HK1088046A1 - Thin film forming device - Google Patents
Thin film forming deviceInfo
- Publication number
- HK1088046A1 HK1088046A1 HK06108238.9A HK06108238A HK1088046A1 HK 1088046 A1 HK1088046 A1 HK 1088046A1 HK 06108238 A HK06108238 A HK 06108238A HK 1088046 A1 HK1088046 A1 HK 1088046A1
- Authority
- HK
- Hong Kong
- Prior art keywords
- thin film
- film forming
- forming device
- vacuum container
- vacuum
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title 1
- 238000000427 thin-film deposition Methods 0.000 abstract 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
- C23C14/0073—Reactive sputtering by exposing the substrates to reactive gases intermittently
- C23C14/0078—Reactive sputtering by exposing the substrates to reactive gases intermittently by moving the substrates between spatially separate sputtering and reaction stations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/354—Introduction of auxiliary energy into the plasma
- C23C14/358—Inductive energy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/568—Transferring the substrates through a series of coating stations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/5853—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4404—Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32467—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32477—Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/318—Inorganic layers composed of nitrides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02266—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
A thin film deposition apparatus (1) of the present invention includes a vacuum container (11) for maintaining a vacuum therein, gas introduction means (76) for introducing a reactive gas into the vacuum container (11), and plasma generating means (61) for generating a plasma of the reactive gas within the vacuum container (11).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/006951 WO2004108979A1 (en) | 2003-06-02 | 2003-06-02 | Thin film forming device and thin film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
HK1088046A1 true HK1088046A1 (en) | 2006-10-27 |
Family
ID=33495899
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HK06108238.9A HK1088046A1 (en) | 2003-06-02 | 2006-07-25 | Thin film forming device |
HK06108542.0A HK1088365A1 (en) | 2003-06-02 | 2006-08-01 | Thin film forming device and thin film forming method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HK06108542.0A HK1088365A1 (en) | 2003-06-02 | 2006-08-01 | Thin film forming device and thin film forming method |
Country Status (8)
Country | Link |
---|---|
US (2) | US20060124455A1 (en) |
EP (2) | EP1637624B1 (en) |
JP (2) | JP3839038B2 (en) |
KR (1) | KR100926867B1 (en) |
CN (2) | CN100513632C (en) |
HK (2) | HK1088046A1 (en) |
TW (1) | TWI318242B (en) |
WO (2) | WO2004108979A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004108979A1 (en) * | 2003-06-02 | 2004-12-16 | Shincron Co., Ltd. | Thin film forming device and thin film forming method |
CN100359040C (en) * | 2006-01-06 | 2008-01-02 | 浙江大学 | Barrel type filming apparatus for chip inductor framework |
CN100359041C (en) * | 2006-01-20 | 2008-01-02 | 浙江大学 | Electronic ceramic continuous sputtering coating equipment |
JP4725848B2 (en) * | 2006-02-06 | 2011-07-13 | 鹿島建設株式会社 | Method and apparatus for measuring strength of solidified body |
US20090056877A1 (en) | 2007-08-31 | 2009-03-05 | Tokyo Electron Limited | Plasma processing apparatus |
KR101115273B1 (en) * | 2007-12-20 | 2012-03-05 | 가부시키가이샤 알박 | Plasma source mechanism and film forming apparatus |
JP5374980B2 (en) * | 2008-09-10 | 2013-12-25 | ソニー株式会社 | Solid-state imaging device |
TWI498053B (en) * | 2008-12-23 | 2015-08-21 | Ind Tech Res Inst | Plasma excitation module |
JP5099101B2 (en) | 2009-01-23 | 2012-12-12 | 東京エレクトロン株式会社 | Plasma processing equipment |
WO2012035603A1 (en) | 2010-09-13 | 2012-03-22 | 株式会社シンクロン | Magnetic field generating device, magnetron cathode, and sputter device |
JP2013182966A (en) * | 2012-03-01 | 2013-09-12 | Hitachi High-Technologies Corp | Plasma processing apparatus and plasma processing method |
WO2014064768A1 (en) * | 2012-10-23 | 2014-05-01 | 株式会社シンクロン | Thin film formation apparatus, sputtering cathode, and method of forming thin film |
JP6163064B2 (en) * | 2013-09-18 | 2017-07-12 | 東京エレクトロン株式会社 | Film forming apparatus and film forming method |
EP3095305B1 (en) * | 2014-01-15 | 2018-08-29 | Gallium Enterprises Pty Ltd | Apparatus and method for the reduction of impurities in films |
US11155921B2 (en) | 2015-11-05 | 2021-10-26 | Bühler Alzenau Gmbh | Device and method for vacuum coating |
KR200481146Y1 (en) | 2016-02-01 | 2016-08-19 | 홍기철 | Washing and drying device for a mop |
TW201827633A (en) * | 2016-09-27 | 2018-08-01 | 美商康寧公司 | Apparatus and methods for reduced-arc sputtering |
CN110318028A (en) * | 2018-03-28 | 2019-10-11 | 株式会社新柯隆 | Plasma source mechanism and film forming device |
WO2020223127A1 (en) * | 2019-04-30 | 2020-11-05 | Lam Research Corporation | Dual-frequency, direct-drive inductively coupled plasma source |
WO2021153697A1 (en) * | 2020-01-28 | 2021-08-05 | 京セラ株式会社 | Planar coil, and device for manufacturing semiconductor comprising same |
CN113337809A (en) * | 2020-02-14 | 2021-09-03 | 株式会社新柯隆 | Thin film forming apparatus |
JP7112768B2 (en) * | 2020-12-23 | 2022-08-04 | 株式会社クリエイティブコーティングス | ALD equipment for metal films |
WO2023172227A2 (en) * | 2022-03-09 | 2023-09-14 | Atilim Universitesi | A boron nitride coating method with inductively coupled plasma |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4851095A (en) * | 1988-02-08 | 1989-07-25 | Optical Coating Laboratory, Inc. | Magnetron sputtering apparatus and process |
US5421891A (en) * | 1989-06-13 | 1995-06-06 | Plasma & Materials Technologies, Inc. | High density plasma deposition and etching apparatus |
JPH05185247A (en) * | 1992-01-13 | 1993-07-27 | Furukawa Electric Co Ltd:The | Material for resistance welding electrode |
GB9321489D0 (en) * | 1993-10-19 | 1993-12-08 | Central Research Lab Ltd | Plasma processing |
TW293983B (en) * | 1993-12-17 | 1996-12-21 | Tokyo Electron Co Ltd | |
JPH0831358A (en) * | 1994-07-12 | 1996-02-02 | Nissin Electric Co Ltd | Ecr ion radical source |
JP2770753B2 (en) * | 1994-09-16 | 1998-07-02 | 日本電気株式会社 | Plasma processing apparatus and plasma processing method |
JP3122601B2 (en) * | 1995-06-15 | 2001-01-09 | 東京エレクトロン株式会社 | Plasma film forming method and apparatus therefor |
JPH0982495A (en) * | 1995-09-18 | 1997-03-28 | Toshiba Corp | Plasma producing device and method |
JPH09245997A (en) * | 1996-03-05 | 1997-09-19 | Nissin Electric Co Ltd | Plasma chamber having cover-enclosed inner wall and antenna |
US6093660A (en) * | 1996-03-18 | 2000-07-25 | Hyundai Electronics Industries Co., Ltd. | Inductively coupled plasma chemical vapor deposition technology |
JP2845199B2 (en) * | 1996-06-14 | 1999-01-13 | 日本電気株式会社 | Dry etching apparatus and dry etching method |
JP2929275B2 (en) * | 1996-10-16 | 1999-08-03 | 株式会社アドテック | Inductively coupled planar plasma generator with permeable core |
JP3077623B2 (en) * | 1997-04-02 | 2000-08-14 | 日本電気株式会社 | Plasma chemical vapor deposition equipment |
JP3730754B2 (en) * | 1997-07-04 | 2006-01-05 | 東京エレクトロン株式会社 | Plasma processing equipment |
JPH11209875A (en) * | 1998-01-23 | 1999-08-03 | Shin Etsu Chem Co Ltd | Carbon made reaction furnace and production of pyrolytic boron nitride formed body |
JPH11219937A (en) * | 1998-01-30 | 1999-08-10 | Toshiba Corp | Process device |
US6254738B1 (en) * | 1998-03-31 | 2001-07-03 | Applied Materials, Inc. | Use of variable impedance having rotating core to control coil sputter distribution |
US6164241A (en) * | 1998-06-30 | 2000-12-26 | Lam Research Corporation | Multiple coil antenna for inductively-coupled plasma generation systems |
JP2000017457A (en) * | 1998-07-03 | 2000-01-18 | Shincron:Kk | Thin film forming apparatus and thin film forming method |
JP2000124137A (en) * | 1998-10-13 | 2000-04-28 | Hitachi Ltd | Plasma processing apparatus |
JP2000208298A (en) * | 1999-01-14 | 2000-07-28 | Kokusai Electric Co Ltd | Inductive coupling type plasma generator |
US6229264B1 (en) * | 1999-03-31 | 2001-05-08 | Lam Research Corporation | Plasma processor with coil having variable rf coupling |
EP1879213B1 (en) * | 1999-05-26 | 2012-03-14 | Tokyo Electron Limited | Plasma processing apparatus |
US6528752B1 (en) * | 1999-06-18 | 2003-03-04 | Tokyo Electron Limited | Plasma processing apparatus and plasma processing method |
KR100338057B1 (en) * | 1999-08-26 | 2002-05-24 | 황 철 주 | Antenna device for generating inductively coupled plasma |
US6664881B1 (en) * | 1999-11-30 | 2003-12-16 | Ameritherm, Inc. | Efficient, low leakage inductance, multi-tap, RF transformer and method of making same |
TW514996B (en) * | 1999-12-10 | 2002-12-21 | Tokyo Electron Ltd | Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film |
JP3774353B2 (en) * | 2000-02-25 | 2006-05-10 | 株式会社シンクロン | Method and apparatus for forming metal compound thin film |
JP4790896B2 (en) * | 2000-05-26 | 2011-10-12 | エーユー オプトロニクス コーポレイション | Manufacturing method and manufacturing apparatus of active matrix device including top gate type TFT |
JP4093704B2 (en) * | 2000-06-14 | 2008-06-04 | 松下電器産業株式会社 | Plasma processing equipment |
JP3650025B2 (en) * | 2000-12-04 | 2005-05-18 | シャープ株式会社 | Plasma process equipment |
JP3888077B2 (en) * | 2001-04-20 | 2007-02-28 | 株式会社日立製作所 | ELECTRODE FOR METAL JOINING, ITS MANUFACTURING METHOD, WELDING EQUIPMENT HAVING METAL JOINING ELECTRODE, AND PRODUCT WELDED BY IT |
US6783629B2 (en) * | 2002-03-11 | 2004-08-31 | Yuri Glukhoy | Plasma treatment apparatus with improved uniformity of treatment and method for improving uniformity of plasma treatment |
US7097782B2 (en) * | 2002-11-12 | 2006-08-29 | Micron Technology, Inc. | Method of exposing a substrate to a surface microwave plasma, etching method, deposition method, surface microwave plasma generating apparatus, semiconductor substrate etching apparatus, semiconductor substrate deposition apparatus, and microwave plasma generating antenna assembly |
WO2004108979A1 (en) * | 2003-06-02 | 2004-12-16 | Shincron Co., Ltd. | Thin film forming device and thin film forming method |
-
2003
- 2003-06-02 WO PCT/JP2003/006951 patent/WO2004108979A1/en active Application Filing
- 2003-06-02 EP EP03733231A patent/EP1637624B1/en not_active Expired - Lifetime
- 2003-06-02 JP JP2005500523A patent/JP3839038B2/en not_active Expired - Fee Related
- 2003-06-02 US US10/559,326 patent/US20060124455A1/en not_active Abandoned
- 2003-06-02 CN CNB038265753A patent/CN100513632C/en not_active Expired - Lifetime
-
2004
- 2004-05-27 TW TW093115057A patent/TWI318242B/en not_active IP Right Cessation
- 2004-05-31 JP JP2005506749A patent/JP3874787B2/en not_active Expired - Fee Related
- 2004-05-31 CN CN2004800144036A patent/CN1795287B/en not_active Expired - Fee Related
- 2004-05-31 KR KR1020057023033A patent/KR100926867B1/en active IP Right Grant
- 2004-05-31 WO PCT/JP2004/007483 patent/WO2004108980A1/en active Application Filing
- 2004-05-31 US US10/558,777 patent/US20060266291A1/en not_active Abandoned
- 2004-05-31 EP EP04745448.3A patent/EP1640474B1/en not_active Expired - Lifetime
-
2006
- 2006-07-25 HK HK06108238.9A patent/HK1088046A1/en not_active IP Right Cessation
- 2006-08-01 HK HK06108542.0A patent/HK1088365A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1640474A1 (en) | 2006-03-29 |
KR100926867B1 (en) | 2009-11-16 |
EP1637624A1 (en) | 2006-03-22 |
CN1795287B (en) | 2012-07-04 |
US20060124455A1 (en) | 2006-06-15 |
JPWO2004108980A1 (en) | 2006-07-20 |
KR20060023982A (en) | 2006-03-15 |
EP1637624B1 (en) | 2012-05-30 |
EP1640474B1 (en) | 2013-08-28 |
US20060266291A1 (en) | 2006-11-30 |
HK1088365A1 (en) | 2006-11-03 |
TWI318242B (en) | 2009-12-11 |
JPWO2004108979A1 (en) | 2006-07-20 |
CN100513632C (en) | 2009-07-15 |
JP3874787B2 (en) | 2007-01-31 |
EP1640474A4 (en) | 2011-06-22 |
EP1637624A4 (en) | 2007-12-26 |
WO2004108980A1 (en) | 2004-12-16 |
JP3839038B2 (en) | 2006-11-01 |
TW200510565A (en) | 2005-03-16 |
CN1795287A (en) | 2006-06-28 |
WO2004108979A1 (en) | 2004-12-16 |
CN1788104A (en) | 2006-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HK1088046A1 (en) | Thin film forming device | |
PH12021550716A1 (en) | Aerosol generation device, and heating chamber therefor | |
EP1475456A3 (en) | Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus | |
MXPA03002988A (en) | Method and apparatus for forming a coating. | |
EP1960566A4 (en) | High-throughput deposition system for oxide thin film growth by reactive coevaportation | |
EP1017091A3 (en) | A processing method of silicon wafer and a processing apparatus | |
PH12021550638A1 (en) | Aerosol generation device, and heating chamber therefor | |
WO2004001804A3 (en) | Device for generation of reactive ions | |
ATE322561T1 (en) | APPARATUS FOR CVD COATINGS | |
DE60038811D1 (en) | TREATMENT DEVICES | |
WO2004010463A3 (en) | Vaporizer delivery ampoule | |
NO20016258D0 (en) | Method and apparatus for removing waste product from body openings | |
MX213688B (en) | Gas/vapor delivery from solid materials. | |
WO2004045739A3 (en) | Substrate processing apparatus for processing substrates using dense phase gas and sonic waves | |
HK1048832B (en) | Vacuum arc vapor deposition apparatus and vacuum arc vapor deposition method | |
EP1324374A3 (en) | Etching System for an insulation-film | |
TW200620426A (en) | Plasma CVD apparatus | |
AU2003246714A1 (en) | Water-soluble container | |
WO2007065896A3 (en) | Removable liners for charged particle beam systems | |
TW200734478A (en) | Sheet plasma film forming apparatus | |
AU2002340316A1 (en) | Plasma chemical vapor deposition methods and apparatus | |
ATE403018T1 (en) | DEVICE FOR PRODUCING A PLASTIC CONTAINER COATED WITH A DLC FILM | |
EP0909837A3 (en) | Chemical vapor deposition apparatus and cleaning method thereof | |
IL141672A0 (en) | Container for an optical article | |
EP1619266A4 (en) | Method and apparatus for chemical plasma processing of plastic container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC | Patent ceased (i.e. patent has lapsed due to the failure to pay the renewal fee) |
Effective date: 20180602 |