GB2052723A - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
GB2052723A
GB2052723A GB8017469A GB8017469A GB2052723A GB 2052723 A GB2052723 A GB 2052723A GB 8017469 A GB8017469 A GB 8017469A GB 8017469 A GB8017469 A GB 8017469A GB 2052723 A GB2052723 A GB 2052723A
Authority
GB
United Kingdom
Prior art keywords
flow
tube
heat exchanger
plate heat
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8017469A
Other versions
GB2052723B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPX Flow Technology Crawley Ltd
Original Assignee
APV Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APV Corp Ltd filed Critical APV Corp Ltd
Priority to GB8017469A priority Critical patent/GB2052723B/en
Publication of GB2052723A publication Critical patent/GB2052723A/en
Application granted granted Critical
Publication of GB2052723B publication Critical patent/GB2052723B/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In a stacked-plate heat exchanger, particularly one with a plate pack having, a large number of plates, one of the problems is uneven fluid distribution between the plate interspaces e.g. 3. In accordance with the invention in order to provide an adequate fluid supply to those flow spaces 3 more remote from the inlet/outlet end of a pack having a U- shaped flow arrangement (e.g. as shown) for one at least of the fluids, there is provided in the inlet duct 1 for said fluid a distribution insert 9, adapted to provide increased fluid flow to said more remote spaces 3. The insert 9 preferably comprises a tube 12 having external fins 15, an external annulus 17 and a flow straightening extension 18 mounted on locating rods 13a. In the fluid discharge duct 4 of the heat exchanger there may be provided a collector comprising a flow controlling insert 11 also in the form of a tube, having an inlet aperture 23 and an external annulus 22. <IMAGE>

Description

SPECIFICATION Improved plate heat exchanger This invention relates to plate heat exchangers.
A plate heat exchanger, as the term is normally understood, includes a separable pack of gasketed plates arranged in spaced, face-to-face relationship to define flow spaces between adjacent plates. The plates have aligned holes or ports which form ducts for the supply and discharge of media, the gasketing being so arranged that the supply and discharge dusts of one medium are in communication with alternate flow spaces while those of the other medium are in communication with the intervening flow spaces.
The plates are normally pressed out from sheet of corrosion-resistant material such as stainless steel or titanium.
One problem arising with plate heat exchangers, particularly with large numbers of plates in a pass in that the flow of either or both media will not be evenly distributed between the flow spaces arranged in parallel. This phenomenon is known as port losses and leads to deviation from designed performance and possible damage to feed liquids, e.g. food liquids, which may be vulnerable to thermal degradation. The under-use of particular flow spaces leads to an unnecessarily high pressure drop across the heat exchanger, with consequent wastage of power or reduction in flow.
The nature of the maldistribution varies with the arrangement. With a symmetric or U arrangement, in which the flow feed and discharge for the medium in question are at the same end of the pack of plates forming the pass, the easier flow path, which is therefore preferentially used, is in flow passages nearer the feed and discharge end. In an asymmetric or Z arrangement a different problem arises.
In order to understand the distribution in the ports or ducts of a plate heat exchanger it is necessary to envisage each duct as a very rough pipe. This gives rise to an effect at a pressure drop along the length af the inlet duct away from the feed end and along the length of the discharge duct towards the discharge end. In addition there is the momentum effect arising from the change in fluid flow rate, i.e. a drop in the flow rate in the inlet duct in the direction away from the inlet end and a rise in the flow rate in the discharge duct towards the discharge end. The variations in pressure due to these effects are in opposite directions in the inlet duct giving rise to a difference effect. However, they are in the same direction in the discharge duct giving rise to an additive effect.
The net result of this in a U arrangement (symmetric) of plates is a fairly constant, either slightly falling or rising, pressure along the inlet duct away from the feed end. In the discharge duct the pressure falls sharply towards the outlet end, which is the same as the feed end of the inlet duct. Accordingly, the greatest pressure drop is near the feed and discharge end of the pack, so that flow is preferentially taking place at and near that end of the pack and the flow spaces at the other end are partiaily starved. With heat exchangers having a comparatively small number of plates, i.e. up to a few dozen, this is perhaps not as significant as it is with a large number of plates in a pass, e.g. some hundreds.
The present invention is directed to a solution of the distribution problem in plate heat exchangers of the U or symmetrical arrangement.
According to the present invention there is provided a plate heat exchanger comprising a pack of plates arranged in spaced face-to-face relationship to define flow spaces between adjacent plates, the plates having aligned holes therein which form ducts for the supply and discharge of media to and from the flow spaces, the arrangement of the ducts for at least one medium being of symmetric or U arrangement with the supply and discharge ducts being fed from and discharged to the same end of the pack, in which an insert is provided in the supply duct for the said at least one medium to assist in distribution of the medium along the pack of plates by increasing the flow to the flow spaces near the end of the pack remote from the inlet end of the supply duct.
The function of the insert is basically to provide limited restriction to the access of medium to the flow spaces nearer the inlet end and to provide easier flow paths to the flow spaces remote from the feed end. A preferred form of insert includes a tube generally coaxial with the duct to provide a limited space outside the tube to feed the nearer flow spaces and a substantially larger flow feed to the further flow spaces beyond the end of the tube. The tube may have external longitudinal fins extending part way along the tube from near the inlet end which fins not only support the tube but also serve to partition the flow still further so that an easier flow path is provided for the flow spaces beyond the ends of the fins.
A generally radial annulus may be provided part way along the tube to inhibit back flow from the downstream side thereof. The tube may have a .perforation in the region of the annulusto provide an enhanced flow immediately adjacent the annulus.
The tube preferably stops some way short of the end of the duct and may be located by means of longitudinal rods extending between the tube and an end plate.
A short extension band may be provided to straighten the flow between the downstream end of the tube and the end plate to encourage flow to the inner end of the duct.
Since a greater pressure gradient may exist in the discharge duct than in the supply duct a further insert may be provided in the discharge duct to increase the flow rate remote from the outlet end to reduce the pressure gradient and further encourage flow in the flow spaces adjacent the outlet end.
The said further insert may also be in the form of the tube having an inlet aperture in its wall and debouching into the discharge dust towards the outlet end thereof. This tube may have an annulus to inhibit flow along its outside.
It will be appreciated that the actual form of the or each insert will depend on the flow characteristics of the heat exchanger as determined by the operating parameters including number and size of plates, operating pressures, viscosity of media and so forth.
The invention will be further described with reference to the accompanying diagrammatic drawings, in which: Figure 1 a is a diagrammatic illustration of a symmetric or U arrangement plate heat exchanger; Figure 1 b illustrates the pressure gradients in the supply and discharge ducts of a U arrangement; Figure 1 C illustrates the resulting pattern of flow through the flow spaces; Figure 2 is a sectional view showing inserts in the supply and discharge ducts of a U arrangement plate heat exchanger; Figure 3 is an elevation of an insert similar to that shown in the supply duct of Figure 2; Figure 4 is an end elevation of the insert of Figure 3; Figure 5 is a section on the line V-V of Figure 3; Figure 6 is an elevation of an insert similar to the insert shown in the discharge duct of Figure 2;; and Figure 7 is a view on the line Vil-Vil of Figure 6.
Turning first to Figures 1 a, 1 b and 1 c, Figure la is a diagram showing the broad outline of the flow arrangement in a typical symmetrically arranged (U arrangement) plate heat exchanger. A medium enters an inlet port 1 in the direction indicated by the arrow 2, passes into the flow spaces arranged in parallel and indicated by the lines 3, and then flows into an outlet port or duct 4 and flows out in the direction indicated by the arrow 5. Only a comparatively small number of flow spaces are indicated by lines 3, and it will be appreciated that a pass may contain some hundreds of plates.Also, it is to be appreciated that the flow spaces for only one medium are shown and these will be interleaved with flow spaces for the other medium. in Figure 1 b, the curve 6 illustrates the pressure gradient in the outlet duct 4, with the pressure drop indicated as a positive quantity. The curve 6 shows that the pressure falls, i.e. the pressure drop rises, quite sharply towards the exit end in the direction of the arrow 5 due to the additive effect of the frictional resistance due to the rough pipe characteristics of the duct 4, and the pressure drop due to the increase in flow velocity as greater volumes enter the duct 4, nearer the exit end. The curve 7 shows, on a similar basis, the pressure gradient in the inlet duct 1, using the inlet pressure as a base line 8.As explained above, the pressure drop due to flow resistance and the pressure rise due to the momentum effect act in opposition, so that the curve 7 is less steep than the curve 6 and in fact the pressure at the extreme end of the inlet duct 1 is rather higher than the pressure at the inlet. The difference between the two curves is thus the pressure drop across the flow space itself at that position, and it will be seen that the pressure drop is fairly high near the inlet end and falls to a much lower level at the flow spaces remote from the inlet end.This being the case, the flow rate is much higher in the plates nearer the end, and this is illustrated in Figure 1 C which shows a typical distribution of the flow rate as between the low level on the plates at the left hand side and a much higher level than the plates on the right hand side near the inlet and outlet. It will be seen for instance that the flow through the plates is some three to four times as great as that through the plates remote from the inlet.
These data have been derived by experimental measurement, and have been given without dimensions or values since these vary very much with the particular values adopted for the various parameters, but it will be appreciated that the general tendency with a U or symmetrical arrangement is similar.
Figure 2 is a diagram showing in section a U plate arrangement with a fairly small number of plates for ease of illustration, and in a practical case the invention is likely to be applied to heat exchangers with a much greater number of plates than the twenty or so illustrated. The inlet duct is again illustrated at 1 and the flow space is connected thereto by 3, the flow in this being indicated by arrows. The outlet duct is shown at 4.
The intervening flow spaces are illustrated at 10.
Figure 2 also shows in the inlet duct an insert generally indicated at 9 and illustrated in more detail in Figures 3 to 5. In the outlet duct 4 there is shown a flow controlling insert 11 which is illustrated in more detail in Figures 6 and 7. The purpose of the inserts 9 and 11 is to change the flow pattern so that the pressure drop over each of the flow spaces 3 is substantially similar, thus leading to a greater utilisation of the available flow capacity of the heat exchanger as a whole and the greater uniformity in the heat transfer. This is done essentially by providing a number of inhibition or restrictions to flow through the flow spaces 3 adjacent the inlet end of the duct 1, and encouragement of flow to the flow spaces remote -from that end. These objects are intended to be achieved by the insert 9, which will hereinafter be referred to as a distributor, while the insert 11, which may be termed a collector has the basic object of increasing the flow rate in the outlet duct 4 in the region of those flow spaces remote from the inlet and outlet end so that the pressure drop dur to momentum effect is reduced.
Turning now also to Figures 3 to 5, the distributor 9 will be described in more detail. It will be seen as comprising a cylindrical tube 12 extending from a location near the inlet end of the duct 1 to a point some 3/5th (60%) of the way therealong. Its longitudinal position within the duct 1 is maintained by means of a locating ring 13 secured (by means not shown) to the follower 14 of the heat exchanger. The locating ring 13 is connected to the tube 12 by means of longitudinally extending rods 1 3a.The diameter of the tube 1 2 is chosen in accordance with the flow requirements, but is essential function is to ensure that a substantial proportion of the fluid flowing into the duct 1 passes along the inside of the tube towards the remote end of the duct, and a smaller proportion passes along the outside of the tube and can hence enter the flow spaces 3 nearer the inlet end. The tube 12 has external radial fins 15, shown as being five in number, and which have two functions of supporting the tube 12 substantially coaxially within the duct 1 and also controlling and partitioning the flow along the outside of the tube 12 so that a proportion of the liquid which initially flows outside the tube is restrained from entering the first few flow spaces and is carried to an annular zone 16 in a substantially central zone of the length of the pack.In order to prevent too much flow back from the open exit end of the tube 12, it is provided on its outside with an annulus 1 7 which also has some supporting effect. Some of the liquid flowing out of the open end of the tube then flows back towards the annulus 1 7 and the rest is thrown onward toward the remote end of the pack. In order to ensure that there is still a considerable flow down the centre of the duct 1 after the medium has flowed out of the tube 12, a short extending or flow straightening ring 1 8 is mounted on the rods 1 3a. Also, in order to prevent undue starvation of the flow spaces immediately adjacent the annulus 17, the tube may be provided with a single slit 19 in the region of the annulus to allow some flow to leave the interior of the tube at that location.
Turning now to Figures 6 and 7, which will also be read in conjunction with Figure 2, it will be seen that the collector basically comprises a tube extending from the remote end of the outlet duct 4 towards the outlet end. Its closed remote end is attached to a locating ring 21 secured, by means not shown, to the follower 14. The tube occupies a substantial proportion of the total crosssectional area of the duct 4, and by this means it causes a substantial increase in the actual flow speed of the medium emerging from the flow spaces 3. A support and blocking annulus 22 is mounted on the tube so that the medium passing up certain of the flow spaces 3 is forced to flow in a reverse direction along the duct 3 before entering an opening 23 leading to the interior of the tube.The medium from the last or most remote flow spaces 3 is also caused to flow along the outside of the tube before reaching the opening 23. The flow space or spaces debouching into the duct 4 just on the downstream side of the annulus 22 are also feeding into a restricted space formed around the outside of the tube so that here too the flow speed is increased, and where this flow unites with the flow which has come down the inside of the tube, i.e. in the full cross-sectional area of the duct 4, the flow speed has already reached a fairly high level. In any event, the flow spaces 3 debouching into this zone are those which are normally the least starved.
The use of the distributor 9 and collector 11 thus has a tendency to improve the flow, and also it has been found that the flow within the tubes forming the distributor and collector is less subject to friction with the very uneven surface of the duct, which is formed by the edges of the successive plates and by the gaskets between them.
It has been found that by the improved distribution arising from the use of a distributor and a collector, the overall hydraulic efficiency of the heat exchanger has been improved so that the additional pressure drop overall arising from the introduction of restrictions has been largely, if not wholly, offset by a reduction in the pressure drop arising from the greater use of those flow spaces which are normally starved.
Various modifications may be made within the scope of the invention. For instance, the slit 1 9 in the distributor may if desired be extended to the end of the tube 12 downstream of the annulus 17.
In some arrangements also, the slit 1 9 may be omitted completely.

Claims (14)

1. A plate heat exchanger comprising a pack of plates arranged in spaced face-to-face relationship to define flow spaces between adjacent plates, the plates having aligned holes therein which form ducts for the supply and discharge of media to and from the flow spaces, the arrangement of the ducts for at least one medium being of symmetric or U arrangement with the supply and discharge ducts being fed from and discharged to the same end of the pack, in which an insert is provided in the supply duct for the said at least one medium to assist in distribution of the medium along the pack of plates by increasing the flow to the flow spaces near the end of the pack remote from the inlet end of the supply duct.
2. A plate heat exchanger as claimed in claim 1, in which the insert is in the form of a tube generally coaxial with the duct to provide a limited space outside the tube-to feed the nearer flow spaces and a substantially larger flow feed to the further flow spaces beyond the end of the tube.
3. A plate heat exchanger as claimed in claim 2, in which the tube has external longitudinal fins extending part way along the tube from near the inlet end, which fins not only support the tube but also serve to partition the flow still further so that an easier flow path is provided for the flow spaces beyond the ends of the fins.
4. A plate heat exchanger as claimed in claim 2 or 3, in which a generally radial annulus is provided part way along the tube to inhibit back flow from the downstream side thereof.
5. A plate heat exchanger as claimed in claim 4, in which the tube has a perforation in the region of the annulus to provide an enhanced flow adjacent the annulus.
6. A plate heat exchanger as claimed in claim 5, in which the perforation extends to both sides of the annulus.
7. A plate heat exchanger as claimed in claim 5 or 6, in which the perforation extends to the end of the tube remote from the inlet end.
8. A plate heat exchanger as claimed in any of claims 2 to 7, in which the tube stops some way short of the end of the duct.
9. A plate heat exchanger as claimed in claim 8, in which the tube is located by means of longitudinal rods extending between the tube and an end plate.
10. A plate heat exchanger as claimed in claim 8 or 9, in which a short extension band is provided to straighten the flow between the downstream end of the tube and the end plate to encourage flow to the inner end of the duct.
11. A plate heat exchanger as claimed in claims 9 and 10, in which the band is mounted on the rods.
12. A plate heat exchanger as claimed in any of the preceding claims, in which a further insert is provided in the discharge duct to increase the flow rate remote from the outlet end to reduce the pressure gradient and further encourage flow in the flow spaces adjacent the outlet end.
13. A plate heat exchanger as claimed in claim 12, in which the further insert is in the form of a tube having an inlet aperture in its wall and debouching into the discharge duct towards the outlet end thereof.
14. A plate heat exchanger as claimed in claim 13, in which the tube has an annulus to inhibit flow along its outside.
1 5. A plate heat exchanger substantially as hereinbefore described with reference to Figures 2 to 6 of the accompanying drawings.
GB8017469A 1979-06-04 1980-05-28 Plate heat exchanger Expired GB2052723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8017469A GB2052723B (en) 1979-06-04 1980-05-28 Plate heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB7919339 1979-06-04
GB8017469A GB2052723B (en) 1979-06-04 1980-05-28 Plate heat exchanger

Publications (2)

Publication Number Publication Date
GB2052723A true GB2052723A (en) 1981-01-28
GB2052723B GB2052723B (en) 1983-04-07

Family

ID=26271754

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8017469A Expired GB2052723B (en) 1979-06-04 1980-05-28 Plate heat exchanger

Country Status (1)

Country Link
GB (1) GB2052723B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0121079A1 (en) * 1983-03-30 1984-10-10 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH &amp; Co. KG Heat exchanger
EP0818663A3 (en) * 1996-07-02 1999-05-26 Modine Europe GmbH Heat exchanger,more particularly radiator
WO2001090673A1 (en) * 2000-05-19 2001-11-29 Alfa Laval Corporate Ab Plate pack, flow distribution device and plate heat exchanger
WO2001090671A1 (en) * 2000-05-19 2001-11-29 Alfa Laval Corporate Ab Plate pack, heat transfer plate and plate heat exchanger
WO2009015076A1 (en) * 2007-07-25 2009-01-29 Apv North America, Inc. Flow moderator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0121079A1 (en) * 1983-03-30 1984-10-10 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH &amp; Co. KG Heat exchanger
EP0818663A3 (en) * 1996-07-02 1999-05-26 Modine Europe GmbH Heat exchanger,more particularly radiator
WO2001090673A1 (en) * 2000-05-19 2001-11-29 Alfa Laval Corporate Ab Plate pack, flow distribution device and plate heat exchanger
WO2001090671A1 (en) * 2000-05-19 2001-11-29 Alfa Laval Corporate Ab Plate pack, heat transfer plate and plate heat exchanger
US6702006B2 (en) 2000-05-19 2004-03-09 Alfa Laval Corporate Ab Plate pack, flow distribution device and plate heat exchanger
US6752202B2 (en) 2000-05-19 2004-06-22 Alfa Laval Corporate Ab Plate pack, heat transfer plate and plate heat exchanger
WO2009015076A1 (en) * 2007-07-25 2009-01-29 Apv North America, Inc. Flow moderator

Also Published As

Publication number Publication date
GB2052723B (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US4303124A (en) Plate heat exchanger
US4287945A (en) Plate heat exchanger
US3380517A (en) Plate type heat exchangers
JPS6151239B2 (en)
US3854530A (en) Heat exchanger
US2439208A (en) Heat exchanger
JPH02219966A (en) Refrigerant flow divider
BR0213784A (en) Puncture set
BE1007213A5 (en) HEAT EXCHANGER.
GB1296990A (en)
EP0369010B1 (en) Shell and tube heat exchanger
AU2016221798B2 (en) Shell and tube heat exchanger
SE455813B (en) HEAT EXCHANGER WHICH ATMINSTONE THE CHANNEL FOR ONE MEDIUM IS DIVIDED INTO A LARGE NUMBER OF FLOWMALLY PARALLEL CONNECTED CHANNELS, WHICH TURBULA&#39;S DEVELOPMENT
GB2052723A (en) Plate heat exchanger
US3830292A (en) Flow distribution for heat exchangers
JPH07269800A (en) Piping device
JP4256515B2 (en) Multi-tube heat exchanger
GB2054124A (en) Plate heat exchanger
US1916768A (en) Heat exchanger
US3006612A (en) Heat exchangers
US2813701A (en) Cross-flow heat exchanger
EP0586402B1 (en) Method and device for transfer of heat or mass
CN109556441B (en) Abnormal plate-fin cooler
CN108955319B (en) Box type heat exchanger
JPH0122558B2 (en)

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee