GB2511586A - Disk reciprocating power conversion device - Google Patents

Disk reciprocating power conversion device Download PDF

Info

Publication number
GB2511586A
GB2511586A GB1312527.3A GB201312527A GB2511586A GB 2511586 A GB2511586 A GB 2511586A GB 201312527 A GB201312527 A GB 201312527A GB 2511586 A GB2511586 A GB 2511586A
Authority
GB
United Kingdom
Prior art keywords
wheel
planet
rotary disk
power conversion
variable volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB1312527.3A
Other versions
GB201312527D0 (en
Inventor
Wen-Ching Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of GB201312527D0 publication Critical patent/GB201312527D0/en
Publication of GB2511586A publication Critical patent/GB2511586A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • F16H47/04Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Transmission Devices (AREA)

Abstract

A disk reciprocating power conversion device comprises a planetary gear set and more than one eccentric control disk group. The eccentric control disk group comprises a rotating disk pivotally disposed at an opposite end of the planetary gear set, and the rotating disk is capable of being guided by rotation of most planetary gears of the planetary gear set, so that the rotating disk reciprocates and rotates in certain amplitude. An annular chamber is formed around the disk at an interval, and the annular chamber accommodates a medium capable of forming a pressure. At least one volume variable chamber is formed in the annular chamber at intervals. Spacers are disposed at the periphery of the disk, and the number of spacers is the same as the number of volume variable chambers, so as to press or suck the medium, thereby adjusting and braking the rotation of the planetary gears.

Description

RING DISK RECIPROCATING POWER CONVERSiON DEVICE
BACKGROUND OF THE INVENTION
I. Field ofthe Invention
The present invention provides a ring disk reciprocating power conversion device, especially a planetary gear set and an off-center control panel set used to convert power, and more especially a rotary disk of the off-center control panel set used to guide the planet wheel, and a variable volume chamber and spacer used to control the self rotation of the planet wheel. The present invention also relates to an oil resilient torque convertor, a rotation damping decelerator, to a compressor, and a switch chamber type internal combustion engine, which are all built by the ring disk reciprocating power conversion device.
2. Description of the Related Art
The traditional power conversion technique is mainly used in the torque conversion on the transportation vehicle. The technique includes a soft oil pressure flowing type torque converting device, \vhich has t\vo corresponding propeller blades, and one of the propeller blades drives the oil to generate oil eddy to propel another propeller blade in order to reach the purpose of power conversion. However, the propelling force of the propelling blades cannot be fully reflected on the power output of another propelling blade, which results the problem of power lost in the power conversion.
Besides, the traditional rotation deceleration technique mainly uses a brake lining to clamp or make a friction against the axle or the wheel frame to decelerate. However, after long time clamping and friction, the brake is very easy to break down due to overheating.
Moreover, the traditional compressor includes piston type and scmll type. The compressing and drawing efficiency of scroll type compressor is befter than the other one, but the power of compressing and drawing is not strong enough, which is also hard to improve. Thus, the scroll typc compressor cannot bc used when the strong power is needed. Thc piston type compressor has relatively good power, but only one compressing can be made in one compmssion cycle, resulting in bad efficiency.
In addition, traditional combustion engine has a fixed type cylinder, and by way of the explosion power of the tel, the piston in the cylinder can be driven to push the crank to output the power. However, half of the explosion power pushes against the surface of the piston, and the other half of the explosion power pushes against the cylinder head, which causes 10% power loss.
After the power loss, the explosion power will push the piston surface again, which causes time differences for the twice pushing. Thus, the explosion power cannot be fully transfbrmed to the piston propelling power.
Presently, combining the foresaid techniques of rotation deceleration, compressor, and combustion engine has not been disclosed in the traditional power conversion technique, which mcans lots of improvement can be made in the future.
SUMMARY OF THE INVENTION
Present invention aims to overcome the following problems of the prior arts as discussed above: 1. Using two propelling blades via oil to output power, which causes high power lost.
2. Using brake lining to clamp or make a friction against the rotation elements, and the overheating due to over-friction, which makes the brake to break down.
3. The compressing and drawing powcr and efficiency of the traditional piston type and scroll type compressor cannot be improved.
4. The explosion power of the fuel is partially lost in the cylindeç and the explosion time point differences cause the power of the explosion unable to be fblly transthrmed to the piston propelling power.
In order to solve the problems mentioned above, the present invention provides a ring disk reciprocating power conversion device, comprising: a planetary gear set provided with a solar wheel and a plurality of planet wheels engaged in the periphery of the solar wheel; at least one off-center control panel set, comprising: a rotary disk pivoted on a center axle of the solar wheel and arranged opposite to the planetary gear set, being able to receive the guiding from self rotation of the planet wheel, forcing the rotary disk to do a reciprocating movement in limited amplitude; an annular chamber, formed at interval in the periphery of the rotary disk, the annular chamber accommodating a press forming medium, wherein the medium is oil; more than one separation parts, separating the annular chamber to form more than one variable volume chambers; and equal amount of spaccr as the variable volume chambers, movably arranged in the periphery of the rotary disk, being able to enter the variable volume chambers to compress or draw the medium to regulate and stop self rotation of the planet wheel, and being able to exit the variable volume chambers to release the planet wheel for self rotation.
V/hen the outer power inputs to the solar wheel, the self rotation of the planet wheel can be driven via the solar wheel, and the outcr power can be engine powcrcd. The self rotation of the planet wheel guides the rotary disk to do a reciprocating movement, making the planet wheel to do the revolution and without fully reflecting the power of solar wheel. When the spacer enters the variable volume chamber to regulate and stop the self rotation of the planet wheel, the solar wheel can drive the planet wheel to enhance the revolution force. By increasing the revolution force of the planet wheel, the output of the solar wheel can be increased as well. As such, by way of oil flowing cut-off technique, such as dampening or locking the rotation of the planet wheel, the power output can be controlled, and the power conversion efficiency can be improved.
In fact, the center axle of the solar wheel is provided with a first axial rod, and an end surface of the planet wheel movably hitches a frame piece, and the center axle of the frame piece is provided with a second axial rod. The first axial rod is uscd as a powcr input terminal, and the first axial rod can drive the planet wheel to self rotate via the solar wheel, and the second axial rod is used as a power output terminal to transfer the power of revolution of the planet wheel.
In present invention, the outer power can be input to the planet wheel to directly drive the planet wheel. The outer power can be the power of the wheel axle. The rotaiy disk is guided by the self rotation of the planet wheel to do the reciprocating movement, and the planet wheel does thc revolution along thc solar whcel. When the spaccr enters the variable volume chambcr to regulate and stop the self rotation of the planet wheel, the revolution along the solar wheel of the planet wheel can be lowered or stopped, further reducing or stopping the power of the outer wheel axle. By utilizing thc damping cffect of the oil cut-off, thc deceleration of thc outer wheel axle can be achievcd, and the brake failing dueto overhcat will no longer exist.
In fact, thc first axial rod can be uscd as thc fixed end to brake the planet wheel, and the second axial rod can be used as the movable end to drive the planet wheel, or vice versa. The movable end can drive the planet wheel to self rotate or do the revolution along the solar wheel.
In another embodiment of the present invention, equal amount of troughs as the spacers are formed in the periphery of the rotary disk. The troughs are able to accommodate the spacer, and the spacer can enter the variable volume chamber via the trough, or enter the trough to exit the variable volume chamber. The center axle of the rotary disk is provided with a casing tube. The casing tube connects the spacer, and the casing tube can drive the spacer to enter or exit the variable volume chamber.
Additionally, the present invention provides another ring disk reciprocating power conversion device, comprising: a planetary gear set provided with a solar wheel and a plurality of planet wheels engaged in the periphery of the solar wheel; at least one off-center control panel set, comprising: a rotary disk pivoted on a center axle of the solar wheel and arranged opposite to the planetary gear set, being able to receive the guiding from self rotation of the planet wheel, forcing the rotary disk to do a reciprocating movement in limited amplitude; an annular chamber, formed in interval in the periphery of the rotary disk, and the annular chamber accommodating a press forming medium, wherein the medium is air or coolant; more than one separation parts, separating the annular chamber to form more than one variable volume chambers; and equal amount of spacers as the variable volume chambers, fixed to the periphery of the rotary disk, the spacers separating the variable volume chamber and being able to compress or draw the medium.
IS The spacer and separation part are used to separate the variable volume chamber to form four compressing and drawing chambers. The outer power inputs to the solar wheel, and the planet wheel is driven by the solar wheel. The outer power can be motor powered. The rotary disk is guided by the self rotation of the planet wheel, making the spacer with the rotary to do the reciprocating movement in limited amplitude, and thus compressing or drawing the air or the coolant in the chamber. By the volume changing in every chamber of the variable volume chamber, the compressing and drawing operation can be continuously alternating to compress or draw the air or coolant. Thus, the compressing and drawing power can be improved, and so too the efficiency.
Practically, the center axle of the solar wheel is provided with a first axial rod which is used as thc power input terminal. The medium of present invention can be ffiel oil, and the ifici oil can be ignited in one of the variable volume chambers to generate the explosion power. The explosion power drives the spacer to further drive the rotaiy disk to do the reciprocating movement in limited amplitude, which results in the self rotation of the planet wheel. The self rotation of the planet wheel drives the solar wheel to output the power. Meanwhile, the spacer compresses the fuel oil in another chamber of the variable volume chamber. By those described above, the chamber can be used as drawing chamber, compressing chamber, explosion chamber, and emission chamber, and the planet wheel can be driven and continuously drives the solar wheel to output the power, improving the power output efficiency from converting the explosion power of the fuel oil. The center axle of the planet wheel is pivoted in a fixed position around the periphery of the solar wheel, or the center axle of the planet wheel uses the rotary disk as a fixed end to pivot the planet wheel around the periphery of the solar wheel. Or, the center axle of the planet wheel uses the gear rim as a fixed end to pivot the planet wheel around the solar wheel.
In one embodiment of the present invention, the off-center control panel set is provided with a shell, an interior wall of the shell is provided with a corresponding first engagement part and a second engagement part, the planetary gear set is pivoted on the first engagement part, the rotary disk is pivoted on the second engagement part, and the annular chamber is formed between the outer periphery of the rotary disk and the interior wall of the shell, and one side of the rotary disk is corresponding to the planetary gear set.
In another embodiment, the present invention further comprises: a plurality of first guiding grooves, using the solar wheel as a center and formed in the first engagement part in a radical shape, respectively; two end surfaces of the planet wheel being provided with an eccentric axis respectively, the eccentric axis being arranged on both sides of the center axle of the planet wheel respectively; and a plurality of second guiding grooves, using the center axle of the rotary disk as a center and formed in the plate surface in a radical shape, the planet wheel via the eccentric axis being guided by the first guiding groove and the second guiding groove respectively to rotate, the rotary disk being guided by the eccentric axis to do the reciprocating movement via the second guiding groove.
The eccentric axis is pivoted with a sliding member, and the sliding member is slidably arranged in the guiding groove. The separation pail is formed in the interior of the shell.
In still another cmbodiment, the ring disk reciprocating power conversion device has four planet wheels, which are arranged on the periphery of the solar wheel, respectively, the ring disk reciprocating power conversion device having two off-center control panel sets, each of the off-center control panel sets leading two planet wheels to self rotate respectively, the ring disk reciprocating power conversion device having two separation parts, the two separation pails separating the annular chamber to form two variable volume chambers. The outer periphery of IS the planet wheel engages a self-rotatable gear rim, the two end surfaces of the gear rim are provided with a ring, respectively, the planet wheel is situated between the rings, the two end surfaces of the planet wheel movably hitching a frame piece, respectively, and the frame piece situated in the ring.
In order to facilitate the movement for thc separation part in the medium, the sectional view of the separation part is H shape.
BRIEF DESCRIPTION OF THE DRAWiNGS
The invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements and in which: FTG. I is an exploded view of the first embodiment of the present invention; FIG. 2 is a front vicw of thc present invcntion; FIG. 3 is a side view of FIG. 2; FIG. 4 is an A-A sectional view of FIG. 3; FIG. 5 is aB-B sectional view of FIG. 2; FIG. 6 is a C-C sectional view of FIG. 2; FIG. 7 is a partially cnlargcd view of thc planetary gcar set in FIG. 1; FIG. 8 is an exploded view of one of the off-center control panel set in FIG. I; FIG. 9 is an exploded view of anothcr off-ccntcr control panel set in FIG. 1; FIG. 10 is a D-D sectional view of FIG. 3; FIG. II is a schematic view in operating the apparatus of FIG. 4; FIG. 12 is a sehcmatic vicw in opcrating thc apparatus of FIG. 4; FIG. 13 is a schematic view in operating the apparatus of FIG. 4; FIG. 14 is one of a schematic view in opcrating thc apparatus of FIG. 10; FIG. 15 is one of a schematic view in operating the apparatus of FIG. 10; FTG. 16 is a schematic view in operating the apparatus of FIG. 5; FIG. 17 is another schematic view in operating the apparatus of FIG. 10; FIG. 18 is an exploded view of the second embodimcnt of the prescnt invcntion; FIG. 19 is an exploded view of the third embodiment of the present invention; and FIG. 20 is an exploded view of the fourth cmbodimcnt of the prcscnt invcntion.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 discloses the exploded view of the first embodiment of the present invention. FIGS. 1, 2, and 7 disclose the ring disk reciprocating power conversion device of the present invention, which includes a planetary gear set 1 and at least one off-center control panel set 3. The planetary gear set 1 is provided with a solar wheel 10 and a plurality of planet wheels 21,21a engaged in the periphery of the solar wheel 10. In the present embodiment, the quantity of the planet wheels 21,2 la can be four, which are provided in the periphery of the solar wheel 10 with equal interval, and thus making a 180 degrees angle between the planet wheels 21,21a which arranged in both sides of the solar wheel 10. The angle between planet wheels 21a is also 180 degrees. Planet wheels 21 arc defined as a first group, and planet wheels 21 a are defined as a sccond group. The periphery of thc first group planet wheel 2 I and the second group planet wheel 21 a engage to a self-rotatable gear rim 23, making the planet wheels 21, 21a movably arranged in the periphery of the solar wheel 10. Two end surfaces 231, 232 of gear rim 23 are provided with rings 41, 42, respectively. The planet wheels 21, 21a are situated between the rings 41,42, and the rings 41,42 can clamp the position where the planet wheels 21, 21 a engagc to the gear rim 23. First axial parts 211, 2lla and second axial parts 212, 212a are provided on the two end surfaces of the planet wheels 2!, 21a, respectively, as shown in FTG. 8 and FIG. 9. The first axial parts 2!!, 21 Ia and the second axial parts 212, 212a of the planet wheels 21, 21a movably hitch a first frame piece 43 and a second frame piece 44, respectively The first frame part 43 is formed as a round plate shape, and first frame slots 431 which has equal amount as the planet wnee]s 21, 21 a are formed in the edge of the first frame parr 43. The first axial parts 211, 21 is. are 1iivokd in the first frame slots 431, and the flrst lame part 43 is pivoted in the ring 4 The second. trame part 44 iS also torrned as a round plate shape, and second frame slots 441 which is equal amount as the planet wheel 21, 21 a. is Thrmeci in the edge oldie frame part 44. The first axial parts 212. 2 I 2a are pivoted in the second frame slot 44!, and the second frame piece 44 is nivoted in the ring 42. A first axial rod 101 is provided on a center axle olthe solar wheel 0. The center axle oithe solar wheel 10 means the axle f the rotation center of the solar wheel tO. A second axial rod 432 is provided on the center axle of the first frame piece 43, and the center aide means the axle of the rotation center of the first frame piece 43. The solar wheel 10 and the first frame piece 43 are arranged in the same axis line. A through hole 433 is formed in the second axial rod 432, and one end of the first axial rod 101 is pivoted in the through hole 433. The top surface of the first axial parts 211,21 la of the planet wheels 21, 21 a are provided with first eccentric axes 213,21 3a. The top surface of the second axial parts 212, 2l2a of the planet wheels 21, 21a arc provided with second eccentric axes 214, 214a. The first eccentric axes 213,21 3a and the second eccentric axes 214,21 4a arc arranged in both sides of the center axle of the planet wheels 21. 21 a, respectively. The center axles of the planet wheels 21, 21a mean the axles of the rotation center of the planet wheels 21, 2la. A 180 degrees included angle is fbrmed between the first eccentric axes 213, 213a and the second eccentric axes 214, 214a. The first eccentric axes 213, 2l3a are pivoted with rectangle shaped first sliding members 241, 24la, and the second eccentric axes 214, 214a arc pivoted with rcctangle shaped second sliding members 242, 242a.
IS The off-center control panel set 3 includes a shell 30, a rotary disk 35, an annular chamber 36, more than one separation parts 37, more than one s.ariable volume chambers 38, and equal amount of spacers 39 as the variable volume chambers 38. The shell 30 is thrmed as a cylindrical shape, and further provided with a containing room 300. The interior wall of the containing mom 300 is provided with a corresponding first engagement part 301 and a second engagement part 302. The planetary gear set us arranged in the containing room 300, and further pivoted in the first engagement part 301 via the first axial rod 101 and second axial rod 432. The second axial rod 432 extends to outside the shell 30 via the first engagement part 301. The shell 30 can be composed of a ring housing 31, a ring cover 32, and a round shape lower cover plate 34. A cover opening 313 is tbrmed on one end of the ring housing 31. A first opening 323 and a second opening 324 are formed on both ends of The ring cover 32. The cover opening 313 of the ring -10 -housing 3 ancithe. first opening 323 of the ring cover 32 embed eadh other via a plurality of teeth 311. $21 and groove arts 312. 322. making the interior of the rIng housing $1 and the interior of the ring cover 32 connected to form the containing room 300. The lower cover plate 34 is pivoted in the second opening 324 of the ring cover 32 to close the containing room 300. The first engagement part 301 is provided in the interior wall of the ring housing 31, and the p1ancar gear set! is acconunodateu in We ring housing 31. The second engagement part 302 is arranged iii tnc second opening 321, The rotary disk 35 is arranrzed in the containing room 300 and, provided with a first plate surface 35 and a second p!atc surface 352, as shown in HG. 4. The second plate surface 352 is fixed on the lower cover plate 34. The rotary disk 35 is pivoted in the second engagement part 302 via the lower cover plate 34, and further pivoted on the center axle of the solar wheel H).
Thus, the rotary disk 35 Ls arranged opposite to the planetary gear set U and the tftst plate surthee 351 of the rotary disk 35 corresponds to the planetary gear set 1. An upper cover plate 33 is fixed on the first plate surface 351 Besides, the first axial rod 101 extends outside the shell 30 via the IS second engagement part 302. and the upper cover plate 3$, rotary disk 35, and the lower cover plate $4 are coaxial pivoted on the first axial rod 101. The rotary disk $5 can he guided by the self rotation of the planet wheel 21, as shown in HG. 12 and 13, and the rotary disk 35 can do reciprocating movement with limited amplitude, as shown in FIGS.14 and 13. In fact, the present invention further includes a plurality of' first guiding grooves 3 i4 and second guiding groaves 331. Using the sola.r wheel 10 as the center5 the first guiding groove 314 is formed in the first engagement part 30 in a radical shape. The first eccentric axis 213 of the first anet wheel 21 is slidably arranged, in. the first guiding groove 314 via the first sliding member 214. Usinc. the center axle of the rotary disk $5 as the center. the second guiding groove $3! is thrmed in the upper cover plate $3 of the first plate surface 351 in a radical shape. The second eccentric axis 214 of the fint planet wheel 21 is slidably arranged in the second guiding groove $3! via the second si iding member 242. l'hus, the first planet wheel 2 can be guided by the first guiding groove:314 and the second guiding groove 331 to self roftue via the first eccentric axis 213 and the second eccentric axis 214, and the rotary disk 35 can he guided by the second eccentric axis 214 to dc tile reciprocating movement via tile second guiding groove 331.
The annular chamber 36 is formed at intervals in the periphery of the rotary disk 35. In thct.
the annular chamber 36 is separated to between, the outer peripheral wail ofthe rotary disk 35 and the inteno rwall of the containing room 300 of the shell:30 hy the upper cover place 33 and the Iowcr cover plate 34, as shown in HG. 0. The interior of the annular chamber 36 can accommodate a pressure lonning medium, which can be oil in the present embodirn ot. The separation part 37 is formed in the interior wail of the ring cover 32 ofthe shell 30, as shown in FIG. 8. M'hus, the separation 37 is arranged in the containing room 300. The separation part 37 separates the annular chamber 36 to thrm the variable volume chamber 38. ft. the present embodiment, the iumber of the separation part 37 can he two, and the separated annular chamber 36 forms two variable volume chambers 38.
The spacer $9 is movably arranged in the periphery of the rotary disk 35. Actually, equal arnount of containing troughs 353 a We spacers 39 are fbrrned in the perjpherv of the rotary disk 35, The containing trough 353 connects the variable volume chamber 3$ and accommodates the spacer 39. Thus, the space.r 39 can enter the variable volume chamber 38 via the containing trough 353, as shown in FIG. 17. and dc the reciprocating movement in limited amplitude with the rotary disk 35 to push or draw the medium to regulate and stop the self rotation of the first planet wheel 21. The spacer 39 can also return to the containing trough 353 to depart From the variable volume chamber 38, as shown in FIG. 16, and fhrther releases the first planet wneel 21 to selfrotate. Besides, the center axle of the rotary disk 35 is provided with a easing tube 5. The center axle of the rotary' disk' 35 means the rotation center of the rotary disk 35. The easina tube 5 and the spacer 39 can connect to each other by a rope. The casing tube S can move in accordance -12 -with the rotation direction of the rotary disk 35, and thither drives the spacer 39 to enter or exit the variable volume chamber 38. In the present embodiment, the number of the spacer can be two.
The cross section of the spacer 39 can be "H" shape, which benefits the movement of the spacer 39 in the medium. The variable volume chamber 38 is the operating section of the high positive pressure oil and the high negative pressure oil. Thus, the oil leaking between the variable volume chamber 38 and operating elements is hard to avoid. In order to replenish the oil into the variable volume chamber 38, equal amount of via holes 342 as the containing troughs 353 are formed on the lower cover plate 34, and the via bole 342 connects the containing trough 353 to outside.
Thus, the oil can be supplied to the containing trough 353 via the via hole 342, and the oil can also be guided into the variable volume chamber 38 by the spacer 39 which has H shape cross section.
Besides, present embodiment adopts two off-center control panel set 3, 3a, as shown in FIG. 9. The off-center control panel 3 is defined as the first set, and the off-center control panel 3a is defined as the second set. According to the operating method mentioned above, the second off-center control panel 3a is arranged on the outer periphery of the first off-center control panel 3 to guide the second planet wheel 21a to self rotate. The difference is that the upper cover plate 33, the rotary disk 35, and the lower cover plate 34 of the first off-center control panel 3 ibm equal amount of ports 332, 354, and 341 as the second planet wheel 21a, and the second axial part 21 2a of the second planet wheel 21 a extends to the outside of the lower cover plate 34 of the first off-center control panel 3 in order to be guided by the rotary disk 35a of the second off-center control panel 3a. Except the differences mentioned above, the assembly of the ring housing 31a, the upper cover plate 33a, ring cover 32a, lower cover plate 34a, spacer 39a and casing tube 5a are the same as the first off-center control panel 3.
The method describe above can be used in the torque conversion of the transportation vehicle. The first axial rod I 01 can be used as the exterior engine power input terminal, and the -13 -second axial rod 432 can be used as the engine power output terminal. When the spacer 39 not yet enters the variable volume chamber 38 to cut off the oil, as shown in FIG. 10, and the exterior engine power input via the first axial rod 101 and solar wheel 10, as shown in FIGS. 11 and 12, the revolution and self rotation of the first planet wheel 21 and the second planet wheel 21a can be driven by the solar wheel 10. At the same time, the first planet wheel 21 self rotates and guides the rotary disk 35 of the first offcenter control panel set 3 to do the reciprocating movement. Meanwhile, the first guiding groove 314 arranged in the shell 30 restricts the first sliding member 241 of the first eccentric axis 213 to move in the first guiding groove 314, as shown in FIG. 13. The second guiding groove 331 which swings with the rotary disk 35 can restrict the second sliding member 242 of the second eccentric axis 214 to move in the second guiding groove 331, and &rther makes the first planet wheel 21 to self rotate. At this time, the revolution and the self rotation of the planet wheel 21 are in a balance condition, and the power output from the solar wheel 10 cannot be filly released. The first eccentric axis 213 moves with the rotation of the planet wheel 21. and via the first guiding groove 314 to guide the shell 30 to do the reciprocating movement in limited amplitude, as shown in FIGS. 14 and (5. The second eccentric axis moves with the rotation of the planet wheel 21, and via the second guiding groove 331 to guide the rotary disk 35 to do the reciprocating movement in limited amplitude, which makes a pendulum like reciprocating movement between the shell 30 and the rotary disk 35.
When the spacer 39 partially enters the variable volume chamber 38 to cut off the oil, as shown in FIG. 16, the spacer 39 can do the reciprocating movement with the rotary disk 35 to push or draw the medium, making the medium to fonri oil pressure, which dampens the relative reciprocating movement between the shell 30 and the rotary disk 35, forcing the planet wheel 21 not being able to freely self rotate. Thus, the rotation force of the planet wheel 21;vill increase with the revolution of the solar wheel 10, and the torque used to output the power from the planet wheel 21 via the second axial rod 432 will be increased. As such, the self rotation of the first -14 -planet wheel 21 and the revolution with the solar wheel 10 can be regulated, and the torque output can also be controlled by regulating the dampening force.
When the spacer 39 filly enters the variable volume chamber 38 to cut off the oil, as shown in FIG. 17, the variable volume chamber 38 is separated into 4 oil pressure chambers 381, 382, 383, 384, forcing the planet wheel 21 to be filly locked and not being able to self rotate. The planet wheel 21 does the revolution with the solar wheel 10 and fully responses the power of the solar wheel 10, and firther outputs the power of the solar wheel 10 via the planet wheel 21 and the second axial rod 432. At this time, the revolution power of the planet wheel 21 is the same as the power of the solar wheel tO, and the power can be output via the torque generated by the revolution of the planet wheel 21. When the exterior enginepower drives the second planet wheel 21a via the solar wheel 10, the second planet wheel 21a is also guided by the rotary disk 35a of the second off-center control panel set 3a, and the operation principle is the same as previous disclosure. When the first eccentric axis 213 and the second eccentric axis 214 of the first planet wheel 21 rotate without dampening force generating, the first eccentric axis 213a and the second eccentric axis 214a of the second planet wheel 21a have the maximum dampening force.
Therefore, the driving force of dampening generated by the first planet wheel 21 and the second planet wheel 21a is a composite function of sine function and cosine fbnction, and which means the driving force always exist.
The present invention can control the output of the driving Ibree by cutting off the oil or locking the planet wheels 21, 21a with damping. Present invention is a rigid hydraulic oil resistance torque converteç which is able to totally cut off the oil flowing, and the driving force can completely be reflected on the output power, lowering the power lost to nearly zero after the power conversion. The present invention can be applied to light or heavy mechanical equipment to enhance the power conversion efficiency and save lots of energy.
Please relbr to FIG. 18, the difference between the cross-section view of the second -15 -embodiment and the first embodiment of the present invention is that in the second embodiment, the first axial rod 101 can be arranged in a fixed base to be a fixed end, which restricts the rotation of the solar wheel 10. The second axial rod 432 can be a movable end which drives the planet wheels 21, 21a, as shown in FIGS. 5 and 6. The movable end can connect an exterior rotation mechanism and drive the planet wheels 21, 21 a to do the revolution and self rotation along the solar wheel 10, and other elements or configuration are the same as the first embodiment. The operation principle as described above can be applied to the rotation deceleration of the transportation vehicle. An axle 6 is used as the rotation mechanism in the present embodiment. When the power of the axle 6 inputs via the second axial rod 432 and the planet wheels 21, 21a, the planet wheels 21, 2la can be directly driven, and the rotary disks 35, 35a will do the reciprocating movement by the guiding of the self rotation of the planet wheels 21, 2la, and the planet wheels 21, 21a will do the revolution along the solar wheel 10.
When the spacers 39, 39a partially enter the variable volume chamber 38 (see FIG. 16), the damping force of the oil will slow down the self rotation of the planet wheels 21, 21a, and so do the revolution of the planet wheels 21, 2 Ia along the solar wheel 10, thus generating dampening force to slow down the axle 6. When the spacers 39, 39a fully enter the variable volume chamber 38 (see FIG. 17), the oil flowing in the chambers 381, 382, 383, 384 is completely cut ofl which locks the planet wheels 21, 21a with the solar wheel 10 and thrther stops the axle 6. Thus, by regulating the dampening force, the power input from the axle 6 can be dampened and the power of the axle 6 can be diminished. Other operation principles are the same as the first embodiment of the present invention. In the present embodiment, the dampening force of the oil can be used for deceleration. When the dampening force completely applied, the power will translate to the pressing force for compressing the oil, therefore only the friction heat of the flowing oil and the oil compressing heat will be generated. The heat will disperse in the whole annular chamber 36 to avoid the friction heat that concentrated on the friction surface of the traditional brake lining, and -16 -in addition to avoid the accidentally locked-up of rotation.
Referring now to FIG. 19, the difference between the cross-section view of the third embodiment and the first embodiment of the present invention is that the spacer 39b is integral as a whole or fixed to the periphery of the rotary disk 35b, and the spacer 39 separates the variable volume chamber 38 to compress or draw the medium. The first axial rod 101 of the solar wheel is used as power input terminal, and other elements and configurations are the same as the first embodiment. The operation principle as described above can be applied to a compressor. The separation part 37 and the spacer 39b separate the variable volume chamber 38 into Ibur compressing and drawing chambers 381, 382, 383, 384, and the medium in the present embodiment can be air or coolant. The chambers 381, 382,383, 384 are connected to the inlet or outlet pipes, respectively. When the power of a motor drives the planet wheels 21, 21a to self rotate via the first axial rod 101 and the solar wheel 10, the rotary disk 35b is guided by the self rotation of the planet wheels 21, 21a, making the spacer 39b to do the reciprocating movement with the rotary disk 35b in limited amplitude, and fbrther reeiprocatingly compress and drawing the air or coolant in the chambers 381, 382, 383, 384 in sequence. Air and coolant are discharged via output pipes after being compressed.
Additionally, the numbers of compressing and drawing in a rotation cycle can be set by the gear ratio of the solar wheel 10 and the planet wheels 21, 21a, and the numbers of the variable volume chambers 38. For example, the gear ratio is 1:1, and the variable chamber 38 is separated into four chambers 381, 382,383, 384. One circle rotation of the solar wheel 10 also makes the planet wheels 21, 21 a to rotate one circle as well. As such, four compressions and drawings can be made, and the other operation principles are the same as the first embodiment. By the volume changing of the chambers 381, 382, 383, 384 of the variable volume chamber 38, the compression and drawing operation are continuously and alternately changing, to achieve the goal of push-out and draw-in the air or the coolant, and further improves the compress-draw power, as well as the compress-draw efficiency.
Referring now to FIG. 20, the difference between the cross-section view of the fourth embodiment and the third embodiment of the present invention is that the center axle of the planet wheels 21, 21a can be pivoted on the first engagement part 301, as shown in FIGS. 5 and 6, and thus situated on the periphery of the solar wheel 10. Or, the center axle of the planet wheels 21, 21a can used the rotary disk 35b as a fixed end, and the planet wheels 21, 21a are pivoted on the periphery of the solar wheel 10. Or, the centcr axle of the planet wheels 21, 21a can also use the gear ring 23 as a fixed end, and the planet wheels 2 I, 21 a are pivoted on the periphery of the solar wheel 10. The first axial rod 101 of the solar \vheel tO is used as the power output terminal, and other elements or configurations are the same as the third embodiment of the present invention. Present embodiment can be applied to the switch chamber type internal combustion engine. The chambers 381, 382, 383, 384 can be used as the combustor of the cylinder. The medium can be thel oil. The chambers 381, 382, 383, 384 are connected to the inlet or outlet pipes for the fuel oil, respectively. The spacer 39b in the present embodiment can be used as I 5 piston. Therefore, there will be two volume decreased chambers and two volume increased chambers among the chambers 381, 382, 383, 384 at the same time. The fuel can be ignited in the chamber 381 of the variable volume chamber 38 to generate the explosive force, as shown in FIG. 9. The explosive force drives the spacer 39b to extend the chamber 381, making the spacer 39b to drive the rotary disk 35b to do the reciprocating movement in limited amplitude, which further guides the planet wheels 21, 2lato self rotate. By the self rotation of the planet wheels 21, 21a, the solar wheel tO and the first axial rod tOt can be driven to output the power. Meanwhile, the spacer 39b compresses the chamber 382 to force the chamber 382 to discharge the exhaust gas generated by burning fuel oil. The spacer 39b extends another chamber 383, forcing the chamber 383 to draw in the fuel oil. The spacer 39b compresses another chamber 384 to force the chamber 384 to compress the fuel oil. By way of this, drawing, compressing, explosion, and emission of the internal combustion can continuously and orderly happen, which can continuously drive the planet wheels 21, 21a to force rotation of the solar wheel 10. Other elements and configurations are the same as the third embodiment.
Thus, the chambers 381, 382, 383, 384 can be used as an air-drawing chamber, a compressing chamber, an explosion chamber, and an emission chamber, respectively. By continuously driving the planet wheels 21, 21 a, the solar wheel 10 and the first axial rod 101 can be driven to output the power. The cnhancement of the explosion power of the fuel oil can be transformed to improve the power output efficiency. Besides, the spacer 39b is a movable clement for doing the reciprocating movement in limited amplitude. The explosion power can simultaneously drive every spacer 39b, and so do the same planet wheels 21, 2lato generate the self rotation of the planet wheels 21, 21 a. Thus, the explosion power can completely transformed to the self rotation propelling power of the planet wheels 21, 21a, and the power lost is zero, which can improve the fuel burning efficiency and save energy.
While the invention has been described in connection with a number of embodiments and implementations, the invention is not so limited but covers various obvious modifications and equivalent arrangements, which fall within the purview of the appended claims. Although features of the invention are expressed in certain combinations among the claims, it is contemplated that these features can be arranged in any combination and order.
-19 -

Claims (12)

  1. WHAT IS CLAIMED 15: 1. A ring disk reciprocating power conversion device, comprising: a planetary gear set provided with a solar wheel and a plurality of planet wheels engaged in the periphery of the solar wheel; and at least one off-center control panel set, comprising: a rotary disk pivoted on a center axle of the solar wheel and arranged opposite to the planetary gear set, being able to receive guiding from seLf rotation of the planet wheel, forcing the rotary disk to do a reciprocating movement in limited amplitude; an annular chamber. fonned at interval in a periphery of the rotary disk, the annular chamber accommodating a press fbrining medium, wherein the medium is oil; more than one separation part, separating the annular chamber to ibrm more than one variable volume chambec and equal amount of spacer as the variable volume chamber, movably arranged in the periphery of the rotary disk, being able to enter the variable volume chamber to compress or draw the medium to regulate and stop the seWrotation of the planet wheel, and being able to leave the variable volume chamber to release the planet wheel for the self rotation.
  2. 2. The ring disk reciprocating power conversion device according to claim 1, wherein the center axle of the solar wheel is provided with a first axial rod, an end surftce of the planet wheel movably hitches a frame piece, and the center axle of the frame piece is provided with a second axial rod.
  3. 3. The ring disk reciprocating power conversion device according to claim 2, wherein the first axial rod is used as a power input terminal, the first axial rod can drive the planet wheel to self rotate via the solar wheel, and the second axial rod is used as a power output terminal to Iransfer the power of revolution of the planet wheeL
  4. 4. The ring disk reciprocating power conversion device according to claim I, wherein equal -20 -amount of containing trough as the spacer is formed in the periphery of the rotary disk to accommodate the spacer, anti the spacer can enter the variable volwne chamber via the trough or enter the trough to leave the variable volume chamber.
  5. 5. The ring disk reciprocating power conversion device according to claim 1, wherein the center axle of the rotary disk is provided with a casing tube, and the easing tube connects to the spacer to drive the spacer to enter or exit the variable volume chamber.
  6. 6. A ring disk reciprocating power conversion devicc, comprising: a planetary gear set provided with a solar wheel and a plurality of planet wheels engaged in the periphery of the solar wheel; at least one off-center control panel set, comprising: a rotary disk pivoted on a center axle of the solar wheel and arranged opposite to the planetary gear set, being able to receive the guiding from self rotation of the planet wheel, forcing the rotary disk to do a reciprocating movement in limited amplitude; an annular chamber, formed at interval in the periphery of the rotary disk, the annular chamber accommodating a press forming medium, wherein the medium is thel oil; more than one separation part, separating the annular chamber to lbrm more than one variable volume chamber; and equal amount of spacer as the variable volume chamber, fixed to the periphery of the rotary disk, the spacer separating the variable volume chamber and being able to compress or draw the medium.
  7. 7. The ring disk reciprocating power conversion device according to claim 6, wherein the center axle of the planet wheel is pivoted in a fixed position on the periphery of the solar wheel.
  8. 8. The ring disk reciprocating power conversion device according to claim I or 6, wherein the off-center control panel set is provided with a shell, an interior wall of the shell is provided with a corresponding first engagement part and a second engagement part, the planetary gear set -21 -is pivoted on the first engagement part, the. rotary disk is pivoted on the second engagement part, the annular chamber is fhnned between the peripFiery 01 the rotary disk and the interior wall of the shell, and one side of the rotary disk is corresponding to the planetary gear set.
  9. 9. The ring disk reciprocating power conversion device according to claim 8, further comprising: a plurality of first guiding grooves, using the solar wheel as a ee!rter and formed in the first engagement par. in a. ra4ieaE shape, respcctiveiy two end surfaces of the planet wheel being provided with an eccentric axis respectively, the eccentric axes being arranged on both sides of the center axle of the planet \vheel respectively; and a plurality of second guiding grooves, using the center axle of the rotary disk as a center and thrrned in the plate surtbce in a radical shape, the planet wheei via the eccentric axes being guided by the first guiding grooves and the second guiding grooves respectively to rotate, the rotary disk being guided by the eccentric axes to do the reciprocating movement via the second guiding grooves.
  10. 10. The ring disk reciprocating power conversion device according to claim 9, wherein the eccentric axis is pivoted with a sliding member, and the sliding member is slidably arranged in the first or the second guiding groove.
  11. 11. The ring disk reciprocating power conversion device according to claim 1 or 6, further comprising four planet wheels arranged on a periphery of the solar wheel, two off-center control panel sets, each of the off-center control panel sets leading two planet wheels to self rotate respectively, and two separation pails separating the annular chamber to form two variable volume chambers.
  12. 12. The ring disk reciprocating power conversion device according to claim 1 or 6, wherein the outer periphery of the planet wheel engages a self-rotatable gear rim, the two end surfaces of -22 -the gear rim are provided with a ring, respectively, the planet wheel is situated between the rings, the two end surfaces of the planet wheel movably hitching a frame piece, respectively, the frame piece situated in the ring. -23 -
GB1312527.3A 2011-12-16 2011-12-16 Disk reciprocating power conversion device Withdrawn GB2511586A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/002116 WO2013086662A1 (en) 2011-12-16 2011-12-16 Disk reciprocating power conversion device

Publications (2)

Publication Number Publication Date
GB201312527D0 GB201312527D0 (en) 2013-08-28
GB2511586A true GB2511586A (en) 2014-09-10

Family

ID=48611783

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1312527.3A Withdrawn GB2511586A (en) 2011-12-16 2011-12-16 Disk reciprocating power conversion device

Country Status (7)

Country Link
JP (1) JP6152512B2 (en)
CN (1) CN104024698B (en)
BR (1) BR112014008419A2 (en)
CA (1) CA2846687C (en)
DE (1) DE112011104699B4 (en)
GB (1) GB2511586A (en)
WO (1) WO2013086662A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642841B (en) * 2017-05-23 2018-12-01 劉文欽 Power converter with rotational force feedback control speed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129970A (en) * 1993-07-23 1996-08-28 安东诺夫汽车远东有限公司 Volumetric coupling device
CN1457410A (en) * 2001-02-14 2003-11-19 萨澳-丹佛斯·大金株式会社 Hydromechanical speed-change device and vehicle having speed change device mounted thereon
WO2004072512A1 (en) * 2003-02-14 2004-08-26 Deere & Company Four mode hydro-mechanical transmission
US20060287149A1 (en) * 2005-06-17 2006-12-21 Fengxiang Mao Hub motor
CN101413572A (en) * 2007-06-11 2009-04-22 赵宏坚 Mechanical and hydraulic combined transmission device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337220A (en) * 1976-09-17 1978-04-06 Hiroshi Fujii Engine
DE3700051A1 (en) * 1987-01-02 1988-07-14 Hartmann Johannes Infinitely variable transmission
US5512021A (en) * 1994-02-10 1996-04-30 Shash; Joseph L. Variable ratio transmission
JP2002004873A (en) * 2000-06-21 2002-01-09 Shigenobu Takane Internal combustion engine
US6905322B1 (en) * 2002-09-24 2005-06-14 Thermal Dynamics, Inc. Cam pump
US20090088280A1 (en) * 2007-09-28 2009-04-02 Kendall Alden Warren Variable delivery gear pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129970A (en) * 1993-07-23 1996-08-28 安东诺夫汽车远东有限公司 Volumetric coupling device
CN1457410A (en) * 2001-02-14 2003-11-19 萨澳-丹佛斯·大金株式会社 Hydromechanical speed-change device and vehicle having speed change device mounted thereon
WO2004072512A1 (en) * 2003-02-14 2004-08-26 Deere & Company Four mode hydro-mechanical transmission
US20060287149A1 (en) * 2005-06-17 2006-12-21 Fengxiang Mao Hub motor
CN101413572A (en) * 2007-06-11 2009-04-22 赵宏坚 Mechanical and hydraulic combined transmission device

Also Published As

Publication number Publication date
JP6152512B2 (en) 2017-06-28
CN104024698B (en) 2016-06-01
CA2846687A1 (en) 2013-06-20
CA2846687C (en) 2016-02-09
DE112011104699B4 (en) 2017-07-20
GB201312527D0 (en) 2013-08-28
CN104024698A (en) 2014-09-03
DE112011104699T5 (en) 2013-10-10
JP2015507117A (en) 2015-03-05
WO2013086662A1 (en) 2013-06-20
BR112014008419A2 (en) 2017-04-11

Similar Documents

Publication Publication Date Title
CA2333112C (en) Variable speed vehicle powertrains
CN101204918B (en) Powertrain comprising a rotary engine and planetary gear unit
US7614474B2 (en) Energy conversion apparatus for wheeled vehicles
US9194474B2 (en) Ring disk reciprocating power conversion device
CN1637310A (en) Torque transmitting unit and drive train for it
CN101054961B (en) Hydrostatic retarder pump and motor, and method for impriving vehicle efficiency
WO2009143707A1 (en) A dual-rotor engine
CN101635501A (en) Pre-positioning liquid cooling permanent-magnetic retarder for gear box
CN106286725B (en) Automatic transmission
CN201412407Y (en) Hydraulic cycloid motor with brake
GB2511586A (en) Disk reciprocating power conversion device
CN102322338B (en) Double-rotor rotary piston engine
CN111140332B (en) Engine cooling device
CN201234202Y (en) Pre-positioning liquid cooling permanent magnet retarder for transmission
CN208946090U (en) A kind of pneumatic tool
CN116123053A (en) Vortex expansion output device driven by multiple pistons
CN110925393B (en) Speed reduction device and loading and unloading machine
CN201442812U (en) Novel remote control pneumatic winch
CN101173630B (en) Combined rotating engine
CN213899787U (en) Vehicle driving energy-saving system
CN220523136U (en) Transmission case braking structure
CN201433794Y (en) Multi-purpose energy converter
CN116572728A (en) In-wheel motor drive arrangement and car
CN104234827A (en) Rotor engine
AU765021B2 (en) Variable speed vehicle powertrains

Legal Events

Date Code Title Description
789A Request for publication of translation (sect. 89(a)/1977)

Ref document number: 2013086662

Country of ref document: WO

WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)