GB1589537A - Toy vehicle and toy vehicle game - Google Patents

Toy vehicle and toy vehicle game Download PDF

Info

Publication number
GB1589537A
GB1589537A GB5197177A GB5197177A GB1589537A GB 1589537 A GB1589537 A GB 1589537A GB 5197177 A GB5197177 A GB 5197177A GB 5197177 A GB5197177 A GB 5197177A GB 1589537 A GB1589537 A GB 1589537A
Authority
GB
United Kingdom
Prior art keywords
gear
drive
vehicle
frame
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB5197177A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ideal Toy Corp
Original Assignee
Ideal Toy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/807,997 external-priority patent/US4125261A/en
Application filed by Ideal Toy Corp filed Critical Ideal Toy Corp
Publication of GB1589537A publication Critical patent/GB1589537A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/12Electric current supply to toy vehicles through the track
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/16Control of vehicle drives by interaction between vehicle and track; Control of track elements by vehicles

Description

(54) TOY VEHICLE AND TOY VEHICLE GAME (71) We, IDEAL TOY CORPORATION, of 184-10 Jamaica Avenue, Hollis, N.Y. 11423, United States of America; a corporation organized and existing under the laws of the State of New York, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: The present invention relates to a toy vehicle and more particularly to a toy vehicle for use in a game in which toy vehicles are separately controlled by the players to enable them to turn out from one lane to the other and pass other vehicles on a track.
With the ever increasing popularity of toy vehicle games, such as for example the well known "slot car" games, there is an increasing demand for more realistic action. To this end attempts have been made in the past to provide "slot car" type games with speed control systems, as for example by varying current flow to the vehicles in the game. To further enhance such realism the slot arrangements in such games also provide for crossing the vehicles from one side of the track to another, to simulate an actual changing of lanes. However, the vehicle is in fact constrained to a fixed predetermined and unvariable path.
Since the play value of such previously proposed vehicle games is limited to the regulation of speed of travel, attempts have been made to provide toy vehicle games which enable an operator to control movement of the vehicle from one lane to the other without the constraint of a guide slot in the track. Such systems include for example the type shown in U.S. Patent No.
3,797,404, wherein solenoid actuated bumpers are used to physically push the vehicle from one lane to the other by selectively engaging the bumpers along the side walls of the track. It is believed that this type of system will not insure movement of the vehicle from one lane to the other, particularly at slow speeds, and bumper movements for pushing the vehicle, are not realistic.
Other attempts to provide for vehicle control for moving the vehicle from one lane to the other involve relatively complicated steering control mechanisms which respond to the switching on and off of current to the toy vehicle as supplied through contact strips in the track surface. Such systems are disclosed for example in U.S. Patent Nos.
3,774,340 and 3,837,286. However, in addition to the relative complexity of the steering arrangements, the vehicles will of course lose speed when the current supply is shut off, so that the vehicle will slow down and the realistic effect desired to be produced is affected.
Still other steering systems have been provided in toy vehicles wherein the vehicle's steering is controlled in response to a reversal of the polarity of the current flow to the electrical drive motor in the vehicle. Such systems are disclosed for example in U.S. Patent Nos. 3,453,970 and 3,813,812, which avoid the problem of stopping current flow completely to the motor so that there is little or no loss of speed but their steering systems contain numerous moving parts which will wear and require constant attention. In Patent No. 3,453,970 to Hansen, the electrical wires connecting the motor to the current collectors of the vehicle are used to aid in the steering operation and thus may well work loose during use of the vehicle. Another reversing polarity system is shown in U.S. Patent No.
3,232,005 wherein the toy vehicle does not operate on a track and the steering control is not provided for switching lanes, but rather to provide an apparently random travel control for the vehicle.
Still another toy vehicle game which has been suggested to avoid the constraints of slot car type systems, is disclosed in U.S.
Patent No. 3,239,963 wherein a relatively complex steering control is provided which is responsive to the actuation of a solenoid mounted in the toy vehicle and is controlled remotely by the players.
It is an object of the present invention to overcome the limitations of previously proposed toy vehicle games wherein toy vehicles are permitted to turn out and move from one lane to the other without the restraint of a guide slot or the like.
Another object of the present invention is to provide a toy vehicle which is adapted to move along a guide track and change from one lane to the other, under the control of a player.
A further object of the present invention is to provide a toy vehicle having a relatively simple drive transmission responsive to the polarity of current flow to an electrical motor in the vehicle, to drive the vehicle in one or the other of the lanes of the track.
A still further object of the present invention is to provide a toy vehicle having a relatively simple drive transmission system which enables one or the other of its two rear drive wheels to be driven in response to the polarity of current supplied to the electrical motor in the vehicle.
Another object of the present invention is to provide a toy vehicle of the character described which is relatively simple in construction and durable in operation.
Yet another object of the present invention is to provide a toy vehicle and a control system therefor, which is relatively simple and economical to manufacture.
According to the present invention there is provided a toy vehicle including a vehicle frame, a pair of laterally spaced selectively driven drive wheels mounted on the vehicle in laterally spaced relation to each other for independent rotation in vertical planes, a reversible rotary drive motor in said frame, a power output gear connected to said motor for rotation thereby; and a gear train in the frame drivingly engaged with the output gear for selectively driving one of the drive wheels in response to the direction of rotation of the output gear; characterized in that the gear train includes a gear movably mounted in the frame for movement between first and second positions in response to the direction of rotation of the output gear for selectively driving one of the drive wheels in a forward direction of movement of the vehicle in said first position thereof and the other of said drive wheels in said forward direction in the second position thereof, while the undriven wheels free wheels; first and second drive gears are respectively directly drivingly engaged with the drive wheels and are located in the frame for selective engagement with the movably mounted gear in the first and second positions thereof respectively; a gear support is rotatably mounted in the vehicle between the rear wheels on an axis located generally in longitudinal alignment with the axis of rotation of the output gear, the movably mounted gear is mounted on the support in driving engagement with the output gear so that the support frame rotates in response to rotation of the output gear to engage the movable gear with one or the other of the drive gears thereby to selectively drive the drive wheels in the forward direction of movement of the vehicle while the undriven wheel free wheels. The toy vehicle is preferably used with other similar vehicles on an endless track having laterally spaced side walls defining two vehicle lanes therebetween.When the vehicles are operated with only one or the other of their drive wheels driven from their respective motors, the vehicles will move into engagement with and be guided along one of these side walls.
The power supply to the electrical motors of the vehicles is provided through electrical contact strips located in the lanes of the vehicle track. This power supply system is constructed to enable the operators to separably control the speed of the vehicles and also to separately reverse the polarity of current flow to the electrical motors of the vehicles, whereby the vehicles will change lanes. In addition the vehicles are provided with a relatively simple shock absorbing front end system which absorbs the impact of the vehicle against the side walls during a lane change and directs the front wheels of the vehicle in the desired path of travel.
The above, and other objects, features and advantages of this invention will be apparent in the following detailed description of illustrative embodiments thereof, which are to be read in connection with the accompanying drawings, wherein: Figure 1 is a plan view of a toy vehicle game constructed in accordance with the present invention; Figure 2 is a longitudinal sectional view of the toy vehicle adapted for use with the game of Figure 1; Figure 3 is a bottom view of one of the toy vehicles illustrated in Figure 1; Figure 3A is a bottom view of the front end portion of a second vehicle used in the game of Figure 1; Figure 4 is a top plan view of the toy vehicle shown in Figure 2, but with the body removed; Fig. 5 is a sectional view taken along line 5-5 of Figure 2; ; Figure 5A is a sectional view, similar to Figure 5 of a modified embodiment of the invention; Figure 6 is a top plan view similar to Figure 4, but showing another position of the drive transmission of the vehicle; and Figure 7 is a schematic electrical circuit diagram of the electrical control system used for the toy vehicle game of Figure 1.
Referring now to the drawings in detail, and initially to Figure 1 thereof, the toy vehicle game 10, constructed in accordance with the present invention, includes an endless plastics track 12 having a pair of laterally spaced upstanding side walls 14, 16 and a road bed or tread surface 18 extending therebetween. The road bed 18 has a width sufficient to define at least two vehicle lanes 20, 22 thereon along which a plurality of vehicles can be operated.
In the illustrative embodiment of the present invention the toy vehicle game includes operator controlled vehicles 24, 26 which are of substantial identical construction except for the arrangement of their current collectors as described hereinafter.
In addition, a drone car 28, which moves along the track at a relatively constant speed may also be provided.
Vehicles 24, 26 are separately controlled by the players through a control system 30 which enables the players to vary current supply to the electrical motors in the vehicles, thereby to vary the vehicle speed.
The controllers also enable the players to change the polarity of current supplied to the respective vehicle motors, whereby the vehicles can be switched by the players from one lane to the other. The drone car 28 on the other hand moves along the vehicle track at a constant speed providing an obstacle along the track which the player controlled cars 24, 26 must pass. The front wheels of the drone car are preferably canted in one direction or the other so that the drone will normally be driven in either the inner or the outer lane depending on the position of the wheels. This vehicle includes an electric motor operated by a battery contained within the vehicle, and connected through a direct drive transmission of any convenient construction to the rear wheels thereof. Preferably, drone vehicle 28 is of the type illustrated and described in detail in our U.S. Patent No.
4,078,798, and the disclosure of said U.S.
Patent is incorporated herein by reference.
Toy vehicle 24 is illustrated in detail in Figures 2--4. As seen therein the vehicle includes a frame or chassis 32 of any convenient construction, and a removable plastics body or shell 34 which may be snap fit on frame 32 in any convenient manner.
A pair of front wheels 36 are rotatably mounted on the frame, through a shock absorbing front end system 38, described more fully hereinafter, while the rear wheels 40 are rotatably mounted for independent rotation on a shaft 42 rotatably mounted in frame 32. (See Figure 5). One of the drive wheels 40 is fixed on shaft 42 by a spline or the like, while the other of the wheels is freely rotatably mounted on the shaft.
Alternatively both wheels can be freely rotatably mounted on the shaft or axle 42.
With either arrangement the wheels can be separately and independently driven.
Each of the drive wheels 40 in the illustrative embodiment of the present invention is formed from either a molded plastics material or from a cast metal material, and has on its inner side an integral crown gear 46 formed thereon by which rotary power is supplied to the respective wheels. In one embodiment the wheels 40 have hubs formed of die cast metal having integrally formed gears 46 thereon and removable annular treads of rubber or the like are fitted over the hubs in the conventional manner.
The power for driving the toy vehicle is supplied from a D.C. electric motor 48 mounted on frame 32 in any convenient manner The electric motor is of conventional D.C. construction and includes a rotary output member or shaft 50 connected to the rotor of the motor in the usual manner. In the embodiment of the invention illustrated in Figure 2 a spur gear or output drive element 52 is secured to shaft 50 for rotation thereby. This output member is drivingly engaged with the transmission system 56 which is responsive to the direction of rotation of the output drive element (i.e. the direction of rotation of output shaft 50 of motor 48, due to the polarity of current supplied to the motor) to selectively drive wheels 40.
In the illustrative embodiment of the invention shown in Figures 2 and 4--6, including the modification of Fig. 5A transmission system 56 includes a generally Ushaped idler gear support frame 58 freely rotatably mounted on drive shaft 50 with its legs 60 located on opposite sides of the spur gear 52 and extending generally radially from the shaft 50. The free ends of frame legs 60 have a shaft 62 rotatably mounted thereon on which an idler gear 64 is fixed.
The idler gear is dimensioned and located to be continuously drivingly engaged with spur gear 52 and selectively engaged with gears 40, as seen in Figure 5. As a result of this arrangement when motor 48 is operated the idler support frame, will be rotated in either a clockwise or counterclockwise direction, as seen in Figure 5, depending upon the polarity of the current supplied to motor 48, as a result of the forces applied to the frame due to the engagement of gears 62 and 64. That is gears 52 and 64 will be continuously rotated by the operation of motor 48, and since frame 60 is freely rotatably mounted on the shaft 50, the engagement between gears 52, 64 will produce a resultant force on gears 62 which will tend to rotate frame 60 in the same direction as gear 52. Thus when gear 52 rotates in a clockwise or counterclockwise direction frame 60 will be driven in that same direction.As a result, as seen in Figure 5, when gear 52 is rotated in a clockwise direction, indicated by the arrow X gear 64 will be rotated in a counterclockwise direction and frame 60 will rotate in a clockwise direction. This rotation of the frame brings gear 64 into driving engagement with the gear 46 on the left rear wheel 40 of the vehicle to drive that wheel, as shown in solid lines in Figure 5. Because gear 64 and frame 60 are located to engage gear 46 forwardly of its axle 42, the wheel 40 is driven in a forward direction. The modification shown in Fig. 5A functions in the same manner as the arrangement of Fig. 5 except that the transit time i.e. the time for movement of gear 64 is reduced by the shaping of frame 60 since the distance to be travelled is much shorter.
In the game illustrated in Figure 1 when the vehicle is in the inside lane and power is supplied to its left rear wheel 40 in this manner, as a result of the polarity of current supplied to motor 48, the toy vehicle will be caused to move from the inner lane 22 to the outer lane 20, as is shown in dotted lines in Figure 1 occurring with the vehicle 26. When this occurs the front end of the vehicle will engage the outer wall 14 of the track and the continued drive of its left wheel will cause the vehicle to move along wall 14 in outer lane 22.
On the other hand, when the polarity of current supplied to the motor 48 is reversed frame 60 will rotate in a counterclockwise direction, to the position shown in dotted lines in Figure 5. When this occurs gear 64 will be rotated in an opposite direction and moved into engagement with gear 46 on the right driven wheen 40 (i.e. the lower wheel 40 in Figure 6) so that this wheel is driven while the left wheel is free to rotate.
When the right wheel of the vehicle is driven in this manner, a bias is applied to the vehicle which will cause it to move to the left. Thus, as illustrated in Figure 1 by the vehicle 26 shown in solid lines, when the vehicle is in the outer lane 22 of track 12 the polarity of the current flow to the motor 48 is changed so that its right wheel 40 is driven, the vehicle will be biased towards its left into inner lane 20. When the front end of the vehicle hits inner wall 16 it will continue to move along that inner wall in inner lane 20 until the polarity of current supplied to motor 48 is again reversed. In this regard it is noted that because gear 64 is located forwardly of the axis of rotation of right wheel 40 the vehicle will be propelled in a forward direction regardless of the direction of rotation of the output element 52 of the motor.
Of course, if the vehicle is moving at a relatively high rate of speed as it goes about a curve in the track while in the inner lane, it may be propelled by centrifugal force into the outer lane. However, if the drive to the right hand wheel is maintained it will move inwardly again to the inner lane as previously described.
As seen most clearly in Figure 2, the vehicle chassis 32 includes integral inverted U-shaped arms 53 having free ends 55 in which wheel shaft 42 is rigidly or rotatably mounted, as mentioned above. These arms are located inwardly of gears 46, as seen in Figure 5A and their central bight portions provide clearance for gear 64 to engage gears 46. While engagement of gear 46 with one of the gears 64 will normally stop rotation of frame 60, the upper edge 57 of the bight portions of these arms will provide positive stops or limit positions for frame 60 in its two extreme positions. Alternatively frame 60 may be formed in dimensions such that it will not engage edge 57 but rather would pass along side arms 53 as it rotated.
In that case positive stops or shoulders 59 could be provided on the inside faces of arms 53 as shown in dotted lines in Figure 5.
Another embodiment of the invention illustrated in Figure 5A, uses a slightly different form of transmission system which also will selectively drive the right or left hand drive wheels of the toy vehicle according to the polarity of current supplied to the electric motor. In this embodiment of the invention the toy vehicle also includes a generally triangularly shaped idler frame 601 rotatably mounted on motor shaft 50 adjacent spur gear 52. This frame carries two rotatably mounted idler gear 641 thereon which are simultaneously rotated whenever current is supplied to motor 48. The gears 641 are laterally spaced so that only one of the gears engages a wheel gear 46 at any instant when power is supplied to the motor.
By this arrangement frame 60l will be swung to the left or right depending on the direction of rotation of spur gear 52 to drive one of the rear wheels of the vehicle. This arrangement provides a slightly faster response time in switching the drive between the rear wheels. As with the previously described embodiment, by controlling the polarity of the motor, the operator can control which of the rear drive wheels of the vehicle will be supplied with power, so that the vehicle can be used in the game of Figure 1, in the same manner as the vehicles previously described, to enable the operator to cause the vehicle to change position from one lane to the other.
In order to supply current to the toy vehicle, track surface 18 is provided with a plurality of electrical contact strips in each of the lanes 20, 22. In the illustrative embodiment of the invention each lane is provided with three contact strips A, B and C respectively. The strips are formed of an electrically conductive metallic material and are embedded in the track so that they are substantially flush with the surface of the track and present no obstacle to movement of the vehicles from one lane to the other.
Current is supplied to these strips, as described hereinafter, and is collected by current collectors mounted on the frame 32 of the toy vehicles in predetermined locations.
The contact strips in each lane are paired with each other, i.e. the A strip in one lane is electrically connected to the A strip in the other lane, the B strips are connected to each other and the C strips are connected to each other. The C strips are connected to electrical ground and the A and B strips are provided to separately supply current and control polarity of the current to the respective vehicles, so that two vehicles can operate in the same lane and still be separately controlled. For this reason the current collector and the vehicles are arranged to associate the respective vehicles with only one of the pairs of contact strips.
For example, vehicle 24 will obtain current from strips B, while vehicle 26 will obtain current only from strips A.
As illustrated in Figure 3 vehicle 24 is provided with two current collectors 111, 112 with the current collector 112 thereof positioned to contact ground strip C.
Similarly vehicle 26, illustrated in Figure 3A, has current collectors 112, 114 mounted thereon with current collector 112 located in the same position as the corresponding collector of vehicle 24 for also contacting the ground strip C. These current collectors are mounted on the vehicle in any convenient manner known in the art, and are electrically connected in a known manner to motor 48 of their respective vehicles.
Current collector 111 of vehicle 24 is mounted on the vehicle to engage contact strips B regardless of which lane the vehicle is in. As seen in Figure 3 this current collector is located centrally of the vehicle frame. On the other hand, the current collector 114 of vehicle 26 is located off center from the center line of the vehicle body and in spaced relation to its associated current collector 112. This current collector is positioned to engage contact strips A regardless of the lane in which the vehicle is moving. By this arrangement, each of the operators can separately control current supply and polarity to contact strips A, B to control a respective one of the vehicles 24, 26 regardless of the lane occupied by the vehicle.
The control system 30 for the toy vehicle game illustrated in Figure 1, is shown schematically in Figure 7. This control system includes respective controllers 124, 126 by which the players can control the vehicles 24, 26 respectively. Essentially the control system includes a plug 128 by which the system can be connected to an electrical AC power source. and it includes a transformer 130. Power is supplied from the transformer 130 through a halfwave rectifier 132 including two diodes connected as shown to separately supply current to the controllers 124, 126. Each controller is provided as a hand held unit and includes a variable resistor 134, operated as a trigger on the unit, as well as a single pole double throw switch 136.Current from controller 124 is supplied through its variable resistor 134 to the contact strips B and current from the controller 126 is supplied through its variable resistor to the contact strips A.
The variable resistors may be of any convenient construction to permit the operators to vary the current supplied to their respective contact strips, and thus their respective vehicles, in order to vary the speed of the vehicles.
The polarity of the current supplied to the toy vehicles is separated and independently controlled by switches 136 so that polarity of current supplied to motor 48 of the respective vehicles, as controlled by the respective controllers, will vary in accordance with the position in which the switches 136 are placed. By this arrangement each player, using his controller 126 or 124, can control the speed of his vehicle along the track 12 and he can also variably position his vehicle along the track simply by changing the polarity of current supplied to the vehicle. As described above the polarity of the current supplied to the motor of the respective toy vehicles will determine which of the two rear drive wheels is powered, and this will determine which lane the vehicle will be driven to.
As illustrated in Figure 1, when it is desired to switch a vehicle from the outer lane to the inner lane, as shown with vehicle 26, the polarity of current supplied to the vehicle is selected to drive the outer or right wheel of the vehicle thereby moving the vehicle leftwardly into the inner lane.
Likewise, when it is desired to move the vehicle outwardly the inner or left wheel of the vehicle is driven, by properly selecting the polarity of current supplied to the motor of the vehicle, so that the vehicle will move toward the right and into the outer lane.
Thus the operators have complete control over both the speed of the vehicle and the lane in which the vehicle will move.
As mentioned, the toy vehicles of the present invention include shock absorbing front ends 38, and these front ends preferably have the same structure and function as those described in my earlier applications and therefore will not be described in detail herein.
Accordingly it is seen that a relatively simply constructed toy vehicle game is provided in which players have complete independent control over the speed of operation of the toy- vehicles, including the ability to cause the toy vehicles to shift independently from one lane to the other in order to pass each other or to pass a drone car moving along the track in a constant speed.
This is achieved without the complexities of multiple element steering systems or solenoid bumper and steering arrangements. Moreover, it is accomplished with a simple change in polarity of the current flow to the toy vehicle's motor and eliminates the attendant loss of speed which occurs with previously proposed structures wherein lane changes are provided as a result of shutting off of power to the vehicle motor.
Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to that precise embodiment, but that various changes and modifications may be effected therein by one skilled in the art without departing from the scope of this invention.
WHAT WE CLAIM IS:- 1. A toy vehicle including a vehicle frame, a pair of laterally spaced selectively driven drive wheels mounted on the vehicle in laterally spaced relation to each other for independent rotation in vertical planes, a reversible rotary drive motor in said frame, a power output gear connected to said motor for rotation thereby; and a gear train in the frame drivingly engaged with the output gear for selectively driving one of the drive wheels in response to the direction of rotation of the output gear; characterized in that the gear train includes a gear movably mounted in the frame for movement between first and second positions in response to the direction of rotation of the output gear for selectively driving one of the drive wheels in a forward direction of movement of the vehicle in said first position thereof and the other of said drive wheels in said forward direction in the second position thereof, while the undriven wheel free wheels; first and second drive gears are respectively directly drivingly engaged with the drive wheels and are located in the frame for selective engagement with the movably mounted gear in the first and second positions thereof respectively; a gear support is rotatably mounted in the vehicle between the rear wheels on an axis located generally in longitudinal alignment with the axis of rotation of the output gear, the movably mounted gear is mounted on the support in driving engagement with the output gear so that the support frame rotates in response to rotation of the output gear to engage the movable gear with one or the other of the drive gears thereby to selectively drive the drive wheels in the forward direction of movement of the vehicle while the undriven wheel free wheels.
2. A toy vehicle according to Claim 1, further characterized in that the output gear is a spur gear and the movable gear is a single idler gear rotatably mounted on the gear support on an axis extending generally parallel to the axis of rotation of the spur gear.
3. A toy vehicle according to Claim 1 further characterized in that the output gear is a spur gear and the movable gear comprises a pair of laterally spaced idler gears rotatably mounted on the gear support on axes extending generally parallel to the axis of rotation of the spur gear, the idler gear being respectively associated with the drive gears for selective driving engagement therewith upon rotation of said gear support in response to the rotation direction of said output gear, thereby to selectively drive the drive wheels.
4. A toy vehicle game including a guide track having a pair of upstanding laterally spaced side walls, and at least one toy vehicle on the track including a frame, a body mounted on the frame, a plurality of ground engaging wheels including a pair of drive wheels, mounted on the frame for independent rotation in laterally spaced vertical planes; a reversible electric motor having an output shaft and mounted in the frame and a drive transmission mounted in the frame for selectively drivingly connecting the motor to the respective drive wheels to drive one or the other of the drive wheels in a forward direction regardless of the direction of rotation of the motor while the other wheel free wheels; the drive transmission includes at least one transmission element movably mounted in the frame for movement between first and second positions in response to the direction of rotation of the drive motor and a pair of direct drive gear drive trains respectively associated with the drive wheels and directly drivingly engaged therewith to respectively drive one or the other of the drive wheels in the forward direction when engagement by said movable transmission element; characterized in that the movably mounted transmission element includes a gear support frame rotatably mounted in the vehicle for rotation in a plane generally perpendicular to the output shaft and having at least one idler gear rotatably mounted thereon and drivingly engaged with the output shaft; the idler gear being located on the support frame for selective operative engagement with one or
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (6)

**WARNING** start of CLMS field may overlap end of DESC **. and therefore will not be described in detail herein. Accordingly it is seen that a relatively simply constructed toy vehicle game is provided in which players have complete independent control over the speed of operation of the toy- vehicles, including the ability to cause the toy vehicles to shift independently from one lane to the other in order to pass each other or to pass a drone car moving along the track in a constant speed. This is achieved without the complexities of multiple element steering systems or solenoid bumper and steering arrangements. Moreover, it is accomplished with a simple change in polarity of the current flow to the toy vehicle's motor and eliminates the attendant loss of speed which occurs with previously proposed structures wherein lane changes are provided as a result of shutting off of power to the vehicle motor. Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to that precise embodiment, but that various changes and modifications may be effected therein by one skilled in the art without departing from the scope of this invention. WHAT WE CLAIM IS:-
1. A toy vehicle including a vehicle frame, a pair of laterally spaced selectively driven drive wheels mounted on the vehicle in laterally spaced relation to each other for independent rotation in vertical planes, a reversible rotary drive motor in said frame, a power output gear connected to said motor for rotation thereby; and a gear train in the frame drivingly engaged with the output gear for selectively driving one of the drive wheels in response to the direction of rotation of the output gear; characterized in that the gear train includes a gear movably mounted in the frame for movement between first and second positions in response to the direction of rotation of the output gear for selectively driving one of the drive wheels in a forward direction of movement of the vehicle in said first position thereof and the other of said drive wheels in said forward direction in the second position thereof, while the undriven wheel free wheels; first and second drive gears are respectively directly drivingly engaged with the drive wheels and are located in the frame for selective engagement with the movably mounted gear in the first and second positions thereof respectively; a gear support is rotatably mounted in the vehicle between the rear wheels on an axis located generally in longitudinal alignment with the axis of rotation of the output gear, the movably mounted gear is mounted on the support in driving engagement with the output gear so that the support frame rotates in response to rotation of the output gear to engage the movable gear with one or the other of the drive gears thereby to selectively drive the drive wheels in the forward direction of movement of the vehicle while the undriven wheel free wheels.
2. A toy vehicle according to Claim 1, further characterized in that the output gear is a spur gear and the movable gear is a single idler gear rotatably mounted on the gear support on an axis extending generally parallel to the axis of rotation of the spur gear.
3. A toy vehicle according to Claim 1 further characterized in that the output gear is a spur gear and the movable gear comprises a pair of laterally spaced idler gears rotatably mounted on the gear support on axes extending generally parallel to the axis of rotation of the spur gear, the idler gear being respectively associated with the drive gears for selective driving engagement therewith upon rotation of said gear support in response to the rotation direction of said output gear, thereby to selectively drive the drive wheels.
4. A toy vehicle game including a guide track having a pair of upstanding laterally spaced side walls, and at least one toy vehicle on the track including a frame, a body mounted on the frame, a plurality of ground engaging wheels including a pair of drive wheels, mounted on the frame for independent rotation in laterally spaced vertical planes; a reversible electric motor having an output shaft and mounted in the frame and a drive transmission mounted in the frame for selectively drivingly connecting the motor to the respective drive wheels to drive one or the other of the drive wheels in a forward direction regardless of the direction of rotation of the motor while the other wheel free wheels; the drive transmission includes at least one transmission element movably mounted in the frame for movement between first and second positions in response to the direction of rotation of the drive motor and a pair of direct drive gear drive trains respectively associated with the drive wheels and directly drivingly engaged therewith to respectively drive one or the other of the drive wheels in the forward direction when engagement by said movable transmission element; characterized in that the movably mounted transmission element includes a gear support frame rotatably mounted in the vehicle for rotation in a plane generally perpendicular to the output shaft and having at least one idler gear rotatably mounted thereon and drivingly engaged with the output shaft; the idler gear being located on the support frame for selective operative engagement with one or
the other of the direct drive gear trains in the first and second positions of the movably mounted transmission element to drive one or the other of the drive wheels in the forward direction while the other drive wheel free wheels.
5. A toy vehicle game according to Claim 4 wherein the drive gear trains are crown gears respectively directly connected to the drive wheels and facing each other in laterally spaced relation with the idler gear being located therebetween.
6. A toy vehicle substantially as herein described and illustrated with reference to and as illustrated in the accompanying draw ings.
GB5197177A 1977-06-20 1977-12-14 Toy vehicle and toy vehicle game Expired GB1589537A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/807,997 US4125261A (en) 1977-04-01 1977-06-20 Toy vehicle and toy vehicle game

Publications (1)

Publication Number Publication Date
GB1589537A true GB1589537A (en) 1981-05-13

Family

ID=25197610

Family Applications (1)

Application Number Title Priority Date Filing Date
GB5197177A Expired GB1589537A (en) 1977-06-20 1977-12-14 Toy vehicle and toy vehicle game

Country Status (6)

Country Link
AU (2) AU520445B2 (en)
BR (1) BR7800960A (en)
DE (1) DE2814149C2 (en)
ES (1) ES466459A1 (en)
GB (1) GB1589537A (en)
MX (1) MX144540A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010737A1 (en) * 2010-03-09 2011-09-15 Sieper Gmbh Remote controlled toy vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1106656B (en) * 1959-02-20 1961-05-10 Markes & Co K G Toy drive for two different functions with only one drive motor
US3675366A (en) * 1971-04-05 1972-07-11 Tomy Kogyo Co Remotely controllable toy transporter for vehicles
DE2722734A1 (en) * 1977-05-20 1978-11-23 Neuhierl Hermann Reversible drive shaft on model racing car - has changeover cage to retain forward drive after steering alteration

Also Published As

Publication number Publication date
MX144540A (en) 1981-10-23
DE2814149A1 (en) 1978-12-21
ES466459A1 (en) 1978-10-16
DE2814149C2 (en) 1986-01-16
BR7800960A (en) 1979-04-24
AU520445B2 (en) 1982-02-04
AU3181977A (en) 1979-06-28

Similar Documents

Publication Publication Date Title
US4109913A (en) Toy vehicle
US4187637A (en) Toy vehicle
US4156987A (en) Toy vehicle
US3813812A (en) System for operating miniature vehicles
JPH067547A (en) Slot racing truck device
US3774340A (en) System for operating miniature vehicles
US4218846A (en) Lane changing toy car with unidirectional clutch and positive steering
US3797404A (en) System for operating miniature vehicles
US4382599A (en) Toy vehicle game
US4141553A (en) Toy vehicle game
US4078798A (en) Toy vehicle
US4415157A (en) Two-way slotless road racing game
US4231183A (en) Differential gear drive
US4125261A (en) Toy vehicle and toy vehicle game
US4247108A (en) Time limited power boost passing for toy vehicles
CA1145548A (en) Toy vehicle and toy vehicle game
CA1090132A (en) Toy vehicle and toy vehicle game
US4295649A (en) Toy miniature vehicle racing game
CA1148357A (en) Toy vehicle and toy vehicle game
GB1589537A (en) Toy vehicle and toy vehicle game
US4346894A (en) Driver skill test for toy miniature vehicles
US4322079A (en) Race set with detour
KR820002201B1 (en) Toy vehicle
CA1093820A (en) Toy vehicle and toy vehicle game
KR820002200B1 (en) Steerable toy vehicles

Legal Events

Date Code Title Description
PS Patent sealed
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19931214