FR3125067A1 - Superalliage a base de nickel, aube monocristalline et turbomachine - Google Patents
Superalliage a base de nickel, aube monocristalline et turbomachine Download PDFInfo
- Publication number
- FR3125067A1 FR3125067A1 FR2107327A FR2107327A FR3125067A1 FR 3125067 A1 FR3125067 A1 FR 3125067A1 FR 2107327 A FR2107327 A FR 2107327A FR 2107327 A FR2107327 A FR 2107327A FR 3125067 A1 FR3125067 A1 FR 3125067A1
- Authority
- FR
- France
- Prior art keywords
- nickel
- superalloy
- chromium
- silicon
- hafnium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000601 superalloy Inorganic materials 0.000 title claims abstract description 80
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 117
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 57
- 239000011651 chromium Substances 0.000 claims abstract description 33
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 32
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 30
- 239000010703 silicon Substances 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 28
- 239000010936 titanium Substances 0.000 claims abstract description 28
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 27
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 27
- 239000011733 molybdenum Substances 0.000 claims abstract description 27
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 27
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000012535 impurity Substances 0.000 claims abstract description 25
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 20
- 239000010941 cobalt Substances 0.000 claims abstract description 20
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 20
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 15
- 239000010937 tungsten Substances 0.000 claims abstract description 15
- 230000004888 barrier function Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000011253 protective coating Substances 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 10
- 229910045601 alloy Inorganic materials 0.000 abstract description 19
- 239000000956 alloy Substances 0.000 abstract description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 5
- 238000005524 ceramic coating Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 208000003351 Melanosis Diseases 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical group [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000001687 destabilization Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 229910000907 nickel aluminide Chemical group 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010517 secondary reaction Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000012720 thermal barrier coating Substances 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/175—Superalloys
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
L'invention concerne un superalliage à base de nickel comprenant, en pourcentages massiques, 5,0 à 6,5 % d’aluminium, 0,50 à 2,5 % de tantale, 1,50 à 4,0 % de titane, 0 à 7,0 % de cobalt, 12,0 à 16,0 % de chrome, 0,50 à 2,5 % de molybdène, 0 à 2,0 % de tungstène, 0,05 à 0,15 % de hafnium, 0 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables. L’invention concerne également une aube (20A, 20B) monocristalline comprenant un tel alliage et une turbomachine (10) comprenant une telle aube (20A, 20B). Figure pour l’abrégé : Fig. 1
Description
Le présent exposé concerne des superalliages à base de nickel pour des turbines à gaz, notamment pour les aubes fixes, aussi appelées distributeurs ou redresseurs, ou mobiles d’une turbine à gaz, par exemple dans le domaine de l’aéronautique.
Il est connu d’utiliser des superalliages à base de nickel pour la fabrication d’aubes monocristallines fixes ou mobiles de turbines à gaz pour moteurs d’avion ou d’hélicoptère.
Ces matériaux ont pour principaux avantages de combiner à la fois une résistance au fluage élevée à haute température ainsi qu’une résistance à l’oxydation et à la corrosion.
Au cours du temps, les superalliages à base de nickel pour aubes monocristallines ont subi d’importantes évolutions de composition chimique, dans le but notamment d’améliorer leurs propriétés en fluage à haute température tout en conservant une résistance à l’environnement très agressif dans lesquels ces superalliages sont utilisés.
Par ailleurs, des revêtements métalliques adaptés à ces alliages ont été développés afin d’augmenter leur résistance à l’environnement agressif dans lequel ces alliages sont utilisés, notamment la résistance à l’oxydation et la résistance à la corrosion. De plus, un revêtement céramique de faible conductivité thermique, remplissant une fonction de barrière thermique, peut être ajouté pour réduire la température à la surface du métal.
Typiquement, un système de protection complet comporte au moins deux couches.
La première couche, aussi appelée sous-couche ou couche de liaison, est directement déposée sur la pièce à protéger en superalliage à base de nickel, aussi appelée substrat, par exemple une aube. L’étape de dépôt est suivie d’une étape de diffusion de la sous-couche dans le superalliage. Le dépôt et la diffusion peuvent également être réalisés lors d’une seule étape.
Les matériaux généralement utilisés pour réaliser cette sous-couche comprennent des alliages métalliques aluminoformeurs de type MCrAlY (M = Ni (nickel) ou Co (cobalt)) ou un mélange de Ni et de Co, Cr = chrome, Al = aluminium et Y = yttrium, ou des alliages de type aluminiure de nickel (NixAly), certains contenant également du platine (NixAlyPtz).
La deuxième couche, généralement appelée barrière thermique ou « TBC » conformément à l’acronyme anglais pour « Thermal Barrier Coating », est un revêtement céramique comprenant par exemple de la zircone yttriée, aussi appelée « YSZ » conformément à l’acronyme anglais pour « Yttria Stabilized Zirconia » ou « YPSZ » conformément à l’acronyme anglais pour « Yttria Partially Stabilized Zirconia » et présentant une structure poreuse. Cette couche peut être déposée par différents procédés, tels que l’évaporation sous faisceau d’électrons (« EB-PVD » conformément à l’acronyme anglais pour « Electron Beam Physical Vapor Deposition »), la projection thermique (« APS » conformément à l’acronyme anglais pour « Atmospheric Plasma Spraying » ou « SPS » conformément à l’acronyme anglais pour « Suspension Plasma Spraying »), ou tout autre procédé permettant d’obtenir un revêtement céramique poreux à faible conductivité thermique.
Du fait de l’utilisation de ces matériaux à haute température, par exemple de 650 °C à 1100 °C, il se produit des phénomènes d’inter-diffusion à l’échelle microscopique entre le superalliage à base de nickel du substrat et l’alliage métallique de la sous-couche. Ces phénomènes d’inter-diffusion, associés à l’oxydation de la sous-couche, modifient notamment la composition chimique, la microstructure et par conséquent les propriétés mécaniques de la sous-couche dès la fabrication du revêtement, puis pendant l’utilisation de l’aube dans la turbine. Ces phénomènes d’inter-diffusion modifient également la composition chimique, la microstructure et par conséquent les propriétés mécaniques du superalliage du substrat sous le revêtement. Dans les superalliages très chargés en éléments réfractaires, notamment en rhénium, il peut ainsi se former dans le superalliage sous la sous-couche une zone de réaction secondaire (ZRS) sur une profondeur de plusieurs dizaines, voire centaines, de micromètres. Les caractéristiques mécaniques de cette ZRS sont nettement inférieures à celles du superalliage du substrat. La formation de ZRS est indésirable car elle conduit à une réduction significative de la résistance mécanique du superalliage.
Ces évolutions de la couche de liaison, associées aux champs de contraintes liés à la croissance de la couche d’alumine qui se forme en service à la surface de cette couche de liaison, aussi appelée « TGO » conformément à l’acronyme anglais pour « Thermally Grown Oxide », et aux écarts de coefficients de dilatation thermique entre les différentes couches, génèrent des décohésions dans la zone interfaciale entre la sous-couche et le revêtement céramique, qui peuvent conduire à l’écaillage partiel ou total du revêtement céramique. La partie métallique (substrat en superalliage et sous-couche métallique) est alors mise à nu et exposée directement aux gaz de combustion, ce qui augmente les risques d’endommagement de l’aube et donc de la turbine à gaz.
De plus, la complexité de la chimie de ces alliages peut conduire à une déstabilisation de leur microstructure optimale avec l’apparition de particules de phases indésirables lors de maintiens à haute température des pièces formées à partir de ces alliages. Cette déstabilisation a des conséquences négatives sur les propriétés mécaniques de ces alliages. Ces phases indésirables de structure cristalline complexe et de nature fragile sont dénommées phases topologiquement compactes (« PTC ») ou phases « TCP » conformément au sigle anglais pour « Topologically Close-Packed ».
En outre, des défauts de fonderie sont susceptibles de se former dans les pièces, telles que des aubes, lors de leur fabrication par solidification dirigée. Ces défauts sont généralement des grains parasites du type « Freckle », dont la présence peut provoquer une rupture prématurée de la pièce en service. La présence de ces défauts, liés à la composition chimique du superalliage, conduit généralement au rejet de la pièce, ce qui entraîne une augmentation du coût de production.
Le présent exposé vise à proposer des compositions de superalliages à base de nickel pour la fabrication de composants monocristallins, présentant des performances accrues en terme de durée de vie et de résistance mécanique et permettant de réduire les coûts de production de la pièce (diminution du taux de rebut) par rapport aux alliages existants. Ces superalliages présentent une résistance au fluage à haute température supérieure à celle des alliages existants tout en démontrant une bonne stabilité microstructurale dans le volume du superalliage (faible sensibilité à la formation de PTC), une bonne stabilité microstructurale sous la sous-couche de revêtement de la barrière thermique (faible sensibilité à la formation de ZRS), une bonne résistance à l’oxydation et à la corrosion tout en évitant la formation de grains parasites du type « Freckle ».
A cet effet, le présent exposé concerne un superalliage à base de nickel comprenant, en pourcentages massiques, 5,0 à 6,5 % d’aluminium, 0,50 à 2,5 % de tantale, 1,50 à 4,0 % de titane, 0 à 7,0 % de cobalt, 12,0 à 16,0 % de chrome, 0,50 à 2,5 % de molybdène, 0 à 2,0 % de tungstène, 0,05 à 0,15 % de hafnium, 0 à 0,15 % de silicium, de préférence 0,05 à 0,15 de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Ce superalliage est destiné à la fabrication de composants monocristallins de turbine à gaz, tels que des aubes fixes ou mobiles.
Grâce à cette composition du superalliage à base de nickel (Ni), la résistance au fluage est améliorée par rapport aux superalliages existants, en particulier à des températures pouvant aller jusqu’à 1100 °C et l’adhérence de la barrière thermique est renforcée par rapport à celle observée sur les superalliages existants.
Cet alliage présente donc une résistance au fluage à haute température améliorée. La durée de vie de cet alliage étant ainsi longue, cet alliage présente également une résistance à la corrosion et à l’oxydation améliorée. Cet alliage peut aussi présenter une résistance en fatigue thermique améliorée.
Ces superalliages présentent une masse volumique inférieure ou égale à 7,95 g/cm3(gramme par centimètre cube.)
Une pièce monocristalline en superalliage à base de nickel est obtenue par un procédé de solidification dirigée sous gradient thermique en fonderie à la cire perdue. Le superalliage monocristallin à base de nickel comprend une matrice austénitique de structure cubique à faces centrées, solution solide à base de nickel, dite phase gamma (« γ »). Cette matrice contient des précipités de phase durcissante gamma prime (« γ’ ») de structure cubique ordonnée L12de type Ni3Al. L’ensemble (matrice et précipités) est donc décrit comme un superalliage γ/γ’.
Par ailleurs, cette composition du superalliage à base de nickel autorise la mise en œuvre d’un traitement thermique qui remet en solution les précipités de phase γ’ et les phases eutectiques γ/γ’ qui se forment lors de la solidification du superalliage. On peut ainsi obtenir un superalliage monocristallin à base de nickel contenant des précipités γ’ de taille contrôlée, de préférence comprise entre 300 et 500 nanomètres (nm), et contenant une faible proportion de phases eutectiques γ/γ’.
Le traitement thermique permet également de contrôler la fraction molaire des précipités de phase γ’ présente dans le superalliage monocristallin à base de nickel. Le pourcentage molaire des précipités de phase γ’ peut être supérieur ou égal à 50 %, de préférence supérieur ou égal à 60 %, encore plus de préférence égal à 70 %.
Par ailleurs, une fraction élevée de précipités de phase γ’ entrave le mouvement des dislocations et favorise la tenue en fluage à chaud de l’alliage. D’autre part, à plus basse température (<950 °C), les phénomènes de diffusion sont moindres et l’endommagement majoritaire se fait par cisaillement des précipités de phase γ’. Ainsi, à plus basse température, la résistance intrinsèque des précipités de phase γ’ est un facteur déterminant pour la tenue mécanique statique ou en fluage des alliages. La chimie des alliages de l’invention a donc été ajustée de façon à assurer une tenue mécanique en fluage élevée de 650 à 1100 °C.
Les éléments d’addition majeurs sont le cobalt (Co), le chrome (Cr), le molybdène (Mo), le tungstène (W), l’aluminium (Al), le titane (Ti) et le tantale (Ta).
Les éléments d’addition mineurs sont le hafnium (Hf) et le silicium (Si), pour lesquels la teneur massique maximale est inférieure à 1 % en masse.
Parmi les impuretés inévitables, on peut citer, par exemple, le soufre (S), le carbone (C), le bore (B), l’yttrium (Y), le lanthane (La) et le cérium (Ce). On définit comme impuretés inévitables les éléments qui ne sont pas ajoutés de manière intentionnelle dans la composition et qui sont apportés avec d’autres éléments. Par exemple, le superalliage peut comprendre 0,005 % en masse de carbone.
L’addition de tungstène, de chrome, de cobalt ou de molybdène permet principalement de renforcer la matrice austénitique γ de structure cristalline cubique à faces centrées (cfc) par durcissement en solution solide.
L’addition d’aluminium (Al), de titane (Ti) ou de tantale (Ta) favorise la précipitation de la phase durcissante γ’-Ni3(Al, Ti, Ta).
L’addition simultanée de silicium et de hafnium permet d’améliorer la tenue à l’oxydation à chaud des superalliages à base de nickel en augmentant l’adhérence de la couche d’alumine (Al2O3) qui se forme à la surface du superalliage à haute température. Cette couche d’alumine forme une couche de passivation en surface du superalliage à base de nickel et une barrière à la diffusion de l’oxygène venant de l’extérieur vers l’intérieur du superalliage à base de nickel. Toutefois on peut ajouter du hafnium sans ajouter également de silicium ou inversement ajouter du silicium sans ajouter également du hafnium et quand même améliorer la tenue à l’oxydation à chaud du superalliage.
Par ailleurs, l’addition de chrome ou d’aluminium permet d’améliorer la résistance à l’oxydation et à la corrosion à haute température du superalliage. En particulier, le chrome est essentiel pour augmenter la résistance à la corrosion à chaud des superalliages à base de nickel. Toutefois, une teneur trop élevée en chrome tend à réduire la température de solvus de la phase γ’ du superalliage à base de nickel, c’est-à-dire la température au-dessus de laquelle la phase γ’ est totalement dissoute dans la matrice γ, ce qui est indésirable. Aussi, la teneur en chrome est comprise entre 12,0 à 16,0 % en masse afin de conserver une température élevée de solvus de la phase γ’ du superalliage à base de nickel, par exemple supérieure ou égale à 1200 °C mais également pour éviter la formation de phases topologiquement compactes dans la matrice γ fortement saturée en éléments d’alliages tels que le molybdène ou le tungstène.
L’addition de cobalt, qui est un élément proche du nickel et qui se substitue partiellement au nickel, forme une solution solide avec le nickel dans la matrice γ. Le cobalt permet de renforcer la matrice γ, de réduire la sensibilité à la précipitation de PTC et à la formation de ZRS dans le superalliage sous le revêtement de protection. Cependant, une teneur trop élevée en cobalt tend à réduire la température de solvus de la phase γ’ du superalliage à base de nickel, ce qui est indésirable.
Aussi, la teneur en chrome et cobalt est optimisée pour obtenir des températures de solvus adéquates avec les applications visées tant pour les propriétés mécaniques souhaitées que pour la capacité de traitement thermique du superalliage avec une fenêtre de traitement thermique compatible avec des besoins industriels, c’est-à-dire une différence entre la température de solvus et la température de solidus du superalliage qui soit suffisamment large.
L’addition d’éléments réfractaires, tels que le molybdène, le tungstène ou le tantale permet de ralentir les mécanismes contrôlant le fluage des superalliages à base de nickel et qui dépendent de la diffusion des éléments chimiques dans le superalliage.
Une teneur très basse en soufre dans un superalliage à base de nickel permet d’augmenter la résistance à l’oxydation et à la corrosion à chaud ainsi que la tenue à l’écaillage de la barrière thermique. Ainsi, une faible teneur en soufre, inférieure à 2 ppm en masse (partie par million en masse), voire idéalement inférieure à 0,5 ppm en masse, permet d’optimiser ces propriétés. Une telle teneur massique en soufre peut être obtenue par élaboration d’une coulée mère à bas soufre ou par un procédé de désulfuration réalisé après la coulée. Il est notamment possible de maintenir un bas taux de soufre en adaptant le procédé d’élaboration du superalliage.
On entend par superalliages à base de nickel, des superalliages dont le pourcentage massique en nickel est majoritaire. On comprend que le nickel est donc l’élément dont le pourcentage massique dans l’alliage est le plus élevé.
Le superalliage peut comprendre, en pourcentages massiques, 5,25 à 6,25 % d’aluminium, 0,50 à 2,25 % de tantale, 2,0 à 3,5 % de titane, 0 à 7,0 % de cobalt, 12,5 à 15,5 % de chrome, 0,50 à 2,5 % de molybdène, 0 à 1,5 % de tungstène, 0,05 à 0,15 % de hafnium, 0 à 0,15 % de silicium, de préférence 0,05 à 0,15 de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,25 à 6,25 % d’aluminium, 0,50 à 2,0 % de tantale, 2,5 à 3,5 % de titane, 0 à 7,0 % de cobalt, 12,5 à 15,5 % de chrome, 0,50 à 2,5 % de molybdène, 0,05 à 0,15 % de hafnium, 0 à 0,15 % de silicium, de préférence 0,05 à 0,15 de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,5 % d’aluminium, 1,0 % de tantale, 3,0 % de titane, 14,0 % de chrome, 2,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,75 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 4,0 % de cobalt, 14,0 % de chrome, 1,5 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 6,0 % d’aluminium, 1,0 % de tantale, 3,0 % de titane, 6,0 % de cobalt, 14,0 % de chrome, 1,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,5 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 15,0 % de chrome, 1,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,5 % d’aluminium, 1,0 % de tantale, 3,0 % de titane, 13,0 % de chrome, 2,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,75 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 4,0 % de cobalt, 13,0 % de chrome, 1,5 % de molybdène, 1,0 % de tungstène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,5 % d’aluminium, 1,75 % de tantale, 2,5 % de titane, 15,0 % de chrome, 1,0 % de molybdène, 0,50 % de tungstène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le superalliage peut comprendre, en pourcentages massiques, 5,5 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 15,0 % de chrome, 1,0 % de molybdène, 0,50 % de tungstène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
Le présent exposé concerne également une aube monocristalline pour turbomachine comprenant un superalliage tel que défini précédemment.
Cette aube présente donc une résistance au fluage à haute température améliorée. Cette aube présente donc une résistance à l’oxydation et à la corrosion améliorée.
Dans certains modes de réalisation, l’aube peut comprendre un revêtement de protection comportant une sous-couche métallique déposée sur le superalliage et une barrière thermique céramique déposée sur la sous-couche métallique.
Grâce à la composition du superalliage à base de nickel, la formation d’une zone de réaction secondaire dans le superalliage résultant des phénomènes d’inter-diffusion entre le superalliage et la sous-couche est évitée, ou limitée.
Dans certains modes de réalisation, la sous-couche métallique peut être un alliage de type MCrAlY ou un alliage de type aluminiure de nickel.
Dans certains modes de réalisation, la barrière thermique céramique peut être un matériau à base de zircone yttriée ou tout autre revêtement céramique (à base de zircone) à faible conductivité thermique.
Dans certains modes de réalisation, l’aube peut présenter une structure orientée selon une direction cristallographique <001>.
Cette orientation confère généralement les propriétés mécaniques optimales à l’aube.
Le présent exposé concerne aussi une turbomachine comprenant une aube telle que définie précédemment.
D'autres caractéristiques et avantages de l'objet du présent exposé ressortiront de la description suivante de modes de réalisation, donnés à titre d'exemples non limitatifs, en référence aux figures annexées.
Claims (15)
- Superalliage à base de nickel comprenant, en pourcentages massiques, 5,0 à 6,5 % d’aluminium, 0,50 à 2,5 % de tantale, 1,50 à 4,0 % de titane, 0 à 7,0 % de cobalt, 12,0 à 16,0 % de chrome, 0,50 à 2,5 % de molybdène, 0 à 2,0 % de tungstène, 0,05 à 0,15 % de hafnium, 0 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,25 à 6,25 % d’aluminium, 0,50 à 2,25 % de tantale, 2,0 à 3,5 % de titane, 0 à 7,0 % de cobalt, 12,5 à 15,5 % de chrome, 0,50 à 2,5 % de molybdène, 0 à 1,5 % de tungstène, 0,05 à 0,15 % de hafnium, 0 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,25 à 6,25 % d’aluminium, 0,50 à 2,0 % de tantale, 2,5 à 3,5 % de titane, 0 à 7,0 % de cobalt, 12,5 à 15,5 % de chrome, 0,50 à 2,5 % de molybdène, 0,05 à 0,15 % de hafnium, 0 à 0,15 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,5 % d’aluminium, 1,0 % de tantale, 3,0 % de titane, 14,0 % de chrome, 2,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,75 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 4,0 % de cobalt, 14,0 % de chrome, 1,5 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 6,0 % d’aluminium, 1,0 % de tantale, 3,0 % de titane, 6,0 % de cobalt, 14,0 % de chrome, 1,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,5 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 15,0 % de chrome, 1,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,5 % d’aluminium, 1,0 % de tantale, 3,0 % de titane, 13,0 % de chrome, 2,0 % de molybdène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,75 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 4,0 % de cobalt, 13,0 % de chrome, 1,5 % de molybdène, 1,0 % de tungstène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,5 % d’aluminium, 1,75 % de tantale, 2,5 % de titane, 15,0 % de chrome, 1,0 % de molybdène, 0,50 % de tungstène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Superalliage selon la revendication 1, comprenant, en pourcentages massiques, 5,5 % d’aluminium, 1,5 % de tantale, 3,0 % de titane, 15,0 % de chrome, 1,0 % de molybdène, 0,50 % de tungstène, 0,10 % de hafnium, 0,10 % de silicium, le complément étant constitué par du nickel et des impuretés inévitables.
- Aube (20A, 20B) monocristalline pour turbomachine comprenant un superalliage selon l’une quelconque des revendications 1 à 11.
- Aube (20A, 20B) selon la revendication 12, comprenant un revêtement de protection comportant une sous-couche métallique déposée sur le superalliage et une barrière thermique céramique déposée sur la sous-couche métallique.
- Aube (20A, 20B) selon la revendication 12 ou 13, présentant une structure orientée selon une direction cristallographique <001>.
- Turbomachine comprenant une aube (20A, 20B) selon l’une quelconque des revendications 12 à 14.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2107327A FR3125067B1 (fr) | 2021-07-07 | 2021-07-07 | Superalliage a base de nickel, aube monocristalline et turbomachine |
CN202280048363.5A CN117651783A (zh) | 2021-07-07 | 2022-07-05 | 镍基超合金、单晶导叶和涡轮发动机 |
PCT/FR2022/051340 WO2023281205A1 (fr) | 2021-07-07 | 2022-07-05 | Superalliage a base de nickel, aube monocristalline et turbomachine |
EP22754898.9A EP4367278A1 (fr) | 2021-07-07 | 2022-07-05 | Superalliage à base de nickel, aube monocristalline et turbomachine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2107327A FR3125067B1 (fr) | 2021-07-07 | 2021-07-07 | Superalliage a base de nickel, aube monocristalline et turbomachine |
FR2107327 | 2021-07-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3125067A1 true FR3125067A1 (fr) | 2023-01-13 |
FR3125067B1 FR3125067B1 (fr) | 2024-01-19 |
Family
ID=78828169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2107327A Active FR3125067B1 (fr) | 2021-07-07 | 2021-07-07 | Superalliage a base de nickel, aube monocristalline et turbomachine |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4367278A1 (fr) |
CN (1) | CN117651783A (fr) |
FR (1) | FR3125067B1 (fr) |
WO (1) | WO2023281205A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3147571A1 (fr) * | 2023-04-05 | 2024-10-11 | Safran | Superalliage a base de nickel, aube monocristalline |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270123A (en) | 1992-03-05 | 1993-12-14 | General Electric Company | Nickel-base superalloy and article with high temperature strength and improved stability |
US5888451A (en) | 1996-06-17 | 1999-03-30 | Abb Research Ltd. | Nickel-base superalloy |
EP1927669A1 (fr) * | 2006-12-01 | 2008-06-04 | Industria de Turbo Propulsores S.A. | Superalliages monocristallins solidifiés directionnellement à faible densité |
FR3073527A1 (fr) * | 2017-11-14 | 2019-05-17 | Safran | Superalliage a base de nickel, aube monocristalline et turbomachine |
WO2020025880A1 (fr) * | 2018-07-31 | 2020-02-06 | Safran | Superalliage a base de nickel pour fabrication d'une piece par mise en forme de poudre |
-
2021
- 2021-07-07 FR FR2107327A patent/FR3125067B1/fr active Active
-
2022
- 2022-07-05 WO PCT/FR2022/051340 patent/WO2023281205A1/fr active Application Filing
- 2022-07-05 CN CN202280048363.5A patent/CN117651783A/zh active Pending
- 2022-07-05 EP EP22754898.9A patent/EP4367278A1/fr active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270123A (en) | 1992-03-05 | 1993-12-14 | General Electric Company | Nickel-base superalloy and article with high temperature strength and improved stability |
US5888451A (en) | 1996-06-17 | 1999-03-30 | Abb Research Ltd. | Nickel-base superalloy |
EP1927669A1 (fr) * | 2006-12-01 | 2008-06-04 | Industria de Turbo Propulsores S.A. | Superalliages monocristallins solidifiés directionnellement à faible densité |
FR3073527A1 (fr) * | 2017-11-14 | 2019-05-17 | Safran | Superalliage a base de nickel, aube monocristalline et turbomachine |
WO2020025880A1 (fr) * | 2018-07-31 | 2020-02-06 | Safran | Superalliage a base de nickel pour fabrication d'une piece par mise en forme de poudre |
Non-Patent Citations (1)
Title |
---|
F.C. HULL, METAL PROGRESS, November 1969 (1969-11-01), pages 139 - 140 |
Also Published As
Publication number | Publication date |
---|---|
CN117651783A (zh) | 2024-03-05 |
FR3125067B1 (fr) | 2024-01-19 |
WO2023281205A1 (fr) | 2023-01-12 |
EP4367278A1 (fr) | 2024-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3710610B1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
CA3041411C (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
EP3710611B1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
EP3802895B1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
FR3125067A1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
FR3124195A1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
FR3124194A1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
WO2024047315A1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
EP3911774B1 (fr) | Superalliage a base de nickel a tenue mecanique elevee a haute temperature | |
FR3121453A1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
WO2024209156A1 (fr) | Superalliage a base de nickel, aube monocristalline et turbomachine | |
EP3911773B1 (fr) | Superalliage a base de nickel a faible densite et avec une tenue mecanique et environnementale elevee a haute temperature | |
EP3918101B1 (fr) | Superalliage a base de nickel a tenue mecanique et environnementale elevee a haute temperature et a faible densite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20230113 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |