HRP990349A2 - Rotary internal-combustion engine - Google Patents

Rotary internal-combustion engine Download PDF

Info

Publication number
HRP990349A2
HRP990349A2 HRP990349A HRP990349A2 HR P990349 A2 HRP990349 A2 HR P990349A2 HR P990349 A HRP990349 A HR P990349A HR P990349 A2 HRP990349 A2 HR P990349A2
Authority
HR
Croatia
Prior art keywords
shaft
gears
fact
rotary engine
engine
Prior art date
Application number
Other languages
Croatian (hr)
Inventor
Velimir Gruban
Original Assignee
Velimir Gruban
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Velimir Gruban filed Critical Velimir Gruban
Priority to HR990349A priority Critical patent/HRP990349B1/en
Priority to AU76774/00A priority patent/AU7677400A/en
Priority to PCT/HR2000/000036 priority patent/WO2001034944A1/en
Publication of HRP990349A2 publication Critical patent/HRP990349A2/en
Publication of HRP990349B1 publication Critical patent/HRP990349B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/063Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
    • F01C1/077Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having toothed-gearing type drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Valve Device For Special Equipments (AREA)
  • Automatic Disk Changers (AREA)
  • Rotary Pumps (AREA)

Description

Područje na koje se izum odnosi The field to which the invention relates

Ovaj izum odnosi se na rotacioni motor sa unutrašnjim izgaranjem koji se klasificira po međunarodnoj klasifikaciji kao: F 02 B - Motori s izgaranjem općenito This invention relates to a rotary internal combustion engine which is classified according to the international classification as: F 02 B - Combustion engines in general

Tehnički problem Technical problem

Konstrukcija klipnog motora je vrlo složena budući se sastoji od relativno velikog broja dijelova: klipovi, klipnjače, koljeničasta osovina. Osim tih dijelova imamo robusno kućište s cilindrima, karter i glavu motora. Za razvod radnog medija koristi se razvodni mehanizam u kojem su glavni dijelovi bregaste osovine i ventili s oprugama. Izrada svih tih dijelova zahtijeva veliki broj proizvodnih operacija, veliki broj radnih sati što u konačnici dovodi do visoke proizvodne cijene motora. The construction of a piston engine is very complex since it consists of a relatively large number of parts: pistons, connecting rods, crankshaft. In addition to these parts, we have a robust housing with cylinders, crankcase and engine head. For the distribution of the working medium, a distribution mechanism is used, in which the main parts are camshafts and valves with springs. The production of all these parts requires a large number of production operations, a large number of working hours, which ultimately leads to a high production price of the engine.

Volumen i masa motora su veliki što ima osobiti utjecaj kod automobilskih motora gdje imamo ograničen ugradbeni prostor a također je potrebno osigurati što manju masu vozila radi poboljšanja ukupnih performansi. The volume and mass of the engine are large, which has a particular impact on car engines, where we have limited installation space, and it is also necessary to ensure that the weight of the vehicle is as small as possible in order to improve overall performance.

Stanje tehnike State of the art

Tijekom dvadesetog stoljeća bilo je mnogo pokušaja da se motori sa klipnim mehanizmom zamjene rješenjem koje bi sadržavalo jednostavniju koncepciju motora. Sva ta rješenja bazirala su se većinom na radu rotacionih pumpi, i to ponajprije onih sa pokretnim krilcima. Te koncepcije egzistirale su više kao teorijske mogućnosti, a manje kao praktično izvediva rješenja. Od svih pokušaja najviše uspjeha imao je motor Feliksa Wankela koji se u osnovi sastoji od epitrohoidalnog kućišta i trokutastog klipa postavljenog na ekscentričnu osovinu. Za svoju koncepciju motora uspio je zainteresirati veći broj proizvođača koji su utrošili velika sredstva na njegovo usavršavanje. Nakon gotovo trideset godina odustalo se od daljnjeg razvoja i nastojanja da se krene u masovnu proizvodnju. Ono što je utjecalo na takvu odluku bio je nepremostivi niz problema koji je karakterizirao taj motor. Nedostaci sa brtvljenjem komora, neadekvatno podmazivanje, pregrijavanje pojedinih dijelova motora a s time i povećane deformacije te habanje dijelova temeljni su problemi ovoga motora. Osim toga potrošnja goriva veća je za tridesetak posto nego u klipnih motora, a zbog načina podmazivanja i veća potrošnja ulja, te kao posljedica toga visoka emisija štetnih plinova u ispuhu. Uz to treba reći da zbog same konstrukcije nije se mogao postići veći stupanj kompresije od jedanaest naprama jedan te stoga nije bio primjenljiv za izvedbu u Diesel verziji. Tvornica Rolls-Roys izradila je hibridni Wankel motor u Diesel verziji koji nije dao očekivane rezultate. During the twentieth century, there were many attempts to replace engines with a piston mechanism with a solution that would contain a simpler engine concept. All these solutions were mostly based on the operation of rotary pumps, primarily those with movable vanes. These concepts existed more as theoretical possibilities and less as practically feasible solutions. Of all the attempts, the most successful was Felix Wankel's engine, which basically consists of an epitrochoidal housing and a triangular piston mounted on an eccentric shaft. He managed to interest a large number of manufacturers in his engine concept, who spent large sums of money on its development. After almost thirty years, further development and efforts to start mass production were abandoned. What influenced such a decision was the insurmountable series of problems that characterized that engine. Defects in the sealing of the chambers, inadequate lubrication, overheating of individual parts of the engine and thus increased deformation and wear of parts are the fundamental problems of this engine. In addition, fuel consumption is thirty percent higher than in piston engines, and due to the lubrication method, oil consumption is also higher, and as a result, high emission of harmful gases in the exhaust. In addition, it should be said that due to the construction itself, a higher compression ratio of eleven to one could not be achieved and was therefore not applicable for the performance in the Diesel version. The Rolls-Roys factory made a hybrid Wankel engine in a Diesel version that did not give the expected results.

Izlaganje suštine izuma Presentation of the essence of the invention

Motor koji će biti objašnjen predstavlja novu i jedinstvenu koncepciju motora koji sa prije spominjanim rješenjima nema dodirnih točaka. To je jedini motor koji ostvaruje promjenjivi volumen komora, a da pri tome svi dijelovi koji se gibaju vrše kružno gibanje. To nije ostvareno niti u jednoj konstrukciji motora ili pumpe već se uvijek radilo o kombinacijama dvaju ili više gibanja npr. rotacije i translacije i slično. Ta činjenica ima veliku važnost za ukupno funkcioniranje motora što će se vidjeti u nastavku izlaganja. The engine that will be explained represents a new and unique concept of the engine that has no points of contact with the previously mentioned solutions. It is the only engine that realizes a variable volume of the chambers, while all the moving parts make a circular motion. This was not achieved in any engine or pump design, but it was always a matter of combinations of two or more motions, for example rotation and translation and the like. This fact has great importance for the overall functioning of the engine, which will be seen in the rest of the presentation.

U usporedbi sa klipnim motorom rotacioni motor ima manje dimenzije i masu po jedinici snage. Sastoji se od samo tri pokretna dijela. Razvod radnog medija vrši se preko usisnog i ispušnog kanala na kućištu za razliku od klipnog motora koji za tu namjenu ima skupi i komplicirani razvodni mehanizam. Compared to a piston engine, a rotary engine has smaller dimensions and mass per unit of power. It consists of only three moving parts. The distribution of the working medium is done through the intake and exhaust ducts on the housing, in contrast to the piston engine, which has an expensive and complicated distribution mechanism for this purpose.

Brtvljenje komora motora, podmazivanje i hlađenje u potpunosti je riješeno što je od temeljne važnosti za funkcioniranje motora. Sealing of the engine chambers, lubrication and cooling have been completely solved, which is of fundamental importance for the functioning of the engine.

Motor može biti izveden da upotrebljava benzin kao pogonsko gorivo ili u Diesel verziji budući da nema ograničenja u pogledu visine stupnja kompresije. The engine can be made to use gasoline as a propellant or in the Diesel version since there is no restriction on the height of the compression ratio.

S obzirom na taktnost moguća je izvedba u četverotaktnoj odnosno dvotaktnoj verziji. With regard to tactility, a four-stroke or two-stroke version is possible.

Raspon broja okretaja pri kojem motor može raditi jednak je kao kod klipnih motora te se on može izvesti kao brzokretni, srednjekretni i sporokretni. The range of revolutions at which the engine can operate is the same as that of piston engines, and it can be designed as high-speed, medium-speed and slow-speed.

S obzirom na tlak ulaznog medija motor može biti atmosferski ili s prednabijanjem. Depending on the pressure of the inlet medium, the engine can be atmospheric or precharged.

Rotacioni motor slika 1.a i b sastoji se od dijelova: The rotary engine of Figure 1.a and b consists of parts:

1. kućišta motora 1 1. engine housings 1

2. rotora sastavljenog od više različitih dijelova, smještenog u središnjem dijelu motora te će se u daljnjem tekstu nazivati središnji rotor 2 2. rotor composed of several different parts, located in the central part of the engine and will be referred to as central rotor 2 in the following text

3. rotora koji je sastavljen također od više dijelova, a budući se njegovo vratilo sastoji od dva dijela u daljnjem tekstu koristit će se naziv dvodijelni rotor 3 3. the rotor, which is also composed of several parts, and since its shaft consists of two parts, the name two-part rotor 3 will be used in the following text

4. vratila 4 4. shaft 4

5. kliznih ležajeva 5, 6, 7. 5. sliding bearings 5, 6, 7.

Mehanizam motora koji rotira unutar kućišta sastoji se od dva rotora i vratila. Rotori zajedno sa površinama kućišta zatvaraju volumene radnih komora i prenose okretne momente na vratilo motora. Prijenos momenata odvija se preko eliptičnih zupčanika smještenih na rotorima i vratilu motora. Oni čine osnovu motornog mehanizma i ujedno određuju njegovo gibanje. The motor mechanism that rotates inside the housing consists of two rotors and a shaft. The rotors together with the housing surfaces close the volumes of the working chambers and transmit torques to the motor shaft. Moments are transmitted via elliptical gears located on the rotors and motor shaft. They form the basis of the motor mechanism and at the same time determine its motion.

Za uležištenje dijelova mehanizma koriste se klizni ležajevi. Sliding bearings are used to accommodate parts of the mechanism.

Kratak opis crteža Brief description of the drawing

Slika 1.a i b prikazuje rotacioni motor u nacrtu i bokocrtu Figure 1.a and b shows a rotary engine in plan and side view

Slika 2. prikazuje par zupčanika motornog mehanizma sa označenim karakterističnim veličinama Figure 2 shows a pair of gears of the motor mechanism with marked characteristic sizes

Slika 3.1.-5. prikazuje položaje zupčanika rotora za zakrete zupčanika vratila od 180 stupnjeva Figure 3.1.-5. shows rotor gear positions for 180 degree shaft gear turns

Slika 4.1.-5. prikazuje položaje središnjeg i dvodijelnog rotora za zakrete vratila od 180 stupnjeva Figure 4.1.-5. shows center and two-piece rotor positions for 180-degree shaft turns

Slika 5.1.-4. prikazuje četverotaktni rad motora po fazama Figure 5.1.-4. shows four-stroke engine operation in stages

Slika 6.1.-2. prikazuje rad dvotaktnog motora po fazama Figure 6.1.-2. shows the operation of a two-stroke engine by phases

Slika 7.1.-2. prikazuje rad kompresora zraka i hidraulične pumpe Figure 7.1.-2. shows the operation of the air compressor and the hydraulic pump

Slika 8.a i b prikazuje kućište četverotaktnog motora sa vodenim hlađenjem u nacrtu i bokocrtu Figure 8.a and b shows the housing of a four-stroke engine with water cooling in a plan and a side view

Slika 9.a i b prikazuje središnji rotor u nacrtu i bokocrtu Figure 9.a and b shows the central rotor in plan and side view

Slika 10.a i b prikazuje dvodijelni rotor u nacrtu i bokocrtu Figure 10.a and b shows a two-part rotor in plan and side view

Slika 11.a, b i c prikazuje prstenaste brtve komora motora u nacrtu i bokocrtu Figure 11.a, b and c shows the ring seals of the engine chambers in plan and side view

Slika 12. prikazuje vratilo motora u nacrtu i bokocrtu Figure 12 shows the engine shaft in plan and side view

Slika 13. prikazuje motor sa dva motorna mehanizma vezana na zajedničko vratilo. Figure 13 shows a motor with two motor mechanisms connected to a common shaft.

Slika 14. prikazuje motor sa tri motorna mehanizma međusobno zakrenuta za 120 stupnjeva oko zajedničkog vratila. Figure 14 shows a motor with three motor mechanisms mutually rotated by 120 degrees around a common shaft.

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

Gibanje pokretnih dijelova motora kao što je rečeno određuju parovi eliptičnih zupčanika koji su ugrađeni u rotore i vratilo motora. Zupčanici rotora (veliki zupčanik) imaju dva puta veći opseg diobene elipse od zupčanika smještenih na vratilu motora (mali zupčanik) slika 2. Os rotacije velikih zupčanika poklapa se sa osi rotacije rotora, dok su mali zupčanici na vratilu postavljeni ekscentrično. Os rotacije vratila prolazi fokusima njihovih diobenih elipsa. Također mali zupčanici koji se uzubljuju sa zupčanicima različitih rotora međusobno su zakrenuti za 180 stupnjeva. The movement of the moving parts of the engine, as mentioned, is determined by the pairs of elliptical gears that are built into the rotors and the engine shaft. The rotor gears (large gear) have twice the circumference of the dividing ellipse than the gears located on the motor shaft (small gear) Figure 2. The axis of rotation of the large gears coincides with the axis of rotation of the rotor, while the small gears on the shaft are placed eccentrically. The axis of rotation of the shafts passes through the foci of their dividing ellipses. Also the small gears that mesh with the gears of the different rotors are mutually rotated by 180 degrees.

Da bi dva međusobno uzubljena zupčanika mogla pravilno funkcionirati potrebno je definirati njihov geometrijski oblik i pri tome zadovoljiti određene uvijete. In order for two mutually toothed gears to function properly, it is necessary to define their geometric shape and meet certain conditions.

Na slici 2. prikazan je par zupčanika sa označenim glavnim veličinama: Figure 2 shows a pair of gears with the main sizes marked:

a1- velika os diobene elipse zupčanika rotora (veliki zupč.) a1- major axis of the divided ellipse of the rotor gear (large gear)

b1- mala os diobene elipse zupčanika rotora b1- minor axis of the dividing ellipse of the rotor gear

a2 - velika os diobene elipse zupčanika vratila (mali zupčanik) a2 - major axis of the ellipse division of the shaft gear (small gear)

b2 - mala os diobene elipse zupčanika vratila b2 - minor axis of the dividing ellipse of the gear shaft

e2 -ekscentricitet zupčanika vratila e2 - eccentricity of the shaft gear

r1 - promjenjivi radijus zupčanika rotora (veliki zupčanik) r1 - variable radius of the rotor gear (large gear)

r2 - promjenjivi radijus zupčanika vratila r2 - variable radius of the shaft gear

d - razmak osi rotacije vratila i rotora d - the distance between the axis of rotation of the shaft and the rotor

φ1 -kut zupčanika rotora φ1 - rotor gear angle

φ2 -kut zupčanika vratila φ2 -shaft gear angle

s2 -opseg diobene elipse zupčanika vratila s2 - circumference of the divisive ellipse of the shaft gear

Razmak osi rotacije zupčanika vratila i zupčanika rotora jednak je zbroju njihovih promjenjivih radijusa The distance between the axis of rotation of the shaft gear and the rotor gear is equal to the sum of their variable radii

[image] [image]

Jednadžba krivulje zupčanika vratila jednaka je The equation of the shaft gear curve is equal to

[image] [image]

Promjenjive radijuse zupčanika rotora u ovisnosti o kutu 2 dobiti ćemo upotrebom izraza 3.1 i 3.2 The variable radii of the rotor gears depending on the angle 2 will be obtained by using expressions 3.1 and 3.2

[image] [image]

Da bi par zupčanika prikazan na slici 2. mogao pravilno funkcionirati potrebno je zadovoljiti temeljni uvjet In order for the pair of gears shown in Figure 2 to function properly, the basic condition must be met

[image] [image]

Izraz 3.4 predstavlja uvjet kojim se prilikom zakreta zupčanika vratila za kut od 720 stupnjeva odnosno dva puna okretaja veliki zupčanik zakrene za 360 stupnjeva odnosa za jedan puni okretaj. Expression 3.4 represents the condition by which the large gear rotates 360 degrees when the shaft gear rotates by an angle of 720 degrees, or two full revolutions.

Geometrijski oblik odrediti ćemo odabiranjem veličina a2 b2 i d i to na način da se zadovolje izrazi (3.1-4.). Pri odabiru tih veličina osim gore navedenih uvjeta potrebno je uzeti u obzir i dodatne činjenice koje utječu na ispravno dimenzioniranje: We will determine the geometric shape by choosing the sizes a2 b2 and d in such a way as to satisfy the expressions (3.1-4.). When choosing these sizes, in addition to the conditions mentioned above, it is necessary to take into account additional facts that affect correct sizing:

- omjer b2/a2 utječe na volumen komora motora i to tako što je omjer manji ostvaruje se veći volumen, ali manjini omjerom momenti inercije koji nastaju tijekom rotacije su veći te je potrebno odabrati veličine na način da se ostvari optimalan maksimalni volumen komora a momenti inercije zadrže u dozvoljenim granicama - the ratio b2/a2 affects the volume of the engine chambers, and the smaller the ratio, the greater the volume, but with the smaller the ratio, the moments of inertia that occur during rotation are greater, and it is necessary to choose the sizes in such a way as to achieve the optimal maximum volume of the chambers and the moments of inertia keep within the allowed limits

- razmak osi zupčanika mora biti takav da se osigura dovoljna čvrstoća zubi zupčanika - the gear axis spacing must be such as to ensure sufficient strength of the gear teeth

- opsezi diobenih krivulja zupčanika moraju biti višekratnici umnoška mn • π pri čemu je mn jedan od standardnih modula zupčanika. - the ranges of the gear division curves must be multiples of the product mn • π, where mn is one of the standard modules of the gear.

Ako su pri odabiru veličina zadovoljeni svi gore navedeni uvjeti dobivamo da je diobena krivulja velikog zupčanika elipsa čije osnovne veličine možemo izračunati iz izraza 3.3. Veliku os elipse izračunat ćemo uvrštavanjem u izraz kut φ2 - 90° dok je za izračunavanje male osi potrebno uvrstit kut φ2 = 270°. Izračunavanjem veličina a1 i b1 u potpunosti je izvršeno sparivanje zupčanika motornog mehanizma. If all the above-mentioned conditions are met during the selection of sizes, we get that the dividing curve of the large gear is an ellipse whose basic sizes can be calculated from expression 3.3. We will calculate the major axis of the ellipse by including the angle φ2 - 90° in the expression, while to calculate the minor axis, it is necessary to include the angle φ2 = 270°. By calculating the sizes a1 and b1, the gearing of the motor mechanism was fully matched.

Slika 3.1-5 prikazuje položaje zupčanika rotora za zakrete zupčanika vratila od 180 stupnjeva. Radijusi eliptičnih zupčanika u svakoj točki dodira se mijenjaju te se i njihov prijenosni omjer i = r1/r2 mijenja od minimalne do neke maksimalne vrijednosti. Iz tog razloga će se zupčanik rotora za svakih 180 stupnjeva okreta zupčanika vratila zakrenuti za različiti kut. Slika 3.1 prikazuje nulti položaj zupčanika. Zakretanjem zupčanika rotora za 180 stupnjeva slika 3.2 zupčanik rotora će se zakrenuti za kut 90 + φ. U slijedećem zakretaju zupčanika rotora za 180 stupnjeva slika 3.3 zupčanik rotora će se zakrenuti za 90 - φ. Daljnjim okretanjem situacija se ponavlja slika 3.4 i slika 3.5 Figure 3.1-5 shows the rotor gear positions for 180 degree shaft gear turns. The radii of the elliptical gears at each point of contact change and their transmission ratio i = r1/r2 changes from a minimum to some maximum value. For this reason, the rotor gear will rotate by a different angle for every 180 degrees of rotation of the shaft gear. Figure 3.1 shows the zero position of the gear. By rotating the rotor gear by 180 degrees figure 3.2, the rotor gear will rotate by an angle of 90 + φ. In the next rotation of the rotor gear by 180 degrees, Figure 3.3, the rotor gear will rotate by 90 - φ. By further turning the situation, figure 3.4 and figure 3.5 are repeated

Slika 4.1-5 prikazuje položaje dvaju rotora za pomake vratila u svakoj fazi za 180 stupnjeva. Kuteve koje prevaljuju središnji i dvodijelni rotor nalaze se u protufazi tj. prilikom okretanja vratila jedan dio će se zakrenuti za 90 + φ dok će se drugi zakrenuti za 90 - φ i obratno. Zbog toga će se među njima tijekom rotacije ostvarivati kutna razlika od minimalne vrijednosti O do maksimalne vrijednosti od 2φ. To je temeljna činjenica na kojoj se zasniva rad motora. Figure 4.1-5 shows the positions of the two rotors for 180 degree shaft displacements in each phase. The angles covered by the central and two-part rotor are in anti-phase, i.e. when turning the shaft, one part will rotate by 90 + φ while the other will rotate by 90 - φ and vice versa. For this reason, during rotation, there will be an angular difference between them from a minimum value of O to a maximum value of 2φ. This is the fundamental fact on which the operation of the engine is based.

Na slici 4.1 prikazani su položaji dvaju rotora kada je vratilo u nultoj poziciji. Zakretanjem vratila za 180 stupnjeva rotori će zauzet položaje prema slici 4.2. Središnji i dvodijelni rotor zakrenut će se za različite kuteve te će njihova kutna razlika iznositi: Figure 4.1 shows the positions of the two rotors when the shaft is in the zero position. By rotating the shaft by 180 degrees, the rotors will take positions according to Figure 4.2. The central and two-part rotor will rotate through different angles, and their angular difference will be:

[image] [image]

gdje je: Δφ kutna razlika središnjeg i dvodjelnog rotora where: Δφ is the angular difference between the central and two-part rotor

φskut za koji je zakrenut središnji rotor φskut by which the central rotor is turned

φdvkut za koji je zakrenut dvodijelni rotor φdvangle by which the two-part rotor is turned

Daljnjim zakretanjem vratilo će se zakrenuti za jedan puni okretaj u odnosu na nulti položaj slika 4.3, pri čemu će rotor koji je u prethodnoj fazi prešao veći kut sada prijeći manji, a rotor koji je u prethodnoj fazi prešao manji prijeći veći kut. Na taj način oba rotora zauzet će položaj od 180 stupnjeva te će kutna razlika Δφ u tom trenutku biti nula. With further rotation, the shaft will rotate by one full revolution in relation to the zero position of figure 4.3, whereby the rotor which in the previous phase has traversed a larger angle will now traverse a smaller one, and the rotor which in the previous phase traversed a smaller angle will traverse a larger angle. In this way, both rotors will occupy a position of 180 degrees and the angular difference Δφ will be zero at that moment.

Slika 4.4 prikazuje vratilo u položaju zakrenutom za jedan i pol okretaj pri čemu su se rotori međusobno razmaknuli za kut Δφ. Figure 4.4 shows the shaft in a position rotated by one and a half revolutions, with the rotors separated from each other by an angle Δφ.

Kada se vratilo zakrene za puna dva okretaja slika 4.5 rotori će biti zakrenuti za 360 stupnjeva. Kutna razlika Δφ jednaka je nuli. Vidljivo je da se u dva okretaja vratila volumen jedne komore promijeni četiri puta. When the shaft rotates through two full revolutions of Figure 4.5, the rotors will have rotated 360 degrees. The angular difference Δφ is equal to zero. It can be seen that in two revolutions of the shaft, the volume of one chamber changed four times.

Opisani motorni mehanizam služi za izvedbu motora u četverotaktnoj i dvotaktnoj verziji, a također kompresora zraka i hidraulične pumpe. The described engine mechanism serves for the performance of the engine in four-stroke and two-stroke versions, as well as the air compressor and hydraulic pump.

Kod četverotaktnog rada motora ciklus potreban za dobivanje jednog radnog takta obavlja se za vrijeme dva puna okretaja vratila. U jednoj komori motora obave se četiri takta. With a four-stroke engine, the cycle required to obtain one working cycle is performed during two full revolutions of the shaft. Four cycles are completed in one engine chamber.

Taktovi su: 1. Usisavanje 2. Sabijanje 3. Ekspanzija 4. Ispuh The strokes are: 1. Suction 2. Compression 3. Expansion 4. Exhaust

U nastavku razmotrit ćemo procese unutar komore motora na slici 5.1-4 označene brojem 1 za vrijeme dva okretaja vratila. In the following, we will consider the processes inside the engine chamber in Figure 5.1-4 marked with number 1 during two revolutions of the shaft.

1. Okretanjem vratila u smjeru okretanja kazaljke na satu slika 5.1 dolazi do povećanja volumena komore 1. Komora za to vrijeme prelazi područje na kojem se nalazi usisni kanal te zbog tlaka u komori koji je niži od tlaka u usisnoj cijevi dolazi do usisavanja radnog medija. Usisavanje traje dok se vratilo ne zakrene za 180 stupnjeva tj. kada komora postigne svoj maksimalni volumen. Radi boljeg punjenja komore radnim medijem takt usisavanja se može produžiti protezanjem usisnog kanala u područje početka slijedećeg takta. Prelaskom komore izvan utjecaja usisnog kanala završava takt usisavanja. 1. By turning the shaft clockwise in figure 5.1, the volume of chamber 1 increases. During this time, the chamber crosses the area where the suction channel is located and due to the pressure in the chamber, which is lower than the pressure in the suction pipe, suction of the working medium occurs. The suction continues until the shaft turns 180 degrees, i.e. when the chamber reaches its maximum volume. In order to better fill the chamber with the working medium, the suction stroke can be extended by extending the suction channel into the area of the beginning of the next stroke. When the chamber passes outside the influence of the suction channel, the suction cycle ends.

Za vrijeme ove faze u komori 2 odvija se takt sabijanja, u komori broj 3 takt ekspanzije a u komori broj 4 takt ispuha. During this phase, the compression stroke takes place in chamber 2, the expansion stroke in chamber number 3, and the exhaust stroke in chamber number 4.

2. Radni medij koji je usisan u prvoj fazi nalazi se zatvoren u komori 1. slika 5.2. Okretanjem vratila dolazi do smanjenja volumena komore i sabijanja radnog medija, pri čemu se povisuje njegova temperatura i tlak. Proces sabijanja završava u trenutku kada komora poprimi minimalni volumen. Kompresioni odnos dakle odnos maksimalnog i minimalnog volumena komore ovisan je o tipu motora (benzinski, Diesel, sa prednabijanjem, bez prednabijanjem). Nešto prije završetka takta sabijanja kod benzinskih motora dolazi do preskakanja iskre na svjećici i do paljenja gorive smjese. Kod Diesel izvedbe motora započinje proces ubrizgavanja goriva u zagrijani uzduh. 2. The working medium that was sucked in in the first phase is closed in chamber 1. Figure 5.2. By turning the shaft, the volume of the chamber decreases and the working medium is compressed, increasing its temperature and pressure. The compression process ends when the chamber takes on the minimum volume. The compression ratio, i.e. the ratio of the maximum and minimum volume of the chamber, depends on the type of engine (gasoline, diesel, with pre-charge, without pre-charge). A little before the end of the compression cycle in gasoline engines, the spark on the spark plug jumps and the fuel mixture ignites. With the Diesel version of the engine, the process of fuel injection into the heated air begins.

U komori 2 odvija se takt ekspanzije, u komori 3 takt ispuha a u komori broj 4 takt usisavanja. The expansion cycle takes place in chamber 2, the exhaust cycle in chamber 3, and the suction cycle in chamber number 4.

3. Nakon paljenja smjese, kod benzinskog motora, u komori 1. slika 5.3 dolazi do izgaranja pri čemu se naglo povisuje tlak i temperatura. U Diesel verziji još neko vrijeme traje ubrizgavanje goriva a istovremeno i izgaranje. U preostalom dijelu ovoga takta traje ekspanzija izgarnih plinova koji djelujući na radne površine komore stvaraju sile i momente. Sile na rotorima su jednake ali iz njih proizišli momenti koji djeluju na vratilo su različitog iznosa i smjera. Razlog tome je što su trenutačni prijenosni omjeri različiti kod središnjeg i dvodjelnog rotora. Razlika tih dvaju momenata manifestira se kao koristan okretni moment na izlaznom dijelu vratila. Izlazni moment je jednak nuli samo u trenutku kada se vratilo nalazi u nultoj poziciji, jer su tada momenti koji djeluju na vratilo jednakog iznosa a suprotnog smjera djelovanja pa dolazi do njihovog poništavanja. Ekspanzija plinova traje do trenutka kada komora postigne svoj maksimalni volumen, za razliku od klipnih motora kod kojih ona završava nešto ranije zbog početka otvaranja ventila. Iz tog razloga dobij a se veći rad u taktu ekspanzije nego kod klipnih motora. 3. After the mixture is ignited, in the case of a gasoline engine, combustion occurs in chamber 1. Figure 5.3, during which the pressure and temperature rise sharply. In the Diesel version, the fuel injection takes some time and at the same time the combustion takes place. In the remaining part of this stroke, the expansion of exhaust gases continues, which, acting on the working surfaces of the chamber, create forces and moments. The forces on the rotors are equal, but the resulting moments acting on the shaft are of different amounts and directions. The reason for this is that the current transmission ratios are different for a central and two-piece rotor. The difference between these two moments manifests itself as a useful torque on the output part of the shaft. The output torque is equal to zero only at the moment when the shaft is in the zero position, because then the torques acting on the shaft are of equal amount and of the opposite direction of action, so their cancellation occurs. Gas expansion lasts until the chamber reaches its maximum volume, in contrast to piston engines where it ends somewhat earlier due to the start of valve opening. For this reason, more work is obtained in the expansion stroke than with piston engines.

U komori 2 odvija se takt ispuha, komori 3 takt usisa, a u komori 4 takt sabijanja. The exhaust cycle takes place in chamber 2, the suction cycle in chamber 3, and the compression cycle in chamber 4.

4. Daljnjom rotacijom volumen komore 1. slika 5.4 se počinje smanjivati te zbog razlike tlaka u komori i ispušnoj cijevi, koja se nalazi u ovom području, dolazi do istiskivanja izgarnih plinova preko cijevi u atmosferu. Takt ispuha završava kada komora postigne svoj minimalni volumen, međutim radi boljeg ispiranja komore od izgarnih plinova može se produžiti i na početak usisa. 4. With further rotation, the volume of chamber 1. Figure 5.4 begins to decrease, and due to the pressure difference in the chamber and the exhaust pipe, which is located in this area, exhaust gases are pushed out through the pipe into the atmosphere. The exhaust stroke ends when the chamber reaches its minimum volume, however, in order to better flush the chamber from exhaust gases, it can be extended to the beginning of the intake.

U komori 2 vrši se usisavanje, u komori 3 sabijanje, a u komori 4 ekspanzija. Suction takes place in chamber 2, compression in chamber 3, and expansion in chamber 4.

Kod dvotaktnog rada motora ciklus potreban za dobivanje jednog radnog takta unutar jedne komore obavlja se za vrijeme jednog okreta vratila tj.za vrijeme dva takta. Pri tome se radne komore zakrenu za 180 stupnjeva. Konstrukcija dvotaktnog motora izvedena je sa dvostrukim usisnim i ispušnim kanalom, brizgaljkama ili svjećicama da bi se i u slijedećem okretaju vratila mogao obaviti radni ciklus. Otvori za izmjenu radnog medija smješteni su na kućištu u području gdje završava prvi takt i započinje drugi. With two-stroke engine operation, the cycle required to obtain one working stroke within one chamber is performed during one revolution of the shaft, i.e. during two strokes. In doing so, the working chambers are rotated by 180 degrees. The design of the two-stroke engine is made with a double intake and exhaust channel, injectors or spark plugs so that the work cycle can be completed in the next rotation of the shaft. Openings for changing the working medium are located on the housing in the area where the first stroke ends and the second begins.

Taktovi dvotaktnog motora: 1. Kompresioni takt 2. Radni takt Strokes of a two-stroke engine: 1. Compression stroke 2. Operating stroke

1. Za vrijeme kompresionog takta, koji traje za vrijeme okreta vratila od 180 stupnjeva vrši se dio propuhivanja komore, kompresija radnog medija i paljenje. 1. During the compression stroke, which lasts for the duration of the 180-degree shaft rotation, a part of the chamber blowing, compression of the working medium and ignition is performed.

2. U radnom taktu odvija se izgaranje, ekspanzija, ispuh i početak propuhivanja. Dakle u dvotaktnom radu motora ispuhivanje izgarnih plinova i punjenje svježim radnim medijem obavlja se na kraju drugog i početku prvog takta preko otvora na kućištu koji su spojeni sa usisnom i ispušnom cijevi. 2. In the working stroke, combustion, expansion, exhaust and the beginning of blow-by take place. Thus, in the two-stroke operation of the engine, the exhaust gases are blown off and filled with fresh working medium at the end of the second and the beginning of the first stroke through the openings on the housing that are connected to the intake and exhaust pipes.

Na slici 6.1-2 prikazane su faze rada dvotaktnog motora. Figure 6.1-2 shows the phases of operation of a two-stroke engine.

Rotacioni motor može, uz određene konstrukcijske izmjene raditi kao kompresor zraka ili hidraulična pumpa. U tu svrhu vratilo središnjeg rotora se izrađuje šuplje i služi kao odvodni kanal. Također se na njemu u području radnih komora nalaze ventili s oprugama The rotary engine can, with certain design changes, work as an air compressor or a hydraulic pump. For this purpose, the shaft of the central rotor is made hollow and serves as a drainage channel. It also has spring-loaded valves in the area of the working chambers

Rad kompresora obavlja se u dva takta: 1. Usisavanje 2. Tlačenje The compressor works in two cycles: 1. Suction 2. Pressurization

1. Preko vratila dovodimo kompresoru ili pumpi mehaničku energija za pokretanje mehanizma. Na slici 7.1 komore 1 i 3 okretanjem vratila povećavaju svoj volumen i vrše usisavanje radnog medija na način kao što je objašnjeno kod četverotaktnog motora. 1. Through the shaft, we supply mechanical energy to the compressor or pump to start the mechanism. In Figure 7.1, chambers 1 and 3 increase their volume by rotating the shaft and perform suction of the working medium in the same way as explained for the four-stroke engine.

Komore 2 i 4 vrše tlačenje medija. Chambers 2 and 4 pressurize the media.

2. U taktu tlačenja slika 7.2 volumen komore 1 se smanjuje pri čemu se povećava tlak unutar nje. Medij koji se nalazi pod tlakom svladava oprugu ventila te na taj način dolazi do njegovog otvaranja i tlačenja medija u izlaznu cijev. Takt završava kada komora postigne svoj minimalni volumen. On se zatvara ne dopuštajući mediju koji se nalazi pod tlakom u izlaznoj cijevi da uđe natrag u radnu komoru. 2. In the compression cycle of figure 7.2, the volume of chamber 1 decreases, while the pressure inside it increases. The medium that is under pressure overcomes the spring of the valve, and in this way it opens and pushes the medium into the outlet pipe. The beat ends when the ventricle reaches its minimum volume. It closes without allowing the medium under pressure in the outlet pipe to enter back into the working chamber.

Isti proces odvijat će se istovremeno u komori 3. The same process will take place simultaneously in chamber 3.

U komorama 2 i 4 odvijat će se taktovi usisavanja. Suction cycles will take place in chambers 2 and 4.

U nastavku će biti objašnjeni dijelovi motora, njihova funkcija, izrada i montaža. Engine parts, their function, production and assembly will be explained below.

Dijelovi motora: Engine parts:

1. kućište motora 1 1. engine housing 1

2. središnji rotor 2 2. central rotor 2

3. dvodijelni rotor 3 3. two-part rotor 3

4. prstenaste brtve komora motora 21,22,23 4. engine chamber ring seals 21,22,23

5. vratilo motora 4 5. motor shaft 4

Kućište povezuje sve dijelove motora u jednu cjelinu. Osim te funkcije svojim površinama sudjeluje u formiranju komora motora. S obzirom na način hlađenja motora razlikujemo dva tipa kućišta: The housing connects all parts of the engine into one unit. In addition to this function, its surfaces participate in the formation of engine chambers. With regard to the way the engine is cooled, we distinguish between two types of housing:

1. kućište za motore sa vodenim hlađenjem 1. housing for engines with water cooling

2. kućište za motore sa zračnim hlađenjem 2. housing for air-cooled engines

Slika 8.a i b prikazuje kućište četverotaktnog motora hlađenog vodom. Figure 8.a and b shows the housing of a water-cooled four-stroke engine.

Dijelovi kućišta: Housing parts:

1. dva poklopca 8 1. two covers 8

2. limeni poklopci 9 i 10 2. tin covers 9 and 10

Dva poklopca 8 zatvaraju prostor u kome rotiraju rotori. Taj prostor ima oblik djelomičnog torusa. Na donje dijelove poklopaca smješteno je vratilo motora. U ostalim prostorima koje zatvaraju limeni poklopci 9 i 10 smješteni su zupčanici i ulje za podmazivanje dijelova mehanizma. Two covers 8 close the space in which the rotors rotate. This space has the shape of a partial torus. The motor shaft is placed on the lower parts of the covers. In the other spaces closed by tin covers 9 and 10, there are gears and oil for lubricating the parts of the mechanism.

Poklopci kućišta se vežu vijcima koji su smješteni po obodu kružnog dijela poklopaca. The housing covers are fastened with screws located around the circumference of the circular part of the covers.

Izrađeni su sa dvostrukom stijenkom kroz koju cirkulira rashladni medij preuzimajući na sebe toplinu sa zagrijanih stijenki. Rashladni medij ulazi na jednoj strani kućišta prolazi dvostrukom stijenkom i izlazi van na suprotnoj strani. U jednom poklopcu su izrađeni provrti kroz koje se dovodi ulje pod tlakom do temeljnih ležajeva rotora i ležajeva vratila. Na poklopcima se također nalazi usisni i ispušni kanal te otvor preko kojeg ulje koje zapljuskuje klipove i klizne površine kućišta otječe u uljnu kadu motora (karter). Veličina, oblik i položaj usisnih i ispušnih kanala ovise o tipu motora (četverotaktni, dvotaktni, hidraulična pumpa). Kod četverotaktnog motora na jednoj strani kućišta smješteni su usisni i ispušni kanal dok se na drugoj strani nalaze svjećice ili brizgaljke goriva. Dvotaktni motor ima dva usisno-ispušna otvora međusobno razmaknuta za 180 stupnjeva. Kod kompresora zraka i hidraulične pumpe postoje dva usisna otvora dok su na izlaznim otvorima smješteni ventili s oprugama. They are made with a double wall through which the cooling medium circulates, absorbing the heat from the heated walls. The cooling medium enters on one side of the housing, passes through the double wall and exits on the opposite side. In one cover, holes are made through which oil is supplied under pressure to the main bearings of the rotor and the shaft bearings. The covers also have an intake and exhaust duct and an opening through which the oil that splashes the pistons and the sliding surfaces of the housing drains into the engine's oil sump (sump). The size, shape and position of the intake and exhaust ducts depend on the type of engine (four-stroke, two-stroke, hydraulic pump). In the case of a four-stroke engine, the intake and exhaust channels are located on one side of the housing, while the spark plugs or fuel injectors are located on the other side. The two-stroke engine has two intake-exhaust openings separated by 180 degrees. With the air compressor and hydraulic pump, there are two intake openings, while the outlet openings are equipped with spring-loaded valves.

Poklopci kućišta izrađuju se od lijevanog željeza. Uz zadovoljavajuću čvrstoću on ima dobra klizna svojstva koja su neophodna zbog manjeg trošenja brtvi komora motora. Housing covers are made of cast iron. In addition to satisfactory strength, it has good sliding properties, which are necessary due to less wear of engine chamber seals.

Površina po kojoj klize brtve se brusi i polira. The surface on which the seals slide is ground and polished.

Središnji rotor 2 slika 9.a i b. svojim površinama zatvara prostor komora motora i prenosi moment preko zupčanika na vratilo motora. The central rotor 2 of figure 9.a and b. closes the space of the motor chambers with its surfaces and transmits the torque via gears to the motor shaft.

Dijelovi sklopa: Assembly parts:

1. četiri klipa 11 1. four pistons 11

2. dva dijela oblika isječka torusa 12 2. two parts of the shape of the torus section 12

3. četiri vijka 13 3. four screws 13

4. vratila 14 4. shaft 14

5. dva eliptična zupčanika sa vanjskim ozubljenjem 15 5. two elliptical gears with external toothing 15

Na klipove 11 djeluje medij pod tlakom pri čemu se stvara tangencijalna sila koja se u obliku momenta prenosi, preko ostalih dijelova sklopa, na vratilo motora. The pressurized medium acts on the pistons 11, creating a tangential force that is transmitted in the form of torque, via other parts of the assembly, to the motor shaft.

Klip ima oblik isječka torusa. Po opsegu klipa izrađeni su utori u koje se smještaju kompresioni, a u drugi uljni prsten koji služe za brtvljenje komore motora. Ulje koje se nalazi u prostoru između dva klipa istog rotora osim podmazivanja vrši i odvođenje topline sa zagrijanih stijenki. The piston has the shape of a clip of a torus. Grooves are made around the circumference of the piston, in which the compression ring is placed, and in the other, the oil ring, which is used to seal the engine chamber. The oil located in the space between two pistons of the same rotor, in addition to lubrication, also conducts heat removal from the heated walls.

Klip se izrađuje od aluminijske legure lijevanjem. Ona je dobar provodioc topline i u usporedbi sa lijevanim željezom ima manju masu što je vrlo važno budući su na taj način manji i inercijalni momenti koji opterećuju ostale dijelove motornog mehanizma. The piston is made of aluminum alloy by casting. It is a good conductor of heat and, compared to cast iron, it has a smaller mass, which is very important since the moments of inertia that burden other parts of the motor mechanism are also smaller.

U gornjem dijelu između dva klipa istog rotora smješten je dio 12 koji služi za prekrivanje usisnog i ispušnog otvora tijekom rotacije. Oblik dijela je djelomičan isječak površine torusa. In the upper part between the two pistons of the same rotor, part 12 is located, which serves to cover the intake and exhaust openings during rotation. The shape of the part is a partial slice of the surface of the torus.

Vratilo središnjeg rotora 14 prenosi moment preko zupčanika na vratilo motora i sudjeluje u formiranju komora motora. The shaft of the central rotor 14 transmits the torque via gears to the motor shaft and participates in the formation of the motor chambers.

U središnjem dijelu ima izrađena dva nosača na koje se vežu klipovi. Na nosačima se nalaze provrti s navojem u koje se smještaju vijci koji povezuju klipove sa vratilom. In the central part, there are two supports on which the pistons are attached. The supports have threaded holes in which the screws connecting the pistons to the shaft are placed.

Također u središnjem dijelu vratila smještene su dvije površine koje zatvaraju donje površine komora motora. Njihov oblik je djelomičan isječak površine torusa. Also in the central part of the shaft there are two surfaces that close the lower surfaces of the engine chambers. Their shape is a partial slice of the surface of the torus.

Na cilindričnom dijelu vratila, nalaze se čepovi kliznih ležajeva koji omogućuju relativno gibanje dvaju rotora. Vratilo ima izbušene provrte kroz koje se dovodi ulje pod tlakom u ležajeve motora i vrši hlađenje torusnih površina vratila. On the cylindrical part of the shaft, there are plugs of sliding bearings that enable the relative movement of the two rotors. The shaft has drilled holes through which pressurized oil is supplied to the engine bearings and cooling of the torus surfaces of the shaft.

Krajevi vratila su nazubljeni budući se na njih smještaju zupčanici. The ends of the shafts are serrated since the gears are placed on them.

Vratilo se izrađuje lijevanjem od čeličnog lijeva. The shaft is made by casting from cast steel.

Površine torusnog oblika i čepovi ležajeva se bruse i poliraju. Torus-shaped surfaces and bearing plugs are ground and polished.

Eliptični zupčanici sa vanjskim ozubljenjem 15 prenose momente sa rotora na vratilo motora. Opseg diobene elipse zupčanika dva puta je veći od opsega diobene elipse zupčanika smještenih na vratilu motora. Elliptical gears with external toothing 15 transmit moments from the rotor to the motor shaft. The circumference of the pitch ellipse of the gears is twice the pitch of the pitch ellipse of the gears located on the motor shaft.

Veza zupčanika sa ostatkom sklopa ostvarena je uz pomoć većeg broja utora koji su jednaki izbočinama na vratilu rotora. The connection of the gears with the rest of the assembly was achieved with the help of a large number of grooves that are equal to the protrusions on the rotor shaft.

Zubi zupčanika izrezuju se reznim zupčanikom koji je po svojim dimenzijama i obliku identičan zupčanicima koji se nalaze na vratilu motora. The teeth of the gear are cut with a cutting gear which, in its dimensions and shape, is identical to the gears located on the motor shaft.

Materijal zupčanika je visoko legirani čelik koji osigurava veliku čvrstoću i tvrdoću zubiju. The material of the gears is high-alloyed steel, which ensures great strength and hardness of the teeth.

Dvodjelni rotacioni dio 3 slika 10.a i b svojim površinama zatvara prostor komora i prenosi okretni moment na vratilo motora. The two-part rotary part 3 of figure 10.a and b closes the space of the chambers with its surfaces and transmits torque to the motor shaft.

Dijelovi sklopa: Assembly parts:

1. četiri klipa 16 1. four pistons 16

2. dva dijela oblika isječka torusa 17 2. two parts of the shape of the torus section 17

3. osam vijaka 18 3. eight screws 18

4. dva segmenta vratila 19 4. two shaft segments 19

5. dva eliptična zupčanika sa vanjskim ozubljenjem 20 5. two elliptical gears with external toothing 20

Klip dvodijelnog rotora 16 ima istu funkciju, oblik i glavne dimenzije kao i klip središnjeg rotora. Razlika između ta dva dijela je u položaju provrta u koje se smještaju vijci za povezivanje s ostatkom rotora. Klip dvodijelnog rotora veže sa segmentima vratila pomoću dva vijka 18 smještena po rubu dijela. The piston of the two-part rotor 16 has the same function, shape and main dimensions as the piston of the central rotor. The difference between the two parts is in the position of the holes where the screws for connecting to the rest of the rotor are placed. The piston of the two-part rotor is connected to the shaft segments by means of two screws 18 located on the edge of the part.

Dio 17 jednak je dijelu 12 na središnjem rotoru. Part 17 is equal to part 12 on the center rotor.

Vratilo dvodijelnog rotora cjevastog je presjeka i sastoji se od dva jednaka segmenta 19. U unutrašnjost oba segmenta stavljaju se ležajne čahure preko kojih se ostvaruje relativno gibanje dvaju rotora. Vanjski dio segmenata ima funkciju čepa temeljnih ležaja preko kojih se oba rotora oslanjaju na kućište motora. Na krajeve segmenata vratila smještaju se eliptični zupčanici 20. Na segmentima vratila izrađeni su nosači na koje se pričvršćuju klipovi, a također se nalaze segmenti površine oblika djelomičnog torusa koji zatvaraju donje površine komora. The shaft of the two-part rotor has a tubular section and consists of two equal segments 19. Bearing bushings are placed inside both segments, through which the relative motion of the two rotors is achieved. The outer part of the segments has the function of the cap of the base bearings through which both rotors are supported on the motor housing. Elliptical gears 20 are placed at the ends of the shaft segments. On the shaft segments, supports are made on which the pistons are attached, and there are also surface segments in the form of a partial torus that close the lower surfaces of the chambers.

Na oba segmenta vratila su izrađeni provrti kroz koje dolazi ulje pod pritiskom djelujući na poklopce kućišta. Na taj način ulje pod pritiskom gura segmente prema središtu motora odupirući se plinskoj sili koja djeluje u suprotnom smjeru. Također na taj način osigurano je brtvljenje na dodiru površina torusnog oblika središnjeg i dvodjelnog rotora koje relativno kližu. Aksijalne plinske sile nastaju djelovanjem radnog medija pod tlakom na torusne površine segmenata vratila. Both shaft segments have holes through which oil comes under pressure acting on the casing covers. In this way, the oil under pressure pushes the segments towards the center of the engine, resisting the gas force acting in the opposite direction. Also in this way, sealing is ensured at the contact of the torus-shaped surfaces of the central and two-part rotor, which are relatively sliding. Axial gas forces are created by the action of the working medium under pressure on the torus surfaces of the shaft segments.

Segmenti vratila se izrađuju od čeličnog lijeva. The shaft segments are made of cast steel.

Površine oblika djelomičnog torusa i čepovi temeljnih ležajeva se bruse i poliraju. The surfaces of the partial torus shape and the plugs of the main bearings are ground and polished.

Eliptični zupčanici 20 smješteni na krajevima segmenata jednaki su po obliku dimenzijama, izradi i materijalu od kojeg su izrađeni, zupčanicima smještenim na središnjem rotoru. Razlika je u većem broju utora uz pomoć kojih su povezani sa ostatkom sklopa. The elliptical gears 20 located at the ends of the segments are equal in shape, dimensions, construction and material from which they are made, to the gears located on the central rotor. The difference is in the larger number of slots with the help of which they are connected to the rest of the assembly.

Sve površine koje zatvaraju prostore komora i nalaze se u gibanju potrebno je zabrtviti da medij pod tlakom ne bi izlazio izvan njih. Dobro brtvljenje komora jedno je od važnijih stvari u funkcioniranju motora. Prilikom rada motora dimenzije dijelova se mijenjaju što zbog zagrijavanja, što zbog habanja pa se brtve za cijelo vrijeme rada motora moraju prilagođavati nastalom stanju i pri tome u potpunosti obavljati svoju funkciju. All surfaces that close the spaces of the chambers and are in motion must be sealed so that the pressurized medium does not escape outside them. Good sealing of the chambers is one of the most important things in the functioning of the engine. During the operation of the engine, the dimensions of the parts change due to heating and wear, so the seals must be adapted to the resulting condition for the entire time the engine is operating and at the same time fully perform their function.

U tu svrhu koriste se slika 11. a, b i c: For this purpose, figure 11. a, b and c are used:

1. kompresioni prstenovi 21, 23 1. compression rings 21, 23

2. uljni prstenovi 22 2. oil rings 22

Prvi služe za brtvljenje komora, dok se uz pomoć drugih osigurava adekvatan uljni film na kliznim površinama. The first serve to seal the chambers, while the others ensure an adequate oil film on the sliding surfaces.

Razlikujemo dva tipa kompresionih prstenova: We distinguish between two types of compression rings:

1. kompresioni prstenovi smješteni po opsegu klipova 21 1. compression rings located around the circumference of the pistons 21

2. kompresioni prstenovi smješteni na dvodijelnom rotoru 23 2. compression rings located on the two-part rotor 23

U utorima klipova nalaze se kompresioni 21 i uljni prstenovi 22 koji su na jednom dijelu presječeni. Njihov promjer u neopterećenom stanju veći je od promjera presjeka komore. Prilikom njihove montaže dolazi do sabijanja i pojave elastične sile koja pritišće prsten o površine koje čine radnu komoru. Kompresioni prstenovi 23 smješteni na dvodjelnom rotoru ostvaruju brtvljenje između površina kućišta i površina dvodjelnog rotora. Presječeni su najednom dijelu i njihov promjer u neopterećenom stanju manji je od promjera dijela na kojem se nalaze. In the grooves of the pistons, there are compression rings 21 and oil rings 22, which are cut on one part. Their diameter in the unloaded state is greater than the diameter of the chamber section. During their assembly, compression occurs and the appearance of an elastic force that presses the ring against the surfaces that make up the working chamber. Compression rings 23 located on the two-part rotor achieve sealing between the surfaces of the housing and the surfaces of the two-part rotor. They are cut in one part and their diameter in the unloaded state is smaller than the diameter of the part on which they are located.

Sve prikazane brtve izrađuju se od sivog lijeva. Klizne površine se kromiraju radi manjeg habanja. All seals shown are made of gray cast iron. The sliding surfaces are chrome-plated for less wear.

Brtvljenje između torusnih površina središnjeg i dvodjelnog rotora ostvaruje se dodirnim pritiskom kliznih ploha, na način kako je prethodno objašnjeno. The sealing between the torus surfaces of the central and two-part rotor is achieved by the contact pressure of the sliding surfaces, as previously explained.

Na uljnim prstenovima 22 izvedeni su utori kroz koje odlazi višak ostruganog ulja. The oil rings 22 have grooves through which the excess scraped oil escapes.

Vratilo motora 4 slika 12. sastoji se od: Motor shaft 4 picture 12. consists of:

1. dva para eliptičnih zupčanika sa vanjskim ozubljenjem 24 1. two pairs of elliptical gears with external toothing 24

2. cilindričnog dijela 25 2. of the cylindrical part 25

Na vratilo motora 4 slika 12. djeluju momenti dvaju rotora čija razlika na izlazu vratila predstavlja koristan okretni moment. The torques of the two rotors act on the motor shaft 4 in Figure 12. The difference at the output of the shaft represents a useful torque.

U sklopu vratila nalaze se dva para eliptičnih zupčanika 24 jednakih dimenzija koji se uzubljuju sa zupčanicima dvaju rotora. Na vratilu su smješteni ekscentrično i zupčanici jednog para međusobno su zakrenuti za 180 stupnjeva. Os rotacije vratila prolazi fokusima diobenih elipsa zupčanika. Veza parova zupčanika sa cilindričnim dijelom 25 ostvarena je uz pomoć većeg broja utora koji su jednaki izbočinama na cilindričnom dijelu. As part of the shaft, there are two pairs of elliptical gears 24 of equal dimensions that mesh with the gears of the two rotors. They are placed eccentrically on the shaft and the gears of one pair are rotated by 180 degrees. The axis of rotation of the shaft passes through the foci of the dividing ellipses of the gears. The connection of the pairs of gears with the cylindrical part 25 is achieved with the help of a large number of grooves that are equal to the protrusions on the cylindrical part.

Na izlazni dio vratila pričvršćuje se vijcima zamašnjak motora. The engine flywheel is attached to the output part of the shaft with screws.

Podmazivanje zupčanika vrši se uljem iz kućišta. The gears are lubricated with oil from the housing.

Vratilo je uležišteno sa dva klizna ležaja na donji dio kućišta dok njegov aksijalni pomak onemogućavaju poklopci kućišta između kojih je ono smješteno. The shaft is mounted with two sliding bearings on the lower part of the housing, while its axial movement is prevented by the housing covers between which it is placed.

Izrađuje se kovanjem i tokarenjem, režu se zubi eliptičnih zupčanika, dok se čepovi ležaja bruse i poliraju. It is made by forging and turning, the teeth of the elliptical gears are cut, while the bearing plugs are ground and polished.

Materijal koji se koristi za izradu je visoko legirani čelik. The material used for production is high-alloyed steel.

Motor se može izvesti sa većim brojem komora i on može biti: The engine can be made with a larger number of chambers and it can be:

1. redni motor 1. in-line engine

2. V i I motor 2. V and I engine

3. zvjezdasti motor 3. star engine

Redni oblik motora nastaje povezivanjem dva ili više kućišta u liniju. Mogu se vezati dva, tri, četiri i više kućišta čime dobivamo motore sa 8, 12, 16 itd. komora. Na kućištima su izvedena dodatna pojačanja kroz koja prolaze kotveni vijci povezujući pojedinačna kućišta u jednu cjelinu. The serial form of the engine is created by connecting two or more casings in a line. Two, three, four and more cases can be connected, which gives us engines with 8, 12, 16, etc. chambers. Additional reinforcements are made on the housings, through which the anchor bolts pass, connecting the individual housings into one unit.

Procesi u komorama dvaju susjednih kućišta zakrenuti su za kut vratila φvr koji je jednak The processes in the chambers of two adjacent cases are rotated by the shaft angle φvr which is equal

[image] [image]

gdje n označava broj pojedinačnih kućišta. Na taj način moment na izlazu vratila ima manje oscilacije od srednje vrijednosti i potreban je manji zamašnjak. where n indicates the number of individual cases. In this way, the torque at the output of the shaft has less oscillation than the average value and a smaller flywheel is required.

V i I motor slika 13. ima dva mehanizma vezana na zajedničko vratilo sa kutnim razmakom od 110 do 180 stupnjeva. Takav oblik motora se može također vezati redno pri čemu dobivamo motore sa brojem komora: 8, 16, 24, 32 itd. The V and I motor in Figure 13 has two mechanisms connected to a common shaft with an angular distance of 110 to 180 degrees. This type of engine can also be connected in series, whereby we get engines with the number of chambers: 8, 16, 24, 32, etc.

Zvjezdasti motor slika 14. je najkompaktniji budući su oko središnje smještenog vratila raspoređena tri motorna mehanizma sa kutnim razmakom od 120 stupnjeva. Takav oblik motora ima dvanaest radnih komora. Rednim povezivanjem dobivamo motore sa brojem komora: 24, 36, 48 itd. The radial motor of Figure 14 is the most compact, since three motor mechanisms are arranged around the centrally located shaft with an angular distance of 120 degrees. This type of engine has twelve working chambers. By serial connection, we get engines with the number of chambers: 24, 36, 48, etc.

Način primjene izuma Method of application of the invention

Izum se može primijeniti u svim područjima tehnike gdje se koriste klipni motori. The invention can be applied in all areas of technology where piston engines are used.

Claims (20)

1. Rotacioni motor, naznačen time, da se sastoji se od kućišta (1), dva rotora (2), (3) i vratila motora (4).1. A rotary engine, characterized by the fact that it consists of a housing (1), two rotors (2), (3) and a motor shaft (4). 2. Rotacioni motor prema zahtjevu 1, naznačen time, da se kućište motora (1) sastoji od dva poklopca (8) koji zatvaraju prostor u kojem se nalaze radne komore i drugi gdje su smješteni zupčanici, da prostor u kome rotiraju radne komore ima oblik djelomičnog torusa, da se na donjem dijelu poklopaca smješta vratilo motora (4) i da su na navedenim poklopcima izrađeni usisni i ispušni kanali.2. Rotary engine according to claim 1, characterized by the fact that the engine housing (1) consists of two covers (8) that close the space in which the working chambers are located and another where the gears are located, that the space in which the working chambers rotate has the shape partial torus, that the motor shaft (4) is placed on the lower part of the covers and that intake and exhaust ducts are made on said covers. 3. Rotacioni motor prema zahtjevu 1, naznačen time, da se rotor (2) sastoji od četiri klipa (11), dva dijela oblika segmenta torusa (12), četiri vijka (13), vratila (14) i dva eliptična zupčanika s vanjskim ozubljenjem (15).3. Rotary engine according to claim 1, characterized in that the rotor (2) consists of four pistons (11), two parts of the shape of a torus segment (12), four screws (13), a shaft (14) and two elliptical gears with external toothing (15). 4. Rotacioni motor prema zahtjevu 3, naznačen time, da klip (11) ima oblik isječka torusa, da po opsegu dijela ima izrađena dva utora u koji se smještaju kompresioni i uljni prstenovi i da se za ostatak rotora veže vijkom.4. Rotary engine according to claim 3, characterized by the fact that the piston (11) has the shape of a section of a torus, that it has two grooves made around the circumference of the part in which the compression and oil rings are placed, and that it is attached to the rest of the rotor with a screw. 5. Rotacioni motor prema zahtjevu 3, naznačen time, da je vratilo (14) cilindričnog oblika, da u svom središnjem dijelu ima dva nosača koji služe za nošenje klipova, da također u središnjem dijelu ima dvije površine oblika djelomičnog torusa koje zatvaraju donji dio radnih komora, da se na cilindričnom dijelu smještaju klizni ležajevi, i da se na krajeve cilindričnog dijela smještaju zupčanici.5. Rotary engine according to claim 3, indicated by the fact that the shaft (14) is cylindrical in shape, that in its central part it has two supports that serve to carry the pistons, that also in the central part it has two partial torus-shaped surfaces that close the lower part of the working chamber, to place sliding bearings on the cylindrical part, and to place gears on the ends of the cylindrical part. 6. Rotacioni motor prema zahtjevu 3, naznačen time, da su zupčanici (15) eliptičnog oblika, da imaju dva puta veći opseg diobene elipse od zupčanika smještenih na vratilu motora, i da su izrađeni sa vanjskim ozubljenjem.6. Rotary motor according to claim 3, characterized by the fact that the gears (15) are elliptical in shape, that they have twice the circumference of the dividing ellipse than the gears located on the motor shaft, and that they are made with external toothing. 7. Rotacioni motor, prema zahtjevu 1, naznačen time, da se rotor (3) sastoji od četiri klipa (16), dva dijela oblika segmenta torusa (17), osam vijaka (18), dva segmenta vratila (19) i dva eliptična zupčanika sa vanjskim ozubljenjem (20).7. Rotary engine, according to claim 1, characterized by the fact that the rotor (3) consists of four pistons (16), two torus-shaped segments (17), eight screws (18), two shaft segments (19) and two elliptical gear with external toothing (20). 8. Rotacioni motor prema zahtjevu 7, naznačen time, da klip (16) ima oblik isječka torusa, da po opsegu ima izrađena dva utora u koji se smještaju kompresioni i uljni prstenovi i da se za ostatak rotora veže pomoću dva vijka (18) smještena po rubu dijela.8. Rotary engine according to claim 7, characterized by the fact that the piston (16) has the shape of a section of a torus, that it has two grooves made around the circumference in which the compression and oil rings are placed, and that it is attached to the rest of the rotor by means of two screws (18) located along the edge of the part. 9. Rotacioni motor prema zahtjevu 7, naznačen time, da je segment vratila (19) cjevastog presjeka, da se najednom kraju segmenta nalaze dva nosača na koji se vežu klipovi, da se također na istom kraju nalaze dvije površine oblika djelomičnog torusa, i da se na drugom kraju smješta zupčanik.9. Rotary engine according to claim 7, indicated by the fact that the shaft segment (19) has a tubular section, that at one end of the segment there are two supports to which the pistons are attached, that also at the same end there are two surfaces in the shape of a partial torus, and that the gear is located at the other end. 10. Rotacioni motor prema zahtjevu 7, naznačen time, da su zupčanici (20) eliptičnog oblika, da imaju dva puta veći opseg diobene elipse od zupčanika smještenih na vratilu motora, i da su izrađeni sa vanjskim ozubljenjem.10. Rotary motor according to claim 7, characterized in that the gears (20) are elliptical in shape, that they have twice the circumference of the divided ellipse than the gears located on the motor shaft, and that they are made with external toothing. 11. Rotacioni motor prema zahtjevu 1, naznačen time, da se vratilo (4) sastoji od dva para eliptičnih zupčanika (24) i cilindričnog dijela (25).11. Rotary engine according to claim 1, characterized in that the shaft (4) consists of two pairs of elliptical gears (24) and a cylindrical part (25). 12. Rotacioni motor prema zahtjevu 11, naznačen time, da su eliptični zupčanici jednog para (24) međusobno zakrenuti za 180 stupnjeva, da os rotacije vratila prolazi fokusima njihovih diobenih elipsa, da je opseg njihovih diobenih elipsa dva puta manji od opsega diobenih elipsa zupčanika koji se nalaze na rotorima i da su zupčanici izrađeni sa vanjskim ozubljenjem.12. Rotary engine according to claim 11, indicated by the fact that the elliptical gears of one pair (24) are mutually rotated by 180 degrees, that the axis of rotation of the shaft passes through the foci of their dividing ellipses, that the circumference of their dividing ellipses is twice smaller than the circumference of the dividing ellipses of the gears which are located on the rotors and that the gears are made with external toothing. 13. Rotacioni motor, naznačen time, da je brtvljenje izvedeno pomoću kompresionih (21) i uljnih prstenova (22) koji u neopterećenom stanju imaju veći promjer od promjera presjeka komore i smješteni su u utore klipova, da se brtvljenje između rotora i kućišta vrši pomoću prstena (23) koji u neopterećenom stanju ima manji promjer od dijela na kojem se nalazi, i da su prstenovi na jednom dijelu presječeni.13. Rotary engine, characterized by the fact that the sealing is performed using compression (21) and oil rings (22), which in the unloaded state have a larger diameter than the cross-section diameter of the chamber and are placed in the grooves of the pistons, that the sealing between the rotor and the housing is performed using of the ring (23), which in the unloaded state has a smaller diameter than the part on which it is located, and that the rings are cut on one part. 14. Rotacioni motor, naznačen time, da se princip rada sastoji u slijedećem: radijusi eliptičnih zupčanika dvaju rotora (15), (20) i eliptičnih zupčanika vratila (24) u svakoj točki dodira se mijenjaju te se i njihov prijenosni omjer i=r2/r1 mijenja od minimalne do neke maksimalne vrijednosti te se iz tog razloga zupčanik rotora, a s njime i rotor, za 180 stupnjeva okreta zupčanika vratila zakrene za kut od 90 + φ u jednoj fazi, dok se u slijedećoj fazi zakrene za kut 90 - φ, daljnjim okretanjem situacija se ponavlja, kuteve koje prevaljuju rotori nalaze se u protufazi tj. kada se jedan dio zakrene za kut 90 + φ drugi se zakrene za kut 90 - φ te se na taj način među njima tijekom rotacije ostvaruje kutna razlika od minimalne vrijednosti 0 do maksimalne od 2φ, te se za dva okretaja vratila (4) volumen jedne komore motora promjeni četiri puta.14. Rotary engine, indicated by the fact that the principle of operation consists in the following: the radii of the elliptical gears of the two rotors (15), (20) and the elliptical gears of the shaft (24) change at each point of contact, and their transmission ratio i=r2 /r1 changes from a minimum to some maximum value, and for this reason the rotor gear, and with it the rotor, rotates by an angle of 90 + φ in one phase, while in the next phase it rotates by an angle of 90 - φ for 180 degrees of rotation of the shaft gear , with further rotation the situation repeats itself, the angles covered by the rotors are in anti-phase, i.e. when one part is rotated by an angle of 90 + φ the other is rotated by an angle of 90 - φ and in this way an angular difference of the minimum value is realized between them during rotation 0 to a maximum of 2φ, and for two revolutions of the shaft (4), the volume of one engine chamber changes four times. 15. Rotacioni motor prema zahtjevu 14, naznačen time, da radi na četverotaktnom principu.15. Rotary engine according to claim 14, characterized in that it works on the four-stroke principle. 16. Rotacioni motor prema zahtjevu 14, naznačen time, da upotrebom dvaju otvora za razvod medija razmaknutih za 180 stupnjeva radi na dvotaktnom principu.16. The rotary engine according to claim 14, characterized by the fact that it works on the two-stroke principle by using two medium distribution openings separated by 180 degrees. 17. Rotacioni motor prema zahtjevu 14, naznačen time, da upotrebom ventila s oprugama na izlaznom otvoru motor radi kao hidraulična pumpa ili kompresor zraka.17. Rotary engine according to claim 14, characterized in that by using a valve with springs at the outlet, the engine works as a hydraulic pump or an air compressor. 18. Rotacioni motor, naznačen time, da motor sa većim brojem komora od četiri ima povezana dva ili više kućišta u red.18. Rotary engine, indicated by the fact that the engine with a greater number of chambers than four has two or more casings connected in a row. 19. Rotacioni motor, naznačen time, da motor sa osam komora ima dva motorna mehanizma vezana na zajedničko vratilo sa kutnim razmakom od 110 do 180 stupnjeva, i da se rednim povezivanjem dobivaju motori sa 8, 16 itd. komora.19. Rotary engine, characterized by the fact that the engine with eight chambers has two motor mechanisms connected to a common shaft with an angular distance of 110 to 180 degrees, and that engines with 8, 16, etc. chambers are obtained by serial connection. 20. Rotacioni motor, naznačen time, da motor sa dvanaest komora ima povezana tri motorna mehanizma na zajedničko vratilo sa kutnim razmakom od 120 stupnjeva, i da se rednim povezivanjem dobivaju motori sa 12, 24, 36 itd. komora.20. Rotary engine, characterized by the fact that the twelve-chamber engine has three motor mechanisms connected to a common shaft with an angular distance of 120 degrees, and that sequential connection produces engines with 12, 24, 36, etc. chambers.
HR990349A 1999-11-12 1999-11-12 Rotary internal-combustion engine HRP990349B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
HR990349A HRP990349B1 (en) 1999-11-12 1999-11-12 Rotary internal-combustion engine
AU76774/00A AU7677400A (en) 1999-11-12 2000-10-11 Rotary engine with internal combustion
PCT/HR2000/000036 WO2001034944A1 (en) 1999-11-12 2000-10-11 Rotary engine with internal combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR990349A HRP990349B1 (en) 1999-11-12 1999-11-12 Rotary internal-combustion engine

Publications (2)

Publication Number Publication Date
HRP990349A2 true HRP990349A2 (en) 2001-10-31
HRP990349B1 HRP990349B1 (en) 2010-04-30

Family

ID=10946988

Family Applications (1)

Application Number Title Priority Date Filing Date
HR990349A HRP990349B1 (en) 1999-11-12 1999-11-12 Rotary internal-combustion engine

Country Status (3)

Country Link
AU (1) AU7677400A (en)
HR (1) HRP990349B1 (en)
WO (1) WO2001034944A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506123B1 (en) 2007-11-30 2009-08-15 Fritz Mondl INTERNAL COMBUSTION ENGINE WITH INTERNAL COMBUSTION

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB520694A (en) * 1938-10-27 1940-05-01 Benno Lustig Improvements in rotary engines, pumps or compressors
GB1068170A (en) * 1963-01-22 1967-05-10 Aero Commerce G M B H Rotary piston machines
US3302625A (en) * 1964-05-15 1967-02-07 Cunningham Kelly Gore Engine
US5279268A (en) * 1993-06-01 1994-01-18 Caterpillar Inc. Piston assembly with distributed loading and centrally fastened wrist pin
FR2760786A1 (en) * 1997-03-12 1998-09-18 Alfred Lang Circular IC engine with oscillating motion

Also Published As

Publication number Publication date
HRP990349B1 (en) 2010-04-30
AU7677400A (en) 2001-06-06
WO2001034944A1 (en) 2001-05-17

Similar Documents

Publication Publication Date Title
US4334506A (en) Reciprocating rotary engine
US9057322B2 (en) Rotary internal combustion engine
US5535715A (en) Geared reciprocating piston engine with spherical rotary valve
US6539913B1 (en) Rotary internal combustion engine
US20020189578A1 (en) Hinged rotor internal combustion engine
EP0510125B1 (en) Rotary internal combustion engine
US8033264B2 (en) Rotary engine
US3744940A (en) Rotary expansion engine of the wankel type
US20110048370A1 (en) Revolving piston internal combustion engine
CA1082603A (en) Reciprocating rotary engine
US3937187A (en) Toroidal cylinder orbiting piston engine
US20030010312A1 (en) Internal combustion four cycle rotary engine based on a rotary movement that can be used to make a compressor, a vacuum pump, a steam engine and a high pressure water motor
WO1999027233A1 (en) Internal combustion rotary engine
US3934559A (en) Anti-pollutant spherical rotary engine with automatic supercharger
US3877442A (en) 4-Stroke displacement gas turbine engine or pump
HRP990349A2 (en) Rotary internal-combustion engine
WO2004067916A1 (en) Rotary machine with major and satellite rotors
EP0210960A2 (en) A rotary internal combustion engine
US4051819A (en) Rotary block engine
WO2021061002A1 (en) Rotary internal combustion engine and operating method thereof
RU2078225C1 (en) Rotary piston internal combustion engine
WO2001088341A1 (en) Hinged rotor internal combustion engine
RU2091596C1 (en) Rotary-piston internal combustion entire
EP1956188A1 (en) Hypocycloid rotary internal combustion engine
Hurley et al. The Rotating Combustion Engine

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20091212

Year of fee payment: 11

B1PR Patent granted
PBON Lapse due to non-payment of renewal fee

Effective date: 20101113