JP4256515B2 - Multi-tube heat exchanger - Google Patents

Multi-tube heat exchanger Download PDF

Info

Publication number
JP4256515B2
JP4256515B2 JP02691499A JP2691499A JP4256515B2 JP 4256515 B2 JP4256515 B2 JP 4256515B2 JP 02691499 A JP02691499 A JP 02691499A JP 2691499 A JP2691499 A JP 2691499A JP 4256515 B2 JP4256515 B2 JP 4256515B2
Authority
JP
Japan
Prior art keywords
heat transfer
baffle plate
side fluid
hole
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02691499A
Other languages
Japanese (ja)
Other versions
JP2000227299A (en
Inventor
久雄 渋谷
恒郎 遊佐
潤 長谷川
Original Assignee
神威産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神威産業株式会社 filed Critical 神威産業株式会社
Priority to JP02691499A priority Critical patent/JP4256515B2/en
Publication of JP2000227299A publication Critical patent/JP2000227299A/en
Application granted granted Critical
Publication of JP4256515B2 publication Critical patent/JP4256515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は流体の熱交換に用いられる多管式熱交換器、詳しくは胴側流体を誘導する邪魔板が伝熱管に直角に設けられている多管式熱交換器に関するものである。
【0002】
【従来の技術】
多管式熱交換器は例えばモータやシリンダの作動油を冷却するため、など広い分野で流体の熱交換に使用されており、邪魔板として円板の一部に弓形の切欠きを設けたものを用い、切欠きを交互に反対側に位置させて伝熱管に直角に設け胴側流体が伝熱管を横切りながらじくざくに流れるようにしたものが最も多く使用されている。
【0003】
そして、この種の多管式熱交換器にあっては胴側流体を誘導して流速を調節し、伝熱面全部を利用させることによって総括伝熱係数が大きいとともに圧力損失が小さいものとすることが設計製造上の目標とされ、そのために伝熱管の本数および配列、邪魔板の間隔、切欠きの大きさおよび形状について多くの検討がなされていることは周知の事実である。
【0004】
【発明が解決しようとする課題】
しかしながら、円板の一部に弓形の切欠きを設けるという制約下での改良には限界があり、更なる性能向上を計ることはできない。また、弓形切欠きの邪魔板に代えて大径孔あき円板と小径円板とからなる二種類の邪魔板を交互に配置したもの、伝熱管を大きな隙間で貫通させる邪魔板を用いたもの、羽根形の邪魔板を用いたもの、螺旋形に連続した邪魔板を用いたものが知られているが、これらは価格面で不利である、胴側流体として気体しか使用できない、小形のものにしか適用できない、などの問題点の少なくとも一つをもっており、現在はあまり使用されていない。
【0005】
本発明はこのような実情を背景としてなされたものであって、現在最も多く使用されている弓形切欠きの邪魔板を用いた多管式熱交換器よりも更にすぐれた性能をもつものを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は胴体内部に多数の伝熱管が貫通しているとともに胴側流体を誘導する邪魔板の多数が伝熱管に直角に内装されている多管式熱交換器がもっている性能面での不満足を改善するために次のようにした。
【0007】
即ち、邪魔板として外側周縁部に中心対称の二つの切欠きを設けた分流邪魔板と、中心部に直径方向へ延びる細長い通孔を設けた合流邪魔板との二種類を用い、これを交互に配置したものである。
【0008】
胴側流体は分流邪魔板の手前で二つに分かれて切欠きを通過し、次の合流邪魔板の手前で中心部に集合して通孔を通過し、更に次の分流邪魔板の切欠きに向かって二つに分かれる、という動作を繰返して胴体一端部の入口からもう一端部の出口へ流れる。このため、胴体中心軸線周辺部分における胴側流体の停滞が解消され総括伝熱係数が大きくなるとともに、各分流邪魔板に向かって二方向に分流するため圧力損失が低下するものである。
【0009】
また、本発明において性能を最大限に向上させるには、切欠きと通孔とが互いに平行となるようにすること、および二つの切欠きの合計実開口面積と通孔の実開口面積とが互いにほぼ等しいようにすること、或いは伝熱管を通孔を挟んで配置した二つの群からなるものとしその間隔部分に胴側流体の入口と出口を開口させることが好適である。しかし、切欠きと通孔とが互いに直交するように配置すること、或いは通孔を切欠きと平行に配置したものと直交させて配置したものとを併用することによっても、分流と合流とを繰返させて停滞を解消することができる。
【0010】
次に、本発明においては合流邪魔板として前記のものの少なくとも一部を細長十字形の通孔を設けたものに代えたものとした。
【0011】
このことにより、胴側流体が多様な分流と合流とを行なうようになり、停滞が更に確実に解消されるものである。
【0012】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明すると、図1において円筒形の胴体1に両端を塞いで固定管板4,5が液密または気密に取付けられており、一方の固定管板4の外側に管側流体の入口7および出口8を有するボンネット6が取付けられているとともに、もう一方の固定管板5の外側に管側流体をUターンさせるボンネット9が取付けられている。伝熱管10は多数本が両端の固定管板4,5に挿通支持されて胴体1の内部をその中心軸線方向へ挿通されており、胴体1の中心軸線を通る平面、図示形態では水平の平面を挟んで上側に配置されている伝熱管10の群は入口7に連通し、下側に配置されている伝熱管10の群は出口8に連通している。
【0013】
上側の伝熱管10の群と下側の伝熱管10の群とは前記平面を挟んで大きい間隔を有して配置されている。胴側流体の入口2および出口3はこの間隔に向かって胴体1の横の側面に開口している。
【0014】
伝熱管10に直交して胴体1に内装されている邪魔板は、図2(A)に示す分流邪魔板11と図2(B)に示す合流邪魔板13とからなり、これらが交互に配置されている。
【0015】
分流邪魔板11は外側周縁部に中心対称の二つの弓形の切欠き12を有しており、合流邪魔板13は中心部に直径方向へ延びる細長い通孔14を有している。そして、分流邪魔板11は切欠き12の縁が前記平面と平行であるように設置され、合流邪魔板13は通孔14が前記平面と平行であるように設置されている。また、これらの邪魔板11,13の群の両端に位置するものは分流邪魔板11とされており、入口2から前記間隔部分に流入した胴側流体は直ちに二つに分かれて切欠き12を通過し、次に中心部に向かって流れ集合して通孔14を通過し、更に再び二つに分かれて切欠き12を通過する、という動作を繰返して伝熱管10を流れる管側流体との熱交換を行なう。最後の分流邪魔板11の切欠き12を通過した胴側流体は出口3に向かって集合することにより、この部分においても熱交換を行なう。
【0016】
このように、胴側流体は胴体1に流入した直後から流出する直前まで分流と合流とを繰返すことにより、伝熱管10とまんべんなく接触するとともに、殊に中心部分に発生しやすかった停滞が解消され総括伝熱係数が大きくなる。また、胴側流体を二方向に分流させることにより圧力損失が低下する。
【0017】
図示形態では入口2および出口3を前記間隔部分に開口させ伝熱管10がこれらの正面を塞ぐ形で横切らないようにしており、このことにより圧力損失を低下させることができる。加えて、切欠き12および通孔14を伝熱管10が通過しないようにしており、このことにより切欠き12および通孔14の近くでの胴側流体の停滞を殆どなくすことができる。もっとも、切欠き12や通孔14の縁に伝熱管10の一部が突出していても実用上は差支えない。
【0018】
更に、分流邪魔板11の二つの切欠き12および合流邪魔板13の通孔14の胴側流体が通過する実開口面積は互いにほぼ等しくされており、このことは圧力損失の低下、停滞部分の解消に役立つ。
【0019】
図示形態によると、以上に述べたように総括伝熱係数が向上することと圧力損失が低下することとにより、伝熱管10の使用本数を減少するとともに各邪魔板11,13の間隔を小さくして小形化を計ることが可能となる。或いは胴側流体の流量を増加して熱交換能率の向上を計ることが可能となる。
【0020】
次に、本発明は胴側流体の分流と合流とを繰返して効率のよい熱交換を行なわせるものであり、そのために前記の合流邪魔板13に代え図3(A),(B)に示すようなものを使用することができる。即ち、(A)に示した合流邪魔板15は分流邪魔板11の切欠き12と直交する細長い通孔16を中心部に設けたものである。また、(B)に示した合流邪魔板17は切欠き12と平行な方向へ延びる細長い孔部分およびこれと中心で直交した細長い孔部分からなる十字形の通孔18を設けたものである。
【0021】
これらの合流邪魔板15,17は前述のように伝熱管10の使用本数を減少できることにより、通孔16,18に伝熱管10を通過させることなく設置することができるものであり、図2(B)に示した合流邪魔板13と併用し或いはこれに代えて設置することにより、多様な分流と合流とを行なわせて総括伝熱係数を大きくすることができる。
【0022】
【実施例】
次に、本発明品と従来品との性能比較試験結果について述べる。両品は胴体の内径(84.1mm)、長さ(550mm)、伝熱管の外径(8mm)および肉厚(1.2mm)、邪魔板の枚数(15枚)および間隔(25mm)、切欠きおよび通孔の実開口面積(邪魔板全面積の25%)、胴側流体(ISO VG−32相当)および管側流体(冷却水)については同一条件とし、伝熱管の本数は本発明品36本、従来品46本とした。尚、本発明品は図1に示した形態のもの、従来品は先に説明した弓形切欠きの邪魔板を用いたものである。
【0023】
両品について、管側流体の入口温度(30℃)、流量(20l/min)を一定とし、胴側流体を出口温度(50℃)が一定となるように流量および入口温度を変えて熱交換量、総括伝熱係数、圧力損失を測定した。その結果を胴側流体の流量に対する熱交換量は図4に、総括伝熱係数は図5に、圧力損失は図6に示した。尚、胴側流体の流量は例えば入口温度68℃で20l/min,55℃で100l/minとすることにより一定の出口温度となった。
【0024】
この結果によると、本発明品は従来品に比べて伝熱管の使用本数を減少させ伝熱面積が約22%少なくなっているため、例えば図6に示されている圧力損失1kg/cm2である胴側流体流量約130l/minにおいて、図4から判るように従来品に比べて熱交換量が約6%少ない。しかし、図5から判るように総括伝熱係数は従来品に比べて約16%向上しており、また図6から判るように圧力損失は従来品の約57%に低下している。また、本発明品は従来品と同等の総括伝熱係数、圧力損失でよいとした場合、胴側流体の流量を増加して能力を向上させることができる。
【0025】
【発明の効果】
以上のように、本発明によると胴側流体が分流、合流を繰返しながら流れるように邪魔板を形成する、というきわめて簡単な手段で総括伝熱係数が大きいとともに圧力損失が低いというすぐれた性能をもつものとすることができ、小形化を計る、能力向上を計る、など流体の種類および使用場所に応じて適切なものを提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す縦断面図。
【図2】(A)は図1のA−A線、(B)は図1のB−B線にそれぞれ沿う拡大断面図。
【図3】(A),(B)は合流邪魔板のそれぞれ異なる実施の形態を示す正面図。
【図4】熱交換量の試験結果を示すグラフ。
【図5】総括伝熱係数の試験結果を示すグラフ。
【図6】圧力損失の試験結果を示すグラフ。
【符号の説明】
1胴体、10伝熱管、11分流邪魔板、12切欠き、13,15,17合流邪魔板、14,16,18通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multitubular heat exchanger used for heat exchange of fluid, and more particularly to a multitubular heat exchanger in which a baffle plate for guiding a trunk side fluid is provided at right angles to a heat transfer tube.
[0002]
[Prior art]
Multi-tube heat exchangers are used for heat exchange of fluids in a wide range of fields, for example to cool hydraulic oil in motors and cylinders, and have a circular cutout on a part of a disk as a baffle plate , And the notch is alternately positioned on the opposite side and provided perpendicularly to the heat transfer tube so that the cylinder side fluid can flow smoothly across the heat transfer tube.
[0003]
In this type of multi-tube heat exchanger, the body side fluid is guided to adjust the flow velocity, and the entire heat transfer surface is utilized to increase the overall heat transfer coefficient and reduce the pressure loss. It is a well-known fact that many studies have been made on the number and arrangement of heat transfer tubes, the distance between baffle plates, the size and shape of notches, and so on.
[0004]
[Problems to be solved by the invention]
However, there is a limit to the improvement under the restriction of providing an arcuate notch in a part of the disk, and no further performance improvement can be measured. Also, instead of the baffle plate with a bow-shaped notch, two types of baffle plates consisting of a large-diameter perforated disc and a small-diameter disc are alternately arranged, and a baffle plate that penetrates the heat transfer tube with a large gap is used. , One using a blade-shaped baffle plate, one using a continuous baffle plate in a spiral shape is known, but these are disadvantageous in price, only a gas can be used as a trunk side fluid, a small one It has at least one of the problems that it can only be applied to, and is currently not used much.
[0005]
The present invention has been made in the background of such a situation, and provides an even better performance than a multi-tube heat exchanger using a baffle plate with an arc-shaped notch that is most frequently used at present. The purpose is to do.
[0006]
[Means for Solving the Problems]
The present invention is unsatisfactory in terms of performance with a multi-tube heat exchanger in which a large number of baffle plates through which a large number of heat transfer tubes penetrate inside the fuselage and in which a baffle side fluid is guided are installed at right angles to the heat transfer tubes In order to improve
[0007]
In other words, two types of baffle plates are used: a baffle plate with two centrally symmetric notches on the outer peripheral edge, and a confluence baffle plate with an elongated through hole extending in the diameter direction at the center. It is arranged in.
[0008]
The trunk side fluid is divided into two before the shunt baffle, passes through the notch, gathers in the center before the next confluence baffle, passes through the through hole, and further cuts out the next shunt baffle The flow is divided into two toward the bottom, and flows from the entrance at one end of the body to the exit at the other end. Therefore, the stagnation of the trunk side fluid in the peripheral part of the trunk center axis is eliminated, the overall heat transfer coefficient is increased, and the pressure loss is reduced because the shunt is diverted in two directions toward the respective shunt baffle plates.
[0009]
Further, in order to maximize the performance in the present invention, the notch and the through hole are made parallel to each other, and the total actual opening area of the two notches and the actual opening area of the through hole are It is preferable that they are substantially equal to each other, or consist of two groups arranged with the through hole of the heat transfer tube interposed therebetween, and an inlet and an outlet of the trunk side fluid are opened at the interval portion. However, even if the notch and the through hole are arranged so as to be orthogonal to each other, or if the through hole is arranged in parallel with the one arranged in parallel with the notch, the diversion and the merging are also performed. The stagnation can be resolved by repeating.
[0010]
Next, in the present invention, at least a part of the above-described confluence baffle plates is replaced with one provided with an elongated cross-shaped through hole.
[0011]
This allows the trunk side fluid to perform various diversions and merging, and the stagnation is more reliably eliminated.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, fixed tube plates 4 and 5 are attached in a liquid-tight or air-tight manner to a cylindrical body 1 with both ends closed. A bonnet 6 having an inlet 7 and an outlet 8 for the tube-side fluid is attached to the outside of the tube 4, and a bonnet 9 for making a U-turn of the tube-side fluid is attached to the outside of the other fixed tube plate 5. A large number of heat transfer tubes 10 are inserted into and supported by fixed tube plates 4 and 5 at both ends, and are inserted through the inside of the body 1 in the direction of the central axis thereof. A plane passing through the central axis of the body 1, a horizontal plane in the illustrated embodiment. The group of the heat transfer tubes 10 arranged on the upper side with the gap interposed therebetween communicates with the inlet 7, and the group of the heat transfer tubes 10 arranged on the lower side communicates with the outlet 8.
[0013]
The group of the upper heat transfer tubes 10 and the group of the lower heat transfer tubes 10 are arranged with a large gap across the plane. The trunk-side fluid inlet 2 and outlet 3 open to the lateral side of the trunk 1 toward this distance.
[0014]
The baffle plate installed in the body 1 perpendicular to the heat transfer tube 10 is composed of the shunt baffle plate 11 shown in FIG. 2 (A) and the confluence baffle plate 13 shown in FIG. 2 (B), which are alternately arranged. Has been.
[0015]
The diversion baffle plate 11 has two arcuate cutouts 12 that are symmetrical with respect to the outer peripheral edge, and the confluence baffle plate 13 has an elongated through hole 14 that extends in the diameter direction at the center. The shunt baffle plate 11 is installed so that the edge of the notch 12 is parallel to the plane, and the confluence baffle plate 13 is installed so that the through hole 14 is parallel to the plane. The baffle plates 11 and 13 are located at both ends of the baffle plate 11 as a shunt baffle plate 11, and the trunk side fluid flowing into the gap portion from the inlet 2 is immediately divided into two parts, and the notches 12 are formed. The pipe-side fluid flowing through the heat transfer tube 10 by repeating the operation of passing through, then gathering toward the center, passing through the through-hole 14, and then again dividing into two and passing through the notch 12. Perform heat exchange. The trunk side fluid that has passed through the notch 12 of the final diverting baffle plate 11 gathers toward the outlet 3, thereby performing heat exchange also in this portion.
[0016]
In this way, the trunk side fluid repeats the diversion and merging from immediately after flowing into the trunk 1 to immediately before flowing out, so that it uniformly contacts the heat transfer tube 10 and eliminates the stagnation that tends to occur particularly in the central portion. The overall heat transfer coefficient increases. Further, the pressure loss is reduced by diverting the trunk side fluid in two directions.
[0017]
In the illustrated embodiment, the inlet 2 and the outlet 3 are opened at the space portion so that the heat transfer tube 10 does not cross the front face of the heat transfer tube 10, thereby reducing the pressure loss. In addition, the heat transfer tube 10 is prevented from passing through the notch 12 and the through hole 14, so that the stagnation of the trunk side fluid near the notch 12 and the through hole 14 can be almost eliminated. However, even if a part of the heat transfer tube 10 protrudes from the edge of the notch 12 or the through hole 14, there is no practical problem.
[0018]
In addition, the actual opening areas through which the cylinder side fluids of the two notches 12 of the diverting baffle plate 11 and the through hole 14 of the converging baffle plate 13 pass are made substantially equal to each other. Helps to resolve.
[0019]
According to the illustrated embodiment, as described above, the overall heat transfer coefficient is improved and the pressure loss is reduced, thereby reducing the number of heat transfer tubes 10 used and reducing the distance between the baffle plates 11 and 13. This makes it possible to reduce the size. Alternatively, it is possible to improve the heat exchange efficiency by increasing the flow rate of the trunk side fluid.
[0020]
Next, the present invention repeats the splitting and merging of the cylinder side fluid to perform efficient heat exchange. For this purpose, the merging baffle plate 13 is replaced with the one shown in FIGS. 3 (A) and 3 (B). Something like that can be used. That is, the confluence baffle plate 15 shown in (A) is provided with an elongated through hole 16 orthogonal to the notch 12 of the diversion baffle plate 11 at the center. Further, the confluence baffle plate 17 shown in (B) is provided with an elongated hole portion extending in a direction parallel to the notch 12 and a cross-shaped through hole 18 composed of an elongated hole portion orthogonal to the center.
[0021]
These junction baffles 15 and 17 can be installed without allowing the heat transfer tubes 10 to pass through the through holes 16 and 18 by reducing the number of heat transfer tubes 10 used as described above, and FIG. By using together with or instead of the confluence baffle plate 13 shown in B), the overall heat transfer coefficient can be increased by performing various diversions and confluences.
[0022]
【Example】
Next, performance comparison test results between the product of the present invention and the conventional product will be described. Both products have a fuselage inner diameter (84.1 mm), length (550 mm), heat transfer tube outer diameter (8 mm) and wall thickness (1.2 mm), number of baffle plates (15) and spacing (25 mm), cutting The actual opening area of the notch and the through hole (25% of the total area of the baffle plate), the trunk side fluid (equivalent to ISO VG-32) and the pipe side fluid (cooling water) are the same conditions, and the number of heat transfer tubes is the present invention. There were 36 and 46 conventional products. The product of the present invention has the form shown in FIG. 1, and the conventional product uses the baffle plate having the previously described notch.
[0023]
For both products, the pipe side fluid inlet temperature (30 ° C) and flow rate (20 l / min) are constant, and the trunk side fluid is subjected to heat exchange by changing the flow rate and inlet temperature so that the outlet temperature (50 ° C) is constant. The quantity, overall heat transfer coefficient, and pressure loss were measured. As a result, the heat exchange amount with respect to the flow rate of the trunk side fluid is shown in FIG. 4, the overall heat transfer coefficient is shown in FIG. 5, and the pressure loss is shown in FIG. Note that the flow rate of the trunk side fluid was set to a constant outlet temperature by, for example, 20 l / min at an inlet temperature of 68 ° C. and 100 l / min at 55 ° C.
[0024]
According to this result, the product of the present invention reduces the number of heat transfer tubes used and reduces the heat transfer area by about 22% compared to the conventional product. For example, at a pressure loss of 1 kg / cm 2 shown in FIG. At a certain cylinder side fluid flow rate of about 130 l / min, as can be seen from FIG. 4, the heat exchange amount is about 6% less than that of the conventional product. However, as can be seen from FIG. 5, the overall heat transfer coefficient is about 16% higher than that of the conventional product, and as can be seen from FIG. 6, the pressure loss is reduced to about 57% of the conventional product. Further, when the product of the present invention may have the same overall heat transfer coefficient and pressure loss as the conventional product, the capacity can be improved by increasing the flow rate of the trunk side fluid.
[0025]
【The invention's effect】
As described above, according to the present invention, an excellent performance that the overall heat transfer coefficient is large and the pressure loss is low is an extremely simple means that the baffle plate is formed so that the trunk side fluid flows while repeatedly dividing and joining. It is possible to provide an appropriate one according to the type of fluid and the place of use, such as miniaturization and improvement in capacity.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
2A is an enlarged cross-sectional view taken along line AA in FIG. 1, and FIG. 2B is an enlarged cross-sectional view taken along line BB in FIG.
FIGS. 3A and 3B are front views showing different embodiments of a confluence baffle plate, respectively.
FIG. 4 is a graph showing a test result of the heat exchange amount.
FIG. 5 is a graph showing the overall heat transfer coefficient test results.
FIG. 6 is a graph showing test results of pressure loss.
[Explanation of symbols]
1 fuselage, 10 heat transfer tube, 11 minutes flow baffle, 12 notches, 13, 15, 17 merge baffle, 14, 16, 18 through holes

Claims (2)

胴体内部に多数の伝熱管が貫通しているとともに胴側流体を誘導する邪魔板の多数が前記伝熱管に直角に内装されており、前記邪魔板は外側周縁部に中心対称の二つの切欠きを設けた分流邪魔板と、中心部に直径方向へ延びる細長い通孔を設けた合流邪魔板とからなり、前記分流邪魔板と合流邪魔板とが交互に配置されている多管式熱交換機において、前記伝熱管は前記通孔を挟んで大きい間隔を有して配置された二つの群からなり、胴側流体の入口および出口が前記間隔に向かって開口していることを特徴とする多管式熱交換機。 A large number of baffle plates through which a large number of heat transfer tubes pass through the fuselage and guide the trunk side fluid are provided at right angles to the heat transfer tubes. In the multi-tube heat exchanger in which the diversion baffle plate and the confluence baffle plate are alternately arranged, and a diversion baffle plate provided with an elongated through hole extending in the diameter direction in the center portion The heat transfer pipe is composed of two groups arranged with a large gap across the through hole, and a trunk-side fluid inlet and outlet are open toward the gap. Type heat exchanger. 前記合流邪魔板の少なくとも一部が、中心部の直径方向へ延びる細長い孔部分および中心で直交した細長い孔部分からなる十字形の通孔を設けたものとされていることを特徴とする請求項1記載の多管式熱交換機。 The at least part of the confluence baffle plate is provided with a cross-shaped through-hole including an elongated hole portion extending in a diameter direction of a central portion and an elongated hole portion orthogonal to the center. The multitubular heat exchanger according to 1.
JP02691499A 1999-02-04 1999-02-04 Multi-tube heat exchanger Expired - Lifetime JP4256515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02691499A JP4256515B2 (en) 1999-02-04 1999-02-04 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02691499A JP4256515B2 (en) 1999-02-04 1999-02-04 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2000227299A JP2000227299A (en) 2000-08-15
JP4256515B2 true JP4256515B2 (en) 2009-04-22

Family

ID=12206487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02691499A Expired - Lifetime JP4256515B2 (en) 1999-02-04 1999-02-04 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP4256515B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039751B4 (en) * 2009-09-02 2011-05-12 Atlas Copco Energas Gmbh Compressed gas cooler, in particular for compressors
JP5910991B2 (en) * 2012-03-30 2016-04-27 Toto株式会社 Fuel cell unit
CN105890395A (en) * 2014-12-01 2016-08-24 中石化洛阳工程有限公司 Shell-and-tube heat exchange condenser
CN105890394A (en) * 2014-12-01 2016-08-24 中石化洛阳工程有限公司 Shell-and-tube condenser
CN105890396A (en) * 2014-12-01 2016-08-24 中石化洛阳工程有限公司 Horizontal type shell-and-tube heat exchange condenser
CN105890430A (en) * 2014-12-01 2016-08-24 中石化洛阳工程有限公司 Horizontal type shell-and-tube condenser
EP3469285B1 (en) * 2016-07-19 2021-11-24 Lummus Technology Inc. Feed effluent heat exchanger
CN106352535A (en) * 2016-11-01 2017-01-25 珠海格力电器股份有限公司 Heat exchanger and air conditioner with heat exchanger
CN108387117A (en) * 2018-03-16 2018-08-10 华南理工大学 Double convection current pipe heat exchangers inside and outside one kind
CN109974510B (en) * 2019-05-08 2024-02-23 张化机(苏州)重装有限公司 Baffle plate
CN110455096A (en) * 2019-08-27 2019-11-15 东方电气集团东方锅炉股份有限公司 Baffle plate support structure and its shell-and-tube heat exchanger with shunt effect
CN115435615B (en) * 2022-09-26 2023-12-22 江苏曙光压力容器有限公司 Corrugated pipe heat exchanger with heat transfer enhancement effect

Also Published As

Publication number Publication date
JP2000227299A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP4256515B2 (en) Multi-tube heat exchanger
JP2013537298A (en) Refrigerant conduit and heat exchanger provided with the refrigerant conduit
RU2005105584A (en) HIGH PRESSURE EXCHANGER
GB1558575A (en) Plate heat exchanger
US4434846A (en) Patterned heat exchanger fin
JP4536237B2 (en) Heat exchanger
JPH0122558B2 (en)
AU2386399A (en) Multi-pass heat exchanger
US5727625A (en) Heat exchanger having fins with air conducting slits formed therein
US7063135B2 (en) Heat exchanger
CN210346409U (en) Double-flow-channel shell-and-tube heat exchanger
JP4414196B2 (en) Double tube heat exchanger
CN108955319B (en) Box type heat exchanger
CN208075661U (en) Flow collection pipe component and heat exchanger for heat exchanger
US4397350A (en) Flow guiding in tube bundle heat exchangers
JPS6222994A (en) Multi-tubular heat exchanger
CN216205479U (en) Cast aluminum radiator based on similar oval water channel
JP4328411B2 (en) Heat exchanger
CN217210510U (en) Heat exchange device and heat exchange fins thereof
JP3374345B2 (en) Channel cover for multi-tube heat exchanger
SU714131A1 (en) Plate heat exchanger
SU1128093A1 (en) Plate-pipe heat exchanger
JP2001041676A (en) Plate type heat exchanger
RU2190816C1 (en) Shell-and-tube heat exchanger
JPH01196495A (en) Water cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term