insulated panels may extend for at least 25%, at least 50%, at least 65% of the thickness of the insulating foam.
The inner facing may be of metal sheet.
The outer facing may be of metal sheet.
The outer and/or inner sheets may be profiled.
The invention also provides a method for manufacturing an insulating body comprising the steps of: leading a first substrate to a foam lay down station; laying liquid foam reactants onto the first substrate; applying a second substrate over the liquid foam reactants; allowing the foam to expand to form an insulating body; wherein before, after or during lay-down of liquid foam reactants a vacuum insulating panel is inserted.
In one embodiment the vacuum insulated panel is inserted after application of a first lay down. The first lay down may comprise a bonding material which is compatible with the liquid foam reactants. The first lay down may comprise liquid foam reactants. ΙΕ ο 6 Ο 4 4 1 -3Ιη one embodiment a plurality of vacuum insulating panels are inserted.
The vacuum insulating panels may be interconnected and the method comprise inserting the interconnected panels.
In one embodiment the method comprises the steps of providing a plurality of interconnected vacuum panels and substantially continuously inserting the vacuum panels onto the first lay-down.
In one embodiment the vacuum panels are in a stack or are on a reel and the method comprises leading the vacuum panels from the stack or reel for insertion.
The first substrate may be of metal sheet, especially of profiled metal sheet. The second substrate may be of metal sheet.
The invention also provides a panel when manufactured by the method of the invention.
The invention also provides an insulating body comprising an insulating material such as an insulating foam, the insulating material having a vacuum insulated panel embedded therein.
Brief Description of the Drawings The invention will be more clearly understood from the following description thereof given by way of example only, with reference to the accompanying drawings in which:ΙΕ ο 6 Ο 4 4 1 -4Fig. I is a perspective, partially cross sectional view of an insulating panel according to the invention; Fig. 2 is a cross sectional view of the panel of Fig 1; Fig. 3 is a cross sectional view of portions of two adjacent insulating panels of the invention; Figs. 4(a) to 4(c) are cross sectional views illustrating portions of alternative insulating panels of the invention; Figs. 5(a) to 5(g) are diagrams illustrating the manufacture of a panel of the invention; Fig 6 is a cross sectional view of roof panel according to the invention; Fig. 7 is a cross sectional view of a wall panel according to the invention.
Fig. 8 is a cross sectional view of a joint between two adjacent wall panels of the invention; and Fig. 9 is a cross sectional view of another roof panel according to the invention.
Detailed Description Referring to the drawings and initially to Fig. 1 thereof there is illustrated an insulating panel according to the invention which comprises an outer facing comprising an external sheet 1, an internal facing comprising a sheet or backing tray 2 with a body of insulating foam material 3 therebetween. The insulating foam may be, for example, of polyisocyanurate. « 06 0 441 -5The insulating foam 3 has a number of vacuum insulated panels 4 embedded therein. The vacuum insulated panels are of the type available from NanoPore Inc. of Albuquerque, New Mexico. These vacuum insulated panels comprise silica, titania and/or carbon in a three dimensional highly branched network of primary particles of 2 to 20 nanometers in size which aggregate into large particles on the nano or micrometer scale. The pore size is from 10 to lOOnm. The powder is pressed into boards which are cut to size and typically shrink wrapped before being encased in a metallised barrier film and sealed under vacuum.
In the invention we embed such vacuum insulation panels during manufacture of the insulating panels of the invention to provide an enhanced thermal performance. The overall thickness of the panel to achieve desired insulation properties is reduced. The vacuum insulated panels may extend for at least 25%, at least 50% and possibly at least 65% of the thickness of the insulating foam.
We have found that in composite panels a vacuum insulation panel having a thickness of 10mm can provide similar insulation properties as a 50 mm thick section of polyisocyanurate foam. Thus in composite panels substantial savings on panel thickness can be achieved with follow-on benefits of reduced transport, and lower panel weight with consequential reduction in costs of support structures. Because of reduced support structures and panel size the structure will likely have a reduced footprint.
Referring to Figs. 5(a) to 5(f) the panels of the invention are manufactured by conveying an external profiled sheet 1 along a flat bed with the outer surface of the sheet 1 lowermost. A pre-laydown 10 may be applied to the uppermost surface of the sheet 1. The vacuum panels 4 are then laid down on the pre-laydown 10 material which assists in holding them in a desired position. Liquid foam reactants 12 are then applied over the vacuum panels 4 and the sheet 2 is then led continuously over IE 0 6 Ο 4 4 1 -6the liquid foam reactants to form an assembly. The assembly is then heated in an oven to allow the liquid foam reactants to expand to form an insulated core 3 with the vacuum panel(s) 4 embedded therein between the sheets l, 2.
The pre-laydown may comprise liquid foam reactants and/or may comprise a compatible adhesive.
The vacuum panels 4 may be inserted manually prior to lay-down of liquid foam reactants or are preferably inserted automatically, for example as illustrated in Fig 5(c) the vacuum panels may be provided on a reel or stack from which the vacuum panels are led.
As illustrated in Figs. 4(a) to 4(c) there may be plurality of such vacuum panels 4 across the length and/or width and the vacuum panels are preferably interconnected by a suitable webbing 15 or other interconnection to assist in storing and automatic handling of the vacuum panels 4. Figs. 4(a) to 4(c) illustrate typical cross sections of various panels according to the invention with alternative arrangements of vacuum panels embedded therein. There may be one, two or several vacuum panels spacedapart along or across the insulating panels of the invention.
The insulated panel 1 illustrated in Fig. 1 is a typical panel with a profile sheet 1 which may be uppermost or lowermost when the panel is in situ.
The invention may be applied to any suitable composite insulating panels, such as the typical roof panels 20 illustrated in Fig. 6 or to wall panels 21, 22 respectively illustrated in Figs. 7 and 8 which have profiled joint forming details along the side edges thereof. Many other variations are possible. For example, the panel may be a roof panel 25 with a tile profile as illustrated in Fig. 9.
IE Ο 6 Ο 4 4 1 -7The invention is not limited to the embodiments hereinbefore described which may be varied in detail.

Claims (23)

1. Cl.AIMS
1. An insulating panel comprising an external facing, an internal facing, and a body of insulating material between the facings, wherein the insulating material has a vacuum insulated panel embedded therein.
2. An insulating panel as claimed in claim I wherein the insulating material is a foam material.
3. A panel as claimed in claim 2 wherein a plurality of vacuum insulated panels are embedded in the insulating foam.
4. A panel as claimed in claim 3 wherein at least some of the vacuum insulated panels are connected to one another.
5. A panel as claimed in claim 3 or 4 wherein the vacuum insulated panels extend longitudinally substantially the length of the insulated panel.
6. A panel as claimed in any of claims 3 to 5 wherein the vacuum insulated panels extend laterally substantially the width of the insulating panel.
7. A panel as claimed in any of claims 3 to 6 wherein the vacuum insulated panels extend for at least 25% of the thickness of the insulating foam.
8. A panel as claimed in any of claims 3 to 6 wherein the vacuum insulated panels extend for at least 50% of the thickness of the insulating foam.
9. A panel as claimed in any of claims 3 to 6 wherein the vacuum insulated panels extend for at least 65% of the thickness of the insulating foam. IE 0 6 0 4 4 1 -910. A panel as claimed in any of claims 2 to 9 wherein the inner facing is of metal sheet.
10. 11. A panel as clamed in any of claims 2 to 10 wherein the outer facing is of metal sheet.
11. 12. A panel as claimed in claim 10 or 11 wherein the outer and/or inner sheet is profiled.
12. 13. An insulating panel substantially as hereinbefore described.
13. 14. A method for manufacturing an insulating body comprising the steps of :leading a first substrate to a foam lay down station; laying liquid foam reactants onto the first substrate; applying a second substrate over the liquid foam reactants; allowing the foam to expand to form an insulating body; wherein before, after or during lay-down of liquid foam reactants a vacuum insulating panel is inserted.
14. 15. A method as claimed in claim 14 wherein the vacuum insulated panel is inserted after application of a first lay down
15. 16. A method as claimed in claim 15 wherein the first lay down comprises a bonding material which is compatible with the liquid foam reactants. IE 06 0 4 41 -ΙΟΙ 7. A method as claimed in claim 15 or 16 wherein the first lay down comprises liquid foam reactants.
16. 18. A method as claimed in any of claims 14 to 17 wherein a plurality of vacuum insulating panels are inserted.
17. 19. A method as claimed in claim 18 wherein the vacuum insulating panels are interconnected and the method comprises inserting the interconnected panels.
18. 20. A method as claimed in any of claims 15 to 19 comprising the steps of providing a plurality of interconnected vacuum panels and substantially continuously inserting the vacuum panels onto the first lay-down.
19. 21. A method as claimed in claim 20 wherein the vacuum panels are in a stack or are on a reel and the method comprises leading the vacuum panels from the stack or reel for insertion.
20. 22. A method as claimed in any of claims 14 to 21 wherein the first substrate is of metal sheet.
21. 23. A method as claimed in claim 22 wherein the first substrate is of profiled metal sheet.
22. 24. A method as claimed in any of claims 14 to 23 wherein the second substrate is of metal sheet.
23. 25. A method for manufacturing an insulating panel substantially as hereinbefore described with reference to the accompanying drawings. IE Ο 6 Ο 4 41 -1126. An insulating panel when manufactured by a method as claimed in any of claims 14 to 25.
IE2006/0441A 2006-06-13 An insulating panel IE85688B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IE2006/0441A IE85688B1 (en) 2006-06-13 An insulating panel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IEIRELAND13/06/20052005/0396
IE20050396 2005-06-13
IE2006/0441A IE85688B1 (en) 2006-06-13 An insulating panel

Publications (2)

Publication Number Publication Date
IE20060441A1 true IE20060441A1 (en) 2007-01-24
IE85688B1 IE85688B1 (en) 2011-02-02

Family

ID=

Similar Documents

Publication Publication Date Title
EP1891278B1 (en) An insulating panel
DK2079954T3 (en) ISOLATED CHANNEL SYSTEM PRODUCTS
US9157229B2 (en) Prefabricated composite insulation board
WO2005105430A3 (en) Thermal insulating material
HU219093B (en) Insulating element and method for manufacturing the element
EP2333180B1 (en) Panel for thermal insulation, particularly for construction
EP1987208A1 (en) Thermal insulation plate comprising an insulating core and an elevated surface portion, thermally insulated structure of such plates and method for constructing such structure
US11028290B2 (en) Heat-applied gap finishing tape
EP2404750A1 (en) Panel structure that is impermeable to gases, particularly for the insulation of buildings
IE20060441A1 (en) An insulating panel
IE85688B1 (en) An insulating panel
EP2210991B1 (en) External wall insulation system
DK1387911T3 (en) Sandwich construction element
CA2455577C (en) Insulation with depressions and method thereof
EP2366524A1 (en) Building panel
ITMI20111275A1 (en) METHOD FOR REALIZING AN INSULATING COVER FOR EXTERNAL WALLS OF BUILDINGS AND SUPPORTING ELEMENT FOR THE INSTALLATION OF THIS COVER
AU2002355289A1 (en) Insulation with depressions and method thereof
JP5103091B2 (en) Building basic insulation structure and construction method
EP2404749A1 (en) Panel structure that is impermeable to gases, particularly for the insulation of buildings
EP3385464B1 (en) Insulating panel and method for fixing thereof
CZ300619B6 (en) Insulation element of mineral wool and process for producing thereof
BE902985A (en) Insulation panel of mineral wool supported by corrugated plastic sheet - esp. semi-rigid panels which can be uncoiled for loft or wall insulation
MXPA00011858A (en) Universal insulation product and method for installing
TWM380965U (en) Outer wall sheet structure