FR3090831A1 - Apparatus and method for air separation by cryogenic distillation - Google Patents
Apparatus and method for air separation by cryogenic distillation Download PDFInfo
- Publication number
- FR3090831A1 FR3090831A1 FR1873736A FR1873736A FR3090831A1 FR 3090831 A1 FR3090831 A1 FR 3090831A1 FR 1873736 A FR1873736 A FR 1873736A FR 1873736 A FR1873736 A FR 1873736A FR 3090831 A1 FR3090831 A1 FR 3090831A1
- Authority
- FR
- France
- Prior art keywords
- pressure
- column
- flow
- air
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 27
- 238000004821 distillation Methods 0.000 title claims description 7
- 238000000746 purification Methods 0.000 claims abstract description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 28
- 239000001301 oxygen Substances 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 27
- 239000007789 gas Substances 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000001816 cooling Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000012467 final product Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/04206—Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/0423—Subcooling of liquid process streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/50—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/40—One fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/50—One fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Un appareil de séparation d’air comprend une double colonne, des moyens (B) pour envoyer de l’air à l’unité d’épuration à une pression supérieure à la pression atmosphérique d’au plus 1 bar, une conduite pour envoyer un premier débit d’air (8), épuré dans l’unité d’épuration, à l’échangeur de chaleur à une quatrième pression supérieure à la deuxième pression d’au plus 1 bar, une conduite pour envoyer le premier débit d’air épuré refroidi dans l’échangeur de chaleur à la deuxième colonne pour s’y séparer, un surpresseur (E), l’appareil ne comprenant aucun moyen de détente du premier débit. Figure de l’abrégé : Fig. 1An air separation device comprises a double column, means (B) for sending air to the purification unit at a pressure above atmospheric pressure of at most 1 bar, a pipe for sending a first air flow (8), purified in the purification unit, at the heat exchanger at a fourth pressure greater than the second pressure by at most 1 bar, a pipe for sending the first air flow purified cooled in the heat exchanger in the second column to separate it, a booster (E), the apparatus comprising no means of expansion of the first flow. Figure of the abstract: Fig. 1
Description
DescriptionDescription
Titre de l'invention : Appareil et procédé de séparation d’air par distillation cryogéniqueTitle of the invention: Apparatus and method for air separation by cryogenic distillation
[0001] La présente invention est relative à un appareil et à un procédé de séparation d’air par distillation cryogénique.The present invention relates to an apparatus and a method for separating air by cryogenic distillation.
[0002] En particulier elle concerne un appareil de séparation d’air comprenant une double colonne avec une première colonne opérant à une première pression et une deuxième colonne opérant à une deuxième pression, inférieure à la première pression. La tête de la première colonne produit un gaz qui se condense dans un rebouilleur de la deuxième colonne.In particular, it relates to an air separation device comprising a double column with a first column operating at a first pressure and a second column operating at a second pressure, lower than the first pressure. The head of the first column produces a gas which condenses in a reboiler of the second column.
[0003] Il est généralement un objectif des appareils de séparation d’air de rechercher une consommation d’énergie la plus basse possible.It is generally an objective of air separation devices to seek the lowest possible energy consumption.
[0004] L’épuration de l’air est en général effectuée à une pression égale ou supérieure à celle de la première pression. Ceci permet de réduire le volume de l’unité d’épuration.Air cleaning is generally carried out at a pressure equal to or greater than that of the first pressure. This makes it possible to reduce the volume of the purification unit.
[0005] Il est néanmoins connu de US4964901 d’épurer une partie de l’air à la première pression et le reste de l’air à la deuxième pression, utilisant deux unités d’épuration en parallèle. L’air épuré à la deuxième pression est envoyé directement à la deuxième colonne, tandis que l’air épuré à la première pression est séparé en deux, une partie étant envoyée directement à la première colonne et le reste étant surpressé, refroidi dans un échangeur de chaleur, détendu dans une turbine couplée au surpresseur et envoyé à la deuxième colonne. Ainsi la turbine utilisée est une turbine d’insufflation et la colonne basse pression reçoit de l’air ayant été épuré à deux pressions différentes.It is nevertheless known from US4964901 to purify part of the air at the first pressure and the rest of the air at the second pressure, using two purification units in parallel. The air purified at the second pressure is sent directly to the second column, while the air purified at the first pressure is separated in two, a part being sent directly to the first column and the rest being overpressed, cooled in an exchanger of heat, expanded in a turbine coupled to the booster and sent to the second column. Thus the turbine used is an insufflation turbine and the low pressure column receives air having been purified at two different pressures.
[0006] Le procédé de US5934105 épure l'air à une pression au-dessus de la deuxième pression mais en dessous de la première pression, ensuite l'air destiné à la première colonne est comprimé et l'air destiné à la deuxième colonne est détendu.The method of US5934105 purifies the air at a pressure above the second pressure but below the first pressure, then the air intended for the first column is compressed and the air intended for the second column is relaxed.
[0007] JPH11063810 et EP1050730 sont similaires à US5934105.JPH11063810 and EP1050730 are similar to US5934105.
[0008] Si tout le débit qui va la deuxième colonne est détendu dans la turbine, comme dans l’art antérieur, pour maximiser le gain en énergie, le débit d'air allant à la première colonne est d'environ 66% du débit total épuré, par exemple pour produire de l’oxygène à 96%. Cela signifie que l’on doit passer 34% du débit d'air à une relative basse pression dans la turbine.If all the flow going to the second column is expanded in the turbine, as in the prior art, to maximize the energy gain, the air flow going to the first column is about 66% of the flow total purified, for example to produce 96% oxygen. This means that 34% of the air flow must be passed at a relatively low pressure in the turbine.
[0009] Selon la présente invention, entre 6 et 8% de l’air est détendu dans une turbine d’air, donc la turbine selon l’art antérieur est au moins 4 à 5 fois plus grosse du fait du débit volume.According to the present invention, between 6 and 8% of the air is expanded in an air turbine, so the turbine according to the prior art is at least 4 to 5 times larger due to the volume flow.
[0010] Comme la puissance frigorifique du procédé selon l’art antérieur est fixée et reste basse puisque le procédé ne produit pas de produit final liquide, cela signifie que le taux de détente de la turbine est très faible ce qui donne une turbine inefficace et en tout cas pas du tout standardisée, voire inexistante chez les fournisseurs de turbines cryogéniques.As the cooling capacity of the process according to the prior art is fixed and remains low since the process does not produce a liquid final product, this means that the expansion rate of the turbine is very low, which gives an ineffective turbine and in any case not at all standardized, or even non-existent at the suppliers of cryogenic turbines.
[0011] Dans le cas où on souhaite imposer le débit d'air envoyé à la première colonne pour maximiser le gain d'énergie, selon l’art antérieur, en exploitation, la régulation de la puissance frigorifique ne pourra se faire par une réduction de débit turbiné et donc va se faire en jouant sur la pression en amont de la turbine, c’est à dire la pression d'épuration et in fine de la soufflante. Cela complexifie énormément la régulation et oblige à dimensionner l'épuration sur la pression la plus basse que l'on pourrait avoir avec une puissance frigorifique plus faible que prévue au nominal ou dans une phase transitoire. Selon l’invention, il est prévu que la pression d’épuration soit très proche de la deuxième pression.In the case where it is desired to impose the air flow rate sent to the first column in order to maximize the energy gain, according to the prior art, in operation, the regulation of the cooling capacity cannot be achieved by a reduction. turbine flow and therefore will be done by playing on the pressure upstream of the turbine, that is to say the purifying pressure and ultimately the blower. This enormously complicates the regulation and obliges to size the purification on the lowest pressure that one could have with a lower refrigerating power than expected at nominal or in a transient phase. According to the invention, it is expected that the cleaning pressure is very close to the second pressure.
[0012] L’invention prévoit un procédé qui consomme 1% en moins d’énergie (2% en moins si on considère un rendement turbine réduit de 5%pt) par rapport à l’art antérieur (par exemple, selon EP1050730) ; selon le procédé de EP1050730, l’épuration est effectuée à une pression entre la première et la deuxième pression.The invention provides a process which consumes 1% less energy (2% less if we consider a turbine efficiency reduced by 5% pt) compared to the prior art (for example, according to EP1050730); according to the method of EP1050730, the purification is carried out at a pressure between the first and the second pressure.
[0013] Le taux de détente du procédé de EP1050730 est faible, entre 1,2 :1 et 3,8 :1, de préférence entre 1,4 :1 et 2,5 :1, alors que les turbines classiques cryogéniques sont dans une fourchette de taux de détente d’entre 4 :1 et 10 :1. L’invention utilise un taux de détente qui reste en limite basse de cette fourchette, évitant ainsi d’avoir un rendement de turbine sensiblement dégradé.The expansion rate of the process of EP1050730 is low, between 1.2: 1 and 3.8: 1, preferably between 1.4: 1 and 2.5: 1, while conventional cryogenic turbines are in a range of relaxation rates between 4: 1 and 10: 1. The invention uses an expansion rate which remains at the lower limit of this range, thus avoiding having a substantially degraded turbine efficiency.
[0014] Dans EP1050730, la pression d’entrée de l’unité d’épuration est typiquement de 2,5 bara (au lieu d’environ 1.3 bara selon l’invention). Ce procédé utilise un premier compresseur à plusieurs, typiquement deux, étages avec refroidissement entre deux étages. Selon l’invention le compresseur qui comprime tout l’air a un seul étage donc aucun refroidissement entre deux étages.In EP1050730, the inlet pressure of the purification unit is typically 2.5 bara (instead of about 1.3 bara according to the invention). This process uses a first compressor with several, typically two, stages with cooling between two stages. According to the invention, the compressor which compresses all the air has a single stage, therefore no cooling between two stages.
[0015] L’appareil produit un débit gazeux enrichi en oxygène avec une énergie particulièrement basse.The device produces a gas flow enriched in oxygen with a particularly low energy.
[0016] Selon un objet de l’invention, il est prévu un appareil de séparation d’air comprenant une double colonne avec une première colonne opérant à une première pression et une deuxième colonne opérant à une deuxième pression, inférieure à la première pression, la deuxième colonne ayant un rebouilleur de cuve, des moyens pour envoyer un gaz enrichi en azote de la tête de la première colonne au rebouilleur de cuve et des moyens pour envoyer au moins une partie du gaz enrichi en azote condensé du rebouilleur de cuve à la tête de la première colonne, un échangeur de chaleur, une unité d’épuration, des moyens pour envoyer de l’air à l’unité d’épuration à une troisième pression supérieure à la pression atmosphérique d’au plus 1 bar, une conduite pour envoyer un premier débit d’air épuré dans l’unité d’épuration à l’échangeur de chaleur à une quatrième pression supérieure à la deuxième pression d’au plus 1 bar, une conduite pour envoyer le premier débit d’air épuré refroidi dans l’échangeur de chaleur à la deuxième colonne pour s’y séparer, un surpresseur, une conduite pour envoyer un deuxième débit d’air épuré dans l’unité d’épuration au surpresseur, une conduite pour envoyer au moins une partie du deuxième débit comprimé par le surpresseur jusqu’à une cinquième pression entre la première pression et 1 bar au-dessus de la première pression à l’échangeur de chaleur, des moyens de production de frigories, une conduite pour soutirer au moins un fluide enrichi en oxygène ou en azote d’une colonne de la double colonne reliée à l’échangeur de chaleur et une conduite pour sortir d’au moins un fluide enrichi en oxygène ou en azote de l’échangeur de chaleur comme produit, l’appareil ne comprenant aucun moyen de détente du premier débit et ne comprenant qu’une seule unité d’épuration.According to an object of the invention, there is provided an air separation device comprising a double column with a first column operating at a first pressure and a second column operating at a second pressure, lower than the first pressure, the second column having a tank reboiler, means for sending a nitrogen-enriched gas from the head of the first column to the tank reboiler and means for sending at least part of the condensed nitrogen enriched gas from the tank reboiler head of the first column, a heat exchanger, a purification unit, means for sending air to the purification unit at a third pressure greater than atmospheric pressure of at most 1 bar, a pipe for sending a first flow of purified air into the purification unit at the heat exchanger at a fourth pressure greater than the second pressure by at most 1 bar, a line for sending the first flow of cooled purified air in the exchanger of heat to the second column for separating therefrom, a booster, a pipe for sending a second flow of purified air into the purification unit to the booster, a pipe for sending at least part of the second flow compressed by the booster pump up to a fifth pressure between the first pressure and 1 bar above the first pressure at the heat exchanger, means for producing frigories, a pipe for withdrawing at least one fluid enriched in oxygen or nitrogen d '' a column of the double column connected to the heat exchanger and a pipe for leaving at least one fluid enriched in oxygen or nitrogen from the heat exchanger as a product, the apparatus comprising no means of expansion of the first flow and comprising only one purification unit.
[0017] Selon d’autres aspects facultatifs :According to other optional aspects:
• les moyens de production de frigories comprennent au moins une turbine de détente d’une partie du deuxième débit et/ou une turbine de détente d’un gaz riche en azote provenant de la première colonne et/ou des moyens d’envoi d’un liquide cryogénique d’une source externe à la double colonne.• the means for producing frigories include at least one expansion turbine for part of the second flow and / or one expansion turbine for a gas rich in nitrogen coming from the first column and / or means for sending a cryogenic liquid from a source external to the double column.
• la turbine de détente de la partie du deuxième débit est reliée à la deuxième colonne pour y envoyer l’air détendu.• the expansion turbine of the part of the second flow is connected to the second column to send the expanded air.
• les moyens pour envoyer de l’air à l’unité d’épuration à la troisième pression ne comprennent aucun moyen de compression à part un compresseur à un seul étage.• the means for sending air to the purification unit at the third pressure do not include any compression means apart from a single-stage compressor.
• l’appareil ne comprend aucun moyen de compression du premier débit.• the device does not include any means of compressing the first flow.
[0018] Selon un autre aspect de l’invention, il est prévu un procédé de séparation d’air par distillation cryogénique utilisant une double colonne avec une première colonne opérant à une première pression et une deuxième colonne opérant à une deuxième pression, inférieure à la première pression, la deuxième colonne ayant un rebouilleur de cuve, dans lequel :According to another aspect of the invention, there is provided a method of air separation by cryogenic distillation using a double column with a first column operating at a first pressure and a second column operating at a second pressure, less than the first pressure, the second column having a tank reboiler, in which:
[0019] i) on envoie de l’air contenant de l’eau et du dioxyde de carbone à une seule unité d’épuration à une troisième pression supérieure à la pression atmosphérique d’au plus 1 bar,I) air containing water and carbon dioxide is sent to a single purification unit at a third pressure above atmospheric pressure of at most 1 bar,
[0020] ii) on sépare l’air épuré en deux,Ii) the purified air is divided in two,
[0021] ii) on envoie un premier débit d’air épuré dans l’unité d’épuration à un échangeur de chaleur à une quatrième pression supérieure à la deuxième pression d’au plus 1 bar, [0022] iv) on envoie le premier débit d’air épuré refroidi dans l’échangeur de chaleur à la deuxième colonne, sans l’avoir détendu,Ii) a first flow of purified air is sent into the purification unit to a heat exchanger at a fourth pressure greater than the second pressure by at most 1 bar, iv) the first flow of purified air cooled in the heat exchanger in the second column, without having relaxed it,
[0023] v) on surpresse un deuxième débit d’air épuré à une cinquième pression entre la première pression et 1 bar au-dessus de la première pression, on envoie au moins une partie du deuxième débit à la cinquième pression à l’échangeur de chaleur et on envoie l’au moins une partie du deuxième débit à la première colonne sous former gazeuse,V) a second purified air flow is boosted at a fifth pressure between the first pressure and 1 bar above the first pressure, at least part of the second flow is sent to the exchanger at the fifth pressure heat and at least part of the second flow is sent to the first column in gaseous form,
[0024] vi) on fournit des frigories pour le maintien en froid du procédéVi) providing frigories for keeping the process cold
[0025] vii) on condense au moins partiellement un gaz riche en azote de la première colonne dans le rebouilleur et on renvoie au moins une partie de l’azote condensé à la première colonneVii) at least partially condensing a nitrogen-rich gas from the first column in the reboiler and returning at least some of the condensed nitrogen to the first column
[0026] viii) on envoie un liquide enrichi en azote et un liquide enrichi en oxygène de la première colonne à la deuxième colonneViii) a liquid enriched in nitrogen and a liquid enriched in oxygen are sent from the first column to the second column
[0027] ix) on soutire un gaz enrichi en oxygène ou un gaz enrichi en azote de la double colonne et on le réchauffe dans l’échangeur de chaleur pour former un produit du procédé.Ix) an oxygen-enriched gas or a nitrogen-enriched gas is drawn off from the double column and it is heated in the heat exchanger to form a product of the process.
[0028] Selon d’autres aspects facultatifs :According to other optional aspects:
• on envoie tout le premier débit à la deuxième colonne.• the entire first flow is sent to the second column.
• on envoie le premier débit à la deuxième colonne à un niveau inférieur ou égale au niveau d’arrivée du liquide enrichi en oxygène.• the first flow is sent to the second column at a level less than or equal to the arrival level of the oxygen-enriched liquid.
• le procédé ne produit aucun produit liquide comme produit final et /ou aucun débit liquide n’est soutiré de la double colonne pour servir de produit final.• the process produces no liquid product as final product and / or no liquid flow is drawn from the double column to serve as final product.
• le procédé est tenu en froid par détente d’une partie du deuxième débit dans une turbine de la cinquième pression à la deuxième pression, • la partie de l’air détendue dans la turbine représente entre 6 et 15% vol, préférentiellement entre 6 et 8% de l’air épuré.• the process is kept cold by expansion of part of the second flow in a turbine from the fifth pressure to the second pressure, • the part of the air expanded in the turbine represents between 6 and 15% vol, preferably between 6 and 8% of the purified air.
• tout l’air est épuré à une pression qui n’excède pas 1,5 bara, voire n’excède pas 1,3 bara.• all the air is purified at a pressure which does not exceed 1.5 bara, or even does not exceed 1.3 bara.
• la première pression n’excède pas 6 bara.• the first pressure does not exceed 6 bara.
• la deuxième pression n’excède pas 1,5 bara.• the second pressure does not exceed 1.5 bara.
• le gaz enrichi en oxygène contient au moins 80% mol oxygène • le gaz enrichi en oxygène contient au moins 90% mol d’oxygène, • le gaz enrichi en oxygène contient moins que 98% mol d’oxygène.• the oxygen-enriched gas contains at least 80 mol% of oxygen • the oxygen-enriched gas contains at least 90% of oxygen, • the oxygen-enriched gas contains less than 98% of oxygen.
• le premier débit représente entre 20 et 30% vol du débit d’air épuré.• the first flow represents between 20 and 30% vol of the purified air flow.
• le deuxième débit représente entre 70 et 80% vol du débit d’air épuré.• the second flow represents between 70 and 80% vol of the purified air flow.
[0029] L’invention sera décrite de manière plus détaillée en se référant à la figure.The invention will be described in more detail with reference to the figure.
[0030] [fig.l] représente un procédé de séparation d’air par distillation cryogénique selon l’invention.[Fig.l] shows a method of air separation by cryogenic distillation according to the invention.
[0031] Un appareil de séparation d’air par distillation cryogénique comprend une double colonne avec une première colonne K3 opérant à une première pression et une deuxième colonne K4 opérant à une deuxième pression, inférieure à la première pression, la deuxième colonne ayant un rebouilleur de cuve M.An air separation apparatus by cryogenic distillation comprises a double column with a first column K3 operating at a first pressure and a second column K4 operating at a second pressure, lower than the first pressure, the second column having a reboiler of tank M.
[0032] Dans cet exemple la première pression est de 4,5 bara et la deuxième pression est 1,13 bara.In this example the first pressure is 4.5 bara and the second pressure is 1.13 bara.
[0033] Un gaz enrichi en azote est envoyé de la tête de la première colonne au rebouilleur de cuve M et au moins une partie du gaz enrichi en azote condensé du rebouilleur de cuve est envoyée à la tête de la première colonne.A nitrogen enriched gas is sent from the head of the first column to the tank reboiler M and at least part of the nitrogen enriched condensed gas from the tank reboiler is sent to the head of the first column.
[0034] De l’air à la pression atmosphérique est filtré dans une filtre A, comprimé par une soufflante B ayant un seul étage à une pression au plus 1 bar, de préférence au plus 0,5 bar, au-dessus de la pression atmosphérique, refroidi par un moyen de refroidissement C et épuré en eau et en dioxyde de carbone dans une seule unité d’épuration D dans lequel l’air 4 rentre à une troisième pression supérieure à la pression atmosphérique d’au plus 1 bar, de préférence d’au plus 0,5 bar. L’unité d’épuration comprend deux lits d’adsorbant utilisés en alternance pour épurer l’air, un lit épurant l’air pendant que l’autre est régénéré.Air at atmospheric pressure is filtered in a filter A, compressed by a blower B having a single stage at a pressure at most 1 bar, preferably at most 0.5 bar, above the pressure atmospheric, cooled by a cooling means C and purified with water and carbon dioxide in a single purification unit D in which the air 4 returns to a third pressure higher than the atmospheric pressure by at most 1 bar, preferably no more than 0.5 bar. The purification unit comprises two adsorbent beds used alternately to purify the air, one bed purifying the air while the other is regenerated.
[0035] L’air épuré dans l’unité D est divisé en deux pour former deux débits 6,8. L’air 8 n’est ni comprimé ni détendu et se trouve à une pression qui diffère de la deuxième pression d’une pression égale aux pertes de charge dans les conduites et l’échangeur de chaleur G.The purified air in unit D is divided into two to form two flows 6.8. The air 8 is neither compressed nor expanded and is at a pressure which differs from the second pressure by a pressure equal to the pressure losses in the pipes and the heat exchanger G.
[0036] De préférence le premier débit 8 représente entre 20 et 30% vol du débit 4 et le deuxième débit 6 représente entre 70 et 80% vol du débit 4.Preferably the first flow 8 represents between 20 and 30% vol of the flow 4 and the second flow 6 represents between 70 and 80% vol of the flow 4.
[0037] Ainsi, l’air 8 est envoyé directement de l’unité d’épuration à la deuxième colonne K2 pour y être séparé, rentrant dans la colonne sous forme entièrement gazeuse.Thus, the air 8 is sent directly from the purification unit to the second column K2 to be separated there, entering the column in fully gaseous form.
[0038] Le débit 6 est surpressé dans un surpresseur E, refroidi dans un refroidisseur F et envoyé à l’échangeur de chaleur G. Le surpresseur E surpresse l’air 6 jusqu’à une cinquième pression entre la première pression et 1 bar au-dessus de la première pression. L’air 6 est divisé en deux parties 30,32 à un niveau intermédiaire de l’échangeur. L’air 30 sort de l’échangeur à une température intermédiaire de celui-ci, par exemple -125°C, est détendu dans une turbine 28 jusqu’à la deuxième pression et rentre sous forme gazeuse, mélangé avec le débit 8, pour être séparé dans la deuxième colonne K4.The flow 6 is boosted in a booster E, cooled in a cooler F and sent to the heat exchanger G. The booster E boosts the air 6 to a fifth pressure between the first pressure and 1 bar at - above the first press. Air 6 is divided into two parts 30,32 at an intermediate level of the exchanger. The air 30 leaves the exchanger at an intermediate temperature thereof, for example -125 ° C, is expanded in a turbine 28 until the second pressure and returns in gaseous form, mixed with the flow 8, to be separated in the second column K4.
[0039] Le débit 30 peut représenter entre 6 et 15 % vol, préférentiellement entre 6 et 8% de l’air 4.The flow 30 can represent between 6 and 15% vol, preferably between 6 and 8% of the air 4.
[0040] L’air 32 se refroidit jusqu’au bout froid de l’échangeur G et est envoyé en cuve de la première colonne K3 sous forme essentiellement gazeuse pour y être séparé.The air 32 cools down to the cold end of the exchanger G and is sent to the tank of the first column K3 in essentially gaseous form to be separated there.
[0041] Un débit liquide enrichi en oxygène 34 est soutiré en cuve de la première colonne et envoyé à un niveau de la deuxième colonne qui est au-dessus de l’entrée d’air. Alternativement l’air peut rentrer dans la deuxième colonne au même niveau que celui de l’arrivée du liquide 34.An oxygen-enriched liquid flow 34 is drawn off from the tank of the first column and sent to a level in the second column which is above the air inlet. Alternatively the air can enter the second column at the same level as that of the arrival of the liquid 34.
[0042] Le liquide 34 détendu peut être séparé dans un séparateur de phase : le liquide issu du séparateur de phase est envoyé dans la colonne K4 et la phase vapeur peut être mélangée à l’entrée d’air 8,30 dans la colonne K4.The expanded liquid 34 can be separated in a phase separator: the liquid from the phase separator is sent to the column K4 and the vapor phase can be mixed with the air inlet 8.30 in the column K4 .
[0043] Un débit d’azote liquide 35 est soutiré de la tête de la première colonne et envoyé en tête de la deuxième colonne.A flow of liquid nitrogen 35 is withdrawn from the head of the first column and sent to the head of the second column.
[0044] De l’azote gazeux 36 est soutiré en tête de la deuxième colonne K4 et se réchauffé dans le sous-refroidisseur S et ensuite dans l’échangeur G. Une partie 14 de ce gaz sert à régénérer l’unité d’épuration D.Nitrogen gas 36 is drawn off at the head of the second column K4 and is heated in the sub-cooler S and then in the exchanger G. Part 14 of this gas is used to regenerate the purification unit D.
[0045] De l’oxygène gazeux 29 est soutiré en cuve de la deuxième colonne K4. Le débit 29 contient de préférence au moins 80% mol oxygène, voire au moins 90% mol d’oxygène, mais de préférence, moins que 98% mol d’oxygène.Gaseous oxygen 29 is withdrawn from the tank of the second column K4. The flow 29 preferably contains at least 80 mol% of oxygen, or even at least 90 mol% of oxygen, but preferably less than 98 mol% of oxygen.
[0046] Il sera remarqué que le procédé ne produit aucun débit liquide comme produit final. Il est également le cas que le procédé ne produit aucun débit liquide à vaporiser pour former un produit gazeux final, éventuellement sous pression. Il est toutefois possible de produire une petite quantité de produit gazeux final de cette façon, qui peut être éventuellement mélangé avec le produit gazeux principal.It will be noted that the process produces no liquid flow as the final product. It is also the case that the process produces no liquid flow rate to vaporize to form a final gaseous product, possibly under pressure. It is however possible to produce a small amount of final gaseous product in this way, which can optionally be mixed with the main gaseous product.
[0047] Par ailleurs, un petit débit de liquide pourrait être produit.Furthermore, a small flow of liquid could be produced.
Claims (1)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1873736A FR3090831B1 (en) | 2018-12-21 | 2018-12-21 | Cryogenic distillation air separation apparatus and method |
US17/416,782 US20220074656A1 (en) | 2018-12-21 | 2019-12-05 | Apparatus and method for separating air by cryogenic distillation |
CA3122855A CA3122855A1 (en) | 2018-12-21 | 2019-12-05 | Apparatus and method for separating air by cryogenic distillation |
CN201980084384.0A CN113242952B (en) | 2018-12-21 | 2019-12-05 | Apparatus and method for separating air by cryogenic distillation |
AU2019408677A AU2019408677A1 (en) | 2018-12-21 | 2019-12-05 | Apparatus and method for separating air by cryogenic distillation |
BR112021011589-7A BR112021011589A2 (en) | 2018-12-21 | 2019-12-05 | APPARATUS AND METHOD TO SEPARATE AIR THROUGH CRYOGENIC DISTILLATION |
JP2021535172A JP7451532B2 (en) | 2018-12-21 | 2019-12-05 | Apparatus and method for separating air by cryogenic distillation |
EP19868211.4A EP3899389A1 (en) | 2018-12-21 | 2019-12-05 | Apparatus and method for separating air by cryogenic distillation |
PCT/FR2019/052934 WO2020128205A1 (en) | 2018-12-21 | 2019-12-05 | Apparatus and method for separating air by cryogenic distillation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1873736A FR3090831B1 (en) | 2018-12-21 | 2018-12-21 | Cryogenic distillation air separation apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3090831A1 true FR3090831A1 (en) | 2020-06-26 |
FR3090831B1 FR3090831B1 (en) | 2022-06-03 |
Family
ID=66542427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1873736A Active FR3090831B1 (en) | 2018-12-21 | 2018-12-21 | Cryogenic distillation air separation apparatus and method |
Country Status (9)
Country | Link |
---|---|
US (1) | US20220074656A1 (en) |
EP (1) | EP3899389A1 (en) |
JP (1) | JP7451532B2 (en) |
CN (1) | CN113242952B (en) |
AU (1) | AU2019408677A1 (en) |
BR (1) | BR112021011589A2 (en) |
CA (1) | CA3122855A1 (en) |
FR (1) | FR3090831B1 (en) |
WO (1) | WO2020128205A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3119884A1 (en) | 2021-02-18 | 2022-08-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separation process by cryogenic distillation |
FR3128776A3 (en) | 2021-10-28 | 2023-05-05 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for air separation by cryogenic distillation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112969896B (en) * | 2018-10-26 | 2023-05-02 | 乔治洛德方法研究和开发液化空气有限公司 | Plate-fin heat exchanger assembly |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543115A (en) * | 1984-02-21 | 1985-09-24 | Air Products And Chemicals, Inc. | Dual feed air pressure nitrogen generator cycle |
US4964901A (en) | 1988-05-20 | 1990-10-23 | Linde Aktiengesellschaft | Low-temperature separation of air using high and low pressure air feedstreams |
US5666824A (en) * | 1996-03-19 | 1997-09-16 | Praxair Technology, Inc. | Cryogenic rectification system with staged feed air condensation |
US5934105A (en) | 1998-03-04 | 1999-08-10 | Praxair Technology, Inc. | Cryogenic air separation system for dual pressure feed |
DE19933558A1 (en) * | 1999-07-16 | 2000-09-28 | Linde Tech Gase Gmbh | Process to extract nitrogen and oxygen from air by fractionated cryogenic distillation enhances the overall operating efficiency of the process |
EP1050730A1 (en) | 1999-05-07 | 2000-11-08 | The BOC Group plc | Separation of air |
EP1099922A2 (en) * | 1999-11-09 | 2001-05-16 | Air Products And Chemicals, Inc. | Process for the production of intermediate pressure oxygen |
WO2013014252A2 (en) * | 2011-07-27 | 2013-01-31 | Norwegian University Of Science And Technology (Ntnu) | Air separation |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9410686D0 (en) * | 1994-05-27 | 1994-07-13 | Boc Group Plc | Air separation |
JP3737611B2 (en) | 1997-08-08 | 2006-01-18 | 大陽日酸株式会社 | Method and apparatus for producing low purity oxygen |
FR2851330B1 (en) * | 2003-02-13 | 2006-01-06 | Air Liquide | PROCESS AND PLANT FOR THE PRODUCTION OF A GASEOUS AND HIGH PRESSURE PRODUCTION OF AT LEAST ONE FLUID SELECTED AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC DISTILLATION OF AIR |
FR2865024B3 (en) * | 2004-01-12 | 2006-05-05 | Air Liquide | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP1767884A1 (en) | 2005-09-23 | 2007-03-28 | L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
FR2953915B1 (en) * | 2009-12-11 | 2011-12-02 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP2634517B1 (en) * | 2012-02-29 | 2018-04-04 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
FR2990500A1 (en) * | 2012-05-11 | 2013-11-15 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
MX2015008172A (en) * | 2012-12-27 | 2015-09-16 | Linde Ag | Method and device for low-temperature air separation. |
US10816263B2 (en) * | 2018-04-25 | 2020-10-27 | Praxair Technology, Inc. | System and method for high recovery of nitrogen and argon from a moderate pressure cryogenic air separation unit |
-
2018
- 2018-12-21 FR FR1873736A patent/FR3090831B1/en active Active
-
2019
- 2019-12-05 AU AU2019408677A patent/AU2019408677A1/en active Pending
- 2019-12-05 EP EP19868211.4A patent/EP3899389A1/en active Pending
- 2019-12-05 US US17/416,782 patent/US20220074656A1/en active Pending
- 2019-12-05 WO PCT/FR2019/052934 patent/WO2020128205A1/en unknown
- 2019-12-05 CA CA3122855A patent/CA3122855A1/en active Pending
- 2019-12-05 BR BR112021011589-7A patent/BR112021011589A2/en unknown
- 2019-12-05 CN CN201980084384.0A patent/CN113242952B/en active Active
- 2019-12-05 JP JP2021535172A patent/JP7451532B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543115A (en) * | 1984-02-21 | 1985-09-24 | Air Products And Chemicals, Inc. | Dual feed air pressure nitrogen generator cycle |
US4964901A (en) | 1988-05-20 | 1990-10-23 | Linde Aktiengesellschaft | Low-temperature separation of air using high and low pressure air feedstreams |
US5666824A (en) * | 1996-03-19 | 1997-09-16 | Praxair Technology, Inc. | Cryogenic rectification system with staged feed air condensation |
US5934105A (en) | 1998-03-04 | 1999-08-10 | Praxair Technology, Inc. | Cryogenic air separation system for dual pressure feed |
EP1050730A1 (en) | 1999-05-07 | 2000-11-08 | The BOC Group plc | Separation of air |
DE19933558A1 (en) * | 1999-07-16 | 2000-09-28 | Linde Tech Gase Gmbh | Process to extract nitrogen and oxygen from air by fractionated cryogenic distillation enhances the overall operating efficiency of the process |
EP1099922A2 (en) * | 1999-11-09 | 2001-05-16 | Air Products And Chemicals, Inc. | Process for the production of intermediate pressure oxygen |
WO2013014252A2 (en) * | 2011-07-27 | 2013-01-31 | Norwegian University Of Science And Technology (Ntnu) | Air separation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3119884A1 (en) | 2021-02-18 | 2022-08-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Air separation process by cryogenic distillation |
WO2022175194A1 (en) | 2021-02-18 | 2022-08-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for separating air by cryogenic distillation |
FR3128776A3 (en) | 2021-10-28 | 2023-05-05 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for air separation by cryogenic distillation |
Also Published As
Publication number | Publication date |
---|---|
WO2020128205A1 (en) | 2020-06-25 |
FR3090831B1 (en) | 2022-06-03 |
CN113242952A (en) | 2021-08-10 |
JP7451532B2 (en) | 2024-03-18 |
CN113242952B (en) | 2023-05-16 |
JP2022514746A (en) | 2022-02-15 |
BR112021011589A2 (en) | 2021-08-31 |
AU2019408677A1 (en) | 2021-07-15 |
CA3122855A1 (en) | 2020-06-25 |
US20220074656A1 (en) | 2022-03-10 |
EP3899389A1 (en) | 2021-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3090831A1 (en) | Apparatus and method for air separation by cryogenic distillation | |
FR2895068A1 (en) | AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION | |
FR2916264A1 (en) | Mixture separating method, involves separating mixture using carbon monoxide cycle, where cycle assures cooling of methane at washing column, over-cooling of washing column and/or condensation at top of denitrification column | |
EP2510294A1 (en) | Process and unit for the separation of air by cryogenic distillation | |
FR2787560A1 (en) | PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES | |
FR3075067A1 (en) | METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING A NITROGEN SEPARATION STEP | |
EP3069091A2 (en) | Process and apparatus for separating air by cryogenic distillation | |
FR2942869A1 (en) | Cryogenic separation method for mixture of carbon monoxide, hydrogen and nitrogen, involves constituting nitrogenless flow with final product at range or pressure higher than range set during pressurization in pump or compressor | |
EP3350119B1 (en) | Method and apparatus for producing a mixture of carbon monoxide and hydrogen | |
EP2140216A2 (en) | Method and device for separating a mixture containing at least hydrogen, nitrogen and carbon monoxide by cryogenic distillation | |
FR2814229A1 (en) | METHOD AND PLANT FOR AIR SEPARATION BY CRYOGENIC DISTILLATION | |
FR2831249A1 (en) | Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column | |
FR2774159A1 (en) | COMBINED INSTALLATION OF AN OVEN AND AN AIR DISTILLATION APPARATUS AND METHOD OF IMPLEMENTING IT | |
FR2973485A1 (en) | Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen | |
WO2018020091A1 (en) | Method and apparatus for scrubbing at cryogenic temperature in order to produce a mixture of hydrogen and nitrogen | |
FR2930328A1 (en) | Air separating method for oxycombustion application in boiler, involves sending oxygen and nitrogen enriched liquids to low pressure column, removing oxygen enriched gas in condenser, and drawing nitrogen enriched gas from column | |
FR2819046A1 (en) | Cryogenic distillation air separation plant uses compressor to compress nitrogen-rich flow with inlet temperature below that of heat exchanger | |
EP1697690A2 (en) | Method and installation for enriching a gas stream with one of the components thereof | |
FR2878294A1 (en) | Compressor useful in apparatus for separating gas mixture, especially air, comprises two compression stages and directly water-cooled intercooler | |
CN221464141U (en) | Air supply device of air separation rectifying system | |
WO2009136077A2 (en) | Method and apparatus for separating air by cryogenic distillation | |
FR2831250A1 (en) | Air separation by cryogenic distillation using high, intermediate and low pressure columns where some of the compressed and purified feed air is sent to the intermediate pressure column | |
FR2795496A1 (en) | APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION | |
EP3913310A1 (en) | Method and device for air separation by cryogenic distilling | |
EP1690053A1 (en) | Method and device for separating air by cryogenic distillation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20200626 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |