FR3109897A1 - Catalyseur d’hydrogénation sélective comprenant un support spécifique en partie sous forme aluminate - Google Patents
Catalyseur d’hydrogénation sélective comprenant un support spécifique en partie sous forme aluminate Download PDFInfo
- Publication number
- FR3109897A1 FR3109897A1 FR2004516A FR2004516A FR3109897A1 FR 3109897 A1 FR3109897 A1 FR 3109897A1 FR 2004516 A FR2004516 A FR 2004516A FR 2004516 A FR2004516 A FR 2004516A FR 3109897 A1 FR3109897 A1 FR 3109897A1
- Authority
- FR
- France
- Prior art keywords
- metal
- catalyst
- mol
- gasoline
- active phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 132
- 238000005984 hydrogenation reaction Methods 0.000 title claims description 31
- 150000004645 aluminates Chemical group 0.000 title description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 129
- 239000002184 metal Substances 0.000 claims abstract description 129
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 29
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 18
- 239000010941 cobalt Substances 0.000 claims abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 12
- 239000011029 spinel Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 29
- 150000003464 sulfur compounds Chemical class 0.000 claims description 25
- 239000002243 precursor Substances 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 21
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 18
- 150000001993 dienes Chemical class 0.000 claims description 18
- 238000005987 sulfurization reaction Methods 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000012018 catalyst precursor Substances 0.000 claims description 14
- 150000002739 metals Chemical class 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 11
- 238000004231 fluid catalytic cracking Methods 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 150000003568 thioethers Chemical group 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 5
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 3
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 claims description 2
- 238000006477 desulfuration reaction Methods 0.000 claims 1
- 230000023556 desulfurization Effects 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 20
- 239000011148 porous material Substances 0.000 description 20
- 229910052717 sulfur Inorganic materials 0.000 description 18
- 239000011593 sulfur Substances 0.000 description 18
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 14
- 238000005470 impregnation Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 8
- 229910052753 mercury Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 150000005673 monoalkenes Chemical class 0.000 description 8
- KJRCEJOSASVSRA-UHFFFAOYSA-N propane-2-thiol Chemical compound CC(C)S KJRCEJOSASVSRA-UHFFFAOYSA-N 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 7
- 229910001151 AlNi Inorganic materials 0.000 description 7
- 239000003570 air Substances 0.000 description 7
- 238000004523 catalytic cracking Methods 0.000 description 7
- 238000001354 calcination Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- -1 diene compounds Chemical class 0.000 description 5
- 238000011066 ex-situ storage Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 5
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pent-2-ene Chemical compound CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 5
- 238000002459 porosimetry Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001960 metal nitrate Inorganic materials 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- MJRCCWJSYFOGBX-UHFFFAOYSA-N 1-propylsulfanylpentane Chemical compound CCCCCSCCC MJRCCWJSYFOGBX-UHFFFAOYSA-N 0.000 description 1
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- CRHLEZORXKQUEI-UHFFFAOYSA-N dialuminum;cobalt(2+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Co+2].[Co+2] CRHLEZORXKQUEI-UHFFFAOYSA-N 0.000 description 1
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021472 group 8 element Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000010198 maturation time Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical group [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 238000005732 thioetherification reaction Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/883—Molybdenum and nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
- B01J35/397—Egg shell like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0207—Pretreatment of the support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/12—Oxidising
- B01J37/14—Oxidising with gases containing free oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
- C10G49/04—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/104—Light gasoline having a boiling range of about 20 - 100 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Dispersion Chemistry (AREA)
Abstract
Catalyseur d’hydrotraitement comprenant une phase active contenant au moins un métal du groupe VIB et au moins un métal du groupe VIII, et un support poreux contenant de l’alumine et au moins un spinelle MAl2O4 où M est choisi parmi le nickel et le cobalt, caractérisé en ce que :- le ratio molaire (r1) entre ledit métal du groupe VIII et ledit métal du groupe VIB de la phase active est compris entre 1,0 et 3,0 mol/mol ;- le ratio molaire (r2) entre ledit métal M du support poreux et ledit métal du groupe VIII de la phase active est compris entre 0,3 et 0,7 mol/mol ;- le ratio molaire (r3) entre la somme des teneurs du métal M et du métal du groupe VIII par rapport à la teneur en métal du groupe VIB est compris entre 2,2 et 3,0 mol/mol.
Description
Domaine de l’invention
La présente invention concerne un catalyseur d’hydrogénation sélective d’une essence et d’alourdissement des mercaptans légers, et un procédé permettant de réaliser conjointement l’hydrogénation sélective des composés polyinsaturés en composés mono insaturés contenus dans les essences, ainsi que l’alourdissement des composés soufrés légers par réaction avec les composés insaturés.
Etat de la technique
La production d'essences répondant aux nouvelles normes d'environnement nécessite que l'on diminue de façon importante leur teneur en soufre à des valeurs n'excédant généralement pas 50 ppm, et préférentiellement inférieures à 10 ppm.
Il est par ailleurs connu que les essences de conversion, et plus particulièrement celles provenant du craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, présentent des teneurs en oléfines et en soufre élevées.
Le soufre présent dans les essences est pour cette raison imputable, à près de 90 %, aux essences issues des procédés de craquage catalytique, qu'on appellera dans la suite essence de FCC ("Fluid Catalytic Cracking" selon la terminologie anglo-saxonne que l'on peut traduire par craquage catalytique en lit fluidisé). Les essences de FCC constituent donc la charge préférée du procédé de la présente invention. Plus généralement, le procédé selon l'invention est applicable à toute coupe essence contenant une certaine proportion de dioléfines, et pouvant contenir en outre quelques composés plus légers appartenant aux coupes C3 et C4.
Les essences issues d'unités de craquage sont généralement riches en oléfines et en soufre, mais également en dioléfines dont la teneur, pour les essences issues de craquage catalytique peut aller jusqu’à 5 % poids. Les dioléfines sont des composés instables qui peuvent polymériser facilement et doivent généralement être éliminées avant tout traitement de ces essences tels que les traitements d'hydrodésulfuration destinés à répondre aux spécifications sur les teneurs en soufre dans les essences. Toutefois, cette hydrogénation doit être sélective aux dioléfines et limiter l'hydrogénation des oléfines afin de limiter la consommation d'hydrogène ainsi que la perte d'octane de l'essence. Par ailleurs, comme cela a été décrit dans la demande de brevet EP01077247 A1, il est avantageux de transformer par alourdissement les mercaptans avant l'étape de désulfuration car cela permet de produire une fraction essence désulfurée composée majoritairement d'oléfines à 5 atomes de carbone sans perte d'octane par simple distillation. La quantité de soufre présente dans la charge après l'hydrogénation sélective et l'alourdissement des composés soufrés légers n'est pas modifiée, seule la nature du soufre l'est par alourdissement des mercaptans.
De plus, les composés diéniques présents dans la charge à traiter sont instables et ont tendance à former des gommes par polymérisation. Cette formation de gommes entraîne une désactivation progressive du catalyseur d’hydrodésulfuration situé en aval ou un bouchage progressif du réacteur. Pour une application industrielle, il est donc important d'utiliser des catalyseurs qui limitent la formation de polymères, c'est à dire des catalyseurs présentant une faible acidité ou bien dont la porosité est optimisée pour faciliter l'extraction continue des polymères ou précurseurs de gommes par les hydrocarbures de la charge, afin d'assurer une durée de cycle maximale pour le catalyseur.
Le brevet FR 2118309 de la demanderesse propose une méthode de préparation d’un catalyseur sur support comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII, déposés sur un support spécifique comprenant un aluminate métallique du type MAl2O4avec un métal M choisi parmi le nickel et le cobalt.
Le brevet US2005/014639 propose une méthode de préparation d’un catalyseur sur support comprenant au moins un métal du groupe VIB et au moins un métal non noble du groupe VIII déposés séquentiellement sur un support spécifique comprenant un aluminate métallique du type MAl2O4avec un métal M choisi parmi les métaux du groupe VIII.
Le brevet FR 2895415 de la demanderesse propose une méthode d'hydrogénation sélective utilisant un catalyseur avec un support spécifique. Le procédé utilise un catalyseur sur support comprenant au moins un métal du groupe VIB et au moins un métal non noble du groupe VIII utilisé sous forme sulfurée, déposé sur un support spécifique comprenant un aluminate métallique du type MAl2O4avec un métal M choisi parmi le nickel et le cobalt.
Le brevet FR 2935389 de la demanderesse propose une méthode d'hydrogénation sélective utilisant un catalyseur soufré de composition spécifique. Le catalyseur comprend au moins un métal du groupe VIB et au moins un métal du groupe VIII supporté sur de l'alumine, dans lequel la teneur en oxyde métallique du groupe VIB est compris entre 4 et 20% en poids par rapport au poids total du catalyseur, la teneur en oxyde métallique du groupe VIII est inférieur à 15% en poids par rapport au poids total du catalyseur, le rapport molaire du métal du groupe VIII au métal du groupe VIB étant compris entre 0,6 et 3,0 mole/mole, ledit catalyseur comprenant un volume total des pores compris entre 0,4 et 1,4 cm3/g.
Au vu des solutions décrites dans la littérature, la présente invention propose un nouveau catalyseur présentant un support spécifique, permettant de réaliser conjointement l’hydrogénation sélective des composés polyinsaturés et plus particulièrement les dioléfines, ainsi que l’alourdissement des composés soufrés légers et plus particulièrement des mercaptans.
Objets de l’invention
La présente invention concerne un catalyseur d’hydrotraitement comprenant une phase active contenant au moins un métal du groupe VIB et au moins un métal du groupe VIII, et un support poreux contenant de l’alumine et au moins un spinelle MAl2O4où M est choisi parmi le nickel et le cobalt, caractérisé en ce que :
- le ratio molaire (r1) entre ledit métal du groupe VIII de la phase active et ledit métal du groupe VIB de la phase active est compris entre 1,0 et 3,0 mol/mol ;
- le ratio molaire (r2) entre ledit métal M du support poreux et ledit métal du groupe VIII de la phase active est compris entre 0,3 et 0,7 mol/mol ;
- le ratio molaire (r3) entre la somme des teneurs du métal M et du métal du groupe VIII de la phase active par rapport à la teneur en métal du groupe VIB de la phase active est compris entre 2,2 et 3,0 mol/mol.
- le ratio molaire (r1) entre ledit métal du groupe VIII de la phase active et ledit métal du groupe VIB de la phase active est compris entre 1,0 et 3,0 mol/mol ;
- le ratio molaire (r2) entre ledit métal M du support poreux et ledit métal du groupe VIII de la phase active est compris entre 0,3 et 0,7 mol/mol ;
- le ratio molaire (r3) entre la somme des teneurs du métal M et du métal du groupe VIII de la phase active par rapport à la teneur en métal du groupe VIB de la phase active est compris entre 2,2 et 3,0 mol/mol.
En effet, la Demanderesse a découvert de manière surprenante qu’un catalyseur à base d’au moins un métal du groupe VIII et un métal du groupe VIB déposés sur un support spécifique contenant au moins en partie un aluminate de nickel ou de cobalt, et présentant des ratios spécifiques entre ces différents métaux, présente par effet synergique une meilleure activité et une meilleure sélectivité en hydrogénation de dioléfines tout en permettant une conversion au moins aussi bonne, voire meilleure, des composés soufrés légers par rapport aux catalyseurs divulgués dans l’art antérieur.
Sans vouloir être lié par une quelconque théorie une optimisation de la teneur en aluminate de métal M relative à la teneur en métal du groupe VIB permettrait une meilleure dispersion de la phase active induisant une amélioration des performances catalytiques. La présence d’aluminate en quantité déterminée permet également de limiter ou d’empêcher la migration du métal du groupe VIII au sein du support poreux contenant de l’alumine lors de la phase d’activation du catalyseur préalable à la sulfuration et ainsi conserver un ratio entre le métal du groupe VIII et le métal du groupe VI B optimal à la surface du catalyseur.
Avantageusement, le ratio molaire (r4) entre ledit métal M du support poreux et ledit métal du groupe VIB de la phase active est compris entre 0,5 et 1,5 mol/mol.
Avantageusement, le ratio molaire (r4) est compris entre 0,7 et 1,5 mol/mol.
Avantageusement, que la teneur en métal du groupe VIII de la phase active, mesurée sous forme oxyde, est comprise entre 1 et 20% poids par rapport au poids total du catalyseur.
Avantageusement, la teneur en métal du groupe VIB de la phase active, mesurée sous forme oxyde, est comprise entre 1 et 12% poids par rapport au poids total du catalyseur.
Avantageusement, la teneur en métal M, mesurée sous forme oxyde, est comprise entre 0,5 et 10% poids par rapport au poids total du catalyseur.
Avantageusement, la surface spécifique du catalyseur est comprise entre 110 et 190 m²/g.
Avantageusement, le taux de sulfuration des métaux de la phase active est au moins égal à 50%.
De préférence, le ratio molaire (r3) est compris entre 2,3 et 3,0 mol/mol.
De préférence, le métal du groupe VIII est le nickel et le métal du groupe VIB est le molybdène.
De préférence, le métal M est le nickel.
Un autre objet selon l’invention concerne un procédé de préparation du catalyseur selon l’invention comprenant les étapes suivantes :
a) on met en contact le support avec une solution aqueuse ou organique comprenant au moins un sel de métal M choisi parmi le nickel et le cobalt ;
b) on laisse maturer le support imprégné à l’issue de l’étape a) à une température inférieure à 50°C pendant une durée comprise entre 0,5 heure et 24 heures;
c) on sèche le support imprégné maturé obtenu à l’issue de l'étape b) à une température comprise entre 50°C et 200°C;
d) on calcine le solide obtenu à l’étape c) à une température comprise entre 500°C et 1000°C de manière à obtenir un spinelle de type MAl2O4;
e) on réalise les sous-étapes suivantes :
i) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIII puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
ii) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIB puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément ;
i) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIII puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
ii) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIB puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément ;
f) on sèche le précurseur de catalyseur obtenu à l'étape e) à une température comprise entre 50°C et 200°C, de préférence entre 70 et 180°C, pendant une durée comprise typiquement entre 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 5 heures.
Dans un mode de réalisation selon l’invention, le procédé comprend en outre une étape g) dans laquelle on calcine le précurseur de catalyseur obtenu à l’étape f) à une température comprise entre 200°C et 550°C pendant une durée comprise avantageusement entre 0,5 à 24 heures.
Un autre objet selon l’invention concerne un procédé d’hydrogénation sélective d'une essence comprenant des composés polyinsaturés et des composés soufrés légers dans lequel procédé on met en contact l’essence, de l’hydrogène avec un catalyseur selon l’invention, ou obtenu selon le procédé de préparation selon l’invention, sous forme sulfure, à une température comprise entre 80°C et 220°C, avec une vitesse spatiale liquide comprise entre 1h-1et 10h-1et une pression comprise entre 0,5 et 5 MPa, et avec un rapport molaire entre l'hydrogène et les dioléfines à hydrogéner supérieur à 1 et inférieur à 10 mol/mol.
De préférence, ladite essence est une essence du craquage catalytique en lit fluide (FCC) et ayant une température d'ébullition comprise entre 0°C et 280°C.
Un autre objet selon l’invention concerne un procédé de désulfuration d’essence comprenant des composés soufrés comprenant les étapes suivantes :
a) une étape d'hydrogénation sélective mettant en œuvre un procédé d’hydrogénation sélective d'une essence comprenant des composés polyinsaturés et des composés soufrés légers selon l’invention ;
b) une étape de séparation de l'essence obtenue à l’étape a) en au moins deux fractions comprenant respectivement au moins une essence légère et une essence lourde ;
c) une étape d’hydrodésulfuration de l’essence lourde séparée à l’étape b) sur un catalyseur permettant de décomposer au moins partiellement les composés soufrés en H2S.
Description détaillée de l’invention
Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81èmeédition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
On entend par surface spécifique, la surface spécifique BET (SBETen m2/g) déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique "The Journal of American Society", 1938, 60, 309.
On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur. Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
Les teneurs en métaux du groupe VIII et du groupe VIB sont mesurées par fluorescence X.
Catalyseur
Le catalyseur selon l’invention comprend, de préférence est constitué de, une phase active contenant, de préférence constitué de, au moins un métal du groupe VIB et au moins un métal du groupe VIII, et un support poreux contenant de l’alumine et au moins un spinelle MAl2O4où M est choisi parmi le nickel et le cobalt, caractérisé en ce que :
- le ratio molaire (r1) entre ledit métal du groupe VIII de la phase active et ledit métal du groupe VIB de la phase active est compris entre 1,0 et 3,0 mol/mol, de préférence entre 1,5 et 3,0 mol/mol, plus préférentiellement entre 1,6 et 3,0 mol/mol ;
- le ratio molaire (r2) entre ledit métal M du support poreux et ledit métal du groupe VIII de la phase active est compris entre 0,3 et 0,7 mol/mol, plus préférentiellement entre 0,5 et 0,7 mol/mol ;
- le ratio molaire (r3) entre la somme des teneurs du métal M et du métal du groupe VIII de la phase active par rapport à la teneur en métal du groupe VIB de la phase active est compris entre 2,2 et 3,0 mol/mol, de préférence entre 2,3 et 3,0 mol/mol, plus préférentiellement entre 2,5 et 3,0 mol/mol.
Lorsque le métal du groupe VIII de la phase active utilisé est le nickel ou le cobalt, le ratio molaire calculé ne prend pas en compte le nickel ou le cobalt engagé dans le spinelle.
La teneur en métal du groupe VIII de la phase active, mesurée sous forme oxyde, est comprise entre 1 et 20% poids par rapport au poids total du catalyseur, de préférence entre 2 et 15% poids, et encore plus préférentiellement entre 4 et 13 % poids. Le métal du groupe VIII est choisi de préférence parmi le nickel, le cobalt, et le fer. De manière plus préférée, le métal du groupe VIII est le nickel.
La teneur en métal du groupe VIB de la phase active, mesurée sous forme oxyde, est avantageusement comprise entre 1 et 12% poids par rapport au poids total du catalyseur, de préférence entre 1 et 10% poids, et encore plus préférentiellement entre 2 et 9% poids. Le métal du groupe VIB est de préférence choisi parmi le molybdène et le tungstène. De manière plus préférée, le métal du groupe VIB est le molybdène.
De préférence, le catalyseur selon l’invention comprend en outre un ratio molaire (r4) entre ledit métal M du support poreux et ledit métal du groupe VIB de la phase active est compris entre 0,5 et 1,5 mol/mol, de préférence compris entre 0,7 et 1,5 mol/mol, et encore plus préférentiellement entre 0,8 et 1,5 mol/mol. Sans vouloir être lié par une quelconque théorie une optimisation de la teneur en aluminate de métal M relative à la teneur en métal du groupe VIB permettrait une meilleure dispersion de la phase active induisant une amélioration des performances catalytiques.
De préférence, on utilise un catalyseur présentant un volume poreux total mesuré par porosimétrie au mercure compris entre 0,3 et 1,1 cm3/g et de manière très préféré, compris entre 0,35 et 0,7 cm3/g. La porosimétrie au mercure est mesurée selon la norme ASTM D4284-92 avec un angle de mouillage de 140°, avec un appareil modèle Autopore III de la marque Microméritics®.
La surface spécifique du catalyseur est de préférence inférieure à 350 m2/g, et de manière plus préférée comprise entre 80 m2/g et 280 m2/g, de préférence entre 100 m²/g et 250 m²/g, et encore plus préférentiellement entre 110 m²/g et 190 m²/g.
De plus, le volume des pores du catalyseur dont le diamètre est supérieur à 0,05 µm, mesuré par porosimétrie au mercure, est de préférence compris entre 5 et 50% du volume poreux total et de manière préférée, compris entre 10 et 40% du volume poreux total.
Le volume des pores du catalyseur dont le diamètre est supérieur à 0,1 µm est de préférence compris entre 5 et 35% du volume poreux total et de manière plus préférée compris entre 10% et 30% du volume poreux total. Il a notamment été observé par les inventeurs, que cette répartition poreuse permet de limiter la formation de gommes dans le catalyseur.
Support
Le support du catalyseur comprend, de préférence est constitué de, une alumine et un aluminate de métal M de type MAl2O4avec M sélectionné dans le groupe constitué par le nickel et le cobalt, de préférence M est le nickel.
Avantageusement, la teneur en métal M, mesurée sous forme oxyde, est comprise entre 0,5 et 10% poids par rapport au poids total du catalyseur, de préférence entre 0,7 et 8% poids, et encore plus préférentiellement entre 1 et 5% poids.
La présence de spinelle dans le catalyseur selon l’invention se mesure par réduction en température programmée RTP (ou TPR pour "temperature programmed reduction" selon la terminologie anglo-saxonne) tel que par exemple décrit dans Oil & Gas Science and Technology, Rev. IFP, Vol. 64 (2009), No. 1, pp. 11-12. Selon cette technique, le catalyseur est chauffé sous flux d’un réducteur, par exemple sous flux de dihydrogène. La mesure du dihydrogène consommé en fonction de la température donne des informations quantitatives sur la réductibilité des espèces présentes. La présence de spinelle dans le catalyseur se manifeste ainsi par une consommation de dihydrogène à une température supérieure à environ 800°C.
L’alumine utilisée est choisie parmi les alumines suivantes : alumines gamma, delta, thêta, êta, rho, chi, kappa, prises seules ou en mélange.
De manière préférée, on utilise un support présentant un volume poreux total mesuré par porosimétrie au mercure compris entre 0,3 et 1,1 cm3/g et préférentiellement compris entre 0,35 et 0,7 cm3/g.
De plus, le volume des pores du support, mesuré par porosimétrie au mercure, dont le diamètre est supérieur à 0,05 µm est de préférence compris entre 5 et 50% du volume poreux total et de manière plus préférée, compris entre 10 et 40% du volume poreux total.
Le volume des pores du support dont le diamètre est supérieur à 0,1 µm est de préférence compris entre 5 et 35% du volume poreux total et de manière plus préférée entre 5 et 30% du volume poreux total.
La surface spécifique du support est de préférence inférieure à 350 m2/g, et de manière plus préférée comprise entre 80 m2/g et 280 m2/g, de préférence entre 100 m²/g et 250 m²/g, et encore plus préférentiellement entre 120 m²/g et 190 m²/g.
Synthèse du support comprenant un aluminate
Le précurseur du support pouvant être utilisé dans le cadre de l’invention comprend de l'alumine. Ledit précurseur de support peut également être constitué d'un mélange d'alumine et de tout autre oxyde connu de l'homme du métier autre que les aluminates tel que par exemple, de la silice, de l'oxyde de titane, de l'oxyde de magnésium, de l'oxyde de zinc, de l'oxyde de zirconium. L'alumine utilisée est sélectionnée dans les groupe des alumines permettant d'incorporer un métal M choisi parmi le nickel et le cobalt, de préférence le nickel. De préférence, l’alumine est choisie parmi les alumines gamma, delta, thêta, êta, rho, chi, kappa, prises seules ou en mélange.
On réalise avantageusement une imprégnation à sec d’une alumine telle que mentionnée ci-avant par une solution aqueuse contenant une quantité appropriée de nitrate de métal tel que le nitrate de nickel ou le nitrate de cobalt. La quantité de nitrate de métal correspond à une teneur en métal (en équivalent oxyde, MO avec M sélectionné dans le groupe constitué par le nickel et le cobalt) de 0,5 et 10% poids par rapport au poids total du catalyseur, de manière préférée comprise entre 0,7 et 8% poids et de manière encore plus préférée, comprise entre 1 et 5% poids sur le solide.
Après imprégnation, le solide est laissé à maturer à une température inférieure à 50°C, de préférence à température ambiante durant 0,5 à 24 heures, de préférence entre 0,5 et 12 heures, puis séché à une température comprise avantageusement entre 50°C et 200°C, de préférence entre 70 et 180°C, pendant une durée comprise avantageusement entre 1 et 48 heures, de préférence entre 2 et 12 heures. Enfin, le solide est calciné sous flux d’air sec ou sous flux d’air humide, de préférence sous flux d’air humide, à une température comprise entre 500 et 1100°C, de préférence entre 600 et 900°C, pendant une durée comprise avantageusement entre 1 à 12 heures, de préférence entre 2 et 8 heures. Cette calcination permet de former le spinelle MAl2O4où M est choisi parmi le nickel et le cobalt. Le solide obtenu est désigné dans la suite, sous le terme AlNi ou AlCo.
Préparation du catalyseur
Le catalyseur selon l'invention peut être préparé au moyen de toute technique connue de l'homme du métier, et notamment par imprégnation des éléments des groupes VIII et VIB sur le support sélectionné. L’imprégnation peut par exemple être réalisée selon le mode connu de l'homme du métier sous la terminologie d'imprégnation à sec, dans lequel on introduit juste la quantité d'éléments désirés sous forme de sels solubles dans le solvant choisi, par exemple de l'eau déminéralisée, de façon à remplir aussi exactement que possible la porosité du support.
Le précurseur de la phase active à base de métal du groupe VIII et le précurseur de la phase active du métal du groupe VIB peuvent être introduits simultanément ou successivement. L’imprégnation de chaque précurseur peut être avantageusement réalisée en au moins deux fois. Les différents précurseurs peuvent ainsi être avantageusement imprégnés successivement avec un temps d’imprégnation et de maturation différentié. Un des précurseur peut aussi être imprégné en plusieurs fois.
Le support ainsi rempli par la solution est laissé à maturer à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures. A la suite de l’étape de maturation, le précurseur de catalyseur obtenu subit un traitement d’activation.
Ce traitement a généralement pour but de transformer les précurseurs moléculaires des éléments en phase oxyde. Il s’agit dans ce cas d’un traitement oxydant, mais un simple séchage du catalyseur peut également être effectué.
Dans le cas d’un séchage, le précurseur de catalyseur est séché à une température comprise entre 50°C et 200°C, de préférence entre 70 et 180°C, pendante une durée comprise typiquement entre 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 5 heures.
Dans le cas d'un traitement oxydant, également appelé calcination, celui-ci est généralement mis en œuvre sous air sec ou humide ou sous oxygène dilué, et la température de traitement est généralement comprise entre 200°C et 550°C, de préférence entre 300°C et 500°C et plus préférentiellement entre 325°C et 475°C, et avantageusement pendant une durée typiquement comprise entre 0,5 à 24 heures, de façon préférée pendant une durée de 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 10 heures. Des sels de métaux des groupes VIB et VIII utilisables dans le procédé de préparation du catalyseur sont par exemple le nitrate de cobalt, le nitrate de nickel, l'heptamolybdate d'ammonium ou le métatungstate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante et décomposable lors du traitement d'activation peut également être utilisé. Avantageusement, le séchage et le traitement oxydant sont tous les deux réalisés lors du procédé de préparation du catalyseur.
De manière préférée, le catalyseur selon l’invention est préparé selon les étapes suivantes :
a) on met en contact le support avec une solution aqueuse ou organique comprenant au moins un sel de métal M choisi parmi le nickel et le cobalt ;
b) on laisse maturer le support imprégné à l’issue de l’étape a) à une température inférieure à 50°C, de préférence à température ambiante, pendante une durée comprise entre 0,5 heure et 24 heures, de préférence entre 0,5 heure et 12 heures ;
c) on sèche le support imprégné maturé obtenu à l’issue de l'étape b) à une température comprise entre 50°C et 200°C, de préférence entre 70 et 180°C, pendant une durée avantageusement comprise entre 1 et 48 heures, de préférence entre 2 et 12 heures ;
d) on calcine le solide obtenu à l’étape c) à une température comprise entre 500°C et 1000°C, de préférence entre 600 et 900°C, pendant une durée avantageusement comprise entre 1 et 12 heures, de préférence entre 2 et 12 heures, de manière à obtenir un spinelle de type MAl2O4;
e) on réalise les sous-étapes suivantes :
i) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIII puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
ii) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIB puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément ;
i) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIII puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
ii) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIB puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures ;
les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément ;
f) on sèche le précurseur de catalyseur obtenu à l'étape e) à une température comprise entre 50°C et 200°C, de préférence entre 70 et 180°C, pendant une durée comprise typiquement entre 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 5 heures ;
g) optionnellement, on calcine le précurseur de catalyseur obtenu à l’étape f) à une température comprise entre 200°C et 550°C, de préférence entre 300 et 500°C, et plus préférentiellement entre 325°C et 475°C, pendant une durée comprise avantageusement entre 0,5 à 24 heures, de façon préférée pendant une durée de 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 10 heures.
Étape 3 : Sulfuration du catalyseur.
Avant mise en contact avec la charge à traiter, les catalyseurs subissent une étape de sulfuration. La sulfuration est réalisée en milieu sulforéducteur, c'est à dire en présence d'H2S et d'hydrogène, afin de transformer les oxydes métalliques en sulfures tels que par exemple, le MoS2et le NiS. La sulfuration est réalisée en injectant sur le catalyseur un flux contenant de l'H2S et de l'hydrogène, ou bien un composé soufré susceptible de se décomposer en H2S en présence du catalyseur et de l'hydrogène. Les polysulfures tel que le diméthyldisulfure sont des précurseurs d'H2S couramment utilisés pour sulfurer les catalyseurs. La température est ajustée afin que l'H2S réagisse avec les oxydes métalliques ou les catalyseurs séchés (non calcinés) pour former des sulfures métalliques. Cette sulfuration peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur d’hydrotraitement à des températures comprises entre 200 et 600°C et plus préférentiellement entre 250 et 500°C. Pour être actifs, les métaux doivent être substantiellement sulfurés. Un élément est considéré comme substantiellement sulfuré lorsque le rapport molaire entre le soufre (S) présent sur le catalyseur et le dit élément est au moins égal à 50% du rapport molaire théorique correspondant à la sulfuration totale de l’élément considéré. Le taux de sulfuration global est défini par l’équation suivante :
avec:
(S/élément)catalyseurrapport molaire entre le soufre (S) et l’élément présent sur le catalyseur, à l'exclusion du métal (Ni ou Co) présent sous forme d’aluminate.
(S/élément)théoriquerapport molaire entre le soufre et l’élément correspondant à la sulfuration totale de l’élément en sulfure.
Ce rapport molaire théorique varie selon l’élément considéré:
- (S/Fe)théorique= 1
- (S/Co)théorique= 8/9
- (S/Ni)théorique= 1/1
- (S/Mo)théorique=2/1
- (S/W)théorique=2/1
- (S/Co)théorique= 8/9
- (S/Ni)théorique= 1/1
- (S/Mo)théorique=2/1
- (S/W)théorique=2/1
Le catalyseur comprenant plusieurs métaux, le rapport molaire entre le S présent sur le catalyseur et l’ensemble des éléments doit également être au moins égal à 50% du rapport molaire théorique correspondant à la sulfuration totale de chaque élément en sulfure, le calcul étant effectué au prorata des fractions molaires relatives de chaque élément, à l'exclusion du métal (Ni ou Co) engagé lors de la préparation du support.
Par exemple, pour un catalyseur comprenant du molybdène et du nickel avec une fraction molaire respective de 0,7 et 0,3, le rapport molaire minimal (S/Mo+Ni) est donné par la relation suivante:
De façon très préférée, le taux de sulfuration des métaux sera supérieur à 70%.
La sulfuration est mise en œuvre sur les métaux sous forme d'oxyde sans que soit réalisée une étape préalable de réduction des métaux. En effet, il est connu que la sulfuration de métaux réduits est plus difficile que la sulfuration de métaux sous forme d'oxydes.
Procédé d’hydrogénation sélective
L'invention concerne également un procédé de traitement d'une essence comprenant tout type de familles chimiques et notamment des dioléfines, des mono-oléfines, et des composés soufrés sous forme de mercaptans et de sulfures légers. La présente invention trouve particulièrement son application dans la transformation des essences de conversion, et en particulier des essences en provenance du craquage catalytique, du craquage catalytique en lit fluidisé (FCC), d’un procédé de cokéfaction, d’un procédé de viscoréduction, ou d’un procédé de pyrolyse. Les charges pour lesquelles s'applique l'invention ont une température d'ébullition comprise entre 0°C et 280°C. Les charges peuvent également contenir des hydrocarbures à 3 ou 4 atomes de carbone.
Par exemple, les essences issues d'unités de craquage catalytique (FCC) contiennent, en moyenne, entre 0,5% et 5% poids de dioléfines, entre 20% et 50% poids de mono-oléfines, entre 10 ppm et 0,5% poids de soufre dont généralement moins de 300 ppm de mercaptans. Les mercaptans se concentrent généralement dans les fractions légères de l'essence et plus précisément dans la fraction dont la température d'ébullition est inférieure à 120°C.
Le traitement de l'essence décrit dans le présent procédé d'hydrogénation sélective consiste principalement à :
- hydrogéner sélectivement les dioléfines en mono-oléfines;
- transformer les composés soufrés légers saturés et principalement les mercaptans, en sulfures ou mercaptans plus lourds par réaction avec les mono-oléfines;
- isomériser les composés mono-oléfines ayant leur double liaison C=C externe en leur isomère à double liaison C=C interne.
- hydrogéner sélectivement les dioléfines en mono-oléfines;
- transformer les composés soufrés légers saturés et principalement les mercaptans, en sulfures ou mercaptans plus lourds par réaction avec les mono-oléfines;
- isomériser les composés mono-oléfines ayant leur double liaison C=C externe en leur isomère à double liaison C=C interne.
Les réactions d'hydrogénation des dioléfines en mono-oléfines sont illustrées ci-dessous par la transformation du 1,3 pentadiène, composé instable, qui peut facilement être hydrogéné en pent-2-ène. Toutefois, on cherche à limiter les réactions secondaires d'hydrogénation des mono-oléfines qui dans l'exemple ci-dessous conduiraient à la formation de n-pentane et donc à une baisse de l'indice d'octane.
Les composés soufrés que l'on cherche à transformer sont principalement les mercaptans. La réaction principale de transformation des mercaptans consiste en une réaction de thioéthérification entre les mono-oléfines et les mercaptans. Cette réaction est illustrée ci-dessous par l'addition du propane-2-thiol sur le pent-2-ène pour former un propyl-pentyl sulfure.
En présence d'hydrogène, la transformation des composés soufrés peut également passer par la formation intermédiaire d'H2S qui peut ensuite s'additionner sur les composés insaturés présents dans la charge. Cette voie est toutefois minoritaire dans les conditions préférées de la réaction.
Outre les mercaptans, les composés susceptibles d'être ainsi transformés et alourdis sont les sulfures et principalement le CS2, le COS, le thiophane et le méthyl-thiophane.
Dans certains cas, on peut également observer des réactions d'alourdissement des composés azotés légers, et principalement des nitriles, du pyrrole et de ses dérivés.
Selon l'invention, le catalyseur permet également de réaliser une isomérisation des composées mono-oléfiniques ayant leur double liaison C=C en position externe en leur isomère ayant leur double liaison C=C en position interne.
Cette réaction est illustrée ci-après par l'isomérisation du hexène-1 en hexène-2 ou hexène-3 :
Dans le procédé d'hydrogénation sélective selon l'invention, la charge à traiter est mélangée à de l'hydrogène avant d'être mise en contact avec le catalyseur. La quantité d'hydrogène injectée est telle que le rapport molaire entre l'hydrogène et les dioléfines à hydrogéner soit supérieur à 1 (stœchiométrie) et inférieure à 10, et de préférence compris entre 1 et 5 mol/mol. Un trop large excès d'hydrogène peut entraîner une forte hydrogénation des mono-oléfines et par voie de conséquence, une diminution de l'indice d'octane de l'essence. La totalité de la charge est généralement injectée à l'entrée du réacteur lorsque le procédé est effectué en lit fixe. Toutefois, il peut être avantageux, dans certains cas d'injecter une fraction ou la totalité de la charge entre deux lits catalytiques consécutifs placés dans le réacteur. Ce mode de réalisation permet notamment de continuer à opérer le réacteur si l'entrée du réacteur se trouve bouchée par dépôts de polymères, de particules, ou de gommes présentes dans la charge.
Le mélange constitué de l'essence et de l'hydrogène est mis en contact avec le catalyseur à une température comprise entre 80°C et 220°C, et de préférence entre 90°C et 200°C, avec une vitesse spatiale liquide (LHSV) comprise entre 1h-1et 10 h-1, l'unité de la vitesse spatiale liquide étant le litre de charge par litre de catalyseur et par heure (l/l.h). La pression est ajustée afin que le mélange réactionnel soit majoritairement sous forme liquide dans le réacteur. La pression est comprise entre 0,5 MPa et 5 MPa et de préférence entre 1 et 4 MPa.
L'essence traitée dans les conditions énoncées ci-dessus, présente une teneur en dioléfines et en mercaptans réduite. Généralement, l'essence produite contient moins de 1 % poids de dioléfines, et de préférence moins de 0,5% poids de dioléfines. Les composés soufrés légers dont la température d'ébullition est inférieure à celle du thiophène (84°C) sont généralement convertis à plus de 50%. Il est donc possible de séparer la fraction légère de l'essence par distillation et d'envoyer directement cette fraction au pool essence sans traitement complémentaire. La fraction légère de l'essence a généralement un point final inférieur à 120°C, et de préférence inférieure à 100°C et de façon très préférée inférieure à 80°C.
Le procédé d'hydrogénation sélective selon l'invention est particulièrement adapté pour être mis en œuvre dans le cadre du procédé de désulfuration décrit dans la demande de brevet EP 1 077 247.
La présente demande a également pour objet un procédé de désulfuration d’essence comprenant des composés soufrés, comprenant au moins les étapes suivantes:
a) une étape d'hydrogénation sélective mettant en œuvre le procédé décrit précédemment;
b) une étape de séparation de l'essence obtenue à l’étape a) en au moins deux fractions comprenant respectivement au moins une essence légère et une essence lourde ;
c) une étape d’hydrodésulfuration de l’essence lourde séparée à l’étape b) sur un catalyseur permettant de décomposer au moins partiellement les composés soufrés en H2S.
L'étape b) de séparation est réalisée de préférence au moyen d’une colonne de distillation classique appelée aussi splitter. Cette colonne de fractionnement doit permettre de séparer une fraction légère de l'essence contenant une faible fraction du soufre et une fraction lourde contenant de préférence la majeure partie du soufre initialement présent dans l'essence initiale.
Cette colonne opère généralement à une pression comprise entre 0,1 et 2 MPa et de préférence entre 0,2 et 1 MPa. Le nombre de plateaux théoriques de cette colonne de séparation est généralement compris entre 10 et 100 et de préférence entre 20 et 60. Le taux de reflux, exprimé comme étant le rapport du débit liquide dans la colonne divisé par le débit de distillat exprimé en kg/h, est généralement inférieur à l'unité et de préférence inférieur à 0,8.
L’essence légère obtenue à l'issue de la séparation contient généralement au moins l'ensemble des oléfines en C5, de préférence les composés en C5 et au moins 20 % des oléfines en C6. Généralement, cette fraction légère présente une faible teneur en soufre, c'est à dire qu'il n'est pas en général nécessaire de traiter la coupe légère avant de l'utiliser comme carburant.
L'étape c) de désulfuration est de préférence une étape d’hydrodésulfuration réalisée par passage de l’essence lourde, en présence d'hydrogène, sur un catalyseur d’hydrodésulfuration comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB au moins en partie sous formes sulfures, à une température comprise entre environ 210°C et environ 350°C, de préférence entre 220°C et 320°C, sous une pression généralement comprise entre environ 1 et environ 4 MPa, de préférence entre 1,5 et 3 MPa. La vitesse spatiale du liquide est comprise entre environ 1 et environ 20 h-1(exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 1 et 10 h-1, de manière très préférée entre 3 et 8 h-1. Le rapport H2/charge est compris entre 100 à 600 Nl/l et préférentiellement entre 300 et 600 Nl/l.
La teneur en métal du groupe VIII exprimée en oxyde est généralement comprise entre 0,5 et 15% poids, préférentiellement entre 1 et 10 % poids par rapport au poids du catalyseur d’hydrodésulfuration. La teneur en métal du groupe VIB exprimée en oxyde est généralement comprise entre 1,5 et 60% poids, préférentiellement entre 3 et 50% poids par rapport au poids de catalyseur d’hydrodésulfuration.
L’élément du groupe VIII, lorsqu’il est présent, est de préférence le cobalt, et l’élément du groupe VIB, lorsqu’il est présent, est généralement le molybdène ou le tungstène. Des combinaisons telles que cobalt-molybdène sont préférées. Le support du catalyseur d’hydrodésulfuration est habituellement un solide poreux, tel que par exemple une alumine, une silice-alumine ou d'autres solides poreux, tels que par exemple de la magnésie, de la silice ou de l'oxyde de titane, seuls ou en mélange avec de l'alumine ou de la silice-alumine. Pour minimiser l'hydrogénation des oléfines présentes dans l’essence lourde, il est avantageux d'utiliser préférentiellement un catalyseur dans lequel la densité de molybdène, exprimée en % poids de MoO3(le % en poids étant exprimé par rapport au poids total du catalyseur) par unité de surface spécifique est supérieure à 0,07 et de préférence supérieure à 0,12. Le catalyseur d’hydrodésulfuration selon l’étape c) présente de préférence une surface spécifique inférieure à 250 m²/g, de manière plus préférée inférieure à 230 m²/g, et de manière très préférée inférieure à 190 m²/g , et plus préférentiellement entre 100 et 180 m²/g.
Le dépôt des métaux sur le support est obtenu pour toutes méthodes connues de l'homme de l'art telles que par exemple l'imprégnation à sec, par excès d'une solution contenant les précurseurs de métaux. La solution d'imprégnation est choisie de manière à pouvoir solubiliser les précurseurs de métaux dans les concentrations désirées. Par exemple, dans le cas de la synthèse d'un catalyseur CoMo, le précurseur de molybdène peut être l'oxyde de molybdène, l'heptamolybdate d'ammonium et tandis que le précurseur de cobalt peut être par exemple le nitrate de cobalt, l'hydroxyde de cobalt, le carbonate de cobalt. Les précurseurs sont généralement dissous dans un milieu permettant leur solubilisation dans les concentrations désirées.
Après introduction du ou des éléments et éventuellement mise en forme du catalyseur, le catalyseur est dans une première étape activé. Cette activation peut correspondre soit à une oxydation puis à une réduction, soit à une réduction directe, soit à une calcination uniquement. L’étape de calcination est généralement réalisée à des températures allant d’environ 100 à environ 600°C et de préférence comprises entre 200 et 450°C, sous un débit d’air. L’étape de réduction est réalisée dans des conditions permettant de convertir au moins une partie des formes oxydées du métal de base en métal. Généralement, elle consiste à traiter le catalyseur sous un flux d’hydrogène à une température de préférence au moins égale à 300 °C. La réduction peut aussi être réalisée en partie au moyen de réducteurs chimiques.
Le catalyseur est de préférence utilisé au moins en partie sous sa forme sulfurée. L’introduction du soufre peut intervenir avant ou après toute étape d’activation, c’est-à-dire de calcination ou de réduction. Le soufre ou un composé soufré peut être introduit ex situ, c’est-à-dire en dehors du réacteur où le procédé selon l’invention est réalisé, ou in situ, c’est-à-dire dans le réacteur utilisé pour le procédé selon l’invention. Dans le premier cas, la sulfuration ex-situ se caractérise par une étape finale de passivation. En effet, les phases sulfures présentent une très grande réactivité vis-à-vis de l'air ambiant (caractère auto-échauffant par oxydation) interdisant leur manipulation ultérieure sans un traitement complémentaire visant à limiter cette réactivité. Parmi les procédures de sulfurations ex situ commerciales, citons le procédé TOTSUCAT® de la société Eurecat (EP 0 564 317 B1 et EP 0 707 890 B1) et le procédé XpresS® de la société TRICAT (brevet US-A-5 958 816). Dans le second cas (sulfuration in-situ), le catalyseur est de préférence réduit dans les conditions décrites précédemment, puis sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l’hydrogène contenant de l’H2S, ou un liquide contenant au moins un composé soufré.
D’une façon préférée, le composé soufré est ajouté sur le catalyseur ex situ. Par exemple, après l’étape de calcination, un composé soufré peut être introduit sur le catalyseur en présence éventuellement d’un autre composé. Le catalyseur est ensuite séché, puis transféré dans le réacteur servant à mettre en œuvre le procédé selon l’invention. Dans ce réacteur, le catalyseur est alors traité sous hydrogène afin de transformer au moins une partie du métal principal en sulfure. Une procédure qui convient particulièrement à l’invention est celle décrite dans les brevets FR-B- 2 708 596 et FR-B- 2 708 597.
Exemples
L’invention est décrite ensuite par les exemples suivant sans en limiter la portée.
Exemple 1: Préparation des catalyseurs A, B et D (non conforme) et C (conforme à l'invention)
Le support utilisé est une alumine de volume poreux 0,7 ml/g et de haute surface spécifique (Al-1) fourni par la société Axens. Les caractéristiques des catalyseurs ainsi préparés sont fournies dans le tableau 1 ci-dessous. Les catalyseurs préparés se distinguent par leur teneur en phase active et leurs rapports r1, r2 et r3.
On réalise une imprégnation à sec de cette alumine par une solution aqueuse de nitrate de nickel, le volume de la solution aqueuse étant égal au volume de reprise à l’eau correspondant à la masse de support à imprégner (volume d'eau total pouvant pénétrer dans la porosité). En l'occurrence, la quantité de nitrate de nickel imprégnée correspond à une teneur en nickel (en équivalent oxyde, NiO) de 4,7% poids sur le solide. Après imprégnation, le solide est laissé à maturer à température ambiante durant 12 heures, puis séché en étuve ventilée à 120°C durant 2 heures. Enfin, le solide est calciné à 750°C durant deux heures en four à moufle, ce solide est désigné sous le terme AlNi dans la suite.
Le catalyseur A est préparé par imprégnation à sec du support Al-1 (sans spinelle). Les catalyseurs, B, C, D, sont préparés par imprégnation à sec du support AlNi. Le protocole de synthèse consiste à réaliser une imprégnation à sec d’une solution d’heptamolybdate d’ammonium et de nitrate de nickel, le volume de la solution aqueuse contenant les précurseurs métalliques étant égal au volume de reprise à l’eau correspondant à la masse de support à imprégner (volume d'eau total pouvant pénétrer dans la porosité). Les concentrations des précurseurs dans la solution sont ajustées de manière à déposer sur le support les teneurs pondérales en oxydes métalliques souhaitées. Le solide est ensuite laissé à maturer à température ambiante durant 6 heures, puis séché en étuve ventilée à 120°C, durant 2 heures. Finalement, le solide est calciné en lit fixe traversé à 450°C durant deux heures sous flux d’air avec un débit 1 L/g/h.
Catalyseur | A | B | C | D |
Support | Al-1 | AlNi | AlNi | AlNi |
% pds en MoO3 | 7,0 | 3,5 | 7,0 | 7,0 |
% pds en NiO* | 6,6 | 6,6 | 6,6 | 3,3 |
% pds en M (en NiO) | 0 | 4,7 | 4,7 | 4,7 |
Rapport r1 | 1,80 | 3,60 | 1,80 | 0,90 |
Rapport r2 | 0 | 0,61 | 0,61 | 1,22 |
Rapport r3 | 1,80 | 5,80 | 2,90 | 2,00 |
Caractéristiques des catalyseurs A, B, C, D sous forme oxyde
*hors nickel engagé dans le support AlNi
Exemple 2 : Évaluation des catalyseurs
L'activité des catalyseurs A, B, C, D est évaluée par un test d’hydrogénation sélective d'un mélange de molécules modèles effectué dans un réacteur autoclave agité de 500 ml. 3 grammes de catalyseur sont sulfurés à pression atmosphérique en banc de sulfuration sous mélange H2S/H2constitué de 15% volumique d'H2S à 1 L/g.h de catalyseur et à 350°C durant deux heures. Le catalyseur ainsi sulfuré est transféré dans le réacteur à l'abri de l'air puis mis au contact de 250 ml de charge modèle sous une pression totale de 1,5 MPa et une température de 130°C. La pression est maintenue constante durant le test par apport d'hydrogène.
La charge utilisée pour le test d’activité présente la composition suivante : 1000 ppm poids de soufre sous forme de méthyl 3-thiophène, 500 ppm poids de soufre sous forme de propane-2-thiol, 10% poids d’oléfine sous forme de d'hexène-1, 1% poids de dioléfine sous forme d’isoprène, dans du n-heptane.
Le temps t=0 du test correspond à la mise en contact du catalyseur et de la charge. La durée du test est fixée à 200 minutes et l’analyse chromatographique en phase gaz de l’effluent liquide obtenu permet d’évaluer les activités des différents catalyseurs en hydrogénation de l’isoprène (formation des méthylbutènes), hydrogénation de l'hexène-1 (formation du n-hexane) et alourdissement des mercaptans légers (conversion du propane-2-thiol).
L’activité du catalyseur pour chaque réaction est définie par rapport à la constante de vitesse obtenue pour chaque réaction normalisée par gramme de catalyseur. Les constantes de vitesse sont calculées en considérant un ordre 1 pour la réaction. Les activités sont normalisées à 100% pour le catalyseur C.
La sélectivité du catalyseur vis-à-vis de l’hydrogénation de l’isoprène est égale au rapport des activités du catalyseur en hydrogénation de l'isoprène et de l'hexène-1 : A(isoprène)/A(héxène-1). La sélectivité est normalisée à 100% pour le catalyseur C selon l’invention.
Les résultats obtenus sur les différents catalyseurs sont reportés dans le tableau 2 ci-dessous.
Catalyseur | A | B | C | D |
A(isoprène) | 79 | 67 | 100 | 95 |
A(héxène 1) | 87 | 70 | 100 | 102 |
A(isoprène)/A(héxène 1) | 91 | 96 | 100 | 93 |
A(propane-2-thiol) | 98 | 94 | 100 | 85 |
Performances des catalyseurs en test molécule modèle.
Le catalyseur C conforme à l’invention présente par effet synergique une meilleure activité et une meilleure sélectivité en hydrogénation de dioléfines tout en permettant une conversion au moins aussi bonne, voire meilleure, des composés soufrés légers par rapport aux catalyseurs A, B et D non conformes à l’invention.
Claims (16)
- Catalyseur d’hydrogénation sélective comprenant une phase active contenant au moins un métal du groupe VIB et au moins un métal du groupe VIII, et un support poreux contenant de l’alumine et au moins un spinelle MAl2O4où M est choisi parmi le nickel et le cobalt, caractérisé en ce que :
- le ratio molaire (r1) entre ledit métal du groupe VIII et ledit métal du groupe VIB de la phase active est compris entre 1,0 et 3,0 mol/mol ;
- le ratio molaire (r2) entre ledit métal M du support poreux et ledit métal du groupe VIII de la phase active est compris entre 0,3 et 0,7 mol/mol ;
- le ratio molaire (r3) entre la somme des teneurs du métal M et du métal du groupe VIII par rapport à la teneur en métal du groupe VIB est compris entre 2,2 et 3,0 mol/mol. - Catalyseur selon la revendication 1, caractérisé en ce que le ratio molaire (r4) entre ledit métal M du support poreux et ledit métal du groupe VIB de la phase active est compris entre 0,5 et 1,5 mol/mol.
- Catalyseur selon la revendication 2, caractérisé en ce que le ratio molaire (r4) est compris entre 0,7 et 1,5 mol/mol.
- Catalyseur selon l’une quelconque des revendications 1 à 3, caractérisé en ce que la teneur en métal du groupe VIII de la phase active, mesurée sous forme oxyde, est comprise entre 1 et 20% poids par rapport au poids total du catalyseur.
- Catalyseur selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la teneur en métal du groupe VIB de la phase active, mesurée sous forme oxyde, est comprise entre 1 et 12% poids par rapport au poids total du catalyseur.
- Catalyseur selon l’une quelconque des revendications 1 à 5, caractérisé en ce que la teneur en métal M, mesurée sous forme oxyde, est comprise entre 0,5 et 10% poids par rapport au poids total du catalyseur.
- Catalyseur selon l’une quelconque des revendications 1 à 6, caractérisé en ce que la surface spécifique du catalyseur est comprise entre 110 et 190 m²/g.
- Catalyseur selon l’une quelconque des revendications 1 à 7, caractérisé en ce que le taux de sulfuration des métaux de la phase active est au moins égal à 50%.
- Catalyseur selon l’une quelconque des revendications 1 à 8, caractérisé en ce que le ratio molaire (r3) est compris entre 2,3 et 3,0 mol/mol.
- Catalyseur selon l’une quelconque des revendications 1 à 9, caractérisé en ce que le métal du groupe VIII est le nickel et en ce que le métal du groupe VIB est le molybdène.
- Catalyseur selon l’une quelconque des revendications 1 à 10, caractérisé en ce que le métal M est le nickel.
- Procédé de préparation d’un catalyseur selon l’une quelconque des revendications 1 à 11 comprenant les étapes suivantes :
a) on met en contact le support avec une solution aqueuse ou organique comprenant au moins un sel de métal M choisi parmi le nickel et le cobalt ;
b) on laisse maturer le support imprégné à l’issue de l’étape a) à une température inférieure à 50°C pendant une durée comprise entre 0,5 heure et 24 heures;
c) on sèche le support imprégné maturé obtenu à l’issue de l'étape b) à une température comprise entre 50°C et 200°C;
d) on calcine le solide obtenu à l’étape c) à une température comprise entre 500°C et 1000°C de manière à obtenir un spinelle de type MAl2O4;
e) on réalise les sous-étapes suivantes :
i) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIII puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C pendant une durée comprise entre 0,5 heure et 12 heures ;
ii) on met en contact le solide obtenu à l’issue de l’étape d) avec une solution comprenant au moins un précurseur de la phase active de métal à base d’un métal du groupe VIB puis on laisse maturer le précurseur de catalyseur à une température inférieure à 50°C pendant une durée comprise entre 0,5 heure et 12 heures ;
les étapes i) et ii) étant réalisées séparément, dans un ordre indifférent, ou simultanément ;
f) on sèche le précurseur de catalyseur obtenu à l'étape e) à une température comprise entre 50°C et 200°C, de préférence entre 70 et 180°C, pendant une durée comprise typiquement entre 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 5 heures. - Procédé selon la revendication 12, comprenant en outre une étape g) dans laquelle on calcine le précurseur de catalyseur obtenu à l’étape f) à une température comprise entre 200°C et 550°C pendant une durée comprise avantageusement entre 0,5 à 24 heures.
- Procédé d’hydrogénation sélective d'une essence comprenant des composés polyinsaturés et des composés soufrés légers dans lequel procédé on met en contact l’essence, de l’hydrogène avec un catalyseur selon l’une quelconque des revendications 1 à 12, ou obtenu selon le procédé de préparation selon la revendication 13, sous forme sulfure, à une température comprise entre 80°C et 220°C, avec une vitesse spatiale liquide comprise entre 1h-1et 10h-1et une pression comprise entre 0,5 et 5 MPa, et avec un rapport molaire entre l'hydrogène et les dioléfines à hydrogéner supérieur à 1 et inférieur à 10 mol/mol.
- Procédé selon la revendication 14, dans lequel ladite essence est une essence du craquage catalytique en lit fluide (FCC) et ayant une température d'ébullition comprise entre 0°C et 280°C.
- Procédé de désulfuration d’essence comprenant des composés soufrés comprenant les étapes suivantes :
a) une étape d'hydrogénation sélective mettant en œuvre un procédé selon l'une des revendications 14 ou 15 ;
b) une étape de séparation de l'essence obtenue à l’étape a) en au moins deux fractions comprenant respectivement au moins une essence légère et une essence lourde ;
c) une étape d’hydrodésulfuration de l’essence lourde séparée à l’étape b) sur un catalyseur permettant de décomposer au moins partiellement les composés soufrés en H2S.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2004516A FR3109897B1 (fr) | 2020-05-07 | 2020-05-07 | Catalyseur d’hydrogénation sélective comprenant un support spécifique en partie sous forme aluminate |
CN202180033574.7A CN115461145A (zh) | 2020-05-07 | 2021-05-03 | 包含铝酸盐形式的特定载体的选择性加氢催化剂 |
EP21722239.7A EP4146384A1 (fr) | 2020-05-07 | 2021-05-03 | Catalyseur d'hydrogenation selective comprenant un support specifique en partie sous forme aluminate |
JP2022567456A JP2023524797A (ja) | 2020-05-07 | 2021-05-03 | アルミン酸塩の形態にある特定の担体を含んでいる選択的水素化触媒 |
PCT/EP2021/061556 WO2021224173A1 (fr) | 2020-05-07 | 2021-05-03 | Catalyseur d'hydrogenation selective comprenant un support specifique en partie sous forme aluminate |
US17/922,032 US20230264180A1 (en) | 2020-05-07 | 2021-05-03 | Selective hydrogenation catalyst comprising specific carrier in the form of an aluminate |
BR112022020621A BR112022020621A2 (pt) | 2020-05-07 | 2021-05-03 | Catalisador de hidrogenação seletiva compreendendo um suporte específico em parte sob a forma de aluminato |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2004516A FR3109897B1 (fr) | 2020-05-07 | 2020-05-07 | Catalyseur d’hydrogénation sélective comprenant un support spécifique en partie sous forme aluminate |
FR2004516 | 2020-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3109897A1 true FR3109897A1 (fr) | 2021-11-12 |
FR3109897B1 FR3109897B1 (fr) | 2023-11-24 |
Family
ID=71894957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2004516A Active FR3109897B1 (fr) | 2020-05-07 | 2020-05-07 | Catalyseur d’hydrogénation sélective comprenant un support spécifique en partie sous forme aluminate |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230264180A1 (fr) |
EP (1) | EP4146384A1 (fr) |
JP (1) | JP2023524797A (fr) |
CN (1) | CN115461145A (fr) |
BR (1) | BR112022020621A2 (fr) |
FR (1) | FR3109897B1 (fr) |
WO (1) | WO2021224173A1 (fr) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2118309A5 (fr) | 1970-12-16 | 1972-07-28 | Inst Francais Du Petrole | |
FR2708596B1 (fr) | 1993-07-30 | 1995-09-29 | Inst Francais Du Petrole | Procédé d'isomérisation d'oléfines externes en oléfines internes conjointement à l'hydrogénation des dioléfines. |
FR2708597B1 (fr) | 1993-07-30 | 1995-09-29 | Inst Francais Du Petrole | Procédé d'isomérisation d'oléfines sur des catalyseurs métalliques imprégnés de composés organiques soufrés avant chargement dans le réacteur. |
EP0564317B1 (fr) | 1992-04-01 | 1996-07-03 | EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) | Procédé de présulfuration de catalyseur de traitement d'hydrocarbures |
US5958816A (en) | 1997-02-28 | 1999-09-28 | Tricat, Inc. | Method of presulfiding and passivating a hydrocarbon conversion catalyst |
EP0707890B1 (fr) | 1994-10-07 | 2000-01-19 | Eurecat Europeenne De Retraitement De Catalyseurs | Procédé de prétraitement hors site d'un catalyseur de traitement d'hydrocarbures |
EP1077247A1 (fr) | 1999-08-19 | 2001-02-21 | Institut Francais Du Petrole | Procédé de production d'essences à faible teneur en soufre |
US20050014639A1 (en) | 2003-06-16 | 2005-01-20 | Bhan Opinder Kishan | Process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst |
FR2895415A1 (fr) | 2005-12-22 | 2007-06-29 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique |
FR2935389A1 (fr) | 2008-09-04 | 2010-03-05 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur sulfure de composition specifique |
-
2020
- 2020-05-07 FR FR2004516A patent/FR3109897B1/fr active Active
-
2021
- 2021-05-03 JP JP2022567456A patent/JP2023524797A/ja active Pending
- 2021-05-03 WO PCT/EP2021/061556 patent/WO2021224173A1/fr active Application Filing
- 2021-05-03 EP EP21722239.7A patent/EP4146384A1/fr active Pending
- 2021-05-03 BR BR112022020621A patent/BR112022020621A2/pt unknown
- 2021-05-03 CN CN202180033574.7A patent/CN115461145A/zh active Pending
- 2021-05-03 US US17/922,032 patent/US20230264180A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2118309A5 (fr) | 1970-12-16 | 1972-07-28 | Inst Francais Du Petrole | |
EP0564317B1 (fr) | 1992-04-01 | 1996-07-03 | EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) | Procédé de présulfuration de catalyseur de traitement d'hydrocarbures |
FR2708596B1 (fr) | 1993-07-30 | 1995-09-29 | Inst Francais Du Petrole | Procédé d'isomérisation d'oléfines externes en oléfines internes conjointement à l'hydrogénation des dioléfines. |
FR2708597B1 (fr) | 1993-07-30 | 1995-09-29 | Inst Francais Du Petrole | Procédé d'isomérisation d'oléfines sur des catalyseurs métalliques imprégnés de composés organiques soufrés avant chargement dans le réacteur. |
EP0707890B1 (fr) | 1994-10-07 | 2000-01-19 | Eurecat Europeenne De Retraitement De Catalyseurs | Procédé de prétraitement hors site d'un catalyseur de traitement d'hydrocarbures |
US5958816A (en) | 1997-02-28 | 1999-09-28 | Tricat, Inc. | Method of presulfiding and passivating a hydrocarbon conversion catalyst |
EP1077247A1 (fr) | 1999-08-19 | 2001-02-21 | Institut Francais Du Petrole | Procédé de production d'essences à faible teneur en soufre |
US20050014639A1 (en) | 2003-06-16 | 2005-01-20 | Bhan Opinder Kishan | Process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst |
FR2895415A1 (fr) | 2005-12-22 | 2007-06-29 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique |
US20070187297A1 (en) * | 2005-12-22 | 2007-08-16 | Christophe Bouchy | Selective hydrogenation process employing a catalyst with a specific support |
FR2935389A1 (fr) | 2008-09-04 | 2010-03-05 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur sulfure de composition specifique |
Non-Patent Citations (4)
Title |
---|
D.R. LIDE: "CRC Handbook of Chemistry and Physics", 2000 |
JEAN CHARPINBERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 1055 |
OIL & GAS SCIENCE AND TECHNOLOGY, REV. IFP, vol. 64, no. 1, 2009, pages 11 - 12 |
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309 |
Also Published As
Publication number | Publication date |
---|---|
EP4146384A1 (fr) | 2023-03-15 |
US20230264180A1 (en) | 2023-08-24 |
JP2023524797A (ja) | 2023-06-13 |
FR3109897B1 (fr) | 2023-11-24 |
CN115461145A (zh) | 2022-12-09 |
WO2021224173A1 (fr) | 2021-11-11 |
BR112022020621A2 (pt) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2161076B1 (fr) | Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique | |
EP1800748B1 (fr) | Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré | |
EP1800749B1 (fr) | Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur présentant un support spécifique | |
FR2904242A1 (fr) | Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur supporte comprenant des elements des groupes viii et vib | |
EP2644683B1 (fr) | Procédé d'hydrogenation selective d'une essence | |
WO2006037884A1 (fr) | Procede de captation selective de l'arsenic dans les essences riches en soufre et en olefines | |
EP1800750B1 (fr) | Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur présentant une porosité controlée | |
FR3080117A1 (fr) | Procede de captation de l'arsenic mettant en œuvre une masse de captation a base de particules d'oxyde de nickel | |
EP4251713A1 (fr) | Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux | |
FR3099175A1 (fr) | Procédé de production d'une essence a basse teneur en soufre et en mercaptans | |
FR3109897A1 (fr) | Catalyseur d’hydrogénation sélective comprenant un support spécifique en partie sous forme aluminate | |
WO2021013526A1 (fr) | Procédé de production d'une essence a basse teneur en soufre et en mercaptans | |
FR3109899A1 (fr) | Catalyseur d’hydrogénation comprenant un support et un ratio NiMo spécifique | |
EP2606969B1 (fr) | Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique | |
EP4004157A1 (fr) | Procédé de production d'une essence a basse teneur en soufre et en mercaptans | |
WO2021224171A1 (fr) | Catalyseur d'hydrogenation selective comprenant une repartition particuliere du nickel et du molybdene | |
FR3108333A1 (fr) | Procédé de production d'une essence a basse teneur en soufre et en mercaptans | |
FR3090005A1 (fr) | Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré. | |
WO2024115275A1 (fr) | Procede d'hydrodesulfuration de finition des essences mettant en œuvre un enchainement de catalyseurs | |
WO2024115276A1 (fr) | Catalyseur d'hydrodesulfuration de finition comprenant un metal du groupe vib, un metal du groupe viii et du phosphore sur support alumine alpha | |
WO2023117532A1 (fr) | Procede de production d'une coupe essence legere a basse teneur en soufre | |
WO2023117533A1 (fr) | Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution | |
WO2021013525A1 (fr) | Procede de traitement d'une essence par separation en trois coupes | |
FR3142487A1 (fr) | Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un catalyseur à base de métaux du groupe VIB et VIII et du phosphore sur support alumine à faible surface spécifique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20211112 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |