GB2550701B - Storage device having an electroplated phase change switch - Google Patents

Storage device having an electroplated phase change switch Download PDF

Info

Publication number
GB2550701B
GB2550701B GB201709552A GB201709552A GB2550701B GB 2550701 B GB2550701 B GB 2550701B GB 201709552 A GB201709552 A GB 201709552A GB 201709552 A GB201709552 A GB 201709552A GB 2550701 B GB2550701 B GB 2550701B
Authority
GB
United Kingdom
Prior art keywords
storage device
phase change
change switch
electroplated
electroplated phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
GB201709552A
Other versions
GB2550701A (en
GB201709552D0 (en
Inventor
R Bonhote Christian
Lille Jeffrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
HGST Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HGST Netherlands BV filed Critical HGST Netherlands BV
Publication of GB201709552D0 publication Critical patent/GB201709552D0/en
Publication of GB2550701A publication Critical patent/GB2550701A/en
Application granted granted Critical
Publication of GB2550701B publication Critical patent/GB2550701B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/10Phase change RAM [PCRAM, PRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
GB201709552A 2015-06-30 2016-06-24 Storage device having an electroplated phase change switch Expired - Fee Related GB2550701B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/788,183 US9595669B2 (en) 2015-06-30 2015-06-30 Electroplated phase change switch
GB201611062A GB2540048B (en) 2015-06-30 2016-06-24 Electroplated phase change switch

Publications (3)

Publication Number Publication Date
GB201709552D0 GB201709552D0 (en) 2017-08-02
GB2550701A GB2550701A (en) 2017-11-29
GB2550701B true GB2550701B (en) 2020-01-01

Family

ID=56891692

Family Applications (2)

Application Number Title Priority Date Filing Date
GB201611062A Expired - Fee Related GB2540048B (en) 2015-06-30 2016-06-24 Electroplated phase change switch
GB201709552A Expired - Fee Related GB2550701B (en) 2015-06-30 2016-06-24 Storage device having an electroplated phase change switch

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB201611062A Expired - Fee Related GB2540048B (en) 2015-06-30 2016-06-24 Electroplated phase change switch

Country Status (8)

Country Link
US (2) US9595669B2 (en)
JP (1) JP6472773B2 (en)
KR (1) KR101884063B1 (en)
CN (1) CN106848059B (en)
DE (1) DE102016008075A1 (en)
FR (1) FR3038449A1 (en)
GB (2) GB2540048B (en)
TW (1) TWI642177B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595669B2 (en) * 2015-06-30 2017-03-14 Western Digital Technologies, Inc. Electroplated phase change switch
US9947721B2 (en) * 2016-04-01 2018-04-17 Micron Technology, Inc. Thermal insulation for three-dimensional memory arrays
WO2018195423A1 (en) * 2017-04-20 2018-10-25 Micromaterials Llc Structure with selective barrier layer
WO2019066829A1 (en) * 2017-09-28 2019-04-04 Intel Corporation Direct self-assembly process for formation of selector or memory layers on a vertical rram memory for leakage current minimization
US10374014B2 (en) 2017-10-16 2019-08-06 Sandisk Technologies Llc Multi-state phase change memory device with vertical cross-point structure
CN109037439B (en) * 2018-06-28 2021-02-09 江苏理工学院 Sn20Sb80/Si multilayer phase-change film material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294425B1 (en) * 1999-10-14 2001-09-25 Samsung Electronics Co., Ltd. Methods of forming integrated circuit capacitors by electroplating electrodes from seed layers
US20080175032A1 (en) * 2007-01-23 2008-07-24 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing the same
US20120161094A1 (en) * 2010-12-22 2012-06-28 Chinese Academy of Science, Institute of Microelectronics 3d semiconductor memory device and manufacturing method thereof
US20130248801A1 (en) * 2012-03-21 2013-09-26 Kazuhiko Yamamoto Semiconductor memory device with resistance change film and method of manufacturing the same
WO2014036480A1 (en) * 2012-08-31 2014-03-06 Micron Technology, Inc. Three dimensional memory array architecture

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687830B2 (en) 2004-09-17 2010-03-30 Ovonyx, Inc. Phase change memory with ovonic threshold switch
US7838864B2 (en) 2006-08-08 2010-11-23 Ovonyx, Inc. Chalcogenide switch with laser recrystallized diode isolation device and use thereof in three dimensional memory arrays
JP2008078404A (en) * 2006-09-21 2008-04-03 Toshiba Corp Semiconductor memory and manufacturing method thereof
JP2008160004A (en) * 2006-12-26 2008-07-10 Toshiba Corp Semiconductor memory and manufacturing method therefor
US7785982B2 (en) * 2007-01-05 2010-08-31 International Business Machines Corporation Structures containing electrodeposited germanium and methods for their fabrication
US7918984B2 (en) * 2007-09-17 2011-04-05 International Business Machines Corporation Method of electrodepositing germanium compound materials on a substrate
JP2009081251A (en) * 2007-09-26 2009-04-16 Panasonic Corp Resistance change element, production method thereof, and resistance change memory
JP5086851B2 (en) * 2008-03-14 2012-11-28 株式会社東芝 Nonvolatile semiconductor memory device
US8351238B2 (en) * 2008-04-10 2013-01-08 Contour Semiconductor, Inc. Low-complexity electronic circuits and methods of forming the same
KR20090109804A (en) * 2008-04-16 2009-10-21 삼성전자주식회사 Non-volatile memory device and method of fabricating the same
KR20100001260A (en) * 2008-06-26 2010-01-06 삼성전자주식회사 Non-volatile memory device and method of fabricating the same
KR101424138B1 (en) * 2008-09-19 2014-08-04 삼성전자주식회사 Non-volatile memory device and method of fabricating the same
KR101573697B1 (en) * 2009-02-11 2015-12-02 삼성전자주식회사 Nonvolatile memory device having vertical folding structure and method of fabricating the same
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8030130B2 (en) * 2009-08-14 2011-10-04 International Business Machines Corporation Phase change memory device with plated phase change material
US8716780B2 (en) 2009-11-06 2014-05-06 Rambus Inc. Three-dimensional memory array stacking structure
US7943420B1 (en) * 2009-11-25 2011-05-17 International Business Machines Corporation Single mask adder phase change memory element
US8198124B2 (en) * 2010-01-05 2012-06-12 Micron Technology, Inc. Methods of self-aligned growth of chalcogenide memory access device
US8530875B1 (en) 2010-05-06 2013-09-10 Micron Technology, Inc. Phase change memory including ovonic threshold switch with layered electrode and methods for forming same
US8367460B2 (en) * 2010-06-22 2013-02-05 Micron Technology, Inc. Horizontally oriented and vertically stacked memory cells
US9324422B2 (en) * 2011-04-18 2016-04-26 The Board Of Trustees Of The University Of Illinois Adaptive resistive device and methods thereof
US8642985B2 (en) 2011-06-30 2014-02-04 Industrial Technology Research Institute Memory Cell
US9178077B2 (en) * 2012-11-13 2015-11-03 Micron Technology, Inc. Semiconductor constructions
US20140262028A1 (en) 2013-03-13 2014-09-18 Intermolecular, Inc. Non-Contact Wet-Process Cell Confining Liquid to a Region of a Solid Surface by Differential Pressure
US9123640B2 (en) * 2013-05-13 2015-09-01 Seagate Technology Llc Three dimensional resistive memory
US9728584B2 (en) * 2013-06-11 2017-08-08 Micron Technology, Inc. Three dimensional memory array with select device
US9595669B2 (en) 2015-06-30 2017-03-14 Western Digital Technologies, Inc. Electroplated phase change switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294425B1 (en) * 1999-10-14 2001-09-25 Samsung Electronics Co., Ltd. Methods of forming integrated circuit capacitors by electroplating electrodes from seed layers
US20080175032A1 (en) * 2007-01-23 2008-07-24 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing the same
US20120161094A1 (en) * 2010-12-22 2012-06-28 Chinese Academy of Science, Institute of Microelectronics 3d semiconductor memory device and manufacturing method thereof
US20130248801A1 (en) * 2012-03-21 2013-09-26 Kazuhiko Yamamoto Semiconductor memory device with resistance change film and method of manufacturing the same
WO2014036480A1 (en) * 2012-08-31 2014-03-06 Micron Technology, Inc. Three dimensional memory array architecture

Also Published As

Publication number Publication date
JP2017017321A (en) 2017-01-19
CN106848059A (en) 2017-06-13
GB2550701A (en) 2017-11-29
GB201611062D0 (en) 2016-08-10
US10270030B2 (en) 2019-04-23
GB2540048B (en) 2020-01-01
TW201714295A (en) 2017-04-16
KR101884063B1 (en) 2018-08-29
CN106848059B (en) 2019-08-20
US9595669B2 (en) 2017-03-14
US20170025476A1 (en) 2017-01-26
GB201709552D0 (en) 2017-08-02
TWI642177B (en) 2018-11-21
DE102016008075A1 (en) 2017-01-05
FR3038449A1 (en) 2017-01-06
US20170005263A1 (en) 2017-01-05
KR20170003483A (en) 2017-01-09
GB2540048A (en) 2017-01-04
JP6472773B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
HK1225861A1 (en) Busbar locating component
HK1200598A1 (en) Dielectric phase shifter
IL254661A0 (en) Phase shifter
HK1218476A1 (en) Distributed switch architecture
SG10201913097SA (en) Structure for radiofrequency applications
GB2550701B (en) Storage device having an electroplated phase change switch
EP3413395A4 (en) Phase shifting device
EP3304560A4 (en) Phase change memory current
HUE046450T2 (en) Switching device
TWI562538B (en) Switching circuit
IL249608A0 (en) Movable cabinets
EP3330656A4 (en) Phase change heat storage device
TWI561979B (en) Rack
GB2541665B (en) Information switching
HUE043024T2 (en) A switching device
IL248226A0 (en) Cabinet
HK1211788A2 (en) Switch device
GB201420438D0 (en) Switching arrangement
PT3879550T (en) Switch unit
PL3224846T3 (en) Switching device
GB201516537D0 (en) Accessibility Switch
ZA201800634B (en) Switching device
SG10201707725PA (en) Switch
SG10201707724RA (en) Switch
HK1223454A1 (en) Switch

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20200624