FR3108792A1 - Procede de fabrication de batteries a ions de lithium - Google Patents

Procede de fabrication de batteries a ions de lithium Download PDF

Info

Publication number
FR3108792A1
FR3108792A1 FR2003108A FR2003108A FR3108792A1 FR 3108792 A1 FR3108792 A1 FR 3108792A1 FR 2003108 A FR2003108 A FR 2003108A FR 2003108 A FR2003108 A FR 2003108A FR 3108792 A1 FR3108792 A1 FR 3108792A1
Authority
FR
France
Prior art keywords
nanoparticles
compounds
mixture
layer
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR2003108A
Other languages
English (en)
Inventor
Fabien Gaben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I Ten SA
Original Assignee
HFG SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HFG SAS filed Critical HFG SAS
Priority to FR2003108A priority Critical patent/FR3108792A1/fr
Priority to EP21714695.0A priority patent/EP4128387A1/fr
Priority to JP2022559904A priority patent/JP2023527955A/ja
Priority to KR1020227037967A priority patent/KR20220161451A/ko
Priority to CA3173400A priority patent/CA3173400A1/fr
Priority to IL296739A priority patent/IL296739A/en
Priority to US17/907,444 priority patent/US20230131454A1/en
Priority to CN202180038677.2A priority patent/CN115943503A/zh
Priority to PCT/IB2021/052606 priority patent/WO2021198892A1/fr
Publication of FR3108792A1 publication Critical patent/FR3108792A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0457Electrochemical coating; Electrochemical impregnation from dispersions or suspensions; Electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Procédé de fabrication d’une batterie à ions de lithium d’une capacité supérieure à 1 mA h, comprenant le dépôt d’au moins une couche dense, qui peut être une anode et/ou une cathode et/ou un électrolyte, par un procédé de dépôt d’une couche dense qui comprend les étapes suivantes : approvisionnement d’un substrat et d’une suspension de nanoparticules non agglomérées d’un matériau P ; dépôt d’une couche, sur ledit substrat, à partir de ladite suspension ; séchage de la couche ainsi obtenue ; densification de la couche séchée par compression mécanique et/ou traitement thermique ; ledit procédé de dépôt étant caractérisé en ce que la suspension de nanoparticules non agglomérées de matériau P comprend des nanoparticules de matériau P présentant une distribution en taille, ladite taille étant caractérisée par sa valeur de D50, telle que : - la distribution comprend des nanoparticules de matériau P d’une première taille D1 comprise entre 20 nm et 50 nm, et des nanoparticules de matériau P d’une deuxième taille D2 caractérisée par une valeur D50 au moins cinq fois inférieure à celle de D1 ; ou - la distribution présente une taille moyenne des nanoparticules de matériau P inférieure à 50 nm, et un rapport écart type sur taille moyenne supérieur à 0,6.

Description

PROCEDE DE FABRICATION DE BATTERIES A IONS DE LITHIUM
Domaine technique de l’invention
La présente invention se rapporte à la fabrication de couches inorganiques denses, utilisables comme couche d’électrodes ou électrolytes dans des batteries multi-couches, telles que des batteries à ions de lithium. Plus précisément, l’invention concerne un nouveau procédé de fabrication de ces couches denses. Elle concerne également les batteries multi-couches intégrant au moins une couche obtenue par ce procédé, cette couche pouvant notamment agir comme électrode dans une batterie à ions de lithium.
Etat de la technique
La batterie idéale pour l’alimentation des dispositifs électriques autonomes (tels que : téléphones et ordinateurs portables, outils portatifs, capteurs autonomes) ou bien pour la traction des véhicules électriques présenterait une durée de vie élevée, serait capable de stocker à la fois de grandes quantités d’énergie et de puissance, et ne présenterait pas de risque de surchauffe voire d’explosion.
Actuellement ces dispositifs électriques sont alimentés essentiellement par des batteries à ions de lithium, qui présentent la meilleure densité d’énergie parmi les différentes technologies de stockage proposées. Il existe différentes architectures et compositions chimiques d’électrodes permettant de réaliser des batteries à ions de lithium. Les procédés de fabrication des batteries à ions de lithium sont présentés dans de nombreux articles et brevets, et l’ouvrage« Advances in Lithium-Ion Batteries »(ed. W. van Schalkwijk et B. Scrosati), paru en 2002 (Kluever Academic / Plenum Publishers) en donne un bon état des lieux.
Les électrodes des batteries à ions de lithium peuvent être fabriquées à l’aide de techniques de revêtement (notamment : enduction au rouleau (en anglais « roll coating »), enduction à la racle (en anglais « doctor blade »), coulage en bande (en anglais « tape casting »), enduction à travers une filière en forme de fente (en anglais « slot-die »)). Avec ces procédés, les matériaux actifs servant à réaliser les électrodes sont sous forme de poudres dont la taille moyenne des particules se situe entre 5 et 15 µm de diamètre. Ces particules sont intégrées dans une encre qui est constituée de ces particules et déposée à la surface d’un substrat.
Ces techniques permettent de réaliser des couches d’une épaisseur comprise entre environ 50 µm et environ 400 µm. En fonction de l’épaisseur des couches, de leur porosité et de la taille des particules actives, la puissance et l’énergie de la batterie peuvent être modulées.
Les encres (ou pâtes) déposées pour former les électrodes contiennent des particules de matériaux actifs, mais également des liants (organiques), de la poudre de carbone permettant d’assurer le contact électrique entre les particules, et des solvants qui sont évaporés lors de l’étape de séchage des électrodes. Pour améliorer la qualité des contacts électriques entre les particules et pour compacter les couches déposées, une étape de calandrage est réalisée sur les électrodes. Après cette étape de compression, les particules actives des électrodes occupent environ 60 % du volume du dépôt, ce qui signifie qu’il reste généralement 40 % de porosités entre les particules.
Le contact entre chacune des particules est essentiellement ponctuel et la structure de l’électrode est poreuse. Les porosités sont remplies par un électrolyte, qui peut être liquide (solvant aprotique dans lequel un sel de lithium est dissous) ou sous forme de gel plus ou moins polymérisé imprégné d’un sel de lithium. L’épaisseur des électrodes de batteries à ions de lithium étant généralement comprise entre 50 µm et 400 µm, le transport des ions de lithium dans l’épaisseur de l’électrode s’effectue via les porosités qui sont remplies d’électrolyte (contenant des sels de lithium). En fonction de la quantité et de la taille des porosités, la vitesse de diffusion du lithium dans l’épaisseur de l’électrode varie.
Pour assurer le bon fonctionnement de la batterie, les ions de lithium doivent diffuser à la fois dans l’épaisseur de la particule et dans l’épaisseur de l’électrode. La diffusion au sein de la particule de matériau actif est plus lente que dans l’électrolyte par lequel l’électrode poreuse est imprégnée : cet électrolyte est liquide ou gélifié. La diffusion lente au sein des particules d’électrode contribue à la résistance série de la batterie. Aussi, pour atteindre une bonne puissance de la batterie, la taille des particules doit être réduite ; dans les batteries à ions de lithium standard elle se situe typiquement entre 5 µm et 15 µm.
D’autre part, en fonction de l’épaisseur des couches, de la taille et densité de particules actives contenues dans l’encre, la puissance et l’énergie de la batterie peuvent être modulées. L’augmentation de la densité d’énergie se fait nécessairement au détriment de la densité de puissance. Les cellules batterie de forte puissance doivent utiliser des électrodes et séparateurs de faible épaisseur et forte porosité, alors que l’accroissement de la densité d’énergie demande au contraire d’accroitre ces mêmes épaisseurs et de réduire le taux de porosité. L'article“Optimization of Porosity and Thickness of a Battery Electrode by Means of a Reaction-Zone Model”par John Newman, paru dans J. Electrochem. Soc., Vol. 142, No.1 en janvier 1995, démontre les effets respectifs des épaisseurs des électrodes et de leur porosité sur leur régime de décharge (puissance) et densité d’énergie.
Cependant l’augmentation de la porosité dans les électrodes tend à détériorer la densité d’énergie de la batterie : pour accroître la densité d’énergie des électrodes, il est être nécessaire de réduire la porosité. Dans les batteries à ions de lithium actuelles, ce sont essentiellement les porosités remplies d’électrolyte situés entre les particules actives qui permettent d’assurer la diffusion des ions de lithium dans l’électrode. En l’absence de porosités remplies d’électrolyte, le transport des ions lithium d’une particule à l’autre se fait uniquement au niveau des contacts entre les particules, ce contact étant sensiblement ponctuel. Ainsi, la résistance au transport des ions de lithium est telle que la batterie ne peut pas fonctionner.
En outre, pour fonctionner convenablement, les porosités des électrodes doivent être remplies d’électrolyte. Ce remplissage n’est possible que si ces porosités sont ouvertes. De plus, en fonction de la taille des porosités et de leur tortuosité, l’imprégnation de l’électrode avec l’électrolyte peut devenir très difficile, voire impossible. Lorsque le taux de porosité, imprégné d’électrolyte, diminue, la résistance électrique de la couche diminue et sa résistance ionique augmente. Lorsque la porosité descend en dessous de 30% voire 20%, la résistance ionique augmente fortement car certaines porosités sont alors susceptibles de se refermer, ce qui empêche le mouillage de l’électrode par l’électrolyte.
Par conséquent, dès lors que l’on cherche à réaliser des films d’électrodes sans porosités pour augmenter la densité d’énergie, il convient de limiter l’épaisseur de ces films à moins de 50 µm, et de préférence à moins de 25 µm, afin de permettre la diffusion rapide des ions lithium dans le solide, sans perte de puissance.
Pour réaliser des films denses, la principale voie utilisée consiste à déposer par un procédé sous vide un film de matériau d’électrode à insertion de lithium. Cette technique permet d’obtenir des films denses, sans porosités, ni liants, et ayant par conséquent d’excellentes densités d’énergie, et une bonne tenue en température.
L’absence de porosités permet d’assurer le transport des ions lithium par diffusion à travers le film, sans avoir recours à l’utilisation d’électrolytes organiques à base de polymères ou de solvant contenant des sels de lithium.
De tels films totalement inorganiques confèrent d’excellentes performances en vieillissement, sécurité et tenue en température.
Le dépôt par PVD (dépôt physique par phase vapeur, Physical Vapor Deposition) est la technologie la plus utilisée actuellement pour la fabrication des microbatteries en couches minces. En effet, ces produits nécessitent des films exempts de porosités et d’autres défauts ponctuels pour garantir une faible résistivité électrique, et la bonne conduction ionique nécessaires au bon fonctionnement des dispositifs électrochimiques.
La vitesse de dépôt obtenue avec de telles technologies est de l’ordre de 0,1 µm à 1 µm par heure. Les techniques de dépôt PVD permettent d’obtenir des films de très bonne qualité, ne contenant quasiment pas de défauts ponctuels, et permettent de réaliser des dépôts à des températures relativement faibles. Cependant, du fait de la différence de vitesse d’évaporation entre les différents éléments, il est difficile de déposer des composée complexes avec de telles techniques, et de maîtriser la stœchiométrie de la couche. Cette technique est parfaitement adaptée à la réalisation de couches minces de composition chimique simple, mais dès que l’on cherche à augmenter l’épaisseur de dépôt le temps de dépôt devient trop important pour envisager une utilisation industrielle dans le domaine des produits à bas cout.
De plus, les techniques de dépôt sous vide utilisées pour réaliser de tels films sont très couteuses et difficiles à mettre en œuvre industriellement sur de larges surfaces, avec une productivité élevée.
Les autres technologies actuellement disponibles pour réaliser des films céramiques denses, comprennent des modes de réalisation basés sur la densification de dépôts compacts de particules ou bien l’obtention de film par des techniques de type sol-gel. Les techniques sol-gel consistent à déposer sur la surface d’un substrat un réseau polymérique obtenu après des étapes d’hydrolyse, polymérisation et condensation. La transition sol-gel apparait durant l’évaporation du solvant qui accélère les processus réactionnels en surface. Cette technique permet de réaliser des dépôts compacts de très faible épaisseur. Les films ainsi obtenus ont une épaisseur de l’ordre de la centaine de nanomètres. Ces épaisseurs sont alors trop faibles pour permettre un stockage d’énergie raisonnable dans les applications de batteries.
Pour accroître l’épaisseur du dépôt sans induire le risque d’apparition de fissures ou craquelures, il convient de procéder par étapes successives. Cela diminue cependant la productivité industrielle de cette technique, dès lors que l’on cherche à augmenter l’épaisseur des couches.
Il est également possible de réaliser des films céramiques d’électrodes et/ou d’électrolyte pour batteries par frittage de poudre. Pour cela, une pâte contenant des particules céramiques et des liants organiques est mise sous forme de film pour obtenir une bande précurseur appelée couramment « green-sheet ».
Cette bande précurseur est ensuite calcinée pour éliminer la matière organique et frittée à haute température afin d’obtenir une plaque de matériau céramique.
Dans ce cas, les films métalliques servant à la collecte du courant sur ces électrodes sont également déposées par des techniques d’encrage. Les poudres métalliques seront également frittées en même temps que le « green-sheet ». En effet, pendant l’étape de frittage, les porosités entre les particules de matériau céramique seront comblées, ce qui conduira à un retreint de la bande.
Le fait de fritter les collecteurs de courant avec les films céramiques permet d’accommoder les variations dimensionnelles des films céramiques et collecteurs métalliques et d’éviter l’apparition de fissures.
Ces procédés fonctionnent à très haute température. Or, les matériaux de batteries sont le plus souvent sensibles à la température et se détériorent rapidement lorsqu’ils subissent de tels traitements thermiques.
Afin de réduire cette température de frittage, l’utilisation de nanoparticules a été proposée. Il s’agit dans ce cas de réaliser des dépôts compacts de nanoparticules non-agglomérées. Ces dépôts peuvent être facilement frittés à des températures relativement basses. Cette faible température permet d’envisager la réalisation des frittages directement sur des substrats métalliques.
Cependant, on observe que ces dépôts, lorsqu’ils sont réalisés sur des substrats métalliques, sont propices, en fonction de l’épaisseur du dépôt, de sa compacité, de la taille des particules, à l’apparition de fissures pendant les étapes de séchage et/ou frittage.
Les techniques de dépôt électrophorétique de nanoparticules ont été utilisées pour accroitre la compacité des dépôts et faciliter ainsi un frittage à basse température avec moins de fissures ; cela est décrit dans WO 2013/064 773 (Fabien Gaben). La coalescence thermique se fait à une température d’autant plus basse que la taille des nanoparticules est faible, et en pratique de préférence inférieure à 100 nm.
La présente invention cherche à remédier au moins en partie aux inconvénients de l’art antérieur évoqués ci-dessus.
Plus précisément, le problème que la présente invention cherche à résoudre est de fournir un procédé de fabrication de couches céramiques denses, directement sur un substrat métallique et qui soit simple, sûr, rapide, facile à mettre en œuvre, peu coûteux.
La présente invention vise également à réaliser des couches solides (céramiques) denses, utilisables dans des batteries à ions de lithium, ne contenant pas ou très peu de défauts et de porosité.
La présente invention vise également à proposer des électrodes denses et des électrolytes denses ayant une conductivité ionique élevée, une structure mécanique stable, une bonne stabilité thermique et une durée de vie importante.
Un autre but de l’invention est de fournir un procédé de fabrication d’un dispositif électronique, électrique ou électrotechnique tel qu’une batterie, un condensateur, un supercondensateur, une cellule photovoltaïque comprenant une électrode dense ou un électrolyte dense selon l’invention.
Objet de l’invention
Selon l’invention le problème est résolu par un procédé de fabrication d’une batterie à ions de lithium d’une capacité supérieure à 1 mA h, ledit procédé comprenant le dépôt d’au moins une couche dense, qui peut être une anode et/ou une cathode et/ou un électrolyte, par un procédé de dépôt d’une couche dense qui comprend les étapes de :
  • approvisionnement d’un substrat et d’une suspension de nanoparticules non agglomérées d’un matériau P,
  • dépôt d’une couche, sur ledit substrat, à partir de la suspension de nanoparticules primaires d’un matériau P ;
  • séchage de la couche ainsi obtenue,
  • densification de la couche séchée par compression mécanique et/ou traitement thermique,
sachant que l’étape de séchage et l’étape de densification par peuvent être faites au moins partiellement en même temps, ou lors d’une rampe de température.
Ledit procédé, qui forme un premier objet de la présente invention, est caractérisé en ce que la suspension de nanoparticules non agglomérées de matériau P comprend des nanoparticules de matériau P présentant une distribution en taille particulière, permettant d’obtenir après dépôt une densité supérieure à 75%. Ladite taille est caractérisée par sa valeur de D50.
Cette distribution en taille particulière peut être obtenue soit :
  • de manière continue : Dans ce cas, le rapport écart-type/taille moyenne des nanoparticules de matériau P doit être supérieur à 0,6 , et la taille moyenne des nanoparticules primaires de matériau P inférieure ou égale à 50 nm ; soit
  • de manière discontinue : dans ce cas la distribution en taille des nanoparticules de matériau P comprend des nanoparticules d’une première taille D1 comprise entre 50 nm et 20 nm, et des nanoparticules d’une deuxième taille D2 au moins cinq fois inférieure à celle de D1. De manière très avantageuse, les particules de taille D1 représentent entre 50 et 75% de la masse totale de nanoparticules.
Ladite suspension de nanoparticules non agglomérées de matériau P peut être obtenue en utilisant une suspension de nanoparticules de taille D1 monodisperse, et/ou ladite suspension de nanoparticules de taille D2 peut être obtenue en utilisant une suspension monodisperse.
Selon l’invention, le dépôt de la couche solide et céramique dense est effectué par voie électrophorétique, par le procédé d’enduction par trempage, par le procédé d’impression par jet d’encre, par enduction au rouleau, par enduction à travers une filière en forme de fente, par enduction au rideau, ou par raclage.
Un deuxième objet de l’invention est une batterie à ions de lithium avec une capacité supérieure à 1 mA h, susceptible d’être obtenue par ce procédé. Ladite batterie comprend donc au moins une couche dense, qui peut être une couche d’anode et/ou une couche de cathode et/ou une couche d’électrolyte.
Cette couche dense d’anode et/ou ou cette couche dense de cathode peuvent présenter une épaisseur comprise entre environ 1 µm et environ 50 µm.
Dans un mode de réalisation, ladite batterie à ions de lithium comprend une anode et une cathode qui sont des couches denses selon l’invention.
Dans une première variante, la couche d’électrolyte peut également être une couche dense selon l’invention. Dans une deuxième variante, ladite batterie comprend un séparateur poreux qui sépare ladite anode et ladite cathode ; ce séparateur poreux est infiltré par un électrolyte liquide. Cette couche d’électrolyte ou ce séparateur présente avantageusement une épaisseur comprise entre environ 1 µm et environ 25 µm, et de préférence entre environ 3 µm et environ 10 µm
Dans un autre mode de réalisation, c’est seulement sa couche d’électrolyte qui est une couche dense selon l’invention.
Description détaillée
Dans le cadre du présent document, la taille d’une particule est définie par sa plus grande dimension. Par « nanoparticule », on entend toute particule ou objet de taille nanométrique présentant au moins une de ses dimensions inférieure ou égale à 100 nm. Cette taille D est exprimée ici en tant que taille D50.
Le terme « nanoparticule » est utilisé ici pour désigner les particules primaires, par opposition aux particules formées par l’agrégation ou l’agglomération de plusieurs particules primaires. De tels agglomérats peuvent être réduits en nanoparticules (au sens où nous l’entendons ici) par une opération de désagglomération, par exemple par broyage ou traitement ultrasonique.
La densité d’une couche est ici exprimée en valeur relative (par exemple en pourcent), qui est obtenue par la comparaison entre la densité réelle de la couche (désignée ici comme dcouche) et la densité théorique du matériau massif qui la constitue (désignée ici comme dthéorique). Ainsi, la porosité de la couche, exprimée en pourcent, est déterminée de la manière suivante : Porosité [%] = [(dthéorique– dcouche)/dthéorique] x 100.
Selon l’invention, le problème est résolu par un procédé de dépôt d’une couche à partir d’une suspension de nanoparticules, dans laquelle la taille des nanoparticules présente une distribution granulométrique d’un type particulier.
Selon un des aspects essentiels de l’invention on utilise une suspension de nanoparticules qui représente une distribution en taille de nanoparticules particulière, de manière à accroitre de manière significative la densité du dépôt de nanoparticules avant frittage.
Obtenir un dépôt le plus compact possible avant frittage permettra de réduire le rétreint et le risque de fissuration. Afin d’obtenir le dépôt le plus compact possible, il est non seulement nécessaire de parfaitement contrôler la distribution en taille des nanoparticules mais également d’avoir un dépôt le plus compact possible de ces nanoparticules, sans agglomération.
Pour obtenir de tels dépôts compacts, on peut soit utiliser des techniques de dépôt électrophorétiques de suspensions diluées, ou bien des techniques de déposition de suspensions concentrées, non agglomérées de ces nanoparticules polydisperses, par encrage, dip-coating, curtain coating, doctor blade, slot-die etc. L’obtention de telles suspensions concentrées nécessite l’utilisation de stabilisants, qui sont des ligands organiques (par exemple de type PVP), afin d’éviter les phénomènes d’agglomération entre nanoparticules. Ces ligands seront éliminés au début du traitement thermique de frittage : typiquement, une rampe thermique intermédiaire est réalisée afin d’éliminer tous ces composés organiques avant frittage.
La viscosité de la suspension utilisée pour le dépôt dépend essentiellement e la nature de la phase liquide (solvant), de la taille des particules et de leur concentration (exprimée par l’extrait sec). La viscosité de la suspension, ainsi que les paramètres du procédé de dépôt (notamment la vitesse de défilement ou la vitesse de passage dans le liquide) déterminent l’épaisseur du dépôt. En fonction de ces paramètres propres à la technique de dépôt, la viscosité généralement utilisée pour le dip coating, le curtain coating ou le slot die peut varier largement et se situe entre environ 20 cP et environ 2000 cP, mesurée à 20 °C. Une suspension colloïdale destinée à réaliser un dépôt est appelée souvent une « encre », quelle que soit sa viscosité.
Une fois ces composés organiques éliminés, les nanoparticules vont entrer en contact et commencer le processus de consolidation. Les surfaces des nanoparticules vont se souder au niveau des points de contact ; ce phénomène est connu sous le terme de « necking » (formation de cols). Au cours du frittage, ces points de contact devenus zones de soudure vont croitre par diffusion, jusqu’à remplir les espaces vides laissés par la porosité initiale du dépôt. C’est bien le comblement de ces vides qui est à l’origine du retreint.
Aussi, pour obtenir un taux de porosité finale inférieur à 15%, de préférence inférieur à 10%, sur les dépôts épais réalisés sur des substrats métalliques et sans fissures, il est nécessaire de maximiser la compacité du dépôt de nanoparticules de départ, tout en conservant l’effet nanométrique qui permet de réduire les températures de consolidation et les maintenir compatibles avec l’utilisation de substrats métalliques.
Selon l’invention, on utilise des suspensions colloïdales de nanoparticules dont la taille moyenne des nanoparticules n’excède pas 100 nm. Ces nanoparticules présentent par ailleurs une distribution en taille assez étalée. Lorsque cette distribution en taille suit une distribution approximativement gaussienne, alors le rapport (sigma/Rmoy) de l’écart-type sur le rayon moyen des nanoparticules doit être supérieur à 0,6.
Pour accroitre cette compacité du dépôt initial avant frittage, il est également possible d’utiliser un mélange de deux populations en tailles de nanoparticules. Dans ce cas, le diamètre moyen de la distribution la plus grande ne devra pas excéder 100 nm, et de préférence ne pas excéder 50 nm. Cette première population de nanoparticules les plus grosses pourra avoir une distribution en taille plus resserrée et avec un rapport sigma/Rmoyinférieur à 0,6. Cette population de « grosses » nanoparticules devra représenter entre 50 % et 75 % de l’extrait sec du dépôt (exprimé en pourcentage massique par rapport à la masse totale de nanoparticules dans le dépôt). La deuxième population de nanoparticules, représentera par conséquent entre 50 % et 25 % de l’extrait sec du dépôt (exprimé en pourcentage massique par rapport à la masse totale de nanoparticules dans le dépôt). Le diamètre moyen des particules de cette deuxième population devra être au moins 5 fois plus petit de celui de la population de nanoparticules les plus grosses. Comme pour les plus grosses nanoparticules, la distribution en taille de cette seconde population pourra être plus resserrée et avec potentiellement un rapport sigma/Rmoyinférieur à 0,6.
Dans tous les cas, les deux populations ne devront pas présenter d’agglomération dans l’encre réalisée. Aussi, ces nanoparticules peuvent être avantageusement synthétisées en présence de ligands ou de stabilisants organiques de manière à éviter l’agrégation, voire l’agglomération des nanoparticules.
La préparation de suspensions colloïdales par nanobroyage humide permet d’obtenir des distributions en tailles assez élargies. Cependant, en fonction de la nature du matériau broyée, de sa « fragilité » du taux de réduction appliqué, les nanoparticules primaires peuvent être endommagées ou amorphisées.
Les matériaux utilisés dans la fabrication des batteries à ions de lithium sont particulièrement sensibles, la moindre modification de leur état cristallin ou de leur composition chimique se traduit par des performances électrochimiques dégradées. Aussi, pour ce type d’application, il est préférable d’utiliser des nanoparticules préparées en suspension directement par précipitation, selon des procédés de type solvothermal ou hydrothermal, à la taille de nanoparticules primaire voulue.
Ces procédés de synthèse de nanoparticules par précipitation permettent d’obtenir des nanoparticules primaires de taille homogène avec une distribution de taille réduite, de bonne cristallinité et pureté. Il est également possible d’obtenir avec ces procédés des tailles de particules très petites, pouvant être inférieures à 10 nm, et dans un état non agrégé. Pour cela, il convient d’ajouter un ligand directement dans le réacteur de synthèse de manière à éviter la formation d’agglomérats, d’agrégats pendant la synthèse. A titre d’exemple le PVP peut être utilisé pour assurer cette fonction.
Comme la distribution en taille des nanoparticules, non agglomérées, obtenues par précipitation est assez resserrée, il convient de privilégier une stratégie d’élaboration de suspension colloïdale mixant deux distributions en taille en suivant les règles décrites précédemment afin de maximiser la compacité du dépôt avant frittage. Cela permettra après frittage de réaliser des dépôts relativement épais, directement sur des substrats métalliques avec peu ou pas de risques de fissuration pendant le traitement thermique de frittage qui lui sera maintenu à une température relativement faible du fait de la faible taille des nanoparticules utilisées.
Cette suspension de nanoparticules bimodale est ensuite utilisée pour déposer les couches compactes, qui seront ensuite densifiées par un traitement thermique à basse température et utilisable notamment comme électrodes ou électrolyte dans des dispositifs électrochimiques comme par exemple les batteries à ions de lithium. On peut utiliser différents procédés pour déposer ces couches, et notamment l’électrophorèse, l’impression par jet d’encre (appelé en anglais « ink-jet »), le raclage (appelé en anglais « doctor blade »), l’enduction au rouleau (appelé « roll coating » en anglais), l’enduction au rideau (appelé « curtain coating » en anglais), l’enduction par trempage (appelé en anglais « dip-coating »), les dépôts par slot-die. Ce sont des procédés simples, sûrs, faciles à mettre en œuvre, à industrialiser, et qui permettent d’obtenir une couche dense finale homogène.
L’électrophorèse permet de déposer une couche uniforme sur de larges surfaces avec une vitesse de dépôt élevée. Les techniques d’enduction, notamment par trempage, au rouleau, au rideau ou par raclage, permettent de simplifier la gestion des bains par rapport à l’électrophorèse, car la composition du bain reste constante lors du dépôt par enduction. Le dépôt par impression par jet d’encre permet de faire des dépôts localisés.
Des électrodes et des électrolytes denses en couche épaisse et réalisées en une seule étape peuvent être obtenus par les procédés précités à partir de suspension de nanoparticules bimodales ou polydispersées.
On décrit maintenant à titre d’exemple non limitatif la réalisation d’une électrode dense selon l’invention.
Nature du collecteur de courant
Le substrat servant de collecteur de courant au sein des batteries employant des électrodes denses selon l’invention est métallique, par exemple une feuille métallique. Il doit être sélectionné de manière à supporter la température d’un éventuel traitement thermique ou thermomécanique qui sera appliqué à la couche déposée sur ce substrat, et cette température dépendra de la nature chimique de ladite couche. Le substrat est de préférence choisi parmi des feuillards en titane, molybdène, chrome, tungstène, en cuivre, en nickel ou en acier inoxydable ou tout alliage contenant au moins un des éléments précédents.
La feuille métallique peut être revêtue d’une couche de métal noble, notamment choisi parmi l’or, le platine, le palladium, le titane, le molybdène, le tungstène, le chrome ou des alliages contenant majoritairement au moins un ou plusieurs de ces métaux, ou d’une couche de matériau conducteur de type ITO (qui a l’avantage d’agir également comme barrière de diffusion).
Dans cet exemple, nous utiliserons une feuille d’acier inoxydable de type 316L de 10 microns d’épaisseur.
Dépôt d’une couche d’électrode dense par trempage (dip-coating)
On peut déposer des nanoparticules bimodales par le procédé d’enduction par trempage, et ce, quel que soit la nature chimique des nanoparticules employées. Par exemple, pour réaliser un dépôt céramique dense de Li4Ti5O12, nous pouvons réaliser une encre composée de nanoparticules de deux tailles différentes, dans le cas d’une anode en Li4Ti5O12, on synthétise des nanoparticules de Li4Ti5O12d’environ 5 nm de diamètre par voie glycothermale (voir l’article« Impact of the Synthesis Parameters on the microstructure of nano-structured LTO prepared by glycothermal routes and 7 Li NMR structural investigations», M. Odziomek, F. Chaput et al., paru dans J Sol-Gel Sci Technol 89, 225–233 (2019)). A cette synthèse on ajoute des ligands afin de limiter l’agglomération des nanoparticules. On associe ces nanoparticules de 5 nm de diamètres à des nanoparticules de Li4Ti5012obtenue par synthèse hydrothermale avec des tailles de particules de 30 nm.
Ces nanoparticules sont mélangées, désagglomérées par ultrasons, avec 70% en masse de particules de 30 nm et 30% en masse de nanoparticules de 5 nm dans une encre avec 15% d’extrait sec global, dans l’éthanol et contenant du PVP comme stabilisant. Chaque passe de trempage ne produit qu’une couche d’épaisseur assez limitée ; la couche humide doit être séchée. Afin d’obtenir une couche d’une épaisseur finale désirée, l’étape de dépôt par trempage suivie de l’étape de séchage de la couche peut être répétée autant que nécessaire.
Bien que cette succession d’étapes d’enduction par trempage / séchage soit chronophage, le procédé de dépôt par dip-coating est un procédé simple, sûr, facile à mettre en œuvre, à industrialiser et permettant d’obtenir une couche finale homogène et compacte.
Traitement et propriétés des couches déposées
Les couches déposées par trempage doivent être séchées. Une fois séchées on réalise un traitement thermique en deux étapes. Dans un premier temps le dépôt est maintenu pendant 10 minutes à 400°C afin de calciner tous les composés organiques qu’il contient. Puis la température de traitement est montée à 550°C et maintenu pendant une heure à cette température afin d’obtenir la consolidation du dépôt.
La sélection des matériaux des nanoparticules dépend bien entendu de la fonction des couches ainsi déposée dans le dispositif électrochimique, électrique ou électronique visé.
Si la couche selon l’invention doit fonctionner comme la cathode d’une batterie, surtout d’une batterie à ions de lithium, elle peut être réalisée par exemple à partir d’un matériau P qui est un matériau de cathode choisi parmi :
  • les oxydes LiMn2O4, Li1+xMn2-xO4avec 0 < x < 0,15, LiCoO2, LiNiO2, LiMn1,5Ni0,5O4, LiMn1,5Ni0,5-xXxO4où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où 0 < x < 0,1, LiMn2-xMxO4avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces composés et où 0 < x < 0,4, LiFeO2, LiMn1/3Ni1/3Co1/3O2, ,LiNi0.8Co0.15Al0.05O2, LiAlxMn2-xO4avec 0 ≤ x < 0,15, LiNi1/xCo1/yMn1/zO2avec x+y+z =10 ;
  • les phosphates LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4, Li3V2(PO4)3; les phosphates de formule LiMM’PO4, avec M et M’ (M ≠ M’) sélectionnés parmi Fe, Mn, Ni, Co, V ;
  • toutes les formes lithiées des chalcogénides suivants : V2O5, V3O8, TiS2, les oxysulfures de titane (TiOySzavec z=2-y et 0,3 ≤ y ≤ 1), les oxysulfures de tungstène (WOySzavec 0.6 < y < 3 et 0.1 < z < 2), CuS, CuS2, de préférence LixV2O5avec 0 < x ≤ 2, LixV3O8 avec 0 < x ≤ 1,7, LixTiS2avec 0 < x ≤ 1, les oxysulfures de titane et de lithium LixTiOySzavec z = 2-y, 0,3 ≤ y ≤ 1, LixWOySz, LixCuS, LixCuS2.
Si la couche selon l’invention doit fonctionner comme l’anode d’une batterie, surtout d’une batterie à ions de lithium, elle peut être réalisée par exemple à partir d’un matériau P qui est un matériau d’anode choisi parmi :
  • les nanotubes de carbone, le graphène, le graphite ;
  • le phosphate de fer lithié (de formule typique LiFePO4) ;
  • les oxynitrures mixtes de silicium et étain (de formule typique SiaSnbOyNzavec a>0, b>0, a+b≤2, 0<y≤4, 0<z≤3) (appelés aussi SiTON), et en particulier le SiSn0,87O1,2N1,72; ainsi que les oxynitrures-carbures de formule typique SiaSnbCcOyNzavec a > 0, b > 0, a+b ≤ 2, 0 < c < 10, 0 < y < 24, 0 < z < 17;
  • les nitrures de type SixNy(en particulier avec x=3 et y=4), SnxNy(en particulier avec x=3 et y=4), ZnxNy(en particulier avec x=3 et y=2), Li3-xMxN (avec 0 ≤ x ≤ 0,5 pour M=Co, 0 ≤ x ≤ 0,6 pour M=Ni, 0 ≤ x ≤ 0,3 pour M=Cu); Si3-xMxN4avec M=Co ou Fe et 0 ≤ x ≤ 3.
  • les oxydes SnO2, SnO, Li2SnO3, SnSiO3, LixSiOy(x >= 0 et 2 > y > 0), Li4Ti5O12, TiNb2O7, Co3O4, SnB0,6P0,4O2,9et TiO2,
  • les oxydes composites TiNb2O7comprenant entre 0% et 10% massique de carbone, de préférence le carbone étant choisi parmi le graphène et les nanotubes de carbone,
  • les composés de formule générale LiwTi1-xM1 xNb2-yM2 yO7-zM3 zdans lesquels M1et M2sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1et M2pouvant être identiques ou différents l’un de l’autre, et dans lesquels M3est au moins un halogène, et dans lequel 0 ≤ w ≤ 5, 0 ≤ x < 1, 0 ≤ y < 2 et 0 < z ≤ 0.3.
Si la couche selon l’invention doit fonctionner comme électrolyte dans une batterie, surtout d’une batterie à ions de lithium, elle peut être réalisée par exemple à partir d’un matériau P qui est un matériau d’électrolyte choisi parmi :
  • les grenats de formule LidA1 xA2 y(TO4)zoù A1représente un cation de degré d’oxydation +II, de préférence Ca, Mg, Sr, Ba, Fe, Mn, Zn, Y, Gd ; et où A2représente un cation de degré d’oxydation +III, de préférence Al, Fe, Cr, Ga, Ti, La ; et où (TO4) représente un anion dans lequel T est un atome de degré d’oxydation +IV, situé au centre d’un tétraèdre formé par les atomes d’oxygène, et dans lequel TO4représente avantageusement l’anion silicate ou zirconate, sachant que tout ou partie des éléments T d’un degré d’oxydation +IV peuvent être remplacés par des atomes d’un degré d’oxydation +III ou +V, tels que Al, Fe, As, V, Nb, In, Ta ; sachant que : d est compris entre 2 et 10, préférentiellement entre 3 et 9, et encore plus préférentiellement entre 4 et 8 ; x est être compris entre 2,6 et 3,4 (de préférence entre 2,8 et 3,2) ; y est compris entre 1,7 et 2,3 (de préférence entre 1,9 et 2,1) et z est compris entre 2,9 et 3,1;
  • les grenats, de préférence choisi parmi : le Li7La3Zr2O12; le Li6La2BaTa2O12; le Li5,5La3Nb1,75In0.25O12; le Li5La3M2O12avec M = Nb ou Ta ou un mélange des deux composés ; le Li7-xBaxLa3-xM2O12avec 0 ≤ x ≤ 1 et M = Nb ou Ta ou un mélange des deux composés ; le Li7-xLa3Zr2-xMxO12avec 0 ≤ x ≤ 2 et M = Al, Ga ou Ta ou un mélange de deux ou trois de ces composés ;
  • les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3PO4; le LiPO3; le Li3Al0,4Sc1,6(PO4)3appelés « LASP » ; le Li1,2Zr1,9Ca0,1(PO4)3; le LiZr2(PO4)3; le Li1+3xZr2(P1-xSixO4)3avec 1,8 < x < 2,3 ; le Li1+6xZr2(P1-xBxO4)3avec 0 ≤ x ≤ 0,25 ; le Li3(Sc2-xMx)(PO4)3avec M=Al ou Y et 0 ≤ x ≤ 1 ; le Li1+xMx(Sc)2-x(PO4)3avec M = Al, Y, Ga ou un mélange des trois composés et 0 ≤ x ≤ 0,8 ; le Li1+xMx(Ga1-yScy)2-x(PO4)3avec 0 ≤ x ≤ 0,8 ; 0 ≤ y ≤ 1 et M= Al ou Y ou un mélange des deux composés; le Li1+xMx(Ga)2-x(PO4)3avec M = Al, Y ou un mélange des deux composés et 0 ≤ x ≤ 0,8 ; le Li1+xAlxTi2-x(PO4)3avec 0 ≤ x ≤ 1 appelés « LATP » ; ou le Li1+xAlxGe2-x(PO4)3avec 0 ≤ x ≤ 1 appelés « LAGP » ; ou le Li1+x+zMx(Ge1-yTiy)2-xSizP3-zO12avec 0 ≤ x ≤ 0,8 et 0 ≤ y ≤ 1,0 et 0 ≤ z ≤ 0,6 et M= Al, Ga ou Y ou un mélange de deux ou trois de ces composés ; le Li3+y(Sc2-xMx)QyP3-yO12avec M = Al et/ou Y et Q = Si et/ou Se, 0 ≤ x ≤ 0,8 et 0 ≤ y ≤ 1 ; ou le Li1+x+yMxSc2-xQyP3-yO12avec M = Al, Y, Ga ou un mélange des trois composés et Q = Si et/ou Se, 0 ≤ x ≤ 0,8 et 0 ≤ y ≤ 1 ; ou le Li1+x+y+zMx(Ga1-yScy)2-xQzP3-zO12avec 0 ≤ x ≤ 0,8 , 0 ≤ y ≤ 1 , 0 ≤ z ≤ 0,6 avec M = Al ou Y ou un mélange des deux composés et Q= Si et/ou Se ; ou le Li1+xZr2-xBx(PO4)3avec 0 ≤ x ≤ 0,25 ; ou le Li1+xZr2-xCax(PO4)3avec 0 ≤ x ≤ 0,25 ; ou Li1+xM3 xM2-xP3O12avec 0 ≤ x ≤ 1 et M3= Cr, V, Ca, B, Mg, Bi et/ou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces composés ; ou le Li1+2xCaxZr2-x(PO4)3avec 0 ≤ x ≤ 0,25 ;
  • les borates lithiés, de préférence choisi parmi : le Li3(Sc2-xMx)(BO3)3avec M=Al ou Y et 0 ≤ x ≤ 1 ; le Li1+xMx(Sc)2-x(BO3)3avec M = Al, Y, Ga ou un mélange des trois composés et 0 ≤ x ≤ 0,8 ; le Li1+xMx(Ga1-yScy)2-x(BO3)3avec 0 ≤ x ≤ 0,8 , 0 ≤ y ≤ 1 et M= Al ou Y ; le Li1+xMx(Ga)2-x(BO3)3avec M = Al, Y ou un mélange des deux composés et 0 ≤ x ≤ 0,8 ; le Li3BO3, le Li3BO3-Li2SO4, le Li3BO3-Li2SiO4, le Li3BO3-Li2SiO4-Li2SO4;
  • les oxynitrures, de préférence choisis parmi Li3PO4-xN2x/3, Li4SiO4-xN2x/3, Li4GeO4-xN2x/3avec 0 < x < 4 ou Li3BO3-xN2x/3avec 0 < x < 3 ;
  • les composés lithiés à base d’oxynitrure de lithium et de phosphore, appelés « LiPON », sous forme de LixPOyNzavec x ~ 2,8 et 2y+3z ~ 7,8 et 0,16 ≤ z ≤ 0,4, et en particulier le Li2,9PO3,3N0,46, mais également les composés LiwPOxNySzavec 2x+3y+2z = 5 = w ou les composés LiwPOxNySzavec 3,2 ≤ x ≤ 3,8, 0,13 ≤ y ≤ 0,4, 0 ≤ z ≤ 0,2 , 2,9 ≤ w ≤ 3,3 ou les composés sous forme de LitPxAlyOuNvSwavec 5x+3y=5, 2u+3v+2w=5+t, 2,9≤t≤3,3, 0,84≤x≤0,94, 0,094≤y≤0,26, 3,2≤u≤3,8, 0,13≤v≤0,46, 0≤w≤0,2 ;
  • les matériaux à base d'oxynitrures de lithium de phosphore ou de bore, appelés respectivement « LiPON » et « LIBON », pouvant également contenir du silicium, du soufre, du zirconium, de l'aluminium, ou une combinaison d'aluminium, bore, soufre et/ou silicium, et du bore pour les matériaux à base d'oxynitrures de lithium de phosphore ;
  • les composé lithiés à base d’oxynitrure de lithium, de phosphore et de silicium appelés « LiSiPON », et en particulier le Li1.9Si0.28P1.0O1.1N1.0;
  • les oxynitrures de lithium de types LiBON, LiBSO, LiSiPON, LiSON, thio-LiSiCON, LiPONB (ou B, P et S représentent respectivement le bore, le phosphore et le soufre);
  • les oxynitrures de lithium de type LiBSO tels que (1−x)LiBO2-xLi2SO4avec 0,4 ≤ x ≤ 0,8 ;
  • les oxydes lithiés, de préférence choisis parmi le Li7La3Zr2O12ou le Li5+xLa3(Zrx,A2-x)O12avec A = Sc, Y, Al, Ga et 1,4 ≤ x ≤ 2 ou le Li0,35La0,55TiO3ou le Li3xLa2/3-xTiO3avec 0 ≤ x ≤ 0,16 (LLTO);
  • les silicates, de préférence choisis parmi Li2Si2O5, Li2SiO3, Li2Si2O6, LiAlSiO4, Li4SiO4, LiAlSi2O6;
  • les électrolytes solides de type anti-perovskite choisis parmi : Li3OA avec A un halogénure ou un mélange d’halogénures, de préférence au moins un des éléments choisi parmi F, Cl, Br, I ou un mélange de deux ou trois ou quatre de ces éléments ; Li(3-x)Mx/2OA avec 0 < x ≤ 3, M un métal divalent, de préférence au moins un des éléments choisi parmi Mg, Ca, Ba, Sr ou un mélange de deux ou trois ou quatre de ces éléments, A un halogénure ou un mélange d’halogénures, de préférence au moins un des éléments choisi parmi F, Cl, Br, I ou un mélange de deux ou trois ou quatre de ces éléments ; Li(3-x)M3 x/3OA avec 0 ≤ x ≤ 3, M3un métal trivalent, A un halogénure ou un mélange d’halogénures, de préférence au moins un des éléments choisi parmi F, Cl, Br, I ou un mélange de deux ou trois ou quatre de ces éléments ; ou LiCOXzY(1-z), avec X et Y des halogénures comme mentionnés ci-dessus en relation avec A, et 0 ≤ z ≤ 1,
  • les composés La0,51Li0,34Ti2,94, Li3,4V0,4Ge0,6O4, Li2O-Nb2O5, LiAlGaSPO4;
  • les formulations à base de Li2CO3, B2O3, Li2O, Al(PO3)3LiF, P2S3, Li2S, Li3N, Li14Zn(GeO4)4, Li3,6Ge0,6V0,4O4, LiTi2(PO4)3, Li3,25Ge0,25P0,25S4, Li1,3Al0,3Ti1,7(PO4)3, Li1+xAlxM2-x(PO4)3(où M = Ge, Ti, et/ou Hf, et où 0 < x < 1), Li1+x+yAlxTi2-xSiyP3-yO12(où 0 ≤ x ≤ 1 et 0 ≤ y ≤ 1).
Les nanoparticules utilisées dans les encres servant à faire ces dépôts destinées aux électrodes peuvent également avoir une structure cœur-écorce. En effet, la performance des électrodes denses ainsi obtenue dépendra de leur propriété de conduction ionique et électronique. Aussi, à la surface des nanoparticules de matériau actif, il peut être important d’appliquer une « coquille » d’un matériau inorganique, dotée de bonnes propriétés de conduction électronique et/ou ioniques.
Ainsi, dans un mode de réalisation avantageux le cœur est formé d’un matériau d’électrode (anode ou cathode), et l’écorce est formée d’un matériau qui est à la fois conducteur électronique et qui n’empêche pas le passage des ions de lithium. A titre d’exemple, l’écorce peut être formée par une couche d’un métal, qui est suffisamment mince pour laisser passer des ions de lithium, ou par une couche de graphite suffisamment mince, ou par une couche d’un conducteur ionique qui est aussi un bon conducteur électronique.
Exemple de fabrication d’une batterie à ions de lithium
On décrit ici un procédé de fabrication de batteries à ions de lithium utilisant les couches selon l’invention.
a) Préparation des électrodes par le procédé de dépôt selon l’invention
On a déposé une première électrode dense de Li4Ti5O12obtenue par le procédé décrit ci-dessus dans le chapitre « Dépôt d’une couche d’électrode dense par trempage (dip-coating) ». On a également déposé une deuxième électrode dense de LiMn2O4, par un procédé analogue.
Sur chacune de ces deux électrodes on a ensuite déposé un film mince mésoporeux d’agglomérats de Li3PO4, qui exerce dans la batterie la fonction de film séparateur, et qui a été préparé comme décrit ci-dessous.
b) Dépôt de la couche de séparateur
Une suspension de nanoparticules de Li3PO4a été préparée à partir des deux solutions présentées ci-dessous : Premièrement, 45,76 g de CH3COOLi, 2H2O ont été dissous dans 448 ml d’eau, puis 224 ml d’éthanol ont été ajoutés sous vive agitation au milieu afin d’obtenir une solution A. Deuxièmement, 16,24 g de H3PO4(85 wt% dans l’eau) ont été dilués dans 422,4 ml d’eau, puis 182,4 ml d’éthanol ont été ajoutés à cette solution afin d’obtenir une seconde solution appelée ci-après solution B. La solution B a ensuite été ajoutée, sous vide agitation, à la solution A.
La solution obtenue, parfaitement limpide après disparition des bulles formées au cours du mélange, a été ajoutée à 4,8 litres d’acétone sous action d’un homogénéiseur de type Ultraturrax™ afin d’homogénéiser le milieu. On a immédiatement observé une précipitation blanche en suspension dans la phase liquide.
Le milieu réactionnel a été homogénéisé pendant 5 minutes puis a été maintenu 10 minutes sous agitation magnétique. On a laissé décanter pendant 1 à 2 heures. Le surnageant a été écarté puis la suspension restante a été centrifugée 10 minutes à 6000 g. Ensuite on a ajouté 1,2 l d’eau pour remettre le précipité en suspension (utilisation d’une sonotrode, agitation magnétique). Deux lavages supplémentaires de ce type ont ensuite été effectués à l’éthanol. Sous vive agitation, on a ajouté 15 ml d’une solution de Bis(2-(methacryloyoloxy)ethyl)phosphate à 1 g/ml à la suspension colloïdale dans l’éthanol ainsi obtenue. La suspension est ainsi devenue plus stable. La suspension a ensuite été soniquée à l’aide d’une sonotrode. La suspension a ensuite été centrifugée 10 minutes à 6000 g. Le culot a ensuite été redispersé dans 1,2 l d’éthanol puis centrifugé 10 minutes à 6000 g. Les culots ainsi obtenus sont redispersés dans 900 ml d’éthanol afin d’obtenir une suspension à 15 g/l apte à la réalisation d’un dépôt électrophorétique.
Des agglomérats d’environ 200 nm constitués de particules primaires de Li3PO4de 10 nm ont ainsi été obtenues en suspension dans l’éthanol.
Des couches minces poreuses de Li3PO4ont ensuite été déposées par électrophorèse sur la surface des anodes et cathodes précédemment élaborées en appliquant un champ électrique de 20V/cm à la suspension de nanoparticules de Li3PO4précédemment obtenue, pendant 90 secondes pour obtenir une couche d’environ 2 µm. La couche a ensuite été séchée à l’air à 120°C puis a un traitement de calcination à 350°C pendant 120 minutes a été effectué sur cette couche préalablement séchée afin d’éliminer toute trace de résidus organiques.
c) Assemblage des électrodes et du séparateur
Après avoir déposé 2 µm de Li3PO4poreux sur chacune des électrodes (Li1+xMn2-yO4et Li4Ti5O12) précédemment élaborées, les deux sous-systèmes ont été empilés de manière à ce que les films de Li3PO4soient en contact. Cet empilement a ensuite été pressé à chaud sous vide entre deux plateaux plans. Pour ce faire, l’empilement a été placé d’abord sous une pression de 5 MPa puis séché sous vide pendant 30 minutes à 10-3bar. Les plateaux de la presse ont ensuite été chauffés à 550°C avec une vitesse de 0,4°C/seconde. A 550°C, l’empilement a ensuite été thermo-compressé sous une pression de 45 MPa pendant 20 minutes, puis le système a été refroidi à température ambiante. Ensuite on a séché l’assemblage à 120°C pendant 48 heures sous vide (10 mbars).
d) Imprégnation du séparateur par un électrolyte liquide
Cet assemblage a ensuite été imprégné, sous atmosphère anhydre, par trempage dans une solution électrolytique comprenant du PYR14TFSI, et du LiTFSI à 0,7 M. PYR14TFSI est l’abréviation courante de 1-butyl-1-méthylpyrrolidinium bis(trifluoro-méthanesulfonyl)imide. LITFSI est l’abréviation courante de lithium bis-trifluorométhanesulfonimide (n° CAS : 90076-65-6). Le liquide ionique rentre instantanément par capillarité dans les porosités du séparateur. Chacune des deux extrémités du système a été maintenue en immersion pendant 5 minutes dans une goutte du mélange électrolytique.
On note que dans un procédé de fabrication industriel, l’imprégnation est effectuée après l’encapsulation de la batterie, et suivi de la réalisation des organes de contact électrique.
La batterie selon l’invention peut être une mini-batterie, dont la capacité est supérieure à 1 mAh et jusqu’à environ 1 Ah, ou une batterie dont la capacité est supérieure à 1 Ah. En effet, le procédé selon l’invention se prête particulièrement bien à la réalisation de couches d’une épaisseur supérieure à 1 µm, voire supérieure à 5 µm, tout en assurant une faible résistance série de la batterie.
Ces batteries et mini-batteries peuvent être réalisées :
  • soit uniquement avec des couches de type « tout solide », i.e. dépourvues de phases
liquides ou pâteuses imprégnées (lesdites phases liquides ou pâteuses pouvant être un milieu conducteur d’ions de lithium, capable d’agir comme électrolyte),
  • soit avec des électrodes selon l’invention et des séparateurs de type « tout solide » mésoporeux, imprégnés par une phase liquide ou pâteuse, typiquement un milieu conducteur d’ions de lithium, qui entre spontanément à l’intérieur de la couche et qui ne ressort plus de cette couche, de sorte que cette couche puisse être considérée comme quasi-solide,
  • soit encore avec une électrode selon l’invention et des séparateurs poreux imprégnés (i.e. couches présentant un réseau de pores ouverts qui peuvent être imprégnés avec une phase liquide ou pâteuse, et qui confère à ces couches des propriétés humides.

Claims (12)

  1. Procédé de fabrication d’une batterie à ions de lithium d’une capacité supérieure à 1 mA h, comprenant le dépôt d’au moins une couche dense, qui peut être une anode et/ou une cathode et/ou un électrolyte, par un procédé de dépôt d’une couche dense qui comprend les étapes de :
    1. Approvisionnement d’un substrat et d’une suspension de nanoparticules non agglomérées d’un matériau P ;
    2. Dépôt d’une couche, sur ledit substrat, à partir de la suspension de nanoparticules primaires d’un matériau P ;
    3. Séchage de la couche ainsi obtenue ;
    4. Densification de la couche séchée par compression mécanique et/ou traitement thermique,
    sachant que les étapes (iii) et (iv) peuvent être faites au moins partiellement en même temps, ou lors d’une rampe de température ;
    ledit procédé étant caractérisé en ce que la suspension de nanoparticules non agglomérées de matériau P comprend des nanoparticules de matériau P présentant une distribution en taille, ladite taille étant caractérisée par sa valeur de D50, telle que :
    - la distribution comprend des nanoparticules de matériau P d’une première taille D1 comprise entre 20 nm et 50 nm, et des nanoparticules de matériau P d’une deuxième taille D2 caractérisée par une valeur D50au moins cinq fois inférieure à celle de D1 ; ou
    - la distribution présente une taille moyenne des nanoparticules de matériau P inférieure à 50 nm, et un rapport écart type sur taille moyenne supérieur à 0,6.
  2. Procédé selon la revendication 1, dans lequel ladite suspension de nanoparticules non agglomérées de matériau P comprend des nanoparticules de matériau P d’une première taille D1 comprise entre 20 nm et 50 nm, et des nanoparticules de matériau P d’une deuxième taille D2 caractérisée par une valeur D50au moins cinq fois inférieure à celle de D1, et lesdites particules de taille D1 représentent entre 50 et 75% de la masse totale de nanoparticules.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que ladite suspension de nanoparticules non agglomérées de matériau P est obtenue en utilisant une suspension de nanoparticules de taille D1 monodisperse.
  4. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que la suspension de nanoparticules de taille D2 est obtenue en utilisant une suspension monodisperse.
  5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que le dépôt de la couche mince dense est effectué par voie électrophorétique, par le procédé d’enduction par trempage, par le procédé d’impression par jet d’encre, par enduction au rouleau, par enduction au rideau ou par raclage.
  6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ladite suspension présente une viscosité, mesurée à 20 °C, entre 20 cP et 2000 cP.
  7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce que ledit matériau P est un matériau inorganique, de préférence sélectionné dans le groupe formé par :
    • les oxydes LiMn2O4, Li1+xMn2-xO4avec 0 < x < 0,15, LiCoO2, LiNiO2, LiMn1,5Ni0,5O4, LiMn1,5Ni0,5-xXxO4où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où 0 < x < 0,1, LiMn2-xMxO4avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces composés et où 0 < x < 0,4, LiFeO2, LiMn1/3Ni1/3Co1/3O2, ,LiNi0.8Co0.15Al0.05O2, LiAlxMn2-xO4avec 0 ≤ x < 0,15, LiNi1/xCo1/yMn1/zO2avec x+y+z =10 ;
    • les phosphates LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4, Li3V2(PO4)3; les phosphates de formule LiMM’PO4, avec M et M’ (M ≠ M’) sélectionnés parmi Fe, Mn, Ni, Co, V ;
    • toutes les formes lithiées des chalcogénides suivants : V2O5, V3O8, TiS2, les oxysulfures de titane (TiOySzavec z=2-y et 0,3 ≤ y ≤ 1), les oxysulfures de tungstène (WOySzavec 0.6 < y < 3 et 0.1 < z < 2), CuS, CuS2, de préférence LixV2O5avec 0 < x ≤ 2, LixV3O8 avec 0 < x ≤ 1,7, LixTiS2avec 0 < x ≤ 1, les oxysulfures de titane et de lithium LixTiOySzavec z = 2-y, 0,3 ≤ y ≤ 1, LixWOySz, LixCuS, LixCuS2;
    • les nanotubes de carbone, le graphène, le graphite ;
    • le phosphate de fer lithié (de formule typique LiFePO4) ;
    • les oxynitrures mixtes de silicium et étain (de formule typique SiaSnbOyNzavec a>0, b>0, a+b≤2, 0<y≤4, 0<z≤3) (appelés aussi SiTON), et en particulier le SiSn0,87O1,2N1,72; ainsi que les oxynitrures-carbures de formule typique SiaSnbCcOyNzavec a > 0, b > 0, a+b ≤ 2, 0 < c < 10, 0 < y < 24, 0 < z < 17;
    • les nitrures de type SixNy(en particulier avec x=3 et y=4), SnxNy(en particulier avec x=3 et y=4), ZnxNy(en particulier avec x=3 et y=2), Li3-xMxN (avec 0 ≤ x ≤ 0,5 pour M=Co, 0 ≤ x ≤ 0,6 pour M=Ni, 0 ≤ x ≤ 0,3 pour M=Cu); Si3-xMxN4avec M=Co ou Fe et 0 ≤ x ≤ 3.
    • les oxydes SnO2, SnO, Li2SnO3, SnSiO3, LixSiOy(x >= 0 et 2 > y > 0), Li4Ti5O12, TiNb2O7, Co3O4, SnB0,6P0,4O2,9et TiO2,
    • les oxydes composites TiNb2O7comprenant entre 0% et 10% massique de carbone, de préférence le carbone étant choisi parmi le graphène et les nanotubes de carbone ;
    • les composés de formule générale LiwTi1-xM1 xNb2-yM2 yO7-zM3 zdans lesquels M1et M2sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1et M2pouvant être identiques ou différents l’un de l’autre, et dans lesquels M3est au moins un halogène, et dans lequel 0 ≤ w ≤ 5, 0 ≤ x < 1, 0 ≤ y < 2 et 0 < z ≤ 0.3.
    • les grenats de formule LidA1 xA2 y(TO4)zoù A1représente un cation de degré d’oxydation +II, de préférence Ca, Mg, Sr, Ba, Fe, Mn, Zn, Y, Gd ; et où A2représente un cation de degré d’oxydation +III, de préférence Al, Fe, Cr, Ga, Ti, La ; et où (TO4) représente un anion dans lequel T est un atome de degré d’oxydation +IV, situé au centre d’un tétraèdre formé par les atomes d’oxygène, et dans lequel TO4représente avantageusement l’anion silicate ou zirconate, sachant que tout ou partie des éléments T d’un degré d’oxydation +IV peuvent être remplacés par des atomes d’un degré d’oxydation +III ou +V, tels que Al, Fe, As, V, Nb, In, Ta ; sachant que : d est compris entre 2 et 10, préférentiellement entre 3 et 9, et encore plus préférentiellement entre 4 et 8 ; x est être compris entre 2,6 et 3,4 (de préférence entre 2,8 et 3,2) ; y est compris entre 1,7 et 2,3 (de préférence entre 1,9 et 2,1) et z est compris entre 2,9 et 3,1;
    • les grenats, de préférence choisi parmi : le Li7La3Zr2O12; le Li6La2BaTa2O12; le Li5,5La3Nb1,75In0.25O12; le Li5La3M2O12avec M = Nb ou Ta ou un mélange des deux composés ; le Li7-xBaxLa3-xM2O12avec 0 ≤ x ≤ 1 et M = Nb ou Ta ou un mélange des deux composés ; le Li7-xLa3Zr2-xMxO12avec 0 ≤ x ≤ 2 et M = Al, Ga ou Ta ou un mélange de deux ou trois de ces composés ;
    • les phosphates lithiés, de préférence choisi parmi : les phosphates lithiés de type NaSICON, le Li3PO4; le LiPO3; le Li3Al0,4Sc1,6(PO4)3appelés « LASP » ; le Li1,2Zr1,9Ca0,1(PO4)3; le LiZr2(PO4)3; le Li1+3xZr2(P1-xSixO4)3avec 1,8 < x < 2,3 ; le Li1+6xZr2(P1-xBxO4)3avec 0 ≤ x ≤ 0,25 ; le Li3(Sc2-xMx)(PO4)3avec M=Al ou Y et 0 ≤ x ≤ 1 ; le Li1+xMx(Sc)2-x(PO4)3avec M = Al, Y, Ga ou un mélange des trois composés et 0 ≤ x ≤ 0,8 ; le Li1+xMx(Ga1-yScy)2-x(PO4)3avec 0 ≤ x ≤ 0,8 ; 0 ≤ y ≤ 1 et M= Al ou Y ou un mélange des deux composés; le Li1+xMx(Ga)2-x(PO4)3avec M = Al, Y ou un mélange des deux composés et 0 ≤ x ≤ 0,8 ; le Li1+xAlxTi2-x(PO4)3avec 0 ≤ x ≤ 1 appelés « LATP » ; ou le Li1+xAlxGe2-x(PO4)3avec 0 ≤ x ≤ 1 appelés « LAGP » ; ou le Li1+x+zMx(Ge1-yTiy)2-xSizP3-zO12avec 0 ≤ x ≤ 0,8 et 0 ≤ y ≤ 1,0 et 0 ≤ z ≤ 0,6 et M= Al, Ga ou Y ou un mélange de deux ou trois de ces composés ; le Li3+y(Sc2-xMx)QyP3-yO12avec M = Al et/ou Y et Q = Si et/ou Se, 0 ≤ x ≤ 0,8 et 0 ≤ y ≤ 1 ; ou le Li1+x+yMxSc2-xQyP3-yO12avec M = Al, Y, Ga ou un mélange des trois composés et Q = Si et/ou Se, 0 ≤ x ≤ 0,8 et 0 ≤ y ≤ 1 ; ou le Li1+x+y+zMx(Ga1-yScy)2-xQzP3-zO12avec 0 ≤ x ≤ 0,8 , 0 ≤ y ≤ 1 , 0 ≤ z ≤ 0,6 avec M = Al ou Y ou un mélange des deux composés et Q= Si et/ou Se ; ou le Li1+xZr2-xBx(PO4)3avec 0 ≤ x ≤ 0,25 ; ou le Li1+xZr2-xCax(PO4)3avec 0 ≤ x ≤ 0,25 ; ou Li1+xM3 xM2-xP3O12avec 0 ≤ x ≤ 1 et M3= Cr, V, Ca, B, Mg, Bi et/ou Mo, M = Sc, Sn, Zr, Hf, Se ou Si, ou un mélange de ces composés ; ou le Li1+2xCaxZr2-x(PO4)3avec 0 ≤ x ≤ 0,25 ;
    • les borates lithiés, de préférence choisi parmi : le Li3(Sc2-xMx)(BO3)3avec M=Al ou Y et 0 ≤ x ≤ 1 ; le Li1+xMx(Sc)2-x(BO3)3avec M = Al, Y, Ga ou un mélange des trois composés et 0 ≤ x ≤ 0,8 ; le Li1+xMx(Ga1-yScy)2-x(BO3)3avec 0 ≤ x ≤ 0,8 , 0 ≤ y ≤ 1 et M= Al ou Y ; le Li1+xMx(Ga)2-x(BO3)3avec M = Al, Y ou un mélange des deux composés et 0 ≤ x ≤ 0,8 ; le Li3BO3, le Li3BO3-Li2SO4, le Li3BO3-Li2SiO4, le Li3BO3-Li2SiO4-Li2SO4;
    • les oxynitrures, de préférence choisis parmi Li3PO4-xN2x/3, Li4SiO4-xN2x/3, Li4GeO4-xN2x/3avec 0 < x < 4 ou Li3BO3-xN2x/3avec 0 < x < 3 ;
    • les composés lithiés à base d’oxynitrure de lithium et de phosphore, appelés « LiPON », sous forme de LixPOyNzavec x ~ 2,8 et 2y+3z ~ 7,8 et 0,16 ≤ z ≤ 0,4, et en particulier le Li2,9PO3,3N0,46, mais également les composés LiwPOxNySzavec 2x+3y+2z = 5 = w ou les composés LiwPOxNySzavec 3,2 ≤ x ≤ 3,8, 0,13 ≤ y ≤ 0,4, 0 ≤ z ≤ 0,2 , 2,9 ≤ w ≤ 3,3 ou les composés sous forme de LitPxAlyOuNvSwavec 5x+3y=5, 2u+3v+2w=5+t, 2,9≤t≤3,3, 0,84≤x≤0,94, 0,094≤y≤0,26, 3,2≤u≤3,8, 0,13≤v≤0,46, 0≤w≤0,2 ;
    • les matériaux à base d'oxynitrures de lithium de phosphore ou de bore, appelés respectivement « LiPON » et « LIBON », pouvant également contenir du silicium, du soufre, du zirconium, de l'aluminium, ou une combinaison d'aluminium, bore, soufre et/ou silicium, et du bore pour les matériaux à base d'oxynitrures de lithium de phosphore ;
    • les composé lithiés à base d’oxynitrure de lithium, de phosphore et de silicium appelés « LiSiPON », et en particulier le Li1.9Si0.28P1.0O1.1N1.0;
    • les oxynitrures de lithium de types LiBON, LiBSO, LiSiPON, LiSON, thio-LiSiCON, LiPONB (ou B, P et S représentent respectivement le bore, le phosphore et le soufre);
    • les oxynitrures de lithium de type LiBSO tels que (1−x)LiBO2-xLi2SO4avec 0,4 ≤ x ≤ 0,8 ;
    • les oxydes lithiés, de préférence choisis parmi le Li7La3Zr2O12ou le Li5+xLa3(Zrx,A2-x)O12avec A = Sc, Y, Al, Ga et 1,4 ≤ x ≤ 2 ou le Li0,35La0,55TiO3ou le Li3xLa2/3-xTiO3avec 0 ≤ x ≤ 0,16 (LLTO);
    • les silicates, de préférence choisis parmi Li2Si2O5, Li2SiO3, Li2Si2O6, LiAlSiO4, Li4SiO4, LiAlSi2O6;
    • les électrolytes solides de type anti-perovskite choisis parmi : Li3OA avec A un halogénure ou un mélange d’halogénures, de préférence au moins un des éléments choisi parmi F, Cl, Br, I ou un mélange de deux ou trois ou quatre de ces éléments ; Li(3-x)Mx/2OA avec 0 < x ≤ 3, M un métal divalent, de préférence au moins un des éléments choisi parmi Mg, Ca, Ba, Sr ou un mélange de deux ou trois ou quatre de ces éléments, A un halogénure ou un mélange d’halogénures, de préférence au moins un des éléments choisi parmi F, Cl, Br, I ou un mélange de deux ou trois ou quatre de ces éléments ; Li(3-x)M3 x/3OA avec 0 ≤ x ≤ 3, M3un métal trivalent, A un halogénure ou un mélange d’halogénures, de préférence au moins un des éléments choisi parmi F, Cl, Br, I ou un mélange de deux ou trois ou quatre de ces éléments ; ou LiCOXzY(1-z), avec X et Y des halogénures comme mentionnés ci-dessus en relation avec A, et 0 ≤ z ≤ 1,
    • les composés La0,51Li0,34Ti2,94, Li3,4V0,4Ge0,6O4, Li2O-Nb2O5, LiAlGaSPO4;
    • les formulations à base de Li2CO3, B2O3, Li2O, Al(PO3)3LiF, P2S3, Li2S, Li3N, Li14Zn(GeO4)4, Li3,6Ge0,6V0,4O4, LiTi2(PO4)3, Li3,25Ge0,25P0,25S4, Li1,3Al0,3Ti1,7(PO4)3, Li1+xAlxM2-x(PO4)3(où M = Ge, Ti, et/ou Hf, et où 0 < x < 1), Li1+x+yAlxTi2-xSiyP3-yO12(où 0 ≤ x ≤ 1 et 0 ≤ y ≤ 1).
  8. Batterie à ions de lithium avec une capacité supérieure à 1 mA h, susceptible d’être obtenue par un procédé selon l’une quelconque des revendications 1 à 7.
  9. Batterie à ions de lithium selon la revendication 8, caractérisée en ce que ladite couche dense est une couche d’anode.
  10. Batterie à ions de lithium selon l’une quelconque des revendications 8 ou 9, caractérisée en ce que ladite couche dense est une couche de cathode.
  11. Batterie à ions de lithium selon l’une quelconque des revendications 8 à 10, caractérisée en ce que ladite couche dense est une couche d’électrolyte.
  12. Batterie à ions de lithium selon l’une quelconque des revendications 8 à 10, caractérisée en ce qu’elle comporte une anode et une cathode dont chacune est une desdites couches denses, en ce qu’elle comprend par ailleurs un séparateur poreux qui sépare ladite anode et ladite cathode, et un électrolyte liquide infiltré dans ledit séparateur poreux.
FR2003108A 2020-03-30 2020-03-30 Procede de fabrication de batteries a ions de lithium Pending FR3108792A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
FR2003108A FR3108792A1 (fr) 2020-03-30 2020-03-30 Procede de fabrication de batteries a ions de lithium
EP21714695.0A EP4128387A1 (fr) 2020-03-30 2021-03-30 Procede de fabrication de batteries a ions de lithium
JP2022559904A JP2023527955A (ja) 2020-03-30 2021-03-30 リチウムイオン電池の製造方法
KR1020227037967A KR20220161451A (ko) 2020-03-30 2021-03-30 리튬 이온 배터리 제조 방법
CA3173400A CA3173400A1 (fr) 2020-03-30 2021-03-30 Procede de fabrication de batteries a ions de lithium
IL296739A IL296739A (en) 2020-03-30 2021-03-30 A method for manufacturing lithium-ion batteries
US17/907,444 US20230131454A1 (en) 2020-03-30 2021-03-30 Method for manufacturing lithium ion batteries
CN202180038677.2A CN115943503A (zh) 2020-03-30 2021-03-30 锂离子电池的制造方法
PCT/IB2021/052606 WO2021198892A1 (fr) 2020-03-30 2021-03-30 Procede de fabrication de batteries a ions de lithium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003108A FR3108792A1 (fr) 2020-03-30 2020-03-30 Procede de fabrication de batteries a ions de lithium
FR2003108 2020-03-30

Publications (1)

Publication Number Publication Date
FR3108792A1 true FR3108792A1 (fr) 2021-10-01

Family

ID=71784186

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2003108A Pending FR3108792A1 (fr) 2020-03-30 2020-03-30 Procede de fabrication de batteries a ions de lithium

Country Status (9)

Country Link
US (1) US20230131454A1 (fr)
EP (1) EP4128387A1 (fr)
JP (1) JP2023527955A (fr)
KR (1) KR20220161451A (fr)
CN (1) CN115943503A (fr)
CA (1) CA3173400A1 (fr)
FR (1) FR3108792A1 (fr)
IL (1) IL296739A (fr)
WO (1) WO2021198892A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070392A1 (fr) * 2000-03-22 2001-09-27 Superior Micropowders Llc Poudres electrocatalytiques, procedes de preparation associes et dispositifs fabriques a partir de ces poudres
EP1475462A2 (fr) * 2003-05-09 2004-11-10 C. HAFNER GmbH &amp; Co. Procédé pour la fabrication des objets céramiques
FR2982082A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de fabrication de batteries en couches minces entierement solides
FR2981952A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de realisation de couches minces denses par electrophorese
FR2982083A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de realisation de films minces d'electrolyte solide pour les batteries a ions de lithium
WO2013064773A1 (fr) 2011-11-02 2013-05-10 Fabien Gaben Procede de fabrication d'electrodes de batteries entierement solides
US20140170524A1 (en) * 2012-12-13 2014-06-19 24M Technologies, Inc. Semi-solid electrodes having high rate capability
FR3023302A1 (fr) * 2014-07-01 2016-01-08 I Ten Batterie entierement solide comprenant un electrolyte solide a base de phosphate lithie, stable au contact de l'anode
WO2016205780A1 (fr) * 2015-06-19 2016-12-22 24M Technologies, Inc. Procédés de remédiation de cellule électrochimique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982086B1 (fr) 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication de micro-batteries en couches minces a ions de lithium, et micro-batteries obtenues par ce procede

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070392A1 (fr) * 2000-03-22 2001-09-27 Superior Micropowders Llc Poudres electrocatalytiques, procedes de preparation associes et dispositifs fabriques a partir de ces poudres
EP1475462A2 (fr) * 2003-05-09 2004-11-10 C. HAFNER GmbH &amp; Co. Procédé pour la fabrication des objets céramiques
FR2982082A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de fabrication de batteries en couches minces entierement solides
FR2981952A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de realisation de couches minces denses par electrophorese
FR2982083A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de realisation de films minces d'electrolyte solide pour les batteries a ions de lithium
WO2013064773A1 (fr) 2011-11-02 2013-05-10 Fabien Gaben Procede de fabrication d'electrodes de batteries entierement solides
US20140170524A1 (en) * 2012-12-13 2014-06-19 24M Technologies, Inc. Semi-solid electrodes having high rate capability
FR3023302A1 (fr) * 2014-07-01 2016-01-08 I Ten Batterie entierement solide comprenant un electrolyte solide a base de phosphate lithie, stable au contact de l'anode
WO2016205780A1 (fr) * 2015-06-19 2016-12-22 24M Technologies, Inc. Procédés de remédiation de cellule électrochimique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Advances in Lithium-Ion Batteries", 2002, KLUEVER ACADEMIC
JOHN NEWMAN: "J. Electrochem. Soc.", vol. 142, January 1995, article "Optimization of Porosity and Thickness of a Battery Electrode by Means of a Reaction-Zone Model"
M. ODZIOMEKF. CHAPUT ET AL.: "Impact of the Synthesis Parameters on the microstructure of nano-structured LTO prepared by glycothermal routes and Li NMR structural investigations", J SOL-GEL SCI TECHNOL, vol. 89, 2019, pages 225 - 233

Also Published As

Publication number Publication date
EP4128387A1 (fr) 2023-02-08
US20230131454A1 (en) 2023-04-27
KR20220161451A (ko) 2022-12-06
CA3173400A1 (fr) 2021-10-07
IL296739A (en) 2022-11-01
CN115943503A (zh) 2023-04-07
JP2023527955A (ja) 2023-07-03
WO2021198892A1 (fr) 2021-10-07

Similar Documents

Publication Publication Date Title
EP3766115B1 (fr) Electrodes poreuses pour dispositifs electrochimiques
EP2823524B1 (fr) Batteries en couches minces entierement solides et procede de fabrication de batteries en couches minces entierement solides
EP2774194B1 (fr) Procede de fabrication d&#39;electrodes de batteries entierement solides
EP2774195B1 (fr) Procede de fabrication de micro-batteries en couches minces a ions de lithium, et micro-batteries obtenues par ce procede
EP2773796B1 (fr) Procédé de réalisation de couches minces denses par électrophorèse
WO2014102520A1 (fr) Procede de fabrication de batteries tout solide en structure multicouches
CA3175605A1 (fr) Procede de fabrication d&#39;une electrode poreuse, et batterie contenant une telle electrode
FR3109672A1 (fr) Procede de fabrication d’une electrode poreuse, et microbatterie contenant une telle electrode
WO2022144725A1 (fr) Procede de fabrication d&#39;une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et microbatterie comprenant cette anode
EP4128389A1 (fr) Procede de fabrication de couches denses, utilisables comme electrodes et/ou electrolytes pour batteries a ions de lithium, et microbatteries a ions de lithium ainsi obtenues
EP4272272A1 (fr) Procede de fabrication d&#39;une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et batterie comprenant cette anode
FR3108792A1 (fr) Procede de fabrication de batteries a ions de lithium
FR3131449A1 (fr) Procede de fabrication d’une electrode poreuse, et microbatterie contenant une telle electrode
FR3131450A1 (fr) Procede de fabrication d’une electrode poreuse, et batterie contenant une telle electrode
WO2023139429A1 (fr) Procede de fabrication d&#39;une electrode poreuse, et batterie contenant une telle electrode
WO2021260565A1 (fr) Anode de forte densité d&#39;énergie et de puissance pour batteries et méthode de sa fabrication
EP4169093A1 (fr) Anode de forte densite d&#39;energie et de puissance pour batteries

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20211001

PLFP Fee payment

Year of fee payment: 3

TP Transmission of property

Owner name: I-TEN, FR

Effective date: 20221019

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5