FR3091708A1 - Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température - Google Patents

Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température Download PDF

Info

Publication number
FR3091708A1
FR3091708A1 FR1900389A FR1900389A FR3091708A1 FR 3091708 A1 FR3091708 A1 FR 3091708A1 FR 1900389 A FR1900389 A FR 1900389A FR 1900389 A FR1900389 A FR 1900389A FR 3091708 A1 FR3091708 A1 FR 3091708A1
Authority
FR
France
Prior art keywords
superalloy
nickel
chromium
rhenium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1900389A
Other languages
English (en)
Other versions
FR3091708B1 (fr
Inventor
Jérémy RAME
Edern Menou
Clara DESGRANGES
Franck TANCRET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Nantes
Safran SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Nantes
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Nantes, Safran SA filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR1900389A priority Critical patent/FR3091708B1/fr
Priority to EP20706568.1A priority patent/EP3911773B1/fr
Priority to CN202080009467.6A priority patent/CN113677815A/zh
Priority to US17/421,554 priority patent/US12123076B2/en
Priority to PCT/FR2020/050048 priority patent/WO2020148503A1/fr
Publication of FR3091708A1 publication Critical patent/FR3091708A1/fr
Application granted granted Critical
Publication of FR3091708B1 publication Critical patent/FR3091708B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température L’invention concerne un superalliage à base nickel comprenant, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,2% de hafnium, 0,5 à 4% de molybdène, 3,5 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.

Description

Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température
La présente invention se rapporte au domaine général des superalliages à base de nickel pour des turbomachines, notamment pour les aubes fixes, aussi appelées distributeurs ou redresseurs, ou les aubes mobiles, ou encore les segments d’anneau.
Les superalliages à base de nickel sont généralement utilisés pour les parties chaudes des turbomachines, c’est-à-dire les parties des turbomachines situées en aval de la chambre de combustion.
Les superalliages à base de nickel ont pour principaux avantages de combiner à la fois une résistance au fluage élevée aux températures comprises entre 650°C et 1200°C, ainsi qu’une résistance à l’oxydation et à la corrosion.
La tenue aux hautes températures est principalement due à la microstructure de ces matériaux, qui est composée d’une matrice γ-Ni de structure cristalline cubique à faces centrées (CFC) et de précipités durcissants ordonnés γ’-Ni3Al de structure L12.
Certaines nuances de superalliages à base de nickel sont employées pour la fabrication de pièces monocristallines.
La présente invention a pour but de proposer des compositions de superalliages à base de nickel qui permettent d’améliorer la résistance mécanique, et notamment la résistance au fluage.
Un autre but de la présente invention est de proposer des compositions de superalliage qui permettent d’améliorer la résistance à l’environnement, et notamment la résistance à la corrosion et la résistance à l’oxydation.
La présente invention a également pour but de proposer des compositions de superalliage qui possède une masse volumique réduite.
Selon un premier aspect, l’invention propose un superalliage à base de nickel comprenant, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,2% de hafnium, 0,5 à 4% de molybdène, 3,5 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
On définit par alliage à base de nickel un alliage dont le pourcentage massique en nickel est majoritaire.
On définit les impuretés inévitables comme les éléments qui ne sont pas ajoutés de manière intentionnelle dans la composition et qui sont apportés avec d’autres éléments. Parmi les impuretés inévitables, on peut notamment citer le carbone (C) ou le soufre (S).
Le superalliage à base de nickel selon l’invention dispose d’une bonne stabilité microstructurale en température, permettant ainsi d’obtenir des caractéristiques mécaniques élevées en température.
Le superalliage à base de nickel selon l’invention dispose d’une résistance à la corrosion et d’une résistance à l’oxydation améliorée.
Le superalliage à base de nickel selon l’invention permet de réduire la sensibilité à la formation de défauts de fonderie.
Le superalliage à base de nickel selon l’invention permet de disposer d’une masse volumique inférieure à 8,4 g.cm-3.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,2% de hafnium, 0,5 à 4% de molybdène, 3,5 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,05% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Par ailleurs, le superalliage peut comprendre, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,15% de hafnium, 0,5 à 4% de molybdène, 3,5 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 15% de cobalt, 4,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 3,5% de molybdène, 3,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,15% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,1% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,1% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut en outre comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Selon une autre variante possible, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Selon une autre variante possible, le superalliage peut comprendre, en pourcentages massiques : 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 6,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Selon une autre variante possible, le superalliage peut comprendre, en pourcentages massiques: 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 6,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Selon une variante possible, le superalliage peut comprendre, en pourcentages massiques: 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 2,5 à 3,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Selon un deuxième aspect, l’invention propose une pièce de turbomachine en superalliage à base de nickel selon l’une quelconque des caractéristiques précédentes.
La pièce peut être un élément d’une turbine de turbomachine d’aéronef, par exemple une turbine haute-pression ou une turbine basse-pression, ou bien un élément de compresseur, et notamment de compresseur haute pression.
Selon une caractéristique additionnelle, la pièce de turbine ou de compresseur peut être une aube, ladite aube pouvant être une aube mobile ou une aube fixe, ou bien un secteur d’anneau.
Selon une autre caractéristique, la pièce de turbomachine est monocristalline, de préférence avec une structure cristalline orientée selon une direction cristallographique <001>.
Selon un troisième aspect, l’invention propose un procédé de fabrication d’une pièce de turbomachine en superalliage à base de nickel selon l’une quelconque des caractéristiques précédentes par fonderie.
Selon une caractéristique additionnelle, le procédé comprend une étape de solidification dirigée pour former une pièce monocristalline.
Le superalliage selon l’invention comprend une base de nickel à laquelle sont associés des éléments d’addition majeurs.
Les éléments d’addition majeurs comprennent : le cobalt Co, le chrome Cr, le molybdène Mo, le tungstène W, l’aluminium Al, le tantale Ta, le titane Ti, et le rhénium Re.
Le superalliage peut également comprendre des éléments d’addition mineurs, qui sont des éléments d’addition dont le pourcentage maximum dans le superalliage ne dépasse pas 1% en pourcentage massique.
Les éléments d’addition mineurs comprennent : le hafnium Hf et le silicium Si.
Le superalliage à base de nickel comprend, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,2% de hafnium, 0,5 à 4% de molybdène, 3 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage à base de nickel peut également comprendre de manière avantageuse, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,2% de hafnium, 0,5 à 4% de molybdène, 3 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,05% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage à base de nickel peut également comprendre de manière avantageuse, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,1% de hafnium, 0,5 à 4% de molybdène, 3 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage à base de nickel peut également comprendre de manière avantageuse, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,05% de hafnium, 0,5 à 4% de molybdène, 3 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage à base de nickel peut également comprendre de manière avantageuse, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,1% de hafnium (de préférence 0 à 0,05% de hafnium), 0,5 à 4% de molybdène, 3 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,05% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, de manière avantageuse, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 15% de cobalt, 4,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 3,5% de molybdène, 3,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
De manière avantageuse, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 15% de cobalt, 4,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 3,5% de molybdène, 3,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0 à 1,5% de tungstène, 0 à 0,05% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, de manière avantageuse, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 15% de cobalt, 4,5 à 7,5% de chrome, 0 à 0,1% de hafnium, 0,5 à 3,5% de molybdène, 3,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
De manière préférentielle, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 15% de cobalt, 4,5 à 7,5% de chrome, 0 à 0,05% de hafnium, 0,5 à 3,5% de molybdène, 3,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
De manière préférentielle, le superalliage peut comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 15% de cobalt, 4,5 à 7,5% de chrome, 0 à 0,1% de hafnium (de préférence 0 à 0,05% de hafnium), 0,5 à 3,5% de molybdène, 3,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0 à 1,5% de tungstène, 0 à 0,05% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,15% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,1% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,1% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 5,5 à 6,5% de chrome, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 6,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 6,5 à 7,5% de chrome, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 6,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 6,5 à 7,5% de chrome, 1,5 à 2,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 2,5 à 3,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le superalliage peut également comprendre, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 2,5 à 3,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
Le cobalt, le chrome, le tungstène, le molybdène et le rhénium participent principalement au durcissement de la phase γ, la matrice austénitique de structure CFC.
L’aluminium, le titane et le tantale favorisent la précipitation de la phase γ’, la phase durcissante Ni3(Al, Ti, Ta) de structure cubique ordonnée L12.
Par ailleurs, le rhénium permet de ralentir les processus diffusifs, de limiter la coalescence de la phase γ’, améliorant ainsi la résistance au fluage à haute température. Toutefois, la teneur en rhénium ne doit pas être trop importante afin de ne pas impacter négativement les propriétés mécaniques de la pièce en superalliage.
Les éléments réfractaires que sont le molybdène, le tungstène, le rhénium et le tantale permettent également de ralentir les mécanismes contrôlés par la diffusion, améliorant ainsi la résistance au fluage de la pièce en superalliage.
En outre, le chrome et l’aluminium permettent d’améliorer la résistance à l’oxydation et à la corrosion à haute température, notamment aux environs des 900°C pour la corrosion, et aux environs des 1100°C pour l’oxydation.
L’addition de silicium et de hafnium permettent également d’optimiser la tenue à l’oxydation à chaud du superalliage en augmentant l’adhérence de la couche d’alumine Al2O3qui se forme à la surface du superalliage à haute température en milieu oxydant.
Par ailleurs, le chrome et le cobalt permettent de diminuer la température de solvus γ’ du superalliage.
Le cobalt est un élément chimiquement proche du nickel qui se substitue en partie au nickel pour former une solution solide dans la phase γ, permettant ainsi de renforcer la matrice γ, de réduire la sensibilité à la précipitation de phases topologiquement compactes, notamment les phases µ, P, R, et σ, et les phases de Laves, et de réduire la sensibilité à la formation de zone de réaction secondaire (ZRS).
Une telle composition de superalliage permet d’améliorer les propriétés de tenue mécanique à haute température (650°C-1200°C) des pièces fabriquées à partir dudit superalliage.
Notamment, une telle composition de superalliage permet d’obtenir une contrainte de rupture minimum de 250MPa à 950°C pendant 1100h, ainsi qu’une contrainte de rupture minimum de 150MPa à 1050°C pendant 550h, et ainsi qu’une contrainte de rupture minimum de 55MPa à 1200°C pendant 510h.
De telles propriétés mécaniques sont notamment dues à une microstructure comprenant une phase γ et une phase γ’, et une teneur en phases topologiquement compactes maximale de 6%, en pourcentage molaire. Les phases topologiquement compactes comprennent les phases µ, P, R, et σ, ainsi que les phases de Laves. La microstructure peut également comprendre les carbures suivant : MC, M6C, M7C3, et M23C6.
Par ailleurs, ces propriétés mécaniques de résistance au fluage en température sont obtenues grâce à une meilleure stabilité de la microstructure entre 650°C et 1200°C.
Une telle composition de superalliage permet également d’améliorer la résistance à l’oxydation et à la corrosion des pièces fabriquées à partir dudit superalliage. La résistance à la corrosion et à l’oxydation est obtenue en assurant un minimum de 9,5%, en pourcentage atomique, d’aluminium dans la phase γ à 1200°C, et un minimum de 7,5%, en pourcentage atomique, de chrome dans la phase γ à 1200°C, assurant ainsi la formation d’une couche protectrice d’alumine à la surface du matériau.
De plus, une telle composition de superalliage permet de simplifier le procédé de fabrication de la pièce. Une telle simplification est assurée en obtenant une différence d’au moins 10°C entre la température de solvus des précipités γ’ et la température de solidus du superalliage, facilitant ainsi la mise en œuvre d’une étape de remise en solution des précipités γ’ lors de la fabrication de la pièce.
En outre, une telle composition de superalliage permet d’améliorer la fabrication en réduisant le risque de formation de défauts lors de la fabrication de la pièce, et notamment la formation de grains parasites de type « Freckles » lors de la solidification dirigée.
En effet, la composition de superalliage permet de réduire la sensibilité de la pièce à la formation de grains parasites « Freckles ». La sensibilité de la pièce à la formation de grains parasites « Freckles » est évaluée à l’aide du critère de Konter, noté NFP, qui est donné par l’équation (1) suivante:
Où %Ta correspond à la teneur de tantale dans le superalliage, en pourcentage massique ; où %Hf correspond à la teneur de hafnium dans le superalliage, en pourcentage massique ; où %Mo correspond à la teneur de molybdène dans le superalliage, en pourcentage massique ; où %Ti correspond à la teneur de titane dans le superalliage, en pourcentage massique ; où %W correspond à la teneur de tungstène dans le superalliage, en pourcentage massique ; et où %Re correspond à la teneur de rhénium dans le superalliage, en pourcentage massique.
La composition de superalliage permet d’obtenir un paramètre NFP supérieur ou égal à 0,7, valeur à partir de laquelle la formation de grains parasites « Freckles » est fortement réduite.
Par ailleurs, une telle composition de superalliage permet d’obtenir une masse volumique réduite, notamment une masse volumique inférieure à 8,4 g/cm3.
Le tableau 1 ci-dessous donne la composition, en pourcentages massiques, de sept exemples de superalliages selon l’invention, les exemples 1 à 11, ainsi que des superalliages commerciaux ou de référence, les exemples 12 à 16. L’exemple 12 correspond au superalliage René®N5, l’exemple 13 correspond au superalliage CMSX-4®, l’exemple 14 correspond au superalliage CMSX-4 Plus® Mod C, l’exemple 15 correspond au superalliage René®N6, et l’exemple 16 correspond au superalliage CMSX-10 K®.
Le tableau 2 donne des caractéristiques estimées des superalliages cités dans le tableau 1. Les caractéristiques données dans le tableau 2 sont la densité (la masse volumique), le critère de Konter (NFP), ainsi que la contrainte de rupture par fluage à 950°C en 1100h, la contrainte de rupture par fluage à 1050°C en 550h, et la contrainte de rupture par fluage à 1200°C en 510h, les contraintes de rupture par fluage sont nommés CRF dans le tableau 2.
Le tableau 3 donne des caractéristiques estimées des superalliages cités dans le tableau 1. Les caractéristiques données dans le tableau 3 sont les différentes températures de transformation (le solvus, le solidus et le liquidus), la fraction molaire de la phase γ’ à 900°C, à 1050°C et à 1200°C, la fraction molaire des phases topologiquement compactes (PTC) à 900°C et à 1050°C.
Comme cela est illustré dans le tableau 3, pour les superalliages des exemples 1 à 11, les fractions molaires de phase γ’ sont élevées à 1200°C (comprises entre 35% et 40% en pourcentage molaire), traduisant ainsi une grande stabilité des précipités durcissants, améliorant ainsi les caractéristiques mécaniques à haute température. De plus, la fraction molaire de phases topologiquement compactes pour les superalliages des exemples 1 à 11 est faible à 900°C (≈5%) et négligeable à 1050°C (<0,5%), traduisant également une grande stabilité de la microstructure, ce qui améliore les caractéristiques mécaniques à haute température.
Le tableau 4 donne des caractéristiques estimées des superalliages cités dans le tableau 1. Les caractéristiques données dans le tableau 4 sont l’activité du chrome dans la phase γ à 900°C, et l’activité de l’aluminium dans la phase γ à 1100°C. Les activités du chrome et de l’aluminium dans la matrice γ sont une indication de la résistance à la corrosion et à l’oxydation, plus l’activité du chrome et l’activité de l’aluminium dans la matrice sont élevées, plus la résistance à la corrosion et à l’oxydation est élevée.
Comme cela est illustré dans les tableaux 2, 3 et 4, les superalliages selon l’invention possèdent des propriétés mécaniques supérieures à haute température aux alliages de l’état de la technique, tout en présentant une masse volumique plus faible et une résistance à la corrosion et à l’oxydation supérieure.
Les propriétés données dans les tableaux 3 et 4 sont estimées à l’aide de la méthode CALPHAD (CALculation of PHAse Diagrams).
La pièce en superalliage à base de nickel peut être réalisée par fonderie.
La fabrication par fonderie de la pièce est réalisée par fusion du superalliage, le superalliage liquide étant versé dans un moule afin d’être refroidi et solidifié. La fabrication par fonderie de la pièce peut par exemple être réalisée avec la technique de la cire perdue, notamment pour fabriquer une aube.
Par ailleurs, afin de réaliser une pièce monocristalline, notamment une aube, le procédé peut comprendre une étape de solidification dirigée. La solidification dirigée est réalisée en contrôlant le gradient thermique et la vitesse de solidification du superalliage, et en introduisant un germe monocristallin ou en utilisant un sélecteur de grain, afin d’éviter l’apparition de germes nouveaux en avant du front de solidification.
La solidification dirigée peut notamment permettre la fabrication d’une aube monocristalline dont la structure cristalline est orientée selon une direction cristallographique <001> qui est parallèle à la direction longitudinale de l’aube, c’est-à-dire selon la direction radiale de la turbomachine, une telle orientation offrant de meilleures propriétés mécaniques.

Claims (14)

  1. Superalliage à base nickel comprenant, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,2% de hafnium, 0,5 à 4% de molybdène, 3,5 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
  2. Superalliage selon la revendication 1, dans lequel ledit superalliage comprend, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,2% de hafnium, 0,5 à 4% de molybdène, 3,5 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,05% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
  3. Superalliage selon la revendication 1, dans lequel ledit superalliage comprend, en pourcentages massiques, 6 à 8% d’aluminium, 12 à 15% de cobalt, 4 à 8% de chrome, 0 à 0,15% de hafnium, 0,5 à 4% de molybdène, 3,5 à 6% de rhénium, 4 à 6% de tantale, 1 à 3% de titane, 0 à 2% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
  4. Superalliage selon la revendication 1, dans lequel ledit superalliage comprend, en pourcentages massiques , 6,5 à 7,5% d’aluminium, 12 à 15% de cobalt, 4,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 3,5% de molybdène, 3,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0 à 1,5% de tungstène, 0 à 0,1% de silicium, le complément étant constitué de nickel et des impuretés inévitables.
  5. Superalliage selon la revendication 4, dans lequel ledit superalliage comprend, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, 0,5 à 1,5% de tungstène, le complément étant constitué de nickel et des impuretés inévitables.
  6. Superalliage selon la revendication 4, dans lequel ledit superalliage comprend, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 4,5 à 5,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
  7. Superalliage selon la revendication 4, dans lequel ledit superalliage comprend, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
  8. Superalliage selon la revendication 4, dans lequel ledit superalliage comprend, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
  9. Superalliage selon la revendication 4, dans lequel ledit superalliage comprend, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 12 à 14% de cobalt, 6,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 0,5 à 1,5% de molybdène, 4,5 à 5,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
  10. Superalliage selon la revendication 4, dans lequel ledit superalliage comprend, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 6,5 à 7,5% de chrome, 0 à 0,2% de hafnium, 1,5 à 2,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
  11. Superalliage selon la revendication 4, dans lequel ledit superalliage comprend, en pourcentages massiques, 6,5 à 7,5% d’aluminium, 13 à 15% de cobalt, 5,5 à 6,5% de chrome, 0 à 0,2% de hafnium, 2,5 à 3,5% de molybdène, 3,5 à 4,5% de rhénium, 4,5 à 5,5% de tantale, 1,5 à 2,5% de titane, le complément étant constitué de nickel et des impuretés inévitables.
  12. Pièce de turbomachine en superalliage à base de nickel selon l’une quelconque des revendications 1 à 11.
  13. Pièce selon la revendication 12, dans laquelle ladite pièce est monocristalline.
  14. Procédé de fabrication d’une pièce de turbomachine en superalliage à base de nickel selon l’une quelconque des revendications 1 à 11 par fonderie.
FR1900389A 2019-01-16 2019-01-16 Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température Active FR3091708B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR1900389A FR3091708B1 (fr) 2019-01-16 2019-01-16 Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température
EP20706568.1A EP3911773B1 (fr) 2019-01-16 2020-01-14 Superalliage a base de nickel a faible densite et avec une tenue mecanique et environnementale elevee a haute temperature
CN202080009467.6A CN113677815A (zh) 2019-01-16 2020-01-14 在高温下具有高机械强度和环境稳定性的低密度镍基超合金
US17/421,554 US12123076B2 (en) 2019-01-16 2020-01-14 Low density nickel-based superalloy having high mechanical strength and environmental robustness at a high temperatures
PCT/FR2020/050048 WO2020148503A1 (fr) 2019-01-16 2020-01-14 Superalliage a base de nickel a faible densite et avec une tenue mecanique et environnementale elevee a haute temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900389 2019-01-16
FR1900389A FR3091708B1 (fr) 2019-01-16 2019-01-16 Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température

Publications (2)

Publication Number Publication Date
FR3091708A1 true FR3091708A1 (fr) 2020-07-17
FR3091708B1 FR3091708B1 (fr) 2021-01-22

Family

ID=68138141

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1900389A Active FR3091708B1 (fr) 2019-01-16 2019-01-16 Superalliage à base de nickel à faible densité et avec une tenue mécanique et environnementale élevée à haute température

Country Status (4)

Country Link
EP (1) EP3911773B1 (fr)
CN (1) CN113677815A (fr)
FR (1) FR3091708B1 (fr)
WO (1) WO2020148503A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626297A (en) * 1980-03-13 1986-12-02 Rolls-Royce Plc Single-crystal alloy
EP2006402A2 (fr) * 2006-03-31 2008-12-24 National Institute for Materials Science SUPERALLIAGE À BASE DE Ni ET SON PROCÉDÉ DE FABRICATION
WO2018078269A1 (fr) * 2016-10-25 2018-05-03 Safran Superalliage a base de nickel, aube monocristalline et turbomachine.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460336B2 (ja) * 2015-07-09 2019-01-30 三菱日立パワーシステムズ株式会社 Ni基高強度耐熱合金部材、その製造方法、及びガスタービン翼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626297A (en) * 1980-03-13 1986-12-02 Rolls-Royce Plc Single-crystal alloy
EP2006402A2 (fr) * 2006-03-31 2008-12-24 National Institute for Materials Science SUPERALLIAGE À BASE DE Ni ET SON PROCÉDÉ DE FABRICATION
WO2018078269A1 (fr) * 2016-10-25 2018-05-03 Safran Superalliage a base de nickel, aube monocristalline et turbomachine.

Also Published As

Publication number Publication date
US20220081739A1 (en) 2022-03-17
CN113677815A (zh) 2021-11-19
FR3091708B1 (fr) 2021-01-22
EP3911773A1 (fr) 2021-11-24
EP3911773B1 (fr) 2023-03-01
WO2020148503A1 (fr) 2020-07-23

Similar Documents

Publication Publication Date Title
CA2583140C (fr) Alliage a base de nickel
EP3710610B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3710611B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP1211335B1 (fr) Superalliage à base de nickel à résistance très élevée à la corrosion à chaud pour aubes monocristallines de turbines industrielles
EP3802895B1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3911773B1 (fr) Superalliage a base de nickel a faible densite et avec une tenue mecanique et environnementale elevee a haute temperature
EP3918101B1 (fr) Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite
FR3125067A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
EP3911774B1 (fr) Superalliage a base de nickel a tenue mecanique elevee a haute temperature
EP1211336B1 (fr) Superalliage à base de nickel pour aubes monocristallines de turbines industrielles ayant une résistance élevée à la corrosion à chaud
FR3124195A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3139347A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3124194A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3121453A1 (fr) Superalliage a base de nickel, aube monocristalline et turbomachine
FR3117507A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
FR3147571A1 (fr) Superalliage a base de nickel, aube monocristalline
FR3117506A1 (fr) Procede de fabrication d&#39;une piece en superalliage monocristallin
FR3097879A1 (fr) Procede de fabrication d’une piece en superalliage monocristallin

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20200717

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6