GB2232409A - Carbon black aggregate composition control - Google Patents

Carbon black aggregate composition control Download PDF

Info

Publication number
GB2232409A
GB2232409A GB9007714A GB9007714A GB2232409A GB 2232409 A GB2232409 A GB 2232409A GB 9007714 A GB9007714 A GB 9007714A GB 9007714 A GB9007714 A GB 9007714A GB 2232409 A GB2232409 A GB 2232409A
Authority
GB
United Kingdom
Prior art keywords
effluent
feedstock
temperature
lowered
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB9007714A
Other versions
GB2232409B (en
GB9007714D0 (en
Inventor
David J Kaul
Gregory T Gaudet
Allan C Morgan
William L Sifleet
William M Porteous
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of GB9007714D0 publication Critical patent/GB9007714D0/en
Publication of GB2232409A publication Critical patent/GB2232409A/en
Application granted granted Critical
Publication of GB2232409B publication Critical patent/GB2232409B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/50Furnace black ; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Confectionery (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Telephone Function (AREA)
  • Processing Of Solid Wastes (AREA)

Description

:2:2:2 -I e) c--= TANDEM QUENCH The present invention relates to a method
for controlling the aggregate size and structure of carbon blacks.
Carbon blacks are generally produced in a furnacetype reactor by pyrolyzing a hydrocarbon feedstock with hot combustion gases to produce combustion products containing particulate carbon black.
In one type of a furnace carbon black reactor, such as shown in U.S. Patent No. 3,401,020 to Kester et al., or U.S. Patent No. 2,785,964 to Pollock, hereinafter "Kester" and "Pollock" respectively, a fuel, preferably hydrocarbonaceous, and an oxidant, preferably air, are injected into a first zone and react to form hot combustion gases. A hydrocarbon feedstock in either gaseous, vapor or liquid form is also injected into the first zone whereupon pyrolysis of the hydrocarbon feedstock commences. In this instance, pyrolysis refers to the thermal decomposition of a hydrocarbon. The resulting combustion gas mixture, in which pyrolysis is occurring, then passes into a reaction zone where completion of the carbon black forming reaction occurs.
In another type of a furnace carbon black reactor, a liquid or gaseous fuel is reacted with an oxidant, 1 I preferably air, in the first zone to form hot combustion gases. These hot combustion gases pass from the first zone, downstream through the reactor, into a reaction zone and beyond. To produce carbon blacks, a hydrocarbonaceous feedstock is injected at one or more points into the path of the hot combustion gas stream. The hydrocarbonaceous feedstock may be liquid, gas or vapour, and may be the same or different than the fuel utilized to form the combustion gas stream. The first (or combustion) zone and the reaction zone may be divided by a choke or zone of restricted diameter which is smaller in cross sect-ion than the combustion zone or the reaction zone. The feedstock may be injected into the path of the hot combustion gases upstream of, downstrean of, and/or in the restricted diameter zone. Furnace carbon black reactors of this type are generally described in U.S. Patent Reissue No. 28,974 and U.S. Patent No. 3,922,335.
Although two types of furnace carbon black reactors and processes have been described, it should be understood that the present invention can be used in any other furnace carbon black reactor or process in which carbon black is produced by pyrolysis and/or incomplete combustion of hydrocarbons.
2 In both types of processes and reactors described above, and in other generally known reactors and processes, the hot combustion gases are at a temperature sufficient to effect pyrolysis of the hydrocarbonaceous feedstock injected into the combustion gas stream. In one type of reactor, such as disclosed in Kester, feedstock is injected, at one or more points, into the same zone where combustion gases are being formed. In other type reactors or processes the injection of the feedstock occurs, at one or more points, after the combustion gas stream has been formed. In either type of reactor, since the hot combustion gas stream is continually flowing downstream through the reactor, pyrolysis continually occurs as the mixture of feedstock and combustion gases pass through the reaction zone. The mixture of feedstock and combustion gases in which pyrolysis is occurring is hereinafter referred to, throughout th.e application, as "the effluent". The residence time of the effluent in the reaction zone of the reactor is sufficient, and under conditions suitable, to allow the formation of carbon blacks. "Residence time" refers to the amount of time which has elapsed since the initial contact between the hot combustion gases and the feedstock. After carbon blacks having the 3 desired properties are formed, the temperature of the effluent is further lowered to stop pyrolysis. This lowering of the temperature of the effluent to stop pyrolysis may be accomplished by any known manner, such as by injecting a quenching fluid, through a quench, into the effluent. As generally known to those of ordinary skill in the art, pyrolysis is stopped when the desired carbon black products have been produced in the reactor. One way of determining when pyrolysis should be stopped is by sampling the effluent and measuring its toluene extract level. Toluene extract level is measured by ASTM D1618-83 "Carbon Black Extractables Toluene Discolouration". The quench is generally located at the point where the toluene extract level of the effluent reaches an acceptable level for the desired carbon black product being produced in the reactor. After pyrolysis is stopped, the effluent generally passes through a bag filter system to separate and collect the carbon blacks. Generally a single quench is utilized. Rester, however, discloses the use of two quenches to control certain properties of carbon blacks. Rester relates to controlling the modulus-imparting properties of carbon blacks by heat treatment. This heat treatment is achieved by regulating the water flow rates to two water 4 spray quenches, positioned in series, in the effluent smoke in a carbon black furnace. The modulus of a carbon black relates to the performance of the carbon black in a rubber product. As explained in the article by Schaeffer and Smith, "Effect of Heat Treatment on Reinforcing Properties of Carbon Black" (Industrial and Engineering Chemistry, Vol. 47, No. 6; June 1955, page 1286). hereinafter "Schaeffer". it is generally known that heat treatment will effect the modulus-imparting properties of carbon black. However, as further explained in Schaeffer, the change in the modulus-imparting properties of carbon blacks produced by heat treating results from a change in the surface chemistry of the carbon blacks. Therefore, positioning the quenches as suggested by Kester, in order to subject the combustion gas stream to different temperature conditions, affects the modulusimparting properties of carbon black apparently by changing the surface chemistry of the carbon blacks rather than by affecting the morphology of the carbon blacks in any discernible way. Moreover, in Kester, both quenches are located in a position in the reaction zone where significant pyrolysis of the feedstock has already occurred. Thus, it would appear that, in Kester's process, by the time the effluent reaches the first quench, the CTAB, tint, DBP and Stokes diameter properties of the carbon blacks have been defined. This supports the conclusion that the change in the moduluBimparting properties in Kester does not result from a change in the morphological properties of the carbon blacks. Still further, Kester does not attach any significance to the position of the first quench, relative to the point of injection of feedstock or residence time, and does not disclose means for selecting 10 the position of the first quench.
U.S. Patent No. 4,230,670 to Forseth, hereinafter Forseth, suggests the use of two quenches to stop pyrolysis. The two quenches are located inches apart at the point where a single quench would be located. The purpose of the two quenches is to more completely fill the reaction zone with quenching fluid to more effectively stop pyrolysis. In Forseth however, by the time the effluent reaches the quenches, the CTAB, Tint, DBP and Stokes Diameter properties of the carbon blacks 20 have been defined.
U.S. Patent No. 4,285,870, to Hills et. al., and U.S. Patent No. 4,316, 876, to Mills et. al., suggest using a second quench located downstream of the first quench to prevent damage to the filter system.
6 In both patents the first quench completely stops pyrolysis and is located at a position generally known to the art,-and by the time the effluent reaches the first quench, the CTAB, Tint, DBP and Stokes Diameter properties of the carbon blacks have been defined. The second quench further reduces the temperature of the combustion gas stream to protect the filter unit.
U.S. Patent No. 4,358,289, to Austin, hereinafter "Austin", also relates to preventing damage to the filter '10 system by the use of a heat exchanger after the quench. In this patent also, the quench completely stops pyrolysis and is located at a position generally known to the art. In Austin, by the time the effluent reaches the first quench, the CTAB, tint, DBP and Stokes diameter properties of the carbon blacks have been defined.
U.S. Patent No. 3,615,211 to Lewis, hereinafter Lewis, relates to a method for improving the uniformity of carbon blacks produced by a reactor, and for extending the life of a reactor. To improve uniformity and extend reactor life, Lewis suggests using a plurality of quenches, located throughout the reaction zone, to maintain a substantially constant temperature in the reaction zone. A certain quantity of quenching fluid is injected at the quench located furthest upstream in the 7 reactor, with a greater amount of quenching fluid injected at each subsequent downstream quench. The quench located furthest downstream stops pyrolysis. By maintaining a constant temperature in the reaction zone the apparatus of Lewis promotes uniformity in the carbon blacks produced by the apparatus. However, the plurality of quenches does not control the morphology of carbon blacks produced by the apparatus.
It is generally desirable, however, to be able to control the morphology of carbon blacks such that carbon blacks well suited to a particular use may be produced. It is also desirable to increase the aggregate size and structure of carbon blacks for a given surface area, since increased aggregate size and structure, as represented by higher DBF, lower tint, and larger Stokes Diameter, makes the carbon blacks better suited for certain end uses.
Accordingly an object of the present invention is to provide a method for controlling the aggregate size and structure of carbon blacks.
An additional object of the present invention is to produce carbon blacks having larger aggregate size and higher structure for a given surface area.
8 We have discovered a method which achieves these desirable objects. We have discovered that we can control the morphology of carbon blacks produced in a furnace carbon black process, by lowering the temperature of the effluent without stopping pyrolysis, preferably up to about 426. 70C (000 degrees F,) within a specified residence time of up to about 0. 002 second downstream from the furthest downstream point of injection of feedstock. The lowering of the temperature may be -10 accomplished by locating a first quench at or within about 4 feet downstream of the furthest downstream point of injection of feedstock and injecting quenching liquid. According to the present invention the production of carbon blacks may be controlled to produce carbon blacks having specific morphological properties such as larger aggregate size and increased structure as shown by higher DBP, lower tint, and increased Stokes diameter for a given surface. area (CTAB). We have further discovered that these morphological properties of carbon blacks may be further controlled by varying the amount by which the temperature of the effluent is lowered and/or varying the residence time from the time of the furthest downstream injection of feedstock until the temperature of the effluent is lowered.
9 In more detail, the present invention relates to a method for controlling the aggregate size and structure of the carbon blacks produced by a furnace carbon black reactor by lowering the temperature of, but not stopping pyrolysis in, the effluent (the mixture of combustion gases and feedstock in which pyrolysis is occurring) at a residence time between 0. 0 second and 0.002 second, preferably between 0.0 and 0.0015 second, downstream from the furthest downstream point of injection of feedstock. The temperature of the effluent is lowered, within the above specified residence time, preferably up to 426.7-C (800 degrees F) and more preferably between 10 (50) and 426.7-C (800 degrees F). The temperature of the effluent may be lowered by a quench, preferably a quench injecting -15 quenching fluid into the effluent, located at point in the reactor whereby the effluent is quenched between 0.0 and 0.002 second, preferably between 0.0 and 0.0015 second, downstream from the furthest downstream point of injection of feedstock. Typically, in order for the effluent to be quenched within the specified residence time, the quench will be located at or within about 10.16cm (4 feet) from the furthest downstream point of injection of feedstock. The quench lowers the temperature of the effluent, preferably up to 426.7-C (800 degrees F), and morp preferably between 10 (50) and 426.7-C (800 degrees F), but does not stop pyrolysis. According to the present invention, the amount by which the temperature of the effluent is lowered and the residence time at which the lowering of the temperature of the effluent occurs say be varied independently or simultaneously to control the aggregate size and structure of carbon blacks being produced by the reactor. In a reactor using a quench, injecting a quenching fluid, to lower the temperature of the effluent within the specified residence times, this varying of the amount the temperature of the effluent is lowered and the residence time at which the lowering of the temperature of the effluent occurs may be accomplished by varying the quantity of quenching fluid injected from the quench and varying the location of the quench respectively. After carbon blacks with the desired properties have been formed pyrolysis is stopped.
The present invention allows the production of a carbon black product having larger aggregate size and structure for a given surface area than the carbon black products produced by a similar process wherein the temperature of the effluent is not lowered within the specified residence time.
11 An advantage of the process of the present invention is that the aggregate size and structure of carbon blacks may be controlled.
Another advantage of the process of the present invention is that carbon blacks having larger aggregate size and structure, as shown by higher DBP's, lower tints, and increased Stokes' diameters, for a given surface area, as shown by CTAB, may be produced.
One embodiment of the invention will now be described -10 with reference to the drawing which is a cross sectional view of the embodiment in a carbon black reactor, showing the location of a first and a second quench.
Although a portion of one type of carbon black reactor is depicted in the figure, as previously explained the present invention can be used in any carbon black furnace reactor in which carbon black is made by pyrolysis and/or incomplete combustion of hydrocarbons. Further, although the following description explains an embodiment of the present invention utilizing a quench, injecting a quenching fluid, to lower the temperature of the effluent, as will be understood by those of ordinary skill in the art, the present invention encompasses any method for lowering the temperature of the effluent, preferably by the amounts specified, within the specified residence -12 times from the point of injection of feedstock nearest the reaction zone. Similarly, although the following description describes using a second quench to stop pyrolysis, as will be understood by those of ordinary skill In the art, the present invention encompasses any method for stopping pyrolysis.
In the figure, a portion of a carbon black reactor 10, having, for example, a reaction zone 12, and a zone of restricted diameter 20, is equipped with a first quench 40, located at point 60, and a second quench 42, located at point 62, for injecting quenching fluid 50. The quenching fluid 50 may be the same or different for each quench. The direction of flow of the hot combustion gas stream through reactor 10, and zones 12 and 20 is shown by the arrow. Quenching fluid 50 can be injected by first quench 40 and second quench 42 counter-currently, or preferably co-currently, to the direction of the combustion gas stream. Point 14, is the furthest downstream point of injection of feedstock 30. As will be understood by those having ordinary skill in the art, 14, the furthest downstream point of injection of feedstock can be varied. The distance from 14, the furthest downstream point of injection of feedstock, to the point of the first quench 60 is represented by L-1 and the 13 distance from the furthest downstream point of injection of feedstock,' 14 to the point of the second quench 62 is represented by L-2.
According to the depicted embodiment of the present invention, the first quench 60 is positioned to lower the temperature of the effluent (the mixture of combustion gases and feedstock in which pyrolysis is occurring) no later than 0.002 second, and preferably between 0.0 and 0.0015 second, residence time from the furthest downstream point of injection of feedstock. Typically, in order for the effluent to be quenched within the specified residence time, the first quench will be located at or within about 1.22M (4 feet) from the furthest downstream point of injection of feedstock. Therefore L-1 will be between about 0.0 and about 1.22M (4 feet). Quenching fluid is injected through the first quench 60 in order to lower the temperature of the effluent, preferably by an amount up to 426.7-C (800 degrees F), more preferably by an amount between about 10 (50) and about 426.7-C (800 degrees F), provided, however, that the quenching fluid injected through first quench 60 will not stop pyrolysis.
Additionally, according to the present invention the residence time from the furthest downstream point of injection of feedstock until the temperature of the 14 effluent (the mixture of combustion gases and feedstock in which pyrolysis is occurring) is initially lowered, and the amount by which the temperature of the effluent is lowered, may be varied independently or simultaneously to control the aggregate size and structure of the carbon blacks produced by the reactor. In the embodiment of the present invention shown in the figure, varying L-1 will vary the residence time from the time of the furthest downstream injection of feedstock to the time at which the temperature of the effluent is lowered. By varying the amount of quenching fluid injected the amount by which the temperature of the effluent is lowered may be varied.
As explained in the preceeding paragraph, in the embodiment of the present invention shown in the figure, depending on the aggregate size and structure desired typically L-1 ranges from about 0.0 to about 1.22M (4 feet). Quenching fluid 50 lowers the temperature of the effluent.-preferably by an amount up to about 426. 7-C (800 degrees F), more preferably by an amount between about 10 (50) and about 426.7-C (800 degrees F), provided, however, that pyrolysis will not be stopped at first quench 60 by the quenching fluid 50.
After carbon blacks with the desired properties have been produced pyrolysis is stopped at point 62 by quench 42. Point 62 is a point at which carbon blacks having the desired properties have been produced by the reactor.
As previously explained, point 82 may be determined in any manner known to the art, for selecting the position of a quench which stops pyrolysis. One method for determining the position of the quench which stops pyrolysis is by determining the point at which an acceptable toluene extract level for carbon black products desired from the reaction is achieved. Toluene extract level may be measured by using ASTM Test D1618-83 "Carbon Black Extractables - Toluene Discolouration". L-2 will vary according to the position of point 62.
The effectiveness and advanatges of the present invention will be further illustrated by the following example. EXAMPLE To demonstrate the effectiveness of the present invention experiments were conducted in a carbon black production process utilizing two quenches and varying the residence time from the time of the further downstream injection of feedstock until the time the temperature of the effluent was lowered and the amount by which the 16 temperature of the effluent was lowered. This residence time was varied by varying L-1. The process variables for, and the results of, the two sets of carbon black runs in the experiments, are summarized in the Table set forth below. Set I comprises runs 1, 2 and 3 and Set II comprises runs 4, 5 and 6.
17 T A B L E Res.
Time RuN sur (sec) 20) ( 4.2) 732 (1350) 109.2 120.5 68 1437.8 (26911437.8 2620) 1.28 0007 1437.8 (2620) 0.43 (1.4) 1215.6 (2220) 5.18 (17.0) 732 (1350) 100.7 110.6 45 1437.8 (2620) 0.305(1.0) 1215.6 (2220) 6.09 (20.0) 732 (1350) 94.3 102.2 73 1410 (2570) -- 1410 (2570) 4.57 (15.0) 732 (1350) 91.6 114.6 77 11.0004 1410 (2570) 0.305.U.0) 1243.3 (2570) 10.36 (34.0) 732 (1350) 93.4 106.1 78 6.0004 1410 (2570) 0.305(1.0) 1187.8 (2170) 10.97 (36.0) 732 (1350) 91.4 105.0 41 2 1 3 4 Temp. Before lst Quench OC (IF) Temp.
Af ter lst Quench lst Quench 2nd Quench m (ft) 9C ( 0 F) M (ft) Temp. Af ter 2nd Quench Tol.
1C ('F) crAB Tint Disc.
D sit. Fluff y MBP ryn WP 109.5 98.8 186 110.0 109.6 205 113.4 126.9 232 95.2 94.1 148 106.4 101.5 213 107.1 103.3 220 SET I: Preheat = 482.20C (9000F), Gas=71 scfh: r = 80 kscfh:Air/Gas = 11. 11: Primary Combustion = 123%:
Combustion Zone Vol. = 2.407xlO m (85 ft Injection Zone Diameter = 10E7cm (4.2in):
Injection Zone Le Combustion Gas Velocity in Injetion Zone = 609.6 m/s (2000 ft/sec):
ingth 0.305 (12 in): oil = 4.73 x 10 m /h (125gph): Oil Injection Pressure = 16.17 kgf/cm (230 psig); of oil tips = 4: Oil tip diameter 1. 067m (0.042 in): Reaction Zone Diameter = 0.343m (13.5 in).
The liquid feedstock (oil) had the following composition: H/C Ratio = 91: Hydrodgen = 6.89 wt.%,7.00 wt.%, Carbon = 19.1 wt.',., 90.8 wt.%: Sulfur = 1.1 wt.%; API Gravity 15.6/15.6 C(60F) = 5.0: RW-I (Visc.Grav) = 141 SET II: Preheat = 593.30C (1100oF): Gas 2 3.5 kscfhi Air = 80 kscfh: Air/Gas = 10.6: Primary Combistion = 118% Combustion Zone Vol. = 2.407 x 10 m = (85ft.): Injection Zone Diameter 0.67 cm (4.2 in): Injection Zone;, eqgth = 0.305m (12 in): Combustion Gas Velocity in Inlection Zone = 701. 9m/s (2300 ft/sec): Oil = 5.151xlO "M/h (136 gph): Oil Injection Pressure = 18.98 kgf/cm (270 psig),--,4'- of oil tips = 4: Oil tip diameter = 1. 067mm (0.042 in): Reaction Zone Diameter = 0.152m (6 in).
The liquid feedstock (oil) had the following ccrnposition H/C Ratio = 1. 06: H8drogen = 7.99 wt.% 7.99 wt.% Carbon = 89.7 wt.%89.5 wt.%: Sulfur = 0.5 wt.%.. API Gravity 15.6/15.6 C(60 F) = 0.5: ErCI (Visc.Grav) = 123 In both Set 1 and Set 11 the fluid fuel utilized in the combustion reaction was natural gas, having a methane content of 95.44% and a wet heating value of 925 BTU/SCF.
As will be generally understood by those of ordinary skill in the art, the process cariables set forth in the Table represent the variable at one point in the reactor and are determined in the manner generally known. Each set of carbon black runs was made in a carbon black reactor similar to the reactor disclosed in Example I of U.S. Patent No. 3,922,335 with the exceptions as noted in the Table.
In the Table, Q refers to Quench 1st QM (ft.) refers to L-1, the distance from the furthest downstream point of injection of feedstock to the first quench. Temperature Before Ist Quench (Temp. Bef. lst Q) refers to the temperature of the effluent before the Ist quench, and Temperature After Ist Quench (Temp. Aft. Ist Q) and Temperature After 2nd Quench (Temp. Aft. 2nd Q) refer to the temperature of the effluent after the Ist quench, and the temperature of the mixture of feedstock and combustion gases after the 2nd quench, respectively. All temperatures relating to quenching are calculated by conventional, well known, thermodynamic techniques. Residence Time (Res. Time), in the Table, refers to the amount of time after furthest downstream point of injection of feedstock, which elapsed before the temperature of the effluent was initially lowered. 2nd QM (ft.) refers to L-2 and was empirically determined 19 using the toluene extract level. After each run the carbon blacks produced were collected and analysed to.determine CTAB, tint, Dst (median Stokes diameter), CUP, Fluffy DBP and Toluene Discolouration. The results for each run, are shown in the Table.
CTAB was determined according to ASTH Test Procedure D3765-85. Tint was determined according to ASTH Test Procedure D3265-85a. DBP of the fluffy blacks was determined according to the procedure set forth in ASTH D-2414-86. CDBP was determined according to the procedure set forth in ASTH D 3493-88. Toluene Discolouration was determined according to ASTH Test Procedure D1618-63.
Dst (median Stokes diameter) was determined with disc centrifuge photosedimentometry according to the following description. The following procedure is a modification of the procedure described in the Instruction Manual for the Joyce-Loebl Disc Centrifuge, File Ref. DCF4.008, published 1 Feb. 1985, available from Joyce-Loebl Company. (Marquizway, Team Valley, Gatezhead,
Tyne & Wear. England), the teachings of which are hereby incorporated by reference. The procedure is as follows. 10mg (milligrams) of a carbon black sample are weighed in a weighing vessel, then added to 5Occ of a solution of 10% absolute ethanol, 90% distilled water which is made 0.05% 1 NONIDET P-40 surfactant (NONIDET P-40 is a registered trade mark for a surfactant manufactured and sold by Shell Chemical Co). The suspension is dispersed by means of ultrasonic energy for 15 minutes using Sonifer Model 5 No. W385, manufactured and sold by Heat Systems Ultrasonics Inc., Farmingdale, New York. Prior to the disc centrifuge run the following data are entefed into the computer which records the data from the disc centrifuge:
1. The specific gravity of carbon black, taken as 1.86 g/cc; 2. The volume of the solution of the carbon black dispersed in a solution of water and ethanol, which in this instance is 0.5 cc; 3. The volume of spin fluid, which in this instance is 10cc of water; 4. The viscosity of the spin fluid, which in this instance is taken as 0. 933 centipoise at 23 degrees C; 5. The density of the spin fluid, which in this 20 instance is 0.9975 g/cc at 23 degrees C; 6. The disc speed, which in this instance is 8000 rpm; 7. The data sampling interval, which in this instance is I second.
21 The disc centrifuge is operated at 8000 rpm while the stroboscope is operating. 10cc of distilled water are injected into the spinning disc as the spin fluid. The turbidity level is set to 0; and Icc of the solution of 10% absolute ethanol and 90% distilled water is injected as a buffer liquid. The cut and boost buttons of the disc centrifuge are then operated to produce a smooth concentration gradient between the spin fluid and the buffer liquid and the gradient is monitored visually.
When the gradient becomes smooth such that there is no distinguishable boundary between the two fluids, 0.5cc of the dispersed carbon black in aqueous ethanol solution is injected into the spinning disc and data collection is started immediately. If streaming occurs the run is aborted. The disc is spun for 20 minutes following the injection of the dispersed carbon black in aqueous ethanol solution. Following the 20 minutes of spinning, the disc is stopped, the temperature of the spin fluid is measured, and the average of the temperature of the spin fluid measured at the beginning of the run and the temperature of the spin fluid measured at the end of the run is entered into the computer which records the data from the disc centrifuge. The data is analysed according to the 22 1 standard Stokes equation and is presented using the following definitions:
Carbon black aggregate - a discreet, rigid colloidal entity that is the smallest dispersible unit; it is composed of extensively coalesced particles; Stokes diameter - the diameter of a sphere which sediments in a viscous medium in a centrifugal or gravitational field according to the Stokes equation. A non-spherical object, such as a carbon black aggregate, so may also be represented in terms of the Stokes diameter if it is considered as behaving as a smooth, rigid sphere of the same density, and rate of sedimentation as the object. The customary units are expressed asnm diameters.
Median Stokes diameter (Dst for reporting purposes) - the point on the distribution curve of Stokes diameter where 50% by weight of the sample is either larger or smaller. It therefore represents the median value of the determination.
As shown in the Table the present invention allowed production of cabon blacks with increased CDBP's, fluffy DBP's and Dst's and decreased tints as compared to the carbon blacks produced by the control carbon black process runs, I and 4, utilizing a single quench. This indicates that carbon blacks of the present invention are 23 characterized by increased aggregate size and structure. Further, as shown by the results for Set II, the present invention allowed for the production of carbon blacks having increased CDBP's, fluffy DBP's and Dst's and decreased tints for a relatively constant CTAB. This indicates that the present invention produced carbon blacks with increased aggregate size and structure for a given CTAB.
As shown by the results for Set I, the present invention produced carbon blacks with increased CDBP's, fluffy DBP's and Dst's and decreased tints as compared to the carbon blacks produced by the control carbon black process run 1 at differing residence times at which the temperature of the effluent was initially lowered by the -15 same amount.
Since the present invention relates to a process for controlling the aggregate size and structure of carbon blacks, numerous variations and modifications may obviously be made in the above described carbon black production runs without departing from the present invention.
24

Claims (1)

  1. A process for controlling the aggregate size and structure of carbon blacks comprising:
    passing a stream of hot combustion gases through a reactor; injecting feedstock into the stream of hot combustion gases at one or more points to form an effluent and start pyrolysis of the feedstock in the effluent; lowering the temperature of the effluent at a first point within a time period of.002 second downstream from the furthest downstream point of injection of feedstock, without stopping the pyrolysis of the feedstock in the effluent. 2. The process of claim I wherein the temperature of the effluent is lowered by an amount up to 428.7-C (800 degrees F). 3. The process of claim 1 wherein the temperature of the effluent is lowered by an amount between 10-C (50) and 426.7-C (800 degrees F).
    4. The process f any one of claims 1 - 3 wherein the temperature of the effluent is lowered within a time period of between 0.0 and 0.0015 second from the furthest downstream point of injection of feedstock.
    11 T 7 5. The process of any one of claims I - 4 wherein the temperature of the effluent is lowered by injecting a quenching fluid. G. A process for producing carbon blacks having controlled aggregate size and structure comprising: passing a stream of hot combustion gases through a reactor; injecting feedstock into the stream of hot combustion gases at one or more points to form an effluent and start pyrolysis of the feedstock in the effluent; lowering the temperature of the effluent at a first point within a time period of.002 second downstream from the furthest downstream point of injection of feedstock, without stopping the pyrolysis of the feedstock in the effluent; further lowering the temperature of the effluent at a second point, downstream of the first point, to stop pyrolysis of the feedstock in the effluent; and separating and collecting carbon black product.
    7. The process of claim 6 wherein the temperature of the effluent is lowered by an amount up to 426.7-C (800 degrees F). 8. The process of claim 7 wherein the temperature of the effluent is lowered by an amount between 10-C (50) and 426.7-C (800 degrees F).
    2G 1 9. The process of claim 7 or 8 wherein the temperature of the effluent is lowered within a time period of between 0.0 and 0.0015 second from the furthest downstream point of injection of feedstock. 10. The process of claim 7, 8, 9 or 10 wherein the temperature of the effluent is lowered by injecting a quenching fluid.
    1 2-7 Pub'ished 1990w. The Paten, Oflice. State House. 66 71 High Holborn. LondonWCIR4TP.Iurther copies maybe obtained from The Patent Office. Sales Branch, St Mary Cray, Orpington. Kent BR5 3RD. Printed by Multiplex techniques ltd, St Mary Cray, Kent, Con. 1/87
GB9007714A 1989-04-06 1990-04-05 A process for producing carbon blacks Expired - Fee Related GB2232409B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33414489A 1989-04-06 1989-04-06
US37072389A 1989-06-23 1989-06-23

Publications (3)

Publication Number Publication Date
GB9007714D0 GB9007714D0 (en) 1990-06-06
GB2232409A true GB2232409A (en) 1990-12-12
GB2232409B GB2232409B (en) 1992-10-14

Family

ID=26989058

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9007714A Expired - Fee Related GB2232409B (en) 1989-04-06 1990-04-05 A process for producing carbon blacks

Country Status (22)

Country Link
JP (1) JPH0749541B2 (en)
KR (1) KR930005684B1 (en)
CN (1) CN1050855C (en)
AR (1) AR245477A1 (en)
AU (1) AU625117B2 (en)
BE (1) BE1002548A3 (en)
BR (1) BR9001575A (en)
CA (1) CA2012627C (en)
CZ (1) CZ284688B6 (en)
DE (1) DE4010776A1 (en)
ES (1) ES2020713A6 (en)
FR (1) FR2645542B1 (en)
GB (1) GB2232409B (en)
HU (1) HUT55316A (en)
IT (1) IT1240745B (en)
NL (1) NL9000500A (en)
PE (1) PE3991A1 (en)
PL (1) PL163727B1 (en)
PT (1) PT93676A (en)
RO (1) RO113148B1 (en)
SE (1) SE9001090L (en)
TR (1) TR24400A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281293A (en) * 2003-03-18 2004-10-07 Tokai Rubber Ind Ltd Hose material for fuel cell system and hose for fuel cell system using the same
JP5027989B2 (en) * 2004-03-25 2012-09-19 旭カーボン株式会社 Manufacturing method of carbon black for tire tread
JP5697304B2 (en) * 2008-12-17 2015-04-08 旭カーボン株式会社 Production method of carbon black
JP2010144011A (en) * 2008-12-17 2010-07-01 Asahi Carbon Kk Carbon black to be compounded with tire tread rubber, rubber composition for tire using the same and tire for automobile
JP2010144003A (en) * 2008-12-17 2010-07-01 Asahi Carbon Kk Method of manufacturing carbon black, carbon black obtained by the method, and rubber composition containing the carbon black
JP5887096B2 (en) * 2011-10-06 2016-03-16 旭カーボン株式会社 Production method of carbon black

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401020A (en) * 1964-11-25 1968-09-10 Phillips Petroleum Co Process and apparatus for the production of carbon black

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2785964A (en) * 1953-08-17 1957-03-19 Phillips Petroleum Co Process, apparatus, and system for producing, agglomerating, and collecting carbon black
US3211532A (en) * 1962-03-12 1965-10-12 Phillips Petroleum Co Carbon black furnace
US3376111A (en) * 1964-08-17 1968-04-02 Phillips Petroleum Co Production of high structure furnace carbon black
AU1991967A (en) * 1967-04-05 1968-10-10 Union Carbide Corporation Manufacture of carbon black
DE1592864C3 (en) * 1967-08-11 1975-05-22 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Method of making FurnaceruB
US3615211A (en) * 1968-01-12 1971-10-26 Ashland Oil Inc Method and apparatus for manufacture of carbon black
DE2106912C2 (en) * 1970-02-19 1986-06-05 Cabot Corp., Boston, Mass. Device for the production of furnace black
US3663172A (en) * 1970-06-29 1972-05-16 Cities Service Co Carbon black production process
US3734999A (en) * 1971-10-21 1973-05-22 Phillips Petroleum Co Control of carbon black quality
JPS5413233A (en) * 1977-07-01 1979-01-31 Toshiba Corp Non-volatile semiconductor memory unit
DE2944855C2 (en) * 1979-11-07 1986-10-16 Degussa Ag, 6000 Frankfurt Process for the production of furnace blacks with a lowered structure
EP0175327B1 (en) * 1984-09-21 1990-11-22 Mitsubishi Kasei Corporation Process for producing carbon black

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401020A (en) * 1964-11-25 1968-09-10 Phillips Petroleum Co Process and apparatus for the production of carbon black

Also Published As

Publication number Publication date
CN1046921A (en) 1990-11-14
IT9019959A1 (en) 1991-10-06
AU625117B2 (en) 1992-07-02
SE9001090D0 (en) 1990-03-26
JPH0749541B2 (en) 1995-05-31
GB2232409B (en) 1992-10-14
FR2645542B1 (en) 1994-02-11
JPH0362858A (en) 1991-03-18
PL163727B1 (en) 1994-04-29
GB9007714D0 (en) 1990-06-06
AR245477A1 (en) 1994-01-31
IT9019959A0 (en) 1990-04-06
ES2020713A6 (en) 1991-09-01
CZ161590A3 (en) 1998-11-11
HUT55316A (en) 1991-05-28
KR930005684B1 (en) 1993-06-24
IT1240745B (en) 1993-12-17
TR24400A (en) 1991-09-01
RO113148B1 (en) 1998-04-30
BR9001575A (en) 1991-04-30
DE4010776A1 (en) 1990-10-11
HU902100D0 (en) 1990-07-28
BE1002548A3 (en) 1991-03-19
FR2645542A1 (en) 1990-10-12
SE9001090L (en) 1990-10-07
PE3991A1 (en) 1991-03-06
PT93676A (en) 1990-11-20
NL9000500A (en) 1990-11-01
CA2012627C (en) 1995-08-08
CZ284688B6 (en) 1999-02-17
CA2012627A1 (en) 1990-10-06
CN1050855C (en) 2000-03-29
KR900016395A (en) 1990-11-13
AU5256890A (en) 1990-10-11

Similar Documents

Publication Publication Date Title
US5879650A (en) Tandem quench
KR0145728B1 (en) Carbon blacks and rubber compositions containing the carbon blacks
JP2695701B2 (en) Carbon black with improved performance
US3959008A (en) Carbon black
CA1309229C (en) Process for producing carbon black
WO1993010194A1 (en) Carbon blacks
IE52570B1 (en) Production of carbon black
WO2008133888A1 (en) Low structure carbon black and method of making same
US3988478A (en) Carbon black
US4327069A (en) Process for making carbon black
CN1125459A (en) Process for producing carbon blacks
GB2232409A (en) Carbon black aggregate composition control
US6086841A (en) Process for producing carbon blacks
CA1189469A (en) Apparatus for producing bulk mesophase
US3307911A (en) Production of carbon black
US2896261A (en) Method of cooling and granulating petroleum pitch
EP0384080A2 (en) Reactor and method for production of carbon black with broad particle size distribution
KR950010652B1 (en) High-quality coloring carbon-black and process for its production
KR930008202B1 (en) Process for producing carbon black
US3832450A (en) Carbon black process
US4069298A (en) Carbon black producing method
US4696685A (en) Filter bag preparation
JP2582879B2 (en) Manufacturing method of furnace carbon black
US3996063A (en) Method for removing coke from fluid coker outlets
US2967090A (en) Production of carbon black

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19960405