GB2340314A - Semiconductor device directly connected to the conductor of an inductive arrangement - Google Patents

Semiconductor device directly connected to the conductor of an inductive arrangement Download PDF

Info

Publication number
GB2340314A
GB2340314A GB9902861A GB9902861A GB2340314A GB 2340314 A GB2340314 A GB 2340314A GB 9902861 A GB9902861 A GB 9902861A GB 9902861 A GB9902861 A GB 9902861A GB 2340314 A GB2340314 A GB 2340314A
Authority
GB
United Kingdom
Prior art keywords
output
trace
input
conductive winding
inductive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9902861A
Other versions
GB9902861D0 (en
Inventor
Kai-Hung Huang
Kuen-Feng Chen
Ko-Yu Hsiao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CNB981034985A priority Critical patent/CN1162877C/en
Priority to JP28375498A priority patent/JP3309214B2/en
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to GB9902861A priority patent/GB2340314A/en
Publication of GB9902861D0 publication Critical patent/GB9902861D0/en
Publication of GB2340314A publication Critical patent/GB2340314A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

2340314 CONTACT ASSEMBLY CONFIGURATION AND PROCESS FOR REDUCING LEAD WIRE
CONNECTIONS AND SOLDER JOINTS This invention relates generally to the structure and method of assembling a compact electronic device. More particularly, this invention relates to a new configuration and assembling process for manufacturing compact electronic assemblies with reduced lead-wire connections and solder joints to achieve improved operational power supply efficiency with better thermal performance and meanwhile achieving improved assembly reliability.
As many discrete components are interconnected by lead wires, which are soldered at solder joints to form the power supply systems, the power utilization efficiency and packing density are degraded when the number of solder joints are increased. In addition to the problems caused by interconnecting these discrete components by lead wires, the packaging configuration for each of these discrete components also involves the use of lead frame and wire bonding, which also requires solder joints. The difficulties of efficiency degradation and greater volume assemblies occupying larger space are compounded because of these packaging and assembling configurations.
Please referring to Fig. 1(A) for a circuit diagram of a forward converter commonly employed in a switching power supply (SPS). An induced current is generated and inputted to a inductor winding 12 from a secondary winding 10 1 via a transformer 10. A set of rectifiers I 11 and 112 then rectify the induced current to generate the output DC current to an output circuit (not shown) connected between a positive terminal (Vo) and a negative terminal (-Vo). The rectifiers I I I and 112 can either be a diode or a metal-oxide- semiconductor field effect
2 transistor (MOSFET). Fig. l(B) is a circuit diagram of an alternate forward converter arranged slightly differently than that of Fig. I (A).
Please referring to Fig. 2 for a perspective view of a packed MOSFET Ill according to conventional packaging process. An MOSFET die 21 is connected by bonding wires 241 and 242 to a source lead 231 and a gate lead 233 respectively provided on a lead frame.
The MOSFET power transistor 21 is supported on a copper tap 22. A drain of the power MOSFET is formed on the bottom surface of the substrate of the die 21 and is connected via the copper tab 22 to the lead 232. The MOSFET rectifier I I I is enclosed and protected in an epoxy molding 25. This packaged MOSFET rectifier 111 is then employed as a component and further assembled as part of the forward converter of Figs. I (A) or 1 (B), according to Fig. 3 as explained below.
Fig. 3 is a cross sectional view of an electronic assembly connected between a positive terminal +Vo and a negative terminal No for implementing a circuit as that shown in Fig. l(B). One end of the secondary winding 101 is connected to the copper trace 311 on the printed circuit board through solder joint 3 2 1. The source lead 23 1 of the MOSFET 111 is connected to the copper trace 3 11 through solder joint 322. Wire bonding 241 is exploited to connect source lead 231 and MOSFET die 21. The MOSFET die 21 is attached to the copper tab 22 through joint 3 23 and the copper tab 22 is supported and attached to a second copper trace 312 on the printed circuit board via joint 324.
One end of inductor winding 12 is connected to the copper trace 312 through solder joint 325. The other end of inductor winding 12 is connected to the positive terminal +Vo. According to the configuration of assembly shown above, there are multiple joints, i.e., solder joints 321, 322, 323, 324, and 325 composedof 3 Sn62%Pb36%Ag2%. For a power supply, these multiple joints electrically function as resistors and power losses at these joints significantly reduce the operational efficiency of the power supply systems. For a for-ward converter with regular size, an assembly as that shown in Fig. 3 results in a total resistance of approximately 875 micro ohms. Since the power loss is proportional to the resistance and the square of current, i.e., J2 R, for a power supply operated with higher current, the power loss becomes a significant design problem that cannot be overcome because of the configuration of assembly that involves so many interconnecting solder joints.
In addition to the problem of the power loss, the packing density of the power supply system is also adversely affected. The packing density is a function of the size of the components and the distance between the components. In a switching power supply system of high power density, there are multiple rectifiers arranged in parallel to increase the efficiency. The connecting traces connected between these joints thus occupy large percentage of the packaging space. As a conventional forward converter requires so many solder joints, the packing density cannot be easily reduced.
Therefore, an improved packaging and assembling configuration is still required to simplify the structure and interconnections of these discrete components. This simplified structure must be able to reduce the number of joints while providing stable and reliable interconnections.
It is further desirable that the improved configuration can be carried out in mass production processes that can be conveniently automated to further reduce the production cost of the assembled systems.
It is therefore an object of the present invention to provide a novel configuration and assembling process for interconnecting components 4 for an assembled system for reducing the interconnecting lead wires and solder joints such that the aforementioned limitations and difficulties encountered in the prior art can be overcome.
Specifically, it is an object of the present invention to provide a novel configuration and assembling process for interconnecting components for an assembled system by directly mounting electronic chips not-yet-packaged directly to conductive board for direct connecting to electric circuits formed on the copper straps. The conductive may be a copper strap. The lead wires that required for interconnecting the components and the corresponding solder joints for these lead wires are reduced.
Another object of the present invention is to provide a novel configuration and assembling process for interconnecting components for an assembled system by directly mounting electronic chips not-yet packaged to conductive boards for direct connecting to electric circuits formed on the conductive boards. The manufacture processes are simplified and more reliable assemblies are achieved because the lead wires required for interconnecting the components and that the corresponding solder joints for these lead wires are both reduced.
Another object of the present invention is to provide a novel configuration and assembling process for interconnecting components for an assembled system by directly mounting electronic chips not-yet packaged to conductive boards for direct connecting to electric circuits formed on the conductive boards. The assemblies manufactured with the novel configuration can be conveniently reduced in size and volume and achieve better form factors because the lead wires required for interconnecting the components and that the corresponding solder joints for these lead wires are both reduced.
According to the present invention, a compact electronic device is disclosed for carrying out an AC to DC conversion. The compact electronic device includes a winding, an electronic die integrated to the winding, and an output circuit electrically connected to the die.
Compared to conventional SPS systems, power loss is significant reduced because the input current transmitted to the winding is now configured to flow directly to the electronic die without connected through additional solder joints.
Briefly, in a preferred embodiment, the present invention discloses a forward converter for a SPS system. The forwarder converter includes a first and a second MOSFET power transistors. The forward converter further includes a secondary winding copper strap serving as an input for the forward converter and an inductor winding copper strap.
The first MOSFET power transistor is disposed with a drain directly on the secondary winding copper strap. The second power MOSFET is disposed with a drain directly on the inductor winding. A source of the first and a second MOSFET power device is connected to an output terminal. Thus the MOSFET power transistor dies are mounted directly on copper straps employed as inductor windings to reduce interconnecting solderjoints.
The present invention may best be understood through the following description with reference to the accompanying drawings, in which:
Figs. I(A) and I(B) are circuit diagrams for two alternate forward converters employed in an SPS; Fig. 2 is a perspective view of a packaged power MOSFET transistor with a source lead, a gate lead and drain lead commonly used in a conventional power supply system; 6 Fig.3 is a cross sectional view showing the joints of interconnections to construct a circuit as shown in Fig. I (A) implemented with a power MOSFET transistor of Fig, 2, Fig. 4 is an exploded perspective view of components provided for assembling into a forward converter of Fig. I according to a structure of this invention; Fig. 5 is a cross section view showing the structure and joints of connection for an assembly arranged according to a configuration as shown in Fig. 4; Figs. 6(A) and 6(B) are circuit diagrams of two half-bridge converters used in SPS system; and Fig. 7 is an exploded perspective view of components provided for assembling into a forward converter of Fig. 6(A) according to a structure of this invention.
Please refer to Fig. 4 for an exploded view of the output stage of a forward converter assembly according to the configuration disclosed in this invention. This forward converter is assembled with a compact assembly configuration. Instead of connecting several pre-packaged discrete components with lead wires, a totally new assembling technique is disclosed. The forward converter according to this new configuration includes a secondary winding structured by placing an upper and a lower core 311 and 312 respectively over a first copper strap winding 31. The forward converter further includes an output inductor winding structured by placing an upper and a lower core 321 and 322 respectively over a second copper strap winding 32. The secondary winding 101 supports a first MOSFET power transistor die 112 with a drain of the transistor placed directly on the copper strap winding 31. The inductor winding 12 supports a second MOSFET 7 power transistor die 111 with a drain of the transistor placed directly on the copper strap winding 32. The source terminals of the rectifying MOSFET chips I I I and 112 are wire bonded to an output terminal 3 3 connected to an negative output terminal No with the copper strap winding 32 of the inductor winding 12 connected to a positive terminal +Vo.
Fig. 5 is a side cross sectional view of a forward converter configured according a structure of the present invention by implementing a forward converter assembled according to Fig. l(B).
The MOSFET die I I I is connected to copper winding 12, which is part of the output inductor through solder joint 522. The source of MOSFET Ill is connected to copper winding 12, which is part of transformer secondary winding 101. The output current flows through 101, 53, 111, 522 and 12. In this case, solder pads 511 and 512 and solder joints 521 and 523 do not introduce any resistance to the current path, so the efficiency will be optimized. The assembly has a resistance approximately 165tn that is significantly lower than the resistance of a prior art package, e.g., less than one-fifth of the resistance
875tQ of a package of prior art forward converter.
The configuration as that shown in Fig. 4 and the assembling process as that shown in Fig. 5 can be applied to various kinds of electric devices that have windings and semiconductor chips. Another example of application are shown in Figs. 6(A) and 6(B) which are circuit diagrams of two different half-bridges converters usually used in SPS system. Either MOSFETs or diodes can be used as the rectifiers designated with numeral designations of 611 and 612. Fig. 6(B) shows a different arrangement of rectifiers included in Fig. 6(A) while the functions performed are similar.
8 Fig. 7 is an exploded view of pre-assembled components for assembling into the output stage of a half-bridge converter as that shown in Fig. 6(A). Instead of using the pre-packaged rectifiers as that usually implemented in the prior art, the rectifiers 611 and 612 are direly soldered to the windings 71, 72, and 73. Varieties of solders such as solders Sn63%Pb37%, Sn60%Pb4O%, Sn62%Pb36%Ag2%, Sn96.5%Ag3.5%, and Pb92.5%Sn5%Ag2% can be applied. Again, similar to that shown and discussed for Fig. 4, the copper winding 71, top core 711 and bottom core 712 form the one-turn transformer secondary winding 601 in Fig. 6(A). The copperwinding 72, top core 721 and bottom core 722 form the one-tum inductor 621 in Fig. 6(A).
The copper winding 73, top core 731 and bottom core 732 form the one turn inductor in Fig. 6(A). The unidirectional diode dice or the bi directional MOSFET transistor dice 611 and 612 are also electrically connected to the junction between 71 and 72, and between 71 and 73 respectively as the rectifiers.
According to the drawings and above description, this invention discloses an electronic device for rectifying input electric signals to generate rectified output signals. The electronic device further includes a rectifying integrated circuit (IC) chip(s) directly soldered onto to the winding-trace for processing the input electric signals provided for generating the rectified output signals. In another preferred embodiment, the input inductive circuit is an input one-turn inductive circuit which includes a top core and a bottom core for generating inductive input signals responding to the input electric signals. In another preferred embodiment, the electronic device farther includes an output circuit connected to the IC chip wherein the output circuit further includes output inductive circuit for generating inductive output signals 9 in response to the rectified output signals. In another preferred embodiment, the output inductive circuit is an output one-turn inductive circuit which further includes an output top core and an output bottom core for generating the inductive output signals. In a preferred embodiment, the input conductive winding-trace is a metal strip with metallic coating selected from a group consisting of nickel, gold and soldering metals. In yet another preferred embodiment, the rectifying IC chip is an unidirectional diode having an anode and a cathode wherein the cathode is soldered to the input conductive winding-trace.
In a different embodiment, the rectifying IC chip is a bi-directional MOSFET having a source and a drain with the drain directly soldered to the input conductive winding-trace. In another preferred embodiment, the rectifying IC chip is a bi-directional MOSFET having a source and a drain with the source directly soldered to the input conductive winding trace. This invention also discloses a power supply system. The power supply system includes a rectifier for rectifying input electric signals to generate rectified output signals. The rectifier further includes an input inductive circuit includes an input conductive winding-trace for receiving the input electric signals. A-nd, the rectifier further includes a rectifying IC chip directly soldered onto to the winding-trace for processing the input electric signals provided for generating the rectified output signals.
In summary, this invention discloses an electronic device having an inductive circuit and an IC chip. The inductive circuit includes a conductive winding-trace. And, the IC chip directly mounted on the conductive winding-trace. In a preferred embodiment, the inductive circuit further includes a top core disposed above the conductive winding-trace and a bottom core disposed below the conductive winding-trace to form a one-turn inductor. In another preferred embodiment, the electronic device further includes an output inductive circuit, connected to the inductive circuit, which includes an output conductive winding-trace. And, the output inductive circuit further includes an output top core disposed above the output conductive winding-trace and an output bottom core disposed below the output conductive winding-trace to form a one-tum output inductor.
The assembling and packaging processes are simplified by using the IC chip directly without requiring a pre-packaged unit as that commonly employed in the prior art. The soldering processes are reduced by directly mounting the IC chips on the copper windings implemented as part of inductors. The need for using copper tab and lead wires is also eliminated such that the resistance is greatly reduced and power utilization efficiency is significantly improved. Furthermore, the size of the assembly is reduced because different components are more densely integrated. The device structure and assembling configuration are particularly useful for high power density SPS.
Therefore, the present invention discloses a novel configuration and assembling process for interconnecting components for an assembled system for reducing the interconnecting lead wires and solder joints such that the limitations and difficulties encountered in the prior art are overcome. Specifically, a novel configuration and assembling process for interconnecting components for an assembled system is provided by directly mounting electronic chips not-yet-packaged directly to conductive traces for direct connecting to electric circuits formed on the conductive straps. The conductive straps may be a copper strap. The lead wires required for interconnecting the components and the corresponding solder joints for these lead wires are reduced. The I I manufacture processes are simplified and more reliable assemblies are achieved because the lead wires required for interconnecting the components and that the corresponding solder joints for these lead wires are both reduced. The assemblies manufactured with the novel configuration can be conveniently reduced in size and volume and achieve better form factors because the lead wires required for interconnecting the components and that the corresponding solder joints for these lead wires are both reduced.

Claims (20)

CLAIMS:
1. An electronic device for rectifying input electric signals to generate rectified output signals comprising:
an input inductive circuit includes an input conductive winding-trace for receiving the input electric signals; and a rectifying integrated circuit (IC) chip directly soldered onto to the winding-trace for processing the input electric signals provided for generating the rectified output signals.
2. The electronic device of claim 1 wherein the input inductive circuit is an input one-turn inductive circuit further including a top core and a bottom core for generating inductive input signals responding to the input electric signals.
3. The electronic device of claims 1 to 2 further comprising an output circuit connected to the IC chip wherein the output circuit further includes an output inductive circuit for generating inductive output signals in response to the rectified output signals.
4. The electronic device of claim 3 wherein the output inductive circuit is an output one-tum inductive circuit further includes an output top core and an output bottom core for generating the inductive output signals.
5. The electronic device of claims I to 4 wherein the input conductive winding-trace is a metal strip with metallic coating selected from a group consisting of nickel, gold and soldering metals.
6. The electronic device of claims I to 5 wherein the rectifying IC chip is an unidirectional diode having an anode and a cathode wherein the cathode is soldered to the input conductive winding-trace.
7. The electronic device of claims 1 to 5 wherein the rectifying IC chip is a bi-directional metal-oxide-semiconductor field effect transistor 13 (MOSFET) having a source and a drain with the drain directly soldered to the input conductive winding-trace.
8. The electronic device of claims I to 5 wherein the rectifying IC chip is a bi-directional MOSFET having a source and a drain with the source directly soldered to the input conductive winding-trace.
9. A power supply system comprising:
a rectifier for rectifying input electric signals to generate rectified output signals, wherein the rectifier further includes an input inductive circuit including an input conductive winding-trace for receiving the input electric signals, and the rectifier further includes a rectifying IC chip directly soldered onto to the winding-trace for processing the input electric signals provided for generating the rectified output signals.
10. The power supply system of claim 9 wherein the input inductive circuit is an input one-turn inductive circuit further including a top core and a bottom core for generating inductive input signals responding to the input electric signals.
11. The power supply system of claims 9 to 10 wherein the rectifier further includes an output circuit connected to the IC chip wherein the output circuit further includes an output inductive circuit for generating inductive output signals in response to the rectified output signals.
12. The power supply system of claim 11 wherein the output inductive circuit is an output one-tum inductive circuit including an output top core and an output bottom core for generating the inductive output signals.
13. An electronic device having an inductive circuit and an IC chip wherein the inductive circuit includes:
14 a conductive winding-trace; and the IC chip directly mounted on the conductive winding-trace.
14. The electronic device of claim 13 wherein the inductive circuit further includes a top core disposed above the conductive winding-trace and a bottom core disposed below the conductive winding-trace to form a one-turn inductor.
15. The electronic device of claims 13 to 14 ftirther comprising an output inductive circuit, connected to the inductive circuit, including an output conductive winding-trace, wherein the output inductive circuit further includes an output top core disposed above the output conductive winding-trace and an output bottom core disposed below the output conductive winding-trace to form a one-turn output inductor.
16. A method for assembling an electronic device with an inductive circuit and an IC chip comprising steps of:
(a) forming the inductive circuit with a conductive winding-trace; and (b) directly mounted the IC chip on the conductive winding-trace.
17. The method of claim 16 wherein the step (a) in forming the inductive circuit further includes a step of placing a top core above the conductive winding-trace and placing a bottom core below the conductive winding-trace to form a one-turn inductor.
18. The method of claims 16 to 17 further comprising steps of:
(c) forming an output inductive circuit with an output conductive winding-trace and connecting the output inductive circuit to the inductive circuit; and (d) placing an output top core above the output conductive winding trace and placing an output bottom core below the output conductive winding-trace to form a one-turn output inductor.
19. The method of claims 16 to 18 wherein the step (b) in directly mounting the IC chip on the conductive winding-trace is a step of soldering the IC chip directly onto the winding-trace.
20. The device substantially as hereinbefore described with reference to the accompanying Figs. 4, 5, and 7.
GB9902861A 1998-08-06 1999-02-09 Semiconductor device directly connected to the conductor of an inductive arrangement Withdrawn GB2340314A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB981034985A CN1162877C (en) 1998-08-06 1998-08-06 Winding with core tube
JP28375498A JP3309214B2 (en) 1998-08-06 1998-10-06 Winding assembly
GB9902861A GB2340314A (en) 1998-08-06 1999-02-09 Semiconductor device directly connected to the conductor of an inductive arrangement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNB981034985A CN1162877C (en) 1998-08-06 1998-08-06 Winding with core tube
JP28375498A JP3309214B2 (en) 1998-08-06 1998-10-06 Winding assembly
GB9902861A GB2340314A (en) 1998-08-06 1999-02-09 Semiconductor device directly connected to the conductor of an inductive arrangement

Publications (2)

Publication Number Publication Date
GB9902861D0 GB9902861D0 (en) 1999-03-31
GB2340314A true GB2340314A (en) 2000-02-16

Family

ID=66448270

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9902861A Withdrawn GB2340314A (en) 1998-08-06 1999-02-09 Semiconductor device directly connected to the conductor of an inductive arrangement

Country Status (3)

Country Link
JP (1) JP3309214B2 (en)
CN (1) CN1162877C (en)
GB (1) GB2340314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398181A (en) * 2003-02-04 2004-08-11 Transparent Engineering Ltd Nonplanar lead-frame; mounting magnetic components and a circuit board; lead-frame and heat sink

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662033B2 (en) * 2005-03-31 2011-03-30 Tdk株式会社 DC-DC converter
JP4735469B2 (en) * 2005-08-31 2011-07-27 Tdk株式会社 Switching power supply
US7623362B2 (en) * 2007-10-30 2009-11-24 Tdk Corporation Switching power supply unit
JP4895131B2 (en) * 2007-11-30 2012-03-14 Tdk株式会社 Coil set, switching power supply device, and method of manufacturing coil set
JP4862846B2 (en) * 2008-02-29 2012-01-25 株式会社デンソー Power transformer and inductance components
JP5217528B2 (en) * 2008-03-13 2013-06-19 パナソニック株式会社 Multiple inductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509109A (en) * 1982-09-13 1985-04-02 Hansen Thomas C Electronically controlled coil assembly
US4635179A (en) * 1985-10-25 1987-01-06 Eldec Corporation Transformer rectifier
EP0352969A2 (en) * 1988-07-29 1990-01-31 International Business Machines Corporation Plank and frame transformer
US4914561A (en) * 1989-02-03 1990-04-03 Eldec Corporation Dual transformer device for power converters
EP0726642A1 (en) * 1995-02-08 1996-08-14 AT&T Corp. High frequency surface mount transformer-diode power module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509109A (en) * 1982-09-13 1985-04-02 Hansen Thomas C Electronically controlled coil assembly
US4635179A (en) * 1985-10-25 1987-01-06 Eldec Corporation Transformer rectifier
EP0352969A2 (en) * 1988-07-29 1990-01-31 International Business Machines Corporation Plank and frame transformer
US4914561A (en) * 1989-02-03 1990-04-03 Eldec Corporation Dual transformer device for power converters
EP0726642A1 (en) * 1995-02-08 1996-08-14 AT&T Corp. High frequency surface mount transformer-diode power module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398181A (en) * 2003-02-04 2004-08-11 Transparent Engineering Ltd Nonplanar lead-frame; mounting magnetic components and a circuit board; lead-frame and heat sink

Also Published As

Publication number Publication date
JP3309214B2 (en) 2002-07-29
CN1244717A (en) 2000-02-16
GB9902861D0 (en) 1999-03-31
JP2000125563A (en) 2000-04-28
CN1162877C (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US6975023B2 (en) Co-packaged control circuit, transistor and inverted diode
US8339802B2 (en) Module having a stacked magnetic device and semiconductor device and method of forming the same
US8183662B2 (en) Compact semiconductor package with integrated bypass capacitor
USRE41869E1 (en) Semiconductor device
US9054086B2 (en) Module having a stacked passive element and method of forming the same
US7777315B2 (en) Dual side cooling integrated power device module and methods of manufacture
US5872403A (en) Package for a power semiconductor die and power supply employing the same
US20100212150A1 (en) Module Having a Stacked Magnetic Device and Semiconductor Device and Method of Forming the Same
US20100087036A1 (en) Module having a stacked passive element and method of forming the same
US5659462A (en) Encapsulated, integrated power magnetic device and method of manufacture therefor
JP2008545280A (en) Complete power management system mounted in a single surface mount package
US20110210708A1 (en) High Frequency Power Supply Module Having High Efficiency and High Current
US20090194857A1 (en) Thin Compact Semiconductor Die Packages Suitable for Smart-Power Modules, Methods of Making the Same, and Systems Using the Same
US8063472B2 (en) Semiconductor package with stacked dice for a buck converter
US5642276A (en) High frequency surface mount transformer-diode power module
US5986912A (en) Compact assembly configuration and process for reducing lead wire connections and solder joints
GB2340314A (en) Semiconductor device directly connected to the conductor of an inductive arrangement
JP2801810B2 (en) Resin-sealed semiconductor device
US7145223B2 (en) Semiconductor device
US8198134B2 (en) Dual side cooling integrated power device module and methods of manufacture
JP2020098811A (en) Semiconductor device and electric power conversion apparatus
CN221102080U (en) Power device
KR100235496B1 (en) Semiconductor package
JP3196829U (en) Complete power management system mounted in a single surface mount package
CN115955763A (en) Power module and electronic equipment of ball grid array encapsulation

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)