HUE032122T2 - Eljárás fluorozásra folyadékfázisban - Google Patents

Eljárás fluorozásra folyadékfázisban Download PDF

Info

Publication number
HUE032122T2
HUE032122T2 HUE10726568A HUE10726568A HUE032122T2 HU E032122 T2 HUE032122 T2 HU E032122T2 HU E10726568 A HUE10726568 A HU E10726568A HU E10726568 A HUE10726568 A HU E10726568A HU E032122 T2 HUE032122 T2 HU E032122T2
Authority
HU
Hungary
Prior art keywords
guy
guy guy
solvent
chloro
chlorine
Prior art date
Application number
HUE10726568A
Other languages
English (en)
Inventor
Anne Pigamo
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of HUE032122T2 publication Critical patent/HUE032122T2/hu

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0712Purification ; Separation of hydrogen chloride by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/21Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/04Chloro-alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Description
FIELD OF THE INVENTION
[0001] The aim of the invention isthefluorination in liquid phase of chlorinated derivatives of propene, and in particular fluorination in liquid phase of 1,1,2,3-tetrachloropropene (HFO 1230xa) in 2-chloro-3,3,3-trifluoropropene (HFO 1233xf).
TECHNICAL BACKGROUND
[0002] The protocol of Montreal for the protection of the ozone layer led to the end of the use of chlorofluorocarbons (CFCs). Less aggressive compounds for the ozone layer, such as the hydrofluorocarbons (H FCs) e.g. H FC-134a replaced chlorofluorocarbons. These latter compounds were indeed shown to provide greenhouse gases. There exists a need for the development of technologies which présenta low ODP (ozone depletion potential) and a low GWP (global warming potential). Although the hydrofluorocarbons (HFCs), which are compounds which do not affect the ozone layer, were identified as interesting candidates, they exhibit a relatively high GWP value. There still exists the need to find compounds which exhibit a low GWP value. Hydrofluoroolefins (HFO) were identified as being possible alternatives with very low ODP and GWP values.
[0003] Several processes of production HFOs compounds, in particular of propenes, were developed.
[0004] W02009/018561 describes the fluorination of 1230xa in continuous liquid phase in the presence of a catalyst in particular SbCI5. The desired product is the 244bb, that is the saturated product, the product 1233xf representing only a low fraction. The conditions of selected reactions are such that the medium of reaction is either only the catalyst or a catalyseur/1230xa mixture.
[0005] US2009/0099396 describes the fluorination of 1230xa in245eb in liquid phase, in a medium made up of catalyst, again SbCI5.
[0006] W02007/079431 describes fluorination in liquid phase starting from the 1233xf, to prepare 244bb, which is a saturated compound.
[0007] W02008/149011 describes fluorination in liquid phase in the presence of an ionic liquid of a propene. It is indicated generally that 1233xf and/or 1234yf (2,3,3,3-tetrafluoropropene) can be obtained by conversion of 1230xa.
[0008] W02009/003084 describes fluorination in liquid phase in the absence of catalyst of 1230xa in 1233xf.
[0009] In the above patents, it is in general the gaseous phase which is analyzed. There is no evaluation of the rate of retention of the reactants in liquid phase whereas the organic liquid phase constitutes a large part of the material balance. However, phenomena of polymerization were observed in the liquid phase generating an important loss of output.
[0010] One thus seeks to limit the polymerization of the starting products, while preserving a high output of reaction. The limitation of the polymer formation will allow a continuous operation, without the risk of clogging the reaction zones and the feed ducts or the withdrawal pipes of reactants or products.
SUMMARY OF THE INVENTION AND THE FURTHER DISCLOSURE
[0011] The present disclosure thus provides a process of fluorination in liquid phase in a solvent medium of a compound of formula II CX1X2=CZCX3X4X5, in which Z represents H, Cl or F, and each X, represents independently hydrogen or chlorine, given that at least one of the X, represents a chlorine.
[0012] According to one embodiment in formula II, groups X, represent hydrogen or chlorine, with a number of chlorine atoms from 1 to 3; and/or Z is H or Cl. Preferably in formula II, X1 and X2 represent each one atom of chlorine and at least one of X3, X4 and X5 represents a chlorine atom.
[0013] According to one embodiment, the product of fluorination is a compound of formula I CF3CZ=CX4X5, in which Z, X4 and X5 have the previous significances.
[0014] The process according to the present disclosure is especially suited for the following reactions: (i) fluorination of 1,1,2,3-tetrachloropropene into 2-chloro-3,3,3-trifluoropropene; (ii) fluorination of 1,1,3,3-tetrachloropropene into 1-chloro-3,3,3-trifluoropropene; (iii) fluorination of 1,1,3-trichloro,2-fluoropropene into 2,3,3,3-tetrafluoropropene.
[0015] According to one embodiment, the product of the solvent is selected from 1,2-dichloroethane, 1,2,3-trichloro-propane, 1-chloro-1-fluoroethane, 1,1-difluoroethane, 1,1-dichloroethane and 1,3-dichloro-1-fluorobutane, 1,1,1,3,3-pentafluorobutane and 1,1,2-trichloro-2,2-difluoroethane, or a mixture thereof, advantageously 1,1,2-trichloro-2,2-dif-luoroethane. The solvent can be present in a quantity for a dilution ratio from at least 20%, preferably between 20 and 80%, advantageously between 40% and 60%.
[0016] According to one embodiment, a catalyst is used, preferably an ionic liquid. The the molar ratio catalyst/solvent can be comprised between 10mol% and 50mol%, preferably between 15mol% and 30mol%.
[0017] According to one embodiment, chlorine is added during the reaction, preferably according to a molar ratio from 0,05 to 15 mole%, preferably 0,5 to 10 mole% of chlorine per mole of starting compound.
[0018] According to one embodiment, the reaction is withdrawn in the gaseous state.
[0019] According to one embodiment, a gas is injected, preferably anhydrous HCI. The flow of gas, compared to the flow of the starting product can be between 0.5:1 and 5:1, advantageously, between 1:1 and 3:1.
[0020] The presently claimed invention provides a process comprising: (i) contacting 1,1,2,3-tetrachloropropene with hydrogen fluoride in a liquid phase in a solvent under conditions sufficient to form a reaction mixture comprising 2-chloro-3,3,3-trifluoropropene, said solvent being selected from 1,2-dichloroethane, 1,2,3-trichloropropane, 1-chloro-1-fluoroethane, 1,1-difluoroethane, 1,1-dichloroethaneand 1,3-dichloro-1-fluorobutane, 1,1,1,3,3-pentafluorobutane and 1,1,2-trichloro-2,2-difluoroethane, or a mixture thereof; (ii) separating the reaction mixture into a first stream comprising HCI, and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and 1,1,1,2-tetrafluoro-2-chloropropane.
[0021] According to one embodiment, the reaction mixture obtained at step (i) comprises, as a molar composition, HCI between 20 and 60%, HF between 10 and 40%, 2-chloro-3, 3, 3-trifluoropropene between 5 and 20%, 1,1,1,2-tetrafluoro-2-chloropropane between 0.5 and 5%, 2,3-dichloro-3,3-difluoropropene below 2% and solvent below 2%.
[0022] According to one embodiment, step (ii) is a distillation step.
[0023] According to one embodiment, the second stream is further separated, preferably by decantation, into a HF stream containing mainly HF, preferably with a content between 75 and 99%, and an organicstream containing 2-chloro-3,3,3-trifluoropropene and 1,1,1,2-tetrafluoro-2-chloropropane. The organic stream is further purified or is sent to a further process step for further conversion, preferably into 2,3,3,3-tetrafluoropropene.
[0024] According to one embodiment, the process further comprises a purging step for withdrawing heavies formed during step (i).
[0025] The invention also provides a process for preparing 2,3,3,3-tetrafluoropropene, comprising the following steps: (i) preparation of the fluorination of 1,1,2,3-tetrachloropropene into 2-chloro-3,3,3-trifluoropropene according to the invention as defined herein; (ii) conversion of 2-chloro-3,3,3-trifluoropropene into 2,3,3,3-tetrafluoropropene.
[0026] According to one embodiment, the conversion of stage (ii) is a catalytic gas phase conversion.
[0027] The present disclosure also provides a composition comprising, expressed as molar concentration, HCI between 20 and 60%, HF between 10 and 40%, 2-chloro-3,3,3-trifluoropropene between 5 and 20%, 1,1,1,2-tetrafluoro-2-chlo-ropropane between 0.5 and 5%, 2,3-dichloro-3,3-difluoropropene below 2% and solvent below 2%.
BRIEF DESCRIPTION OF THE DRAWINGS
[0028] figure 1 is a representation of the experimental device used in the examples; figure 2 is a schematic representation of a process implementing the invention.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION AND THE FURTHER DISCLOSURE
[0029] The invention is based on the use of a solvent phase, which makes it possible to avoid the reactions of polymerization (in acidic medium) and formation of the heavies. To maintain the output, it is not necessary to use large amounts of catalyst.
[0030] According to the present disclosure, the starting compound is a propene substituted by at least one chlorine atom, preferably at least 3 chlorine atoms and advantageously 4 chlorine atoms.
[0031] The starting compound has as a formula II CX1X2=CZCX3X4X5 (II) with Z which represents H, Cl or F, and the X; which represent independently hydrogen, chlorine, given that at least one oftheXj represents a chlorine. Advantageously, the X; represents hydrogen or chlorine, with a number of chlorine atoms from 1 to 3.
[0032] Advantageously, Z is H or Cl.
[0033] According to an embodiment, X1 and X2 each represent one chlorine atom and at least one of X3, X4 and X5 represents a chlorine atom.
[0034] Advantageously the fluorinated product may, according to an embodiment, be represented by formula I: CF 3CZ=CX4X5 (I) in which Z, X4 and X5 have the previous significances.
[0035] According to the presently claimed invention, the starting compound is the 1230xa (1,1,2,3-tetrachloropropene) and the final product is the 1233xf (2-chloro-3,3,3-trifluoropropene).
[0036] According to another embodiment which is not part of the presently claimed invention, the starting compound is the 1230za (1,1,3,3-tetrachloropropene) and the final product is the 1233zd (1-chloro-3,3,3-trifluoropropene).
[0037] According to an embodiment which is not part of the presently claimed invention, the starting compound is the 1240zf (3,3,3-trichloropropene, CCI3-CH=CH2) and the final product is the 1243zf (3,3,3-trifluoropropene).
[0038] According to an embodiment which is not part of the presently claimed invention, the starting compound is the 1240za (1,1,3-trichloropropene, CCI2=CH-CH2CI) and the final product is the 1243zf (3,3,3-trifluoropropene).
[0039] The reaction is implemented in a liquid solvent medium, the reaction zone being either charged at the beginning with the necessary quantity of solvent, or fed continuously with this quantity of solvent (possibly preliminary mixed with the raw material). The first alternative is preferred, injections with a view of adjusting the quantity of solvent may however be carried out if necessary.
[0040] The reaction temperature is such that the reactants are liquid. According to an embodiment the reactants are liquid while the reaction product is gaseous (in particular at room temperature, 20°C). The fact that the reaction products are gaseous allows their recovery in a gaseous phase at the exit of the reaction zone. For example, the reaction may be im plemented at a temperature ranging between 10°C and 200°C, preferably between 20°C and 150°C, advantageously between 50 and 140°C.
[0041] According to the invention, this stage is in particular implemented under a pressure higher than 2 bar. Advantageously, the pressure lies between 4 and 50 bars, in particular between 5 and 10 bars.
[0042] The molar ratio HF: starting compound lies generally between 3:1 and 50:1, preferably between 5:1 with 10:1.
[0043] The average dwell time in the reaction zone may be in the range between 1 and 50, preferably between 6 and 20 hours.
[0044] The solvent used is an inert organic solvent under the reaction conditions. Such a solvent will be generally saturated, advantageously in C2 to C6, in order to avoid the reactions of addition. Such solvents can for example be those mentioned in patent application FR2733227. Such solvents have a boiling point (measured at atmospheric pressure), for example higher than 40°C, advantageously higher than 50°C, in particular higher than 60°C. Fligher reaction temperatures will imply higher pressures, so that the boiling point under the conditions of reaction is higher than the temperature of implementation of the reaction.
[0045] One can in particular mention as a solvent the saturated compounds of ethane, propane or butane, substituted by at least two atoms of halogen, chosen among chlorine and fluorine, or a mixture thereof. According to the presently claimed invention, use is made of 1,2-dichloroethane, 1,2,3-trichloropropane, 1-chloro-1-fluoroethane, 1,1 -difluor-oethane, 1,1-dichloroethane and 1,3-dichloro-1-fluorobutane, 1,1,1,3,3-pentafluorobutane and 1,1,2-trichloro-2,2-dif-luoroethane, or a mixture thereof. A preferred solvent is the 1,1,2-trichloro-2,2-difluoroethane (F122). In embodiments which are not part of the presently claimed invention, one can also use perchloroethylene. In further embodiments which are not part of the presently claimed invention, one can also use possibly reactive solvents, in so far as the product of their reaction is a nonreactive solvent. For example, one can also use the precursor of F122, namely F121 (CCI2F-CHCI).
[0046] The quantity of solvent is such that a minimum dilution ratio is reached during the reaction. In particular, this dilution ratio is at least 20%, in particular between 20 and 80%, advantageously between 40% and 60%, the dilution ratio being defined as the ratio between the volume of solvent and the total liquid volume in the reaction zone.
[0047] The reaction may not be catalyzed but the presence of a catalyst is advantageous. The catalysts may be catalysts known by the person skilled in the art of fluorinations in liquid phase.
[0048] One can use an acid of Lewis, a catalyst containing a metal halide, in particular containing halide of antimony, tin, tantalum, titanium, metals of transition such as molybdenum, niobium, iron halides, cesium, oxides of metals of transition, halides of metals of the IVb group, halides of metals oftheVb group, a fluorinated chromium halide, a fluorinated chromium oxide or a mixture of both. One can advantageously use metal chlorides and fluorides. Examples of such catalysts include: SbCI5, SbCI3, TiCI4, SnCI4, TaCI5, NbCI5, TiCI4, FeCI3, MoCI6, CsCI, and their corresponding fluorinated derivatives. Pentavalent metal halides are suitable.
[0049] Advantageously one will use a catalyst containing an ionic liquid. These ionic liquids are particularly interesting for fluorination by HF in liquid phase. One will be able to mention the ionic liquids described in patent applications W02008/149011 (in particular from page 4, line 1 to page 6 line 15) and WO01/81353 in the name of the applicant, as well as the reference "liquid-phase HF Fluorination", Multiphase Homogeneous Catalysis, Ed. Wiley-VCH, (2002), 535.
[0050] One can operate with variable ratios catalyst/solvent, but in general one will prefer that this molar ratio lies between 10mol% and 50mol%, preferably between 15mol% and 30mol%.
[0051] A chlorine stream may be used to increase the lifespan of the catalyst, typically in a quantity from 0,05 to 15 mole%, preferably 0,5 to 10 mole% of chlorine per mole of starting compound (here 1230xa). Chlorine may be introduced pure or mixed with an inert gas such as nitrogen. The use of an ionic catalyst allows using small quantities of chlorine.
[0052] A polymerization inhibitor may be used if need be; typically in a quantity of 50-1000 ppm, preferably 100-500 ppm. This polymerization inhibitor can be for example p-methoxyphenol, t-amylphenol, limonene, d,1-limonene, qui-nones, hydroquinones, epoxides, amines and their mixtures.
[0053] It is also possible that the product of the reaction be stripped using a light gas allowing its drive by stripping. Such a gas with its stripping effect also makes it possible to limit the quantity of unsaturated organics in the medium.
[0054] If it is preferred that the reaction product be gaseous, it is also possible as that it is rather in liquid form at the reaction pressure. The continuous extraction of the reaction product can become delicate; the use of a stripping light gas facilitates the extraction by mechanical entrainment (or formation of an azeotrope). The addition of a gaseous compound can be advantageous for the output of the reaction, which can be favoured for example by the improvement of agitation (bubbling). The addition of a gaseous compound also allows, in a surprising way, decreasing the formation of heavy compounds (polymers). Without wishing to be bound by a theory, the applicant belives that the gaseous compound enhances the displacement of the chemical reaction and possibly the formation of saturated compounds. This gas can be inert as the nitrogen or helium or the gas can be preferably HCI.
[0055] Advantageously, this added gas is anhydrous hydrochloric acid. The flow of the stripping gas is determined according to the operating conditions. For example, the flow of HCI, compared to the flow of starting product is such that the molar ratio HCI: starting product lies between 0.5:1 and 5:1, advantageously, between 1:1 and 3:1.
[0056] The fluorination process in liquid phase according to the invention can be implemented continuously or semi-continuously. According to the preferred embodiment, the process is continuous. HF can be introduced partly with the catalyst during the loading of the reaction zone.
[0057] The reactants (starting product and HF) and other compounds used in the reaction (chlorine, anhydrous HCI) can be fed in the reactor at the same place or at different places of the reactor. A preferred embodiment is when the gaseous compounds are injected in the bottom of the reactor, in particular in order to enhance the mechanical stripping.
[0058] If a recycling is used, one can recycle directly at the inlet of the reactor or on a feed duct.
[0059] The reaction is implemented in a reactor dedicated to the reactions involving halogens. Such reactors are known to the skilled worker and can comprise coatings containing Hastelloy®, Inconel®, Monel® orfluoropolymers. The reactor can be equipped with means for heat transfer.
[0060] The process according to the invention also makes it possible to prepare a starting compound in the synthesis of the 1234yf. There exists a second stage then.
[0061] The second stage of the method of preparation of the 1234yf is a reaction of fluorination of the 2-chloro-3,3,3-trifluoro-1-propene (1233xf) obtained at the previous stage in 2,3,3,3-tetrafluoro-1-propene, the desired product.
[0062] The two stages can be implemented continuously or in a discontinuous way, with intermediate storage of the 1233xf.
[0063] This second stage can comprise direct fluorination in the presence of HF, on a catalyst, in gas phase. The catalysts of fluorination likely to be used are for example oxyfluoride of chromium, fluoride and oxyfluoride of aluminum, supported catalyst containing a metal such as Cr, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Ni. The temperatures, pressures and contact times are easily determined by the skilled worker.
[0064] Such a process is described, in reference to the 1233zd compound which leads to compound 1234ze, in patent application EP-A-1067106, (in particular example 1). The application of the process to the starting compound 1233xf will lead to the formation of the product 1234yf. The concomitant formation of the product of hydrofluorination is possible, although not desired. The saturated reaction product can then be dehydrohalogenated, under conditions similar to those of the second stage of this process, to lead to the desired product.
[0065] This second stage can also comprise two sub-stages, a first sub-stage of formation of the product 1,1,1,2-tetrafluoro-2-chloropropane (244bb), then one second sub-stage of dehydrochlorination of this product into the desired 1234yf.
[0066] The first sub-stage comprises the hydrofluorination of the 1233xf, which can be implemented under known conditions. For example, the reaction can be done in gas or liquid phase, on a catalyst which can be an acid of Lewis,or a halide of a metal, such as for example SbCI5, SbCI3, SbF5, SnCI4, TiCI4, FeCI3, etc. The temperature can be comprised between 50°C and 400°C, for example from 150°C to 300°C, in particular at a temperature which is not very different from that of the first stage. The contact time is determined according to desired conversion and selectivity. The first substage is in particular described in document W02007/079431, from page 8, line 17 to page 10, line 16 and examples 5A, 5B and 6. One may also refer to document W02008/040969, pages 16 & 17. In this reaction, the ratio HF: 1233xf is preferably higher than 5:1, and in general ranging between 5:1 and 50:1, or between 15:1 and 30:1, in order to enhance the reaction of fluorination.
[0067] The second sub-stage is a stage of dehydrochlorination, which is implemented under the conditions described above for the reaction of dehydrochlorination of the second stage of the method of preparation of the 1234yf. For this second sub-stage one may refer to document W02007/079431, page 10, line 18 to page 12, line 14 and example 6. One may also refer to document W02008/040969, pages 16 & 17.
[0068] These sub-stages can still comprise a stage of formation of compound 245cb (1,1,1,2,2-pentafluoropropane) by addition of HF to the product 244bb, which can in turn lead to the 1234yf by dehydrofluorination.
[0069] Figure 2 is a schematic representation of a process according to an embodiment of the invention. In figure 2, the solvent indicated is the 122 but another solvent can be used. In the same way, the process is described in relation to the starting product 1230, but another starting product can be used.
[0070] The reactor (equipped with a catalyst stripping column, not shown in the figure) for the liquid phase reaction is charged with solvent, then is supplied with 1230xa, and HF; a stream of Cl2 is injected into the reaction zone. Astream of anhydrous HCI could also be injected. The stream which is withdrawn from the reaction zone is in a gaseous form and mainly comprises 1233xf, 244bb, HCI, HF as well as traces of stripped solvent 122 and 1232xf (2,3-dichloro-3,3-difluoropropene). The molar composition can typically be as follows: HCI between 20 and 60%, HF between 10 and 40%, the 1233xf between 5 and 20%, the 244bb between 0.5 and 5%, and solvent (here 122) below 2% (typically between 0.5 and 2%), the 1232xf below 2% (typically between 0.5 and 2%). This stream is introduced into a distillation column of HCI. At the top of the column is withdrawn a stream of HCI; at the bottom of the column a stream containing 1233xf, 244bb, HF as well as traces of 122 and 1232xf is withdrawn. This stream is sent towards a stage of separation by decantation. This decantation leads to two streams. The first stream comprises HF and soluble organics (1233xf, 244bb, 1232xf and 122, the HF content being between 75 and 99%) which is returned to the fluorination reaction. The second stream comprises 1233xf, 244bb, still a quantity of HF as well as traces of 122 and 1232xf. This stream is sent in a distillation column to be separated there. The traces of 122 and 1232xf are recovered at the bottom and are returned towards the fluorination reactor. The 1232xf will not build up, since it is an intermediate compound. A stream containing HF, 1233xf and 244bb is withdrawn at the top. This top stream can be further separated or can be sent directly towards the next step, which can be a catalytic gas phase fluorination reaction, where conversion into 1234yf takes place. At the bottom of the reactor a stream containing the heavies is withdrawn. It is believed, without wishing to be bound, that the heavies comprise oligomers of the C6F6H2CI2 type. The bottom of the fluorination reactor is purged with a flow and a frequency such that the accumulation of heavies is avoided (rate of purging being defined by both a flow and frequency of purging as the skilled man can easily determine). This stream is treated in a column of recovery of the heavies. These heavies are eliminated at the bottom of this column. At the top of the column a stream containing HF, 122 and 1232xf is recovered; this stream is recycled towards the fluorination reactor.
EXAMPLES
[0071] The following examples illustrate the invention without limiting it.
[0072] Equipment used is described with reference to figure 1. It consists of an autoclave of a capacity of 1 liter with a dual envelope, made of stainless steel 316L, which is agitated using a magnetic stirrer. It is equipped with a measure of pressure and temperature. Apertures on the head of the autoclave allow the introduction of the reactants and degasification. It comprises at the top a condenser as well as a valve for regulating the pressure. The condenser is controlled in temperature using an independent thermostated bath. For all the tests, the temperature of the thermostated bath is set to 90°C.
[0073] The products of the reaction are extracted continuously during the reaction. They enter a water wash-bottle which collects hydracids HF and HCI and then are cold trapped in liquid nitrogen. The increase of weight of the wash-bottle and of the trap makes it possible to establish a material balance. The analysis is made then by gas phase chromatography on a sample of expanded liquid. The analysis by chromatography is carried out using a column CP Sil 8, dimensions 50ηΊ*0.32ηΊηΊ*5μΐτι. The programming of temperature of the furnace is the following one: 40°C during 10 min then slope of 4°C/min until 200°C.
[0074] At the end of the period of reaction, the reaction medium is degassed so as to evacuate residual HF. For this period of degasification, the organics possibly drawn are also trapped, always after having crossed the wash-bottle which makes it possible to eliminate HF and HCI from the gas flow. In a laststage, the autoclave is opened and drained, a sample of the organic phase is analyzed after having hydrolyzed and extracted the catalyst with a hydrochloric acid solution.
[0075] In the examples, one determines the rate of retention which makes it possible to determine if the reactants (and the heavies) do not accumulate in the reactor. Ideally, this rate of retention is null, which means that the level of the liquid phase remains constant. The higher this rate of retention is, the more the reaction is ineffective. It is pointed out that the rate of retention is defined as:
Rate retention = 1 - (mass of gas at the outlet)/(mass at the inlet)
Example 1.
[0076] The starting reaction medium consists of an organic compound a s a solvent, the 1,1,2-trichloro-2,2-difluor-oethane, or F122 (152.7g or 0.9 mole) and of a catalyst (0.197 moles of ethylmethylimidazolium chloride associated with 0.399 mole with SbCI5, that is 0.197 moles of fluorinated complex catalyst emim+Sb2F11·), that is a molar ratio catalyst/F122 of 21.8 mol%. The temperature and the pressure are adjusted to the desired values which are indicated in the table. Chlorine is fed continuously with a flow of0.7g/h during the first hour of fluorination of catalyst then decreased to a flow of 0.1 g/h thanks to the special properties of the ionic liquid catalyst. The reactants HF and 1230xa are then introduced continuously. Table 1 describes the results obtained for various operating conditions tested according to the same mode of presentation as in table 1. The high percentage of 122 is due to the drive by the light ones.
[0077] Following these tests, the reactor was drained. The organic phase contained 20% of unreacted 1230xa, the remainder being made of heavy compounds. The total material balance of the whole experimentation in weight is of 94%. The maximum molar output of 1233xf expressed in number of moles of 1233xf extracted from the reactor compared to the number of moles of 1230xa introduced over the same period is of 43%. These conditions in solvent medium are thus favorable.
Example 2 [0078] The starting reaction medium consists of an organics making it possible to be used as a solvent, the 1,1,2-trichloro-2,2-difluoroethane, or F122 (154.6g or 0.91 mole) and of a catalyst (0.198 moles of ethylmethylimidazolium chloride associated with 0.404 mole with SbCI5, either 0.198 moles of fluorinated complex catalyst emim+Sb2F.|.|·), that is a molar ratio catalyst/F122 of 21.8 mol%. The temperature and the pressure are adjusted to the desired values which are indicated in the table. Chlorine is fed continuously with a flow of 0.7g/h during the first hour of fluorination of catalyst then decreased to a flow of 0.1g/h thanks to the special properties of ionic liquid catalyst. The reactants HF and 1230xa are then introduced continuously, as well as anhydrous hydrochloric acid. Table 4 described the results obtained for various operating conditions tested according to the same mode of presentation as in the previous examples. The same remark as for example 1 relative to the 122 applies here.
[0079] Following these tests, the reactor was drained. The organic phase contained 18% of unreacted 1230xa, the remainder being made of heavy compounds. The total material balance of the whole experimentation in weight is of 94%. The maximum molar output in 1233xf expressed in number of moles of 1233xf extracted from the reactor compared to the number of moles of 1230xa introduced over the same period is of 73%. These conditions are favorable to the output in 1233xf. The rate of retention decreased and becomes in certain cases negative (the level of liquid decreases in the reaction zone). These conditions in solvent medium with a co-feed of anhydrous HCI are thus favorable.
Claims 1. Process of fluorination of 1,1,2,3-tetrachloropropene comprising : (i) contacting 1,1,2,3,-tetrachloropropene with hydrogen fluoride in a liquid phase in a solvent under conditions sufficient to form a reaction mixture comprising 2-chloro-3,3,3-trifluoropropene, said solvent being selected from 1,2-dichloroethane, 1,2,3-trichloropropane, 1-chloro-1-fluoroethane, 1,1-difluoroethane, 1,1-dichloroethane and 1,3-dichloro-1-fluorobutane, 1,1,1,3,3-pentafluorobutane and 1,1,2-trichloro-2,2-difluoroethane, ora mixture thereof; (ii) separating the reaction mixture into a first stream comprising HCI, and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and 1,1,1,2-tetrafluoro-2-chloropropane. 2. Process according claim 1 in which the solvent is 1,1,2-trichloro-2,2-difluoroethane. 3. Process according to claim 1 or 2, in which the solvent is present in a quantity for a dilution ratio from at least 20%, preferably between 20 and 80%, advantageously between 40% and 60%, the dilution ratio being defined as the ratio between the volume of solvent and the total liquid volume in the reaction zone. 4. Process according to one of claims 1 to 3, in which a catalyst is used, preferably an ionic liquid. 5. Process according to claim 4, in which the molar ratio catalyst/solvent is comprised between 10mol% and 50mol%, preferably between 15mol% and 30mol%. 6. Process according to one of claims 1 to 5 in which chlorine is added during the reaction, preferably according to a molar ratio from 0,05 to 15 mole%, preferably 0,5 to 10 mole% of chlorine per mole of starting compounds. 7. Process according to one of the claims 1 to 6, in which the product of the reaction is withdrawn in the gaseous state. 8. Process according to one of claims 1 to 7, wherein a gas is injected, preferably anhydrous HCI. 9. Process according to the claim 8, in which the flow of HCI, compared to the flow of the starting product is such that the molar ratio HChstarting product lies between 0.5 :1 and 5:1, advantageously, between 1 :1 and 3 :1. 10. Process according to claims 1 to 9, wherein the reaction mixture obtained at step (1) comprises, expressed as molar concentration, HCI between 20 and 60%,HF between 10 and 40%, 2-chloro-3,3,3-trifluoropropene between 5 and 20%, 1,1,1,2-tetrafluoro-2-chloropropane between 0.5 and 5%, 2,3-dichloro-3,3-difluuoropropene below 2% and solvent below 2%. 11. Process according to claims 1 to 10, wherein step (ii) is a distillation step. 12. Process according to one of claims 1 to 11 .wherein the second stream is further separated, preferably by decantation, into a HF stream containing mainly HF, preferably with a content between 75 an 99%, and an organic stream containing 2-chloro-3,3,3-trifluoropropene and 1,1,1,2-tetrafluoro-2-chloropropane. 13. Process according to claim 12, wherein the organic stream is further purified. 14. Process according to claim 12, wherein the organic stream is sent to a further process step for further conversion, preferably into 2,3,3,3-tetrafluoropropene. 15. Process according to one of claims 1 to 14, further comprising a purging step for withdrawing heavies formed during step (i). 16. Process for preparing 2,3,3,3-tetrafluoropropene, comprising the following steps : (i) fluorination of 1,1,2,3-tetrachloropropene into 2-chloro-3,3,3-trifluoropropene according to one of claims 1 to 15 ; (ii) conversion of 2-chloro-3,3,3-trifluoropropene into 2,3,3,3-tetrafluoropropene. 17. Process according to claim 16, in which the conversion of stage (ii) is a catalytic gas phase conversion.
Patentansprüche 1. Verfahren zum Fluorieren von 1,1,2,3-Tetrachlorpropen, umfassend: (i) das Kontaktieren von 1,1,2,3-Tetrachlorpropen mit Wasserstofffluorid in einer flüssigen Phase in einem Lösungsmittel unter Bedingungen, die ausreichen, um eine Reaktionsmischung zu bilden, die 2-Chlor-3,3,3-Trifluorchlorpropen umfasst, wobei das Lösungsmittel ausgewählt wird unter 1,2-Dichlorethan, 1,2,3-Trichlor-propan, 1-Chlor-1-fluorethan, 1,1-Difluorethan, 1,1-Dichlorethan und 1,3-Dichlor-1-fluorbutan, 1,1,1,3,3-Penta-fluorbutan und 1,1,2-Trichlor-2,2-difluorethan oder einer Mischung davon; (ii) das Trennen der Reaktionsmischung in einen ersten Strom welcher HCl umfasst und in einen zweiten Strom welcher HF, 2-Chlor-3,3,3-trifluorpropen und 1,1,1,2-Tetrafluor-2-chlorpropan umfasst. 2. Verfahren nach Anspruch 1, wobei das Lösungsmittel 1,1,2-Trichlor-2,2-difluorethan ist. 3. Verfahren nach Anspruch 1 oder 2, wobei das Lösungsmittel in einer Menge für ein Verdünnungs-Verhältnis von mindestens 20%, bevorzugt zwischen 20 und 80%, vorteilhafterweise zwischen 40 und 60% vorliegt, wobei das Verdünnungsverhältnis als das Verhältnis zwischen dem Volumen von Lösungsmittel und dem gesamten Flüssigkeitsvolumen in der Reaktionszone definiert wird. 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei ein Katalysator, bevorzugt eine ionische Flüssigkeit, verwendet wird. 5. Verfahren nach Anspruch 4, wobei das Molverhältnis Katalysator/Lösungsmittel zwischen 10 Mol-% und 50 Mol-%, bevorzugt zwischen 15 Mol-% und 30 Mol-% liegt. 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei Chlor während der Reaktion bevorzugt einem Molverhältnis von 0,05 bis 15 Mol-%, bevorzugt 0,5 bis 10 Mol-% Chlor pro Mol Ausgangsverbindungen entsprechend zugegeben wird. 7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Produkt der Reaktion im gasförmigen Zustand abgezogen wird. 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei ein Gas, bevorzugt wasserfreies HCl, injiziert wird. 9. Verfahren nach Anspruch 8, wobei der Strom von HCl im Vergleich mit dem Strom des Ausgangsprodukts derart ist, dass das Molverhältnis HCI/Ausgangsprodukt zwischen 0,5/1 und 5/1, vorteilhafterweise zwischen 1/1 und 3/1 liegt. 10. Verfahren nach den Ansprüchen 1 bis 9, wobei die Reaktionsmischung, die in Schritt (1) erhalten wird, Folgendes umfasst, als molare Konzentration ausgedrückt, HCl zwischen 20 und 60%, HF zwischen 10 und 40%, 2-Chlor-3,3,3-trifluorpropen zwischen 5 und 20%, 1,1,1,2-Tetrafluor-2-chlorpropan zwischen 0,5 und 5 %, 2,3-Dichlor-3,3-difluorpropen unter 2% und Lösungsmittel unter 2%. 11. Verfahren nach den Ansprüchen 1 bis 10, wobei der Schritt (ii) ein Destillationsschritt ist. 12. Verfahren nach einem der Ansprüche 1 bis 11, wobei der zweite Strom weiter, bevorzugt durch Dekantieren, in einen HF-Strom, der hauptsächlich HF, bevorzugt mit einem Gehalt zwischen 75 und 99%, enthält, und einen organischen Strom, der 2-Chlor-3,3,3-trifluorpropen und 1,1,1,2-Tetrafluor-2-chlorpropan enthält, getrennt wird. 13. Verfahren nach Anspruch 12, wobei der organische Strom noch weiter gereinigt wird. 14. Verfahren nach Anspruch 12, wobei der organische Strom zu einem weiteren Prozessschritt zur weiteren Umwandlung, bevorzugt in 2,3,3,3-Tetrafluorpropen, geschickt wird. 15. Verfahren nach einem der Ansprüche 1 bis 14, fernereinen Reinigungsschritt zum Entfernen von schweren Stoffen, die während Schritt (i) gebildet werden, umfassend. 16. Verfahren zum Herstellen von 2,3,3,3-Tetrafluorpropen, umfassend die folgenden Schritte: (i) Fluorierung von 1,1,2,3-Tetrachlorpropen zu 2-Chlor-3,3,3-trifluorpropen nach einem der Ansprüche 1 bis 15; (ii) Umwandlung von 2-Chlor-3,3,3-trifluorpropen in 2,3,3,3-Tetrafluorpropen. 17. Verfahren nach Anspruch 16, wobei die Umwandlung von Stufe (ii) eine katalytische Gasphasenumwandlung ist.
Revendications 1. Procédé pour la fluoration de 1,1,2,3-tétrachloropropène, comprenant les étapes consistant à : (i) mettre en contact 1,1,2,3-tétrachloropropène avec du fluorure d’hydrogène dans une phase liquide dans un solvant dans des conditions suffisantes pour former un mélange réactionnel comprenant du 2-chloro-3,3,3-trifluoropropène, ledit solvant étant choisi parmi 1,2-dichloroéthane, 1,2,3-trichloropropane, 1-chloro-1-fluoro-éthane, 1,1-difluoroéthane, 1,1-dichloroéthane et 1,3-dichloro-1-fluorobutane, 1,1,1,3,3-pentafluorobutane et 1,1,2-trichloro-2,2-difluoroéthane, ou un mélange de ceux-ci ; (ii) séparer le mélange réactionnel en un premier flux comprenant du HCl et un deuxième flux comprenant du HF, du 2-chloro-3,3,3-trifluoropropène et du 1,1,1,2-tétrafluoro-2-chloropropane. 2. Procédé selon la revendication 1, dans lequel le solvant est le 1,1,2-trichloro-2,2-difluoroéthane. 3. Procédé selon la revendication 1 ou 2, dans lequel le solvant est présent en une quantité pour un taux de dilution d’au moins 20%, de préférence entre 20 et 80%, avantageusement entre 40% et 60%, le taux de dilution étant défini comme le rapport entre le volume de solvant et le volume total liquide dans la zone de réaction. 4. Procédé selon l’une des revendications 1 à 3, dans lequel un catalyseur est utilisé, de préférence un liquide ionique. 5. Procédé selon la revendication 4, dans lequel le rapport molaire catalyseur/solvant est compris entre 10mol% et 50mol%, de préférence entre 15mol% et 30mol%. 6. Procédé selon l’une des revendications 1 à 5 dans lequel du chlore est ajouté au cours de la réaction, de préférence selon un ratio molaire de 0,05 à 15 mole%, de préférence 0,5 to 10 mole% de chlore par mole de composés de départ. 7. Procédé selon l’une des revendications 1 à 6, dans lequel le produit de la réaction est soutiré à l’état gazeux. 8. Procédé selon l’une des revendications 1 à 7, dans lequel un gaz est injecté, de préférence HCl anhydre. 9. Procédé selon la revendication 8, dans lequel le débit de HCl, par rapport au débit de produits de départ est tel que le rapport molaire HCl : produit de départ est compris entre 0,5:1 et 5:1, avantageusement, entre 1:1 et 3:1. 10. Procédé selon les revendications 1 à 9, dans lequel le mélange réactionnel obtenu à l’étape (1) comprend, exprimé en concentration molaire, HCl entre 20 et 60%, HF entre 10 et 40%, le 2-chloro-3,3,3 -trifluoropropène entre 5 et 20%, 1,1,1,2-tétrafluoro-2-chloropropane compris entre 0,5 et 5%, 2,3-dichloro-3,3-difluuoropropène inférieure à 2% et du solvant inférieure à 2%. 11. Procédé selon les revendications 1 à 10, dans lequel l’étape (ii) est une étape de distillation. 12. Procédé selon l’une des revendications 1 à 11, dans lequel le deuxième flux est en outre séparé, de préférence par décantation, dans un flux de HF contenant principalement du HF, de préférence avec une teneur comprise entre 75 un 99% et un flux organique contenant du 2-chloro 3,3,3-trifluoropropène et 1,1,1,2-tétrafluoro-2-chloropropane. 13. Procédé selon la revendication 12, dans lequel le flux organique est en outre purifié. 14. Procédé selon la revendication 12, dans lequel le flux organique est envoyé à une étape de procédé supplémentaire pour une conversion supplémentaire, de préférence en 2,3,3,3-tétrafluoropropène. 15. Procédé selon l’une des revendications 1 à 14, comprenant en outre une étape de purge pour soutirer des lourds formés au cours de l’étape (i). 16. Procédé de préparation du 2,3,3,3-tétrafluoropropène, comprenant les étapes suivantes : la fluoration de 1,1,2,3-tétrachloropropène en 2-chloro-3,3,3-trifluoropropène selon l’une des revendications 1 à 15 ; conversion du 2-chloro-3,3,3-trifluoropropène en 2,3,3,3-tétrafluoropropène. 17. Procédé selon la revendication 16, dans lequel la conversion à l’étape (ii) est une conversion catalytique en phase gaz.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 2009018561 A [0004] • US 20090099396 A[0005] • WO 2007079431 A [0006] [0066] [0067] • WO 2008149011 A [0007] [0049] • WO 2009003084 A [0008] • FR 2733227 [0044] • WO 0181353 A [0049] • EP 1067106 A [0064] • WO 2008040969 A [0066] [0067]
Non-patent literature cited in the description • liquid-phase HF Fluorination. Multiphase Homogeneous Catalysis. 2002, 535 [0049]

Claims (2)

1. Rjám g i J,>-»tí«którprnpéft fk-oroAisâra, amely tartalmaz?-» s:Äs?i&amp;««öfeil; p I.I.Aà.-kkakfôquopem érbókezóshe hokink hRkogéu-fluoritklsl ibivadekíázhbao oldószerben οΚλ» kv>ïliliï 0Ο'Ζ\ k ! OP. \A "VOkleiOOk „ Ak'£-'Λ *'h AhiOSpiOpent nO-ïhW'' feskviOOh'gc kmiakiiásóho?- ni toi a» oldossert i,2-dikiőmám LAs-íriklórpropásu bklör-k-ftuoretäth IJ-dtÎl-MW* out\ i l-ohkkn.'Un -> k ^-Silo'S'-1'Un"»* î Lkk k>- pomatUmi-buian es i A,£dfddoî-^%*rtiuJ.ià>o már, v;.ig\ esők kávézókéi kkax-i ^mas/nnk; uî· λ u\Aei>'Uvg>et ''.g'' Ib'l knish- ozè o .s« ornora <v egs IH -ot AUmxh.'A-tHkknOiupem "'N 1J JA-teiralhmr'âAlArnropám tartalmazó második mnmmzirâiacztjyk szét. kikfelk |g««>ipüïS:t sKsrkkl eljárás, a*aéiÿi*n:«æ:;âidésm: Ijl^eSr^^fdl^ó^iss 4 \ s % g?v| o» v *o oh a y, An vl à Mow se« * abk '«v s οοπλομτ *oev$0·*,.· köíxkri, tnêg ssldnybsebben 4t>% és 60% közötti higshkd at&amp;nyho?. tafâ mennyiségben van jelen, api s hígítás arányt úgy definiáljuk mist az oldószer térfogatának és &amp;? <\w.-foiyadéktérfbgatnak az csá'· : nyitó reakcióz-őMba«» 4 a> V t ,n p'nok n ' ^ ~ m ego,,, >»\\l'.kn μϊ/ι^ίι ir» \>s m e'om ^ ionos îo!> üdéket. S, A 4. igénypont szedni! eljárás, amelyben.*fea^lMte/ilÄÄ mólarány IsÄtSSl fe ?r>|tk ekmyPsen 1funol"* é\ 3%noi% kózölth g. Λ/ I b. igénypontok Psrmcis ike szedőd eljárás, amelyben klórt adagolunk s reakció során, előnyösen a kiindulási vepydimek rnötnyl mennyiségére vonatkoztatva 0,05 · l5mol%, eWnyftsen 0.5 - KhnolH klór nsótarányhao Ö?. A* :4 -ö. ígénypsntókgbárméiyifeí szedntkajirfc amelyben: a rsakcÄermlket: gâ#baptbari fogjak II a. Az I -7. sgénYpoytok bárotekskc szerinti eljárás, amelyben gázt, előnyősön kende síink ke. y. Λ s. igény pool \/edon eliams. emebben A HCI aramu hned.üaM .oo.íg nőmbe.· Μ.ν'οονρ\.$ ol>fm, hogy s Hr dAnuniulasronyas nioissáinu i\S \ es o ' l-oaott. >em>> >. '. '' i ^Vem lií X v }£C«x p ' >\ \ b V > í\a ' ess*e e. ' * ^'''"X" sapa>P: *o·^ >. s.\ í.\>: motets koacentráctóban kifejezve 20 4$ fcú% közötti HCI-ot, K» és 40% közötti HF-ok 5 és 20% kik ^ AU>v \' ' SütWípvpvu. ö.> OS ' s'OÖUí ..UA toposba-AUbsp* >pi«u, akn» A'-dk!<>r-3.3-'di? ;uuu?opn>péíss és 2% alatti oldéisaen ísrkkta?. FF Az i - tű. ígénvpsmok básmeMke xzessnb eljárj amelyben a(H> lépés «gv desxtsbáiásl sepés. 12> Λ:?, a»* i. r&amp;mvpoRtoK· barmelvtle i,v»it« oFams anKhbu o v 's^ Otk as m>v\ *»'< .N« ' ' os/t - \, v.o>iU'\'n « C'vttOa s- 0 vs.\ FF ot-os,, u' vu «Π » κ ^ ’ ϋ’>'ο<.'Γνν,'<'ί vu ak'î'x^iVtVR oa vp s íiu-t asamsa. a.u^ . w. ' N >-dsi iet,'^Y*v " ’ i t\afk a ' k" propásn sanszait. l:3k:àsl;lv:lg§ïiypônl;:é^îiRli::^;|îârÉ5;Î;:;8m8l^bm:^:sMîiSfes âramtxi;%vaOO: Os« usais 14, oX ΙΟ, sgèîtypôni szerimi eljáráSv-smeltbe»·:a:szerves áramot egy sox&amp;bH ?.ijàrâSMè^#eftek vetjxik a là további áíakdutáx, előnyösen o^s3,.?-îetâ\i0tii>r|'ropêîïïiè -örtebő át&amp;lakiiás céljából.
15. Az I-Ί A. jgcr>ypoRt<>k bármelyiké ÜÄ Íj^€#k h) ibpívbso képAxlö oehxu. anyagok kivonására, i<>. kijárás 2/ká.v4.otra?su'.síps'opésx előállítására. amely- tartalmazza &amp; köves ke eb lé pèse ko?: « UtiAUM.'tv pvttt oto« >ak . kk'f ~ ' %m*lti<»pröpeo.oe ·&amp;ζ I s j*s *.x poatok hamcK ke s?.em?i. ν«'>.ΐ ' I- o’-',' 'ViObs'« guy\ μ ' \> * ktratHmrpnpomn ttfakiipik p, \ t<s ijvtsvpoíU snfs.nh νΟΓΛ. mmdvkm * í irt kpes vusnü afaktk Pas vo> Urabtiktn· gaP.Wfvr Iralaksrax.
HUE10726568A 2010-03-10 2010-03-10 Eljárás fluorozásra folyadékfázisban HUE032122T2 (hu)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2010/001114 WO2011110889A1 (en) 2010-03-10 2010-03-10 Process of fluorination in liquid phase
EP10726568.8A EP2545021B1 (en) 2010-03-10 2010-03-10 Process of fluorination in liquid phase

Publications (1)

Publication Number Publication Date
HUE032122T2 true HUE032122T2 (hu) 2017-08-28

Family

ID=42989491

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE10726568A HUE032122T2 (hu) 2010-03-10 2010-03-10 Eljárás fluorozásra folyadékfázisban

Country Status (6)

Country Link
US (2) US8889925B2 (hu)
EP (1) EP2545021B1 (hu)
ES (1) ES2609331T3 (hu)
HU (1) HUE032122T2 (hu)
PL (1) PL2545021T3 (hu)
WO (1) WO2011110889A1 (hu)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670117B2 (en) 2007-01-03 2017-06-06 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US10343962B2 (en) 2007-01-03 2019-07-09 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US8779219B2 (en) * 2009-05-13 2014-07-15 Daikin Industries, Ltd. Process for preparing chlorine-containing fluorocarbon compound
PL2545021T3 (pl) * 2010-03-10 2017-03-31 Arkema France Sposób fluorowania w fazie ciekłej
WO2012066375A1 (en) * 2010-11-15 2012-05-24 Arkema France Process for the manufacture of 2 - chloro - 3, 3, 3 - trifluoropropene (hcfo 1233xf) by liquid phase fluorination of pentachloropropane
CN103180274B (zh) 2010-10-25 2015-07-15 阿克马法国公司 将2-氯-3,3,3-三氟丙烯在液相中催化氟化成产物2-氯-1,1,1,2-四氟丙烷的方法
US9890096B2 (en) 2011-01-19 2018-02-13 Honeywell International Inc. Methods of making 2,3,3,3-tetrafluoro-2-propene
JP6184968B2 (ja) * 2011-11-04 2017-08-23 セルマ ベクテセヴィック 2,3,3,3−テトラフルオロプロペンの製造方法
EP2812298A4 (en) 2012-02-10 2015-09-16 Haiyou Wang IMPROVED PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE
EP4098644A1 (en) * 2012-02-29 2022-12-07 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
US8889929B2 (en) 2013-02-19 2014-11-18 Honeywell International Inc. Process to make 1,1,2,3-tetrachloropropene from 1,1,3-trichloropropene and/or 3,3,3-trichloropropene
US9334206B2 (en) 2013-03-15 2016-05-10 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
US9272967B2 (en) * 2013-10-15 2016-03-01 Honeywell International Inc. Process for producing 1-chloro-3,3,3-trifluoropropene in an ionic liquid
JP6098608B2 (ja) * 2014-10-07 2017-03-22 ダイキン工業株式会社 フッ素基を含有するハロオレフィン化合物の製造方法及び組成物
JP6210073B2 (ja) * 2015-01-21 2017-10-11 ダイキン工業株式会社 フルオロプロペンの製造方法
FR3064622B1 (fr) 2017-03-28 2019-03-22 Arkema France Procede de recuperation d'acide fluorhydrique
CN110372471A (zh) * 2019-07-26 2019-10-25 西安近代化学研究所 六氯丁二烯的催化转化方法
WO2021222693A1 (en) * 2020-05-01 2021-11-04 Uop Llc System for ionic liquid catalyst regeneration

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787646A (en) 1953-09-03 1957-04-02 Haszeldine Robert Neville Organic halogen compounds and methods of making same
JPS5946211B2 (ja) * 1975-12-29 1984-11-10 ダイキン工業株式会社 1− クロロ −1,1− ジフルオロエタンマタハ / オヨビ 1,1,1− トリフルオロエタンオセイゾウスルホウホウ
US4885416A (en) * 1985-10-18 1989-12-05 E. I. Du Pont De Nemours And Company Fluorination process
BE1007393A3 (fr) * 1993-08-04 1995-06-06 Solvay Procede pour la preparation de 1-chloro-1-fluoroethane et/ou de 1,1-difluoroethane.
US5714754A (en) * 1994-03-04 1998-02-03 Nicholas; John Jacob Remote zone operation of lighting systems for above-ground enclosed or semi-enclosed parking structures
US5616819A (en) 1995-08-28 1997-04-01 Laroche Industries Inc. Process for preparing fluorinated aliphatic compounds
US5969198A (en) 1997-06-27 1999-10-19 Alliedsignal Inc. Process for the preparation of 1,1,1,3,3-pentafluoropropane
GB0113080D0 (en) * 2001-05-30 2001-07-18 Kvaerner Process Tech Ltd Process
US8071825B2 (en) 2006-01-03 2011-12-06 Honeywell International Inc. Method for producing fluorinated organic compounds
US8664455B2 (en) 2008-08-08 2014-03-04 Honeywell International Inc. Process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb)
FR2916755B1 (fr) * 2007-05-31 2009-08-21 Arkema France Procede de preparation d'(hydro)(chloro)(fluoro)olefines
US8563789B2 (en) * 2007-06-27 2013-10-22 Arkema Inc. Process for the manufacture of hydrofluoroolefins
US9035111B2 (en) * 2007-08-22 2015-05-19 Honeywell International Inc. Method for producing fluorinated organic compounds
JP5767231B2 (ja) * 2009-10-09 2015-08-19 ダウ グローバル テクノロジーズ エルエルシー 塩素化及び/又はフッ素化されたプロペン及びより高級なアルケンを製造するプロセス
PL2545021T3 (pl) * 2010-03-10 2017-03-31 Arkema France Sposób fluorowania w fazie ciekłej

Also Published As

Publication number Publication date
ES2609331T3 (es) 2017-04-19
US9315431B2 (en) 2016-04-19
EP2545021B1 (en) 2016-09-28
US8889925B2 (en) 2014-11-18
PL2545021T3 (pl) 2017-03-31
WO2011110889A1 (en) 2011-09-15
US20130041191A1 (en) 2013-02-14
EP2545021A1 (en) 2013-01-16
US20150094502A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
HUE032122T2 (hu) Eljárás fluorozásra folyadékfázisban
US8779218B2 (en) Process for the manufacture of 2-chloro-3,3,3-trifluoropropene (HFCO 1233xf) by liquid phase fluorination of pentachloropropane
EP3363776B1 (en) Process for the preparation of 2,3,3,3-tetrafluoropropene
JP3518321B2 (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP5144592B2 (ja) 共沸組成物及びハイドロフルオロアルカンの製造方法
JP4548937B2 (ja) クロロ炭化水素のフッ化水素化方法
EP2640681B1 (en) Process for the manufacture of 2-chloro-3,3,3-trifluoropropene (hcfo 1233xf) by liquid phase fluorination of pentachloropropane
RU2552531C2 (ru) Способ получения 2-хлор-1,1,1,2-тетрафторпропана фторированием 2-хлор-3,3,3-трифторпропена в жидкой фазе
HUE030760T2 (hu) Eljárás 2,3,3,3-tetrafluor-propén elõállítására pentaklór-propán gázfázisú fluorozásával
JP5146466B2 (ja) ペンタフルオロエタンの製造方法
CN112105595A (zh) 生产1-氯-3,3,3-三氟丙烯的方法
WO2011135395A1 (en) Process for the manufacture of 2-chloro-3, 3,3-trifluoropropene (hcfo1233xf) by liquid phase fluorination of pentachloropropane
JP6043415B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
CN110573481A (zh) 纯化1,1,1,2,2-五氟丙烷的方法