HK1240407B - 各向异性导电膜、其制造方法及连接构造体 - Google Patents
各向异性导电膜、其制造方法及连接构造体 Download PDFInfo
- Publication number
- HK1240407B HK1240407B HK17113546.3A HK17113546A HK1240407B HK 1240407 B HK1240407 B HK 1240407B HK 17113546 A HK17113546 A HK 17113546A HK 1240407 B HK1240407 B HK 1240407B
- Authority
- HK
- Hong Kong
- Prior art keywords
- anisotropic conductive
- conductive film
- metal particles
- flux
- insulating film
- Prior art date
Links
Description
技术领域
本发明关于金属粒子和焊剂在膜内接触或接近地存在的各向异性导电膜。
背景技术
提出了在将IC芯片安装于基板时,使用向绝缘性粘接剂组合物分散了对树脂芯的表面形成镍/金镀层的导电粒子等的各向异性导电膜的方案(专利文献1)。在该情况下,导电粒子在IC芯片的端子与基板的端子之间被压垮、或者导电粒子被各个端子切入而确保导通,并且绝缘性粘接剂组合物固定IC芯片和基板和导电粒子。
然而,由于导电粒子没有在与IC芯片的端子或基板的端子之间形成金属结合,所以在将利用各向异性导电膜将IC芯片连接在基板而得到的连接构造体保管在高温高压或高温高湿环境下的情况下,存在导通可靠性下降这样的问题。
因此,作为各向异性导电膜的导电粒子,可以考虑采用焊锡粒子,该焊锡粒子与作为IC芯片的端子材料通用的铜或铝等的金属相比在较为低温下与铜等形成金属结合。
先前技术文献
专利文献
专利文献1:日本特开2014-60150号公报。
发明内容
发明要解决的课题
此外,在以焊锡连接端子间的情况下,为了除去焊锡表面的氧化皮膜,一般使用焊剂是不可缺少的。因此,可以考虑以焊剂包覆焊锡粒子的表面,但是以焊剂包覆的焊锡粒子在绝缘性粘接剂组合物中容易凝聚。因此,在使用将那样的焊锡粒子作为各向异性导电连接用的粒子而含有的各向异性导电膜来各向异性导电连接的情况下,存在容易发生短路的问题。另外,可以考虑向绝缘性粘接剂组合物中相溶或分散焊剂,但是为了将焊锡粒子的表面清洁到想要的水平,必须在绝缘性粘接剂组合物配合大量的焊剂,反而出现会进行焊剂造成的端子腐蚀这一问题。该问题在将形成有氧化皮膜的金属粒子作为各向异性导电连接用的导电粒子而含有的各向异性导电膜中也同样发生。
本发明的目的在于解决以上的现有技术的问题点,以在将在表面具有氧化皮膜的焊锡粒子等的金属粒子作为各向异性导电连接用的导电粒子的各向异性导电膜中能够抑制短路的发生,而且能够实现高的导通可靠性。
用于解决课题的方案
本发明人们发现了在将在表面具有氧化皮膜的焊锡粒子等的金属粒子作为各向异性导电连接用的导电粒子的各向异性导电膜中为了抑制短路的发生,在俯视观察时使各向异性导电膜规则排列即可,而无需向绝缘性粘接剂组合物中随机分散金属粒子,且为了实现高的导通可靠性,在膜中使得焊剂与金属粒子接触或接近地存在即可,从而完成了本发明。
即,本发明提供各向异性导电膜,在绝缘膜内具备金属粒子,在该各向异性导电膜中,俯视观察下金属粒子规则排列,且以使焊剂与金属粒子的各向异性导电膜表面侧端部或各向异性导电膜背面侧端部的至少任意一个端部接触或接近的方式配置。
另外,本发明为上述各向异性导电膜的制造方法,提供具有以下工序(A)~(C)的制造方法:
(A)将焊剂配置在具有规则排列的凹部的转印模的该凹部的至少底部的工序;
(B)在配置有焊剂的凹部配置金属粒子的工序;以及
(C)使绝缘膜从配置有金属粒子的转印模的凹部侧抵接并加热加压而向绝缘膜转印金属粒子的工序。该制造方法优选还具有工序(D):
(D)在转印有金属粒子的绝缘膜的金属粒子转印面,热压接其他绝缘膜的工序。
另外,本发明提供上述各向异性导电膜的其他的制造方法,具有以下的工序(a)~(d):
(a)在具有规则排列的凹部的转印模的该凹部配置金属粒子的工序;
(b)在转印模的配置有金属粒子的凹部形成面配置焊剂的工序;
(c)使绝缘膜从转印模的焊剂配置面侧抵接并加热加压而向绝缘膜转印金属粒子的工序;以及
(d)在转印有金属粒子的绝缘膜的金属粒子转印面,热压接其他绝缘膜的工序。
进而,本发明提供连接构造体,配置在第1电子部件的端子与第2电子部件的端子之间配置的、前述的各向异性导电膜,通过加热加压来使第1电子部件和第2电子部件各向异性导电连接。
发明效果
在绝缘膜内具备金属粒子的本发明的各向异性导电膜,在俯视观察下金属粒子规则排列,因此在适用于各向异性导电连接的情况下能够抑制短路的发生。另外,以使焊剂与金属粒子的各向异性导电膜表面侧端部或各向异性导电膜背面侧端部的至少任意一个端部接触或接近的方式配置,因此在各向异性导电连接时能够除去金属粒子表面的氧化皮膜,能实现高的导通可靠性。
附图说明
[图1A]图1A是本发明的各向异性导电膜的截面图。
[图1B]图1B是本发明的各向异性导电膜的截面图。
[图1C]图1C是本发明的各向异性导电膜的截面图。
[图2A]图2A是本发明的各向异性导电膜的截面图。
[图2B]图2B是本发明的各向异性导电膜的截面图。
[图2C]图2C是本发明的各向异性导电膜的截面图。
[图3]图3是本发明的各向异性导电膜的截面图。
[图4]图4是本发明的各向异性导电膜的截面图。
[图5]图5是本发明的各向异性导电膜的截面图。
[图6]图6是本发明的各向异性导电膜的截面图。
[图7A]图7A是本发明的各向异性导电膜的制造方法的工序说明图。
[图7B]图7B是本发明的各向异性导电膜的制造方法的工序说明图。
[图7C]图7C是本发明的各向异性导电膜的制造方法的工序说明图。
[图8A]图8A是本发明的各向异性导电膜的制造方法的工序说明图。
[图8B]图8B是本发明的各向异性导电膜的制造方法的工序说明图。
[图8C]图8C是本发明的各向异性导电膜的制造方法的工序说明图。
[图8D]图8D是本发明的各向异性导电膜的制造方法的工序说明图。
[图9A]图9A是本发明的各向异性导电膜的制造方法的工序说明图。
[图9B]图9B是本发明的各向异性导电膜的制造方法的工序说明图。
[图9C]图9C是本发明的各向异性导电膜的制造方法的工序说明图。
[图9D]图9D是本发明的各向异性导电膜的制造方法的工序说明图。
[图10A]图10A是本发明的各向异性导电膜的截面图。
[图10B]图10B是本发明的各向异性导电膜的截面图。
[图10C]图10C是本发明的各向异性导电膜的截面图。
[图10D]图10D是本发明的各向异性导电膜的截面图。
[图11A]图11A是本发明的各向异性导电膜的截面图。
[图11B]图11B是本发明的各向异性导电膜的截面图。
[图11C]图11C是本发明的各向异性导电膜的截面图。
[图11D]图11D是本发明的各向异性导电膜的截面图。
[图12A]图12A是本发明的各向异性导电膜的制造方法的工序说明图。
[图12B]图12B是本发明的各向异性导电膜的制造方法的工序说明图。
[图12C]图12C是本发明的各向异性导电膜的制造方法的工序说明图。
[图12D]图12D是本发明的各向异性导电膜的制造方法的工序说明图。
具体实施方式
<各向异性导电膜>
以下,参照附图,对本发明的具体例进行说明。
如图1A、1B、1C所示,本发明的各向异性导电膜10为在绝缘膜1内具备金属粒子2的各向异性导电膜。虽未图示,但是金属粒子在俯视观察下规则排列。在此,规则排列只要规则地排列就无特别限定,但是优选能举出斜方格子排列、六方格子排列、正方格子排列、矩形格子排列、平行体格子排列。其中,优选可最密填充的六方格子排列。
作为绝缘膜1,能够从现有公知的各向异性导电膜所采用的绝缘膜中适当选择而使用。例如,能举出热塑性丙烯类或者环氧类树脂膜、热固化或者光固化丙烯类或者环氧类树脂膜等。这样的绝缘膜的厚度通常为10~40μm厚。另外,绝缘膜1至少在各向异性导电膜的状态成为膜即可,也可以在其制造时为高粘度液体。
进而,根据需要,也可以在绝缘膜1中加入二氧化硅微粒、氧化铝、氢氧化铝等的绝缘性填充剂。绝缘性填充剂的大小优选平均粒径为0.01~8μm。绝缘性填充剂的配合量相对于形成绝缘膜的树脂100质量份优选为3~40质量份。由此,变得容易确保各向异性导电连接后的导通可靠性。
作为金属粒子2,在各向异性导电膜中作为各向异性导电连接用的金属粒子而利用,能够从在表面形成有氧化皮膜的粒子中适当选择而使用。其中,能够优选举出通过图像型的粒度分布计测定的情况下的平均粒径为10~40μm的焊锡粒子。
在本发明的各向异性导电膜中,以使焊剂3与金属粒子的各向异性导电膜表面侧端部或各向异性导电膜背面侧端部的至少任意一个端部接触或接近的方式配置。例如,图1A所示的方式中,以使焊剂3与金属粒子2的各向异性导电膜表面侧端部2a接触的方式配置。图1B所示的方式中,以使焊剂3与金属粒子2的各向异性导电膜背面侧端部2b接触的方式配置。图1C所示的方式中,以使焊剂3与金属粒子2的各向异性导电膜表面侧端部2a和各向异性导电膜背面侧端部2b的每一个接触的方式配置。如这些配置那样,若金属粒子2和焊剂3接触,则因各向异性导电连接时的热来利用焊剂3除去金属粒子2的表面的氧化皮膜,在金属粒子2与应该连接的端子之间形成金属结合。
金属粒子2与焊剂3接近的程度是指它们分离的最短距离小于2μm。若分离该距离以上,则要担心各向异性导电连接时会妨碍两者的接触。
作为将金属粒子2和焊剂3接近地配置的方法,例如能够通过混合焊剂和绝缘性填充剂来进行。这是因为绝缘性填充剂作为使金属粒子2与焊剂3隔离的隔离物发挥功能。作为这样的绝缘性填充剂,能够举出平均一次粒径为1~1000nm的气相二氧化硅(FumedSilica)等。
此外,金属粒子2和与它接触或接近的焊剂3的量的关系,是焊剂3的厚度相对于金属粒子2的平均粒径为0.001~0.4倍以下。如果为该范围,则能清洁金属粒子2的表面,而且也不会发生各向异性导电连接物的腐蚀。
在对金属粒子2接触或接近地配置焊剂3的情况下,将焊剂稀释(优选稀释倍率:相对于溶剂为0.1~40wt%)在溶剂中后,如后述那样,利用公知的涂敷法涂敷在转印模或附着有金属粒子的绝缘膜,并根据需要干燥即可。
另外,焊剂3在各向异性导电连接时的加热条件下除去金属粒子2的表面的氧化皮膜。作为这样的焊剂3,能够适用与金属粒子2的材料对应的公知的焊剂。
此外,图1A~图1C的方式中,金属粒子2从绝缘膜1的表面或背面隔离地存在,但是也可以在绝缘膜1的表面或背面露出。例如关于图1A的方式,也可以如图2A所示,以使金属粒子2的端部2a的相反侧的端部在绝缘膜1的背面露出的方式变形。在该情况下,以使焊剂3与端部2a接触的方式配置。关于图1B的方式,也可以如图2B那样,以使与端部2b接触地配置的焊剂3露出的方式变形。图1C的方式也可以如图2C那样变形。
图1A~图1C及图2A~图2C中,绝缘膜1为单层,但是也可以如图3那样,使绝缘膜1为2层构造(1a和1b),并在它们的层间配置金属粒子2。若为这样的2层构造,则能够扩大制造上的自由度。
另外,如图4所示,本发明的各向异性导电膜10,还包括金属粒子2的表面的一部分不与焊剂3接触的方式。在图4中,金属粒子2的不与焊剂3接触的表面部分朝向膜的侧面方向,但是既可以朝向膜的表面侧,也可以朝向背面侧。特别是,优选如图5所示,金属粒子2的不与焊剂3接触的表面部分配置在与焊剂接触的金属粒子的表面部分的相反侧。
另外,也可以如图6所示,在本发明的各向异性导电膜10的面方向上,在邻接的金属粒子2间配置有焊剂3。这样的各向异性导电膜10在各向异性导电连接时,配置在邻接的金属粒子2间的焊剂3被金属粒子2拉近,因此能够用充分的量的焊剂清洁金属粒子表面,而且也不会发生2层构造的绝缘膜的层间剥离。在该情况下,优选使配置在金属粒子2的各向异性导电膜表面侧端部2a或各向异性导电膜背面侧端部2b的至少任意一个端部的每单位面积的焊剂量,大于配置在邻接的金属粒子2间的每单位面积的焊剂量。
<各向异性导电膜的制造方法>
本发明的各向异性导电膜能够通过具有以下的工序(A)~(C)的制造方法来制造。
(工序(A))
首先,如图7A~图7C所示,在具有规则排列的凹部50的转印模100的该凹部50的至少底部配置焊剂3。具体而言,既可以如图7A所示,仅在凹部50的底部配置焊剂3,也可以如图7B所示,在包括凹部50的底部在内的整个内壁面配置焊剂3。另外,也可以如图7C所示,在凹部50的底部与转印体100的邻接凹部50间的表面配置焊剂3。在图7C的情况下,优选使凹部50的底部的每单位面积的焊剂量大于邻接凹部50间的表面的每单位面积的焊剂量。
作为转印模100,能够采用利用公知的方法来制作的模。例如,能够加工金属板而制作母版,并对它涂敷固化性树脂组合物,使之固化而制作。具体而言,对平坦的金属板进行切削加工,还制作形成与凹部对应的凸部的转印模母版,在该母版的凸部形成面涂敷构成转印模的固化性树脂组合物,使之固化后,从母版拉开而得到转印模。
另外,作为在凹部50的至少底部配置焊剂3的方法,能够采用公知的方法,例如,通过丝网印刷法将焊剂涂敷在转印模的整个面,并根据需要以刮刀刮去最表面的焊剂即可。
(工序(B))
接着,如图8A~图8C所示,在配置有焊剂3的凹部50配置金属粒子2。作为配置金属粒子2的方法,能够采用公知的方法。例如,向转印模的表面分散金属粒子,以鼓风或切刀除去存在于凹部以外的转印模表面的金属粒子即可。另外,也可以利用微分配器来一个一个地向凹部供给金属粒子。
此外,也可以如图8A所示在向转印模的凹部供给金属粒子后,如图8D所示,利用工序的方法来向金属粒子2的表面配置焊剂3。
(工序(C))
接着,如图9A~图9D所示,使绝缘膜1从配置有金属粒子2的图8A~图8D的转印模100(图8A~图8D)的凹部50侧抵接并加热加压而向绝缘膜1转印金属粒子2。在该状态下,如果将绝缘膜1缠紧在卷筒(roll)上,则从图9A的方式能得到图10A的各向异性导电膜10,从图9B的方式能得到图10B的各向异性导电膜10,从图9C的方式能得到图10C的各向异性导电膜10,而且从图9D的方式能得到图10D的各向异性导电膜10。
另外,本发明的制造方法中,为了使绝缘膜为2层构造,优选还具有以下的工序(D)。
(工序(D))
即,在转印有金属粒子的绝缘膜(图9A~图9D)的金属粒子转印面,热压接其他绝缘膜,从而从图9A的方式能得到具有2层构造的绝缘膜1(1a和1b)的图11A的各向异性导电膜10,从图9B的方式能得到具有2层构造的绝缘膜1(1a和1b)的图11B的各向异性导电膜10,从图9C的方式能得到具有2层构造的绝缘膜1(1a和1b)的图11C的各向异性导电膜10,而且从图9D的方式能得到具有2层构造的绝缘膜1(1a和1b)的图11D的各向异性导电膜10。
另外,本发明的各向异性导电膜也能通过具有以下的工序(a)~(c)的其他的制造方法来制造。
(工序(a))
首先,如图12A所示,在具有规则排列的凹部50的转印模200的该凹部50配置金属粒子2。
(工序(b))
接着,如图12B所示,在转印模200的配置有金属粒子2的凹部形成面配置焊剂3。
(工序(c))
接着,如图12C所示,使绝缘膜1a从配置有金属粒子2的转印模200的凹部50侧抵接并加热加压而向绝缘膜1a与焊剂3一起转印金属粒子2。
(工序(d))
接着,如图12D所示,在转印有金属粒子2的绝缘膜1a的金属粒子转印面,热压接其他绝缘膜1b。由此,能得到在2层构造的绝缘膜1a与其他绝缘膜1b的层间配置了焊剂3的各向异性导电膜10。
<连接构造体>
本发明的各向异性导电膜,配置在IC芯片、半导体晶圆等的第1电子部件的端子与布线基板或半导体晶圆等的第2电子部件的端子之间,对通过加热加压来使第1电子部件和第2电子部件各向异性导电连接的连接构造体的制造是有用的。这样的连接构造体也是本发明的一种方式。
实施例
以下,通过实施例,对本发明具体地进行说明。
实施例1
准备厚度2mm的镍板,以四方格子图案形成圆柱状的凸部(外径25μm、高度20μm),作为转印体母版。邻接凸部中心间距离为40μm。因而,凸部的密度为625个/mm2。
向所得到的转印体母版以使干燥厚度成为30μm的方式涂敷含有苯氧基树脂(YP-50、新日铁住金化学(株))60质量份、丙烯酸树脂(M208、东亚合成(株))29质量份、光聚合引发剂(IRGACURE184、BASFJAPAN(株))2质量份的光聚合性树脂组合物,在80℃干燥5分钟后,利用高压水银灯进行1000mJ光照射,从而制作了转印体。
向从转印模母版剥离的转印模,利用刮板(squeegee)涂敷用甲苯稀释到5wt%的焊剂(ESR-250T4、千住金属工业(株)),使得干燥后凹部内的焊剂厚度成为1μm,并刮去转印模的表面的焊剂。
对于该转印模,在分散平均粒径20μm的焊锡粒子(微粉焊锡粉、三井金属矿业(株))后,通过鼓风来向凹部填充焊锡粒子。
对于附着有导电粒子的转印模的焊锡粒子附着面,承载厚度20μm的绝缘膜(由苯氧基树脂(YP-50、新日铁住金化学(株))60质量份、环氧树脂(jER828、三菱化学(株))40质量份、及阳离子类固化剂(SI-60L、三新化学工业(株))2质量份构成的膜),在温度50℃、压力0.5MPa下进行按压,从而向绝缘膜转印焊锡粒子。
对所得到的绝缘膜的焊锡粒子转贴面,重叠其他的厚度5μm的绝缘膜(由苯氧基树脂(YP-50、新日铁住金化学(株))60质量份、环氧树脂(jER828、三菱化学(株))40质量份、及阳离子类固化剂(SI-60L、三新化学工业(株))2质量份构成的膜),在温度60℃、压力2MPa下层叠,从而得到各向异性导电膜。
实施例2
准备与实施例1同样的转印模,对于该转印模,分散平均粒径20μm的焊锡粒子(微粉焊锡粉、三井金属矿业(株))后,通过鼓风来向凹部填充焊锡粒子。
对填充有焊锡粒子的转印模的表面,以使干燥后的焊剂厚度成为1μm的方式利用刮板来涂敷用甲苯稀释到20wt%的焊剂(ESR-250T4、千住金属工业(株))。
对于该焊剂面,承载厚度20μm的绝缘膜(由苯氧基树脂(YP-50、新日铁住金化学(株))60质量份、环氧树脂(jER828、三菱化学(株))40质量份、及阳离子类固化剂(SI-60L、三新化学工业(株))2质量份构成的膜),并在温度50℃、压力0.5MPa下进行按压,从而使焊锡粒子转贴到绝缘膜。
对所得到的绝缘膜的焊锡粒子转贴面,重叠其他的厚度5μm的绝缘膜(由苯氧基树脂(YP-50、新日铁住金化学(株))60质量份、环氧树脂(jER828、三菱化学(株))40质量份、及阳离子类固化剂(SI-60L、三新化学工业(株))2质量份构成的膜),并在温度60℃、压力2MPa下层叠,从而得到各向异性导电膜。
比较例1
除了不使用焊剂以外,重复实施例1从而得到各向异性导电膜。
实施例3
准备与实施例1同样的转印模,与实施例1同样地在转印模的凹部的底部配置焊剂后,向该凹部填充焊锡粒子。对该转印模的表面,再次,利用刮板来涂敷用甲苯稀释到5wt%的焊剂(ESR-250T4、千住金属工业(株))。然后,重复与实施例1同样的操作从而得到各向异性导电膜。焊剂干燥后的涂敷厚度在焊锡粒子的膜界面侧的端部为1μm、在焊锡粒子间为小于1μm。
实施例4
除了将实施例1中利用甲苯进行的焊剂(ESR-250T4、千住金属工业(株))的稀释从5wt%变更到10wt%,并使干燥后的涂敷厚度为2μm以外,重复实施例1从而得到各向异性导电膜。
(评价)
利用所得到的各向异性导电膜,在温度180℃、压力40mPa、加热加压时间20秒这一条件下对IC安装用玻璃环氧基板(材质:FR4)各向异性导电连接形成有100μm×100μm×15μm(高度)尺寸的金凸点的测试用IC芯片,得到连接构造体。对于所得到的连接构造体,测定初始导通电阻值、高压蒸煮测试(PCT)(实验条件:在温度121℃、压力2atm的环境下放置200小时)后的导通电阻值、及高温高湿偏压实验(实验条件:在温度85℃、湿度85%的环境下施加50v)后的导通电阻值。将所得到的结果示于表1中。
此外,在实用性上,需要使初始导通电阻值小于1Ω,且需要使PCT后以及高温高湿偏压实验后的导通电阻值小于15Ω。
[表1]
| 导通电阻值(Ω) | 比较例1 | 实施例1 | 实施例2 | 实施例3 | 实施例4 |
| 初始 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| PCT后 | 120 | 5 | 5 | 5 | 5 |
| 高温高湿偏压实验后 | 80 | 5 | 10 | 10 | 7 |
由表1可知,关于实施例1~4的各向异性导电膜,由于焊锡粒子与焊剂在膜中接触配置,所以任一评价项目都能得到良好的结果。相对于此,比较例1中,焊锡粒子和焊剂在膜中没有接触配置,因此PCT实验后和高温高湿偏压实验后,导通电阻值会显著上升。
实施例5
作为转印有焊锡粒子的厚度20μm的绝缘膜,除了使用由苯氧基树脂(YP-50、新日铁住金化学(株))60质量份、环氧树脂(jER828、三菱化学(株))40质量份、气相二氧化硅(R200、日本AEROSIL (株))10质量份、及阳离子类固化剂(SI-60L、三新化学工业(株))2质量份构成的膜以外,重复实施例1的操作,得到各向异性导电膜。所得到的各向异性导电膜,与实施例1的各向异性导电膜同样,关于任一种评价项目都得到良好的结果。
产业上的可利用性
本发明的各向异性导电膜抑制利用它来各向异性导电连接而得到的连接构造体中的短路的发生,而且不仅能抑制初始导通电阻值,还能将PCT后及高温高湿偏压实验后的导通电阻值抑制为较低,因此在将IC芯片安装到布线基板时等是有用的。
标号说明
1、1a、1b 绝缘膜;2 金属粒子;2a、2b 金属粒子的各向异性导电膜的表面或背面侧端部;3 焊剂;10 各向异性导电膜;50 转印模的凹部;100、200 转印模。
Claims (11)
1.一种各向异性导电膜,在绝缘膜内具备金属粒子,在该各向异性导电膜中,俯视观察下金属粒子规则排列,且以使焊剂与金属粒子的各向异性导电膜表面侧端部或各向异性导电膜背面侧端部的至少任意一个端部接触或接近的方式配置,
其中,金属粒子的表面的一部分不与焊剂接触。
2.如权利要求1所述的各向异性导电膜,其中,金属粒子为焊锡粒子。
3.如权利要求1或2所述的各向异性导电膜,其中,绝缘膜成为2层构造,在其层间配置有金属粒子。
4.如权利要求1或2所述的各向异性导电膜,其中,金属粒子的不与焊剂接触的表面部分,配置在金属粒子的与焊剂接触的表面部分的相反侧。
5.如权利要求1或2所述的各向异性导电膜,其中,在各向异性导电膜的面方向,焊剂配置在邻接的金属粒子间。
6.如权利要求5所述的各向异性导电膜,其中,配置在邻接的金属粒子间的焊剂,配置在2层构造的绝缘膜的层间。
7.如权利要求5所述的各向异性导电膜,其中,使配置在金属粒子的各向异性导电膜表面侧端部或各向异性导电膜背面侧端部的至少任意一个端部的每单位面积的焊剂量,大于配置在邻接的金属粒子间的每单位面积的焊剂量。
8.一种权利要求1所述的各向异性导电膜的制造方法,具有以下的工序(A)~(C):
(A)将焊剂配置在具有规则排列的凹部的转印模的该凹部的至少底部的工序;
(B)在配置有焊剂的凹部配置金属粒子的工序;以及
(C)使绝缘膜从配置有金属粒子的转印模的凹部侧抵接并加热加压而向绝缘膜转印金属粒子的工序。
9.如权利要求8所述的制造方法,还具有工序(D):
(D)在转印有金属粒子的绝缘膜的金属粒子转印面,热压接其他绝缘膜的工序。
10.一种权利要求1所述的各向异性导电膜的制造方法,具有以下的工序(a)~(d):
(a)在具有规则排列的凹部的转印模的该凹部配置金属粒子的工序;
(b)在转印模的配置有金属粒子的凹部形成面配置焊剂的工序;
(c)使绝缘膜从转印模的焊剂配置面侧抵接并加热加压而向绝缘膜转印金属粒子的工序;以及
(d)在转印有金属粒子的绝缘膜的金属粒子转印面,热压接其他绝缘膜的工序。
11.一种连接构造体,配置在第1电子部件的端子与第2电子部件的端子之间配置的、权利要求1~7所述的各向异性导电膜,通过加热加压来使第1电子部件与第2电子部件各向异性导电连接。
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2015-004592 | 2015-01-13 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| HK1240407A1 HK1240407A1 (zh) | 2018-05-18 |
| HK1240407B true HK1240407B (zh) | 2020-07-10 |
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI691976B (zh) | 異向性導電膜、其製造方法及連接構造體 | |
| CN109996838B (zh) | 含填料膜 | |
| US10566108B2 (en) | Anisotropic electrically conductive film, method for producing same, and connection structural body | |
| KR102520294B1 (ko) | 이방성 도전 필름 | |
| JP2020521340A (ja) | 多層セラミック基板及びその製造方法 | |
| CN107112253A (zh) | 凸点形成用膜、半导体装置及其制造方法以及连接构造体 | |
| CN100411163C (zh) | 芯片在薄膜上的半导体器件 | |
| CN112117257A (zh) | 各向异性导电膜 | |
| JP5424984B2 (ja) | 半導体モジュールの製造方法 | |
| CN119053023A (zh) | 连接体、连接体的制造方法、连接方法 | |
| JP2024152864A (ja) | 異方性導電フィルム | |
| KR100528531B1 (ko) | 열전도성 고무부재 | |
| HK1240407B (zh) | 各向异性导电膜、其制造方法及连接构造体 | |
| JP6962404B2 (ja) | 異方性導電フィルム | |
| CN112740483B (zh) | 各向异性导电薄膜、连接结构体、连接结构体的制备方法 | |
| CN100521171C (zh) | 一种元件的封装接合结构 | |
| CN116253914A (zh) | 含填料膜 | |
| HK1240407A1 (zh) | 各向异性导电膜、其制造方法及连接构造体 | |
| JP2000174066A (ja) | 半導体装置の実装方法 | |
| WO2018088191A1 (ja) | セラミック基板及びセラミック基板の製造方法 | |
| JP6077224B2 (ja) | セラミック多層基板の製造方法 | |
| JP2024136131A (ja) | フィラー含有フィルム、接合体及びその製造方法 | |
| WO2024195598A1 (ja) | フィラー含有フィルム | |
| CN104584698A (zh) | 带散热器布线板、安装有元件的带散热器布线板及它们的制造方法 | |
| CN120113047A (zh) | 部件安装基板、部件安装基板的制造方法、电子模块以及电子模块的制造方法 |