IE20040709U1 - Construction industry pods - Google Patents

Construction industry pods Download PDF

Info

Publication number
IE20040709U1
IE20040709U1 IE2004/0709A IE20040709A IE20040709U1 IE 20040709 U1 IE20040709 U1 IE 20040709U1 IE 2004/0709 A IE2004/0709 A IE 2004/0709A IE 20040709 A IE20040709 A IE 20040709A IE 20040709 U1 IE20040709 U1 IE 20040709U1
Authority
IE
Ireland
Prior art keywords
plate
floor
pod
members
frame
Prior art date
Application number
IE2004/0709A
Other versions
IES83983Y1 (en
Inventor
Donal O'callaghan Patrick
Lisson Eric
Original Assignee
Donal O'callaghan Patrick
Filing date
Publication date
Application filed by Donal O'callaghan Patrick filed Critical Donal O'callaghan Patrick
Publication of IE20040709U1 publication Critical patent/IE20040709U1/en
Publication of IES83983Y1 publication Critical patent/IES83983Y1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34869Elements for special technical purposes, e.g. with a sanitary equipment

Abstract

ABSTRACT A pod comprises a box-section steel frame (1) having horizontal structural members (4, 1 l). A floor is provided by welding a 6mm steel plate (10) to the horizontal structural members (4, 11). The plate (10) has a checkered pattern of 2mm ridges on its lower surface. A combination of inherent stiffness of the plate material, the ridges (50) and welding to both edge (4) and internal (1 1) structural members achieves sufficient stiffness of the floor to allow it to be tiled off—site during manufacture because the floor is thin, there is no need for the builder to provide a recess in the concrete on-site.

Description

INTRODUCTION Field of the invention The invention relates to construction industry pods which are self-contained rooms manufactured off-site, lifted into a building, and connected up to building services such as electricity, water, and gas supplies.
Prior Art Discussion Pods have been used mainly for bathrooms, however, they are increasingly being used for other rooms such as kitchens and utility rooms.
The most common form of pod comprises a structural floor of plywood, cement board, and tiles on structural floor beams for example. This arrangement provides high strength and rigidity. This allows the manufacturer to completely furnish the pod with all contents such as basins and tiles at the off-site manufacturing plant. The builder simply inserts the pod in position, hooks up building services, and does not need to open it until the building is complete. At this stage there is little risk of damage to items such as tiles or mirrors. Because the builder only needs to hook up the services to the outside of the pod, on-site labour and management is dramatically reduced.
However, to ensure that the pod floor surface level is the same as that of the adjoining corridor or room it has been necessary to use shuttering when pouring the floor slab to provide a recess for the pod. This can be time-consuming and can lead to difficulties arising from the fact that the exact position of the pod must be determined at an early stage in a construction project. Another problem is that rainwater often accumulates in the recesses, giving rise to the task of pumping the water out.
These problems have existed for many years, and some architects and builders regard these disadvantages as outweighing the benefits of using pods.
The approach to addressing this problem has been to provide a floorless pod, in which the units are secured to vertical walls of the pod’s frame. However, this means that the pod is not a complete module and work such as tiling must be done on—site after installation. This also gives rise to the possibility of damage to fittings such as bathroom sinks as access must be allowed within the pod during construction. Thus, to a large extent this approach defeats the purposes of using pods.
The invention addresses these problems.
SUMMARY OF THE INVENTION According to the invention, there is provided a construction industry pod comprising a floor, walls, ceiling, and installed fittings, and connectors for connection to building services, wherein the floor comprises a thin plate secured to the frame.
In one embodiment, the floor comprises a metal plate secured to the frame.
In another embodiment, the plate is of mild steel.
In a further embodiment, the plate has a thickness in the range of 2mm to 15mm.
In one embodiment, the plate has a thickness of approximately 6mm.
In another embodiment, the frame comprises horizontal structural members, and the plate is secured to said members.
In a further embodiment, the horizontal structural members comprise peripheral members at edges of the floor, and internal members.
In one embodiment, the internal members are cantilevered to the peripheral members.
DELTOI '5 940709‘ In another embodiment, the internal members are welded to the peripheral members.
In a further embodiment, the floor plate is welded to the peripheral and internal structural members.
In one embodiment, the structural members are of box-section configuration.
In another embodiment, the internal members are hidden under units of the pod such as a bath, a shower tray, or a sink unit.
In a further embodiment, the floor further comprises a floor covering over the plate.
In one embodiment, the floor covering comprises tiles secured by adhesive to the plate and separated by grout.
In another embodiment, the adhesive has flexibility.
In a further embodiment, the grout has flexibility.
In one embodiment, the underside surface of the plate is exposed, and comprises protruding formations.
In another embodiment, the formations are ridges In a further embodiment, the ridges are in a checkered pattern.
In one embodiment, the ridges have a depth of approximately a third of the total depth of the plate including the ridges.
In another embodiment, the plate has a total depth of 6mm, of which the ridges have a depth of approximately 2mm.
In another aspect, the invention provides a method of manufacturing a construction industry pod as defined above, the method comprising the steps of fabricating the frame, providing a metal plate, heating the metal plate, and welding the metal plate to the frame to provide the floor plate.
In one embodiment, the plate is heated by a burner.
In another embodiment, the method comprises the further steps of tiling the floor plate with combed application of adhesive in beads of 4mm to 8mm separated by gaps of 8mm to 12mm.
In a further embodiment, the plate comprises a plurality of small plates stitch welded together.
In a further aspect, the invention provides a method of installing a pod as defined above, comprising the step of applying a curable liquid between the pod and the ground so that the liquid fills gaps between the plate and the ground and cures to solidify.
In one embodiment, the liquid is expanding foam.
DETAILED DESCRIPTION OF THE INVENTION Brief Description of the Drawings The invention will be more clearly understood from the following description of some embodiments thereof, given by way of example only with reference to the accompanying drawings in which:— Fig. l is a perspective view of a partially-completed pod of the invention; Fig. 2 is a cross-sectional view of a floor of a pod; Fig. 3 is an expanded cross-sectional View of part of the pod; and DELTOI Figs. 4 to 6 inclusive are diagrams illustrating stages of manufacturing the pod.
Referring to Fig. 1 a bathroom pod is manufactured by fabricating a steel frame 1.
The frame 1 comprises box—section structural members including uprights 2, ceiling- level joists 3, horizontal edge members 4 extending around the floor boundary, and internal horizontal members 1 1 cantilevered to the edge members 4.
The various structural members form a frame defining a doorway, walls, ceiling and an external space 15 for connection to building plumbing and electrical services.
A floor 10 of thin steel plate is welded to the edge and internal floor-level structural members 4 and 11.
After fabrication of the frame, the floor plate 10 is welded to the members 4 and 11, and the walls and ceiling are completed using conventional construction methods such as use of plaster board and foam or wool insulation. Any units or fittings which can be wall mounted are installed, either before or after tiling according to the architect’s specification. All services are terminated in the space 15 for “hooking up” to the buildings services on—site.
Floor-mounted items such as a shower tray or bath are mounted on the internal floor sub-frame formed by the members 1 1. The floor is completed by tiling the plate 10, or applying a different floor covering.
Referring to Figs. 2 and 3 a floor 30 for a pod is shown. The floor 30 comprises a steel plate 31 and tiles 32 placed on adhesive 33 and separated by grout 34.
The floor 30 also comprises edge members 37 and a floor-level sub-frame 39 cantilevered from the left hand edge member 37 as viewed in Fig. 2. A shower tray is mounted on the sub-frame 39, the gaps between and above the members of the frame 39 allowing space for plumbing fittings. Fig. 2 also shows an upright 38 extending from the sub-frame 39.
The part of the floor 30 which is tiled is shown in more detail in Fig. 3. The steel plate 31 is of mild steel of 4mm thickness and having a checkered pattern of ridges 50 of 2mm depth on its lower surface. The adhesive 33 is an elastic two-part epoxy applied by combing to provide beads 6mm wide separated by 10mm gaps. These dimensions are more generally in the range of: bead width, 4m to 8mm, and gap, 8mm to 12mm.
The grout is also flexible, and this may be achieved for example by use of a latex additive.
Because the floor 30 is very thin, there is no need to provide a recess in the ground for the pod to reside in. However the floor is sufficiently strong to allow the floor internal covering to be completed so that the pod can be sealed until construction is complete.
Flexing of the floor during transport is minimised by virtue of the strength provided by the sub—frame 39 cantilevered to the edge frame members 37. Stiffness is also achieved by virtue of the ridges 50 on the underside of the plate 31. The pattern of 2mm deep ridges adds considerably to the plate’s stiffness. Furthermore, any small extent of flexing which does occur is unlikely to result in tiles popping up or cracking due to the flexible nature of the adhesive and grout.
Another advantage which stems from the ridges 50 is that when the pod is in-silu, the problem of water being drawn by capillary action into a very small gap between a flat plate surface and concrete ground is avoided. Furthermore, the builder can apply expanding foam underneath the pod. The foam expands out and fills gaps between the ridges, thus achieving uniform contact with the ground and avoiding hollow sounds when a person walks in the pod in use.
DELTOI is 040705 It will thus be appreciated that the invention achieves a complete room which can be sealed off-site and placed on a flat concrete base. This is of enormous benefit to the builder. Also. the risk of excessive flexure of the floor is avoided by the strength of the floor plate itself and support from the floor—level sub—frame. Risk of damage from any flexing which does occur is minimised because of the adhesive and grout used.
The pattern on the underside of the floor plate provides not only rigidity, but also for excellent uniformity in ground contact, and avoidance of moisture penetrating under the floor.
Referring to Figs. 4 to 6 the manner in which the floor is manufactured is now described. Steel plates 60 and 60 of the type described above are butted together and stitch welded to fonn a stitch weld joint 62, so that the joint has high strength both at the top and bottom. The joined plates 60 and 61 are then gently and uniformly heated to a temperature in excess of 50°C by a burner 63 to pre-stress them. While they are still heated, the plates 60 and 61 are welded to the underside of the structural frame, using weld joints such as the joint 71 to the structural members 70. The joined plates 60 and 61 then contract slightly, and so buckling of the floor after welding to the frame is avoided. This is another feature to ensure that the floor remains flat. Of course, there is no need to weld plates together if an available plate is large enough to cover the full floor area. In this case, the above steps of heating before welding apply equally.
The invention is not limited to the embodiments described but may be varied in construction and detail. For example, while the plate has a thickness of 6mm, this may be up to 15mm, depending on the application.
DELTOI

Claims (1)

  1. Claims A construction industry pod comprising a floor, walls, ceiling, and installed fittings, and connectors for connection to building services, wherein the floor comprises a thin plate secured to the frame. A construction industry pod as claimed in claim 1, wherein the floor comprises a mild steel plate secured to the frame; and wherein the plate has a thickness of approximately 6mm; and wherein the frame comprises horizontal structural members, and the plate is secured to said members; and wherein the horizontal structural members comprise peripheral members at edges of the floor, and internal members; and wherein the internal members are cantilevered to the peripheral members; and wherein the internal members are welded to the peripheral members. A construction industry pod as claimed in claims 1 or 2, wherein the underside surface of the plate is exposed, and comprises protruding ridges; and wherein the ridges have a depth of approximately a third of the total depth of the plate including the ridges. A method of manufacturing a construction industry pod as claimed in any preceding claim, comprising the steps of fabricating the frame, providing a metal plate, heating the metal plate, and welding the metal plate to the frame to provide the floor plate. A method of installing a pod as claimed in claim 3, comprising the step of applying a curable liquid between the pod and the ground so that the liquid fills gaps between the plate and the ground and cures to solidify.
IE2004/0709A 2004-10-22 Construction industry pods IES83983Y1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IEIRELAND24/10/20032003/0800

Publications (2)

Publication Number Publication Date
IE20040709U1 true IE20040709U1 (en) 2005-06-15
IES83983Y1 IES83983Y1 (en) 2005-09-07

Family

ID=

Similar Documents

Publication Publication Date Title
US7694462B2 (en) Construction industry pods
US4557004A (en) Waterproof shower module with tile-ready inner surfaces
US7383670B1 (en) Panel bracket system
US20070294954A1 (en) Prefabricated bathroom assembly and methods of its manufacture and installation
KR20000023752A (en) Pre-fabricated shower module and method of shower construction
US6128793A (en) Complete pre-fabricated tile counter in components
US20200340255A1 (en) Flooring system, a panel and methods of use thereof
IE20040709U1 (en) Construction industry pods
IE84038B1 (en) Construction industry pods
IES83983Y1 (en) Construction industry pods
AU2017101316A4 (en) A method of installing a plumbing flange, and a transportable base
KR20040094466A (en) Dry execution method of toilet works
JP3140229B2 (en) Dwelling unit variable housing system
KR101252808B1 (en) Waterproof system
KR20050069115A (en) Shower/water closet room housing method by combination use of polyuretane green wall skin panel and gypsum dry wall
JPH028036Y2 (en)
RU45416U1 (en) SYSTEM OF EXTERNAL HEATING OF THE BUILDING "THERMOSHEELS"
JPS62125136A (en) Waterproof construction in multistaired multiple dwelling house
JPH11222920A (en) External floor waterproofing method
JPH11222921A (en) External floor waterproof structure
JPS6331676Y2 (en)
JP2020122264A (en) Construction method of ceiling substrate
JPH11222923A (en) External floor waterproof member
JP2006063716A (en) Frame and waterproof floor structure
JPH11222922A (en) Waterproof member for outside floor