FR3069539A1 - Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procedes de synthese et leurs utilisations - Google Patents

Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procedes de synthese et leurs utilisations Download PDF

Info

Publication number
FR3069539A1
FR3069539A1 FR1757306A FR1757306A FR3069539A1 FR 3069539 A1 FR3069539 A1 FR 3069539A1 FR 1757306 A FR1757306 A FR 1757306A FR 1757306 A FR1757306 A FR 1757306A FR 3069539 A1 FR3069539 A1 FR 3069539A1
Authority
FR
France
Prior art keywords
compound
general formula
alkyl group
linear
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1757306A
Other languages
English (en)
Other versions
FR3069539B1 (fr
Inventor
Denis Beltrami
Hamid Mokhtari
Jacques Thiry
Alexandre Chagnes
Gerard Cote
Sylvain Juge
Jerome Bayardon
Hugo Laureano
Emmanuelle Remond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Bourgogne
Orano Mining SA
Original Assignee
Areva Mines SA
Universite de Bourgogne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva Mines SA, Universite de Bourgogne filed Critical Areva Mines SA
Priority to FR1757306A priority Critical patent/FR3069539B1/fr
Priority to MA47891A priority patent/MA47891B1/fr
Priority to PCT/FR2018/051957 priority patent/WO2019025714A1/fr
Publication of FR3069539A1 publication Critical patent/FR3069539A1/fr
Application granted granted Critical
Publication of FR3069539B1 publication Critical patent/FR3069539B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5304Acyclic saturated phosphine oxides or thioxides
    • C07F9/5308Acyclic saturated phosphine oxides or thioxides substituted by B, Si, P or a metal
    • C07F9/5312Acyclic saturated phosphine oxides or thioxides substituted by B, Si, P or a metal substituted by a phosphorus atom
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/026Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries liquid-liquid extraction with or without dissolution in organic solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

L'invention se rapporte à des composés bifonctionnels qui présentent une fonction thiophosphine et qui sont capables d'extraire très efficacement l'uranium(VI) d'une solution aqueuse d'acide phosphorique et ce, avec une forte sélectivité vis-à-vis du fer. Ces composés répondent à la formule générale (I) : dans laquelle R1 et R2, identiques ou différents, représentent chacun un groupe alkyle linéaire ou ramifié en C2 à C16 ; R3 représente un groupe alkyle linéaire ou ramifié en C1 à C15 ; Z représente O ou S ; et R4 représente H, un groupe alkyle linéaire ou ramifié en C1 à C16, un groupe aromatique ou hétéroaromatique monocyclique. L'invention se rapporte également à des procédés permettant de synthétiser ces composés, à leurs utilisations comme extractants de l'uranium(VI) et, notamment, pour extraire l'uranium(VI) d'une solution aqueuse d'acide phosphorique telle qu'une solution issue de l'attaque d'un phosphate naturel par l'acide sulfurique, ainsi qu'à un procédé permettant de récupérer l'uranium(VI) présent dans une solution aqueuse d'acide phosphorique issue de l'attaque d'un phosphate naturel par l'acide sulfurique.

Description

COMPOSÉS BIFONCTIONNELS À FONCTION THIOPHOSPHINE, UTILES COMME EXTRACTANTS DE L'URANIUM(VI), LEURS PROCÉDÉS DE SYNTHÈSE ET LEURS UTILISATIONS
DESCRIPTION
DOMAINE TECHNIQUE
L'invention se rapporte au domaine de l'extraction de l'uranium(VI) de milieux aqueux comprenant de l'acide phosphorique.
Plus spécifiquement, l'invention se rapporte à des composés bifonctionnels qui présentent une fonction thiophosphine (—P(S)R1R2) et qui sont capables d'extraire très efficacement l'uranium(VI) d'une solution aqueuse fortement acide telle qu'une solution aqueuse d'acide phosphorique et ce, avec une forte sélectivité pour l'uranium(VI) vis-à-vis du fer.
Elle se rapporte également à des procédés permettant de synthétiser ces composés.
Elle se rapporte aussi aux utilisations de ces composés comme extractants de l'uranium(VI) et, notamment, pour extraire l'uranium(VI) d'une solution aqueuse d'acide phosphorique telle qu'une solution issue de l'attaque d'un phosphate naturel par l'acide sulfurique.
Elle se rapporte en outre à un procédé qui permet de récupérer l'uranium(VI) présent dans une solution aqueuse d'acide phosphorique issue de l'attaque d'un phosphate naturel par l'acide sulfurique et qui met en œuvre lesdits composés.
L'invention trouve notamment application dans le traitement des phosphates naturels en vue de valoriser l'uranium présent dans ces phosphates.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
L'acide phosphorique produit à partir des minerais de phosphates naturels peut contenir des quantités non négligeables d'uranium.
La récupération de l'uranium présent dans l'acide phosphorique a suscité un grand intérêt dans les années 1970 à 1990, toutefois sans continuité industrielle pour des raisons de coûts d'exploitation.
Ce sujet est à nouveau d'actualité afin de disposer de procédés économiques en prévision notamment d'une hausse de la demande mondiale en uranium et d'une hausse du prix de l'uranium. De plus, de tels procédés permettraient de purifier l'acide phosphorique avant d'être utilisé pour la production d'engrais.
L'acide phosphorique peut être obtenu industriellement à partir des phosphates naturels par deux voies principales dites « voie humide » et « voie thermique ».
La voie humide est actuellement la plus utilisée.
Elle consiste à attaquer les phosphates naturels par un acide minéral fort concentré qui est, en général, de l'acide sulfurique à 98%, auquel cas cette attaque conduit à la formation, d'une part, d'acide phosphorique H3PO4 à environ 30% massique d'anhydride de phosphate P2O5 et, d'autre part, de sulfate de calcium CaSO4.nH2O (ou phosphogypse). Cette attaque solubilise la majeure partie de l'uranium et des autres métaux présents dans les phosphates naturels dont le fer, qui se retrouvent donc dans l'acide phosphorique.
Pour récupérer l'uranium(VI) à partir de l'acide phosphorique, plusieurs techniques ont été envisagées (précipitation, extraction liquide/liquide - ou extraction par solvant -, extraction solide/liquide) puis appliquées à l'échelle industrielle.
Pour l'extraction liquide/liquide, plusieurs systèmes à deux extractants ont été développés tels que :
- le système DEPA-TOPO, encore connu sous les noms DEHPA-TOPO et D2EHPA-TOPO, et qui correspond à un mélange d'acide di(2-éthylhexyl)phosphorique et d'oxyde de trioctylphosphine (procédé OAK RIDGE, cf. Hurst et al., Industrial and Engineering Chemistry Process Design and Development 1972, 11(1), 122-128, ci-après référence [1]) ;
- le système OPAP qui correspond à un mélange d'acides mono- et dip-octylphénylphosphorique (cf. Arnold et al., Industrial and Engineering Chemistry Process Design and Development 1982, 21, 301-308, ci-après référence [2]) ;
- le système OPPA qui correspond à l'acide dioctylpyrophosphorique (cf. S. Khorfan, Chemical Engineering and Processing 1993, 32, 273-276, ci-après référence [3]) ; et
- le système BiDiBOPP-TOPO ou di-n-HMOPO qui correspond à un mélange d'acide bis(l,3-dibutoxypropane-2-yl)phosphorique et de TOPO (cf. EP-A0 053 054, ci-après référence [4]).
Tous ces systèmes permettent d'extraire l'uranium présent dans de l'acide phosphorique mais avec une sélectivité pour l'uranium(VI) vis-à-vis du fer jugée insuffisante et, dans certains cas, un rendement d'extraction de l'uranium(VI) insuffisamment élevé et une dégradation rapide du solvant utilisé.
Au surplus, l'utilisation de systèmes à deux extractants, avec généralement la nécessité de respecter un rapport molaire optimum entre ces deux extractants, est délicate à gérer.
Le regain d'intérêt porté depuis quelques années à la récupération de l'uranium(VI) présent dans l'acide phosphorique a donc donné lieu à un certain nombre de travaux visant à développer de nouveaux systèmes extractants qui, outre d'être plus performants en termes de rendement d'extraction de l'uranium et de sélectivité pour l'uranium(VI) vis-à-vis du fer que les systèmes extractants précités, soient basés sur l'utilisation d'un seul extractant bifonctionnel.
C'est ainsi qu'il a été proposé d'extraire l'uranium(VI) d'une solution aqueuse phosphorique en utilisant comme extractants :
- des composés comprenant à la fois une fonction amide et une fonction acide phosphonique ou phosphonate reliées l'une à l'autre par un pont alkylène éventuellement substitué par un ou deux groupes hydrocarbonés (cf. WO-A-2013/ 167516, ci-après référence [5]) ; et plus récemment
- des composés comprenant à la fois une fonction oxyde de phosphine et une fonction acide phosphonique ou phosphonate reliées l'une à l'autre par un pont méthylène substitué par un groupe hydrocarboné (cf. WO-A-2016/156593, ciaprès référence [6]).
Dans la référence [6] sont présentés des résultats expérimentaux visant à comparer les propriétés extractantes de l'un des composés décrits dans cette référence avec celles de son homologue amidophosphonate de la référence [5] et qui montrent que ce composé présente une capacité à extraire l'uranium(VI) d'une solution aqueuse d'acide phosphorique nettement supérieure à celle dudit homologue amidophosphonate mais au prix d'une chute importante de la sélectivité pour l'uranium(VI) vis-à-vis du fer.
Dans la perspective d'optimiser les coûts de mise en œuvre à une échelle industrielle d'un procédé visant à récupérer l'uranium(VI) présent dans les solutions aqueuses d'acide phosphorique produit par voie humide, les Inventeurs se sont fixé pour but de fournir de nouveaux composés bifonctionnels qui, tout en extrayant très efficacement l'uranium(VI) d'une solution aqueuse d'acide phosphorique, aient une sélectivité pour l'uranium(VI) vis-à-vis du fer nettement plus élevée que celle que présentent les composés proposés dans la référence [6].
Or, dans le cadre de leurs travaux, les Inventeurs ont constaté que, de manière surprenante, le remplacement de la fonction oxyde de phosphine des composés proposés dans la référence [6] par une fonction thiophosphine conduit à une augmentation importante de la sélectivité d'extraction de ruranium(VI) vis-à-vis du fer et ce, sans effet dommageable sur l'extraction de l'uranium(VI).
Ils ont également constaté que ce remplacement peut de plus, dans certains cas, supprimer la nécessité de recourir à un modificateur de phase pour prévenir la formation d'une troisième phase à l'extraction par démixtion.
Et c'est sur ces résultats qu'est basée l'invention.
EXPOSÉ DE L'INVENTION
L'invention a donc, en premier lieu, pour objet un composé de formule générale (I) :
sz R\l|ll/
R2 I ^OR4
R3d) dans laquelle :
R1 et R2, identiques ou différents, représentent chacun un groupe alkyle linéaire ou ramifié, comprenant de 2 à 16 atomes de carbone ;
R3 représente un groupe alkyle linéaire ou ramifié, comprenant de 1 à 15 atomes de carbone ;
Z représente un atome d'oxygène ou de soufre ; et
R4 représente un atome d'hydrogène, un groupe alkyle linéaire ou ramifié comprenant de 1 à 16 atomes de carbone, un groupe aromatique monocyclique ou un groupe hétéroaromatique monocyclique.
Ainsi, les composés de l'invention ont pour caractéristique de comprendre, d'une part, une fonction thiophosphine et, d'autre part, une fonction qui peut être acide phosphonique, phosphonate, acide thiophosphonique ou thiophosphonate selon que Z représente un atome d'oxygène ou de soufre, ces fonctions étant reliées l'une à l'autre par un groupe méthylène porteur d'un groupe alkyle en Ci à C15.
Dans ce qui précède et ce qui suit, on entend par « groupe alkyle linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone », tout groupe alkyle à chaîne linéaire ou ramifiée qui comprend 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ou 16 atomes de carbone tel qu'un groupe méthyle, éthyle, n-propyle, isopropyle, n-butyle, secbutyle, isobutyle, tert-butyle, n-pentyle, sec-pentyle, isopentyle, n-hexyle, isohexyle, n-heptyle, isoheptyle, n-octyle, isooctyle, n-nonyle, isononyle, n-décyle, isodécyle, n-undécyle, n-dodécyle, n-tridécyle, n-tétradécyle, n-pentadécyle, n-hexadécyle, 2-méthylheptyle, 2-éthylhexyle, 1,5-diméthylhexyle, 2,4,4-triméthylpentyle, 2-méthyl octyle, 2-éthylheptyle, 1,2-diméthylheptyle, 2,6-diméthylheptyle, 3,5,5-triméthylhexyle, 2-méthylnonyle, 3,7-diméthyloctyle, 2,4,6-triméthylheptyle, 2-butylhexyle, etc.
De manière analogue, on entend :
- par « groupe alkyle linéaire ou ramifié, comprenant de 2 à 16 atomes de carbone », tout groupe alkyle à chaîne linéaire ou ramifiée qui comprend 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,13, 14, 15 ou 16 atomes de carbone ; et
- par « groupe alkyle linéaire ou ramifié, comprenant de 1 à 15 atomes de carbone », tout groupe alkyle à chaîne linéaire ou ramifiée qui comprend 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, 14 ou 15 atomes de carbone.
Par ailleurs, on entend par « groupe aromatigue monocydigue », tout groupe à un seul cycle et dont le cycle répond à la règle d'aromaticité de Hückel et présente donc un nombre d'électrons π délocalisés égal à 4n + 2, tel qu'un groupe phényle, benzyle, o-tolyle, m-tolyle, p-tolyle, o-xylyle, m-xylyle ou p-xylyle, tandis que par « groupe hétéroaromatigue monocydigue », on entend tout groupe aromatique tel qu'il vient d'être défini mais dont le cycle comprend un ou plusieurs hétéroatomes, cet ou ces hétéroatomes étant typiquement choisis parmi les atomes d'azote, d'oxygène et de soufre ; un tel groupe hétéroaromatique monocyclique est, par exemple, un groupe furyle, thiophényle, imidazolyle, pyridinyle ou pyrrolyle.
Conformément à l'invention, le nombre total d'atomes de carbone que comprend le composé de formule générale (I) est préférentiellement compris entre 26 et 40 et, mieux encore, entre 26 et 32.
R1 et R2 sont, de préférence, identiques entre eux et représentent chacun un groupe alkyle linéaire ou ramifié qui comprend avantageusement de 6 à 12 atomes de carbone et, mieux encore, de 6 à 10 atomes de carbone, les groupes n-hexyle, n-octyle, 2-éthylhexyle et n-décyle étant tout particulièrement préférés.
Par ailleurs, R3 représente, de préférence, un groupe alkyle linéaire qui comprend de 6 à 12 atomes de carbone et, mieux encore, de 6 à 10 atomes de carbone, le groupe n-heptyle étant tout particulièrement préféré.
Z représente, de préférence, un atome d'oxygène tandis que R4 représente, de préférence, un groupe alkyle linéaire ou ramifié qui comprend de 2 à atomes de carbone et, mieux encore, de 2 à 10 atomes de carbone, les groupes éthyle, n-butyle, n-hexyle, n-octyle, 2-éthylhexyle et n-décyle étant tout particulièrement préférés.
Des composés qui répondent à ces préférences sont par exemple :
- le composé dénommé ci-après S2, dans lequel R1 et R2 représentent chacun un groupe n-octyle, R3 représente un groupe n-heptyle, Z représente un atome d'oxygène et R4 représente un groupe éthyle ; et
- le composé dénommé ci-après S8, dans lequel R1 et R2 représentent chacun un groupe n-octyle, R3 représente un groupe n-heptyle, Z représente un atome d'oxygène et R4 représente un groupe n-octyle.
Conformément à l'invention, les composés de formule générale (I) peuvent être obtenus par un premier procédé de synthèse qui comprend :
- la réaction d'un composé de formule générale (II) :
Rko XP—CH2R3
R2(H) dans laquelle R1, R2 et R3 sont tels que définis dans la formule générale (I), avec du soufre pour obtenir un composé de formule générale (III) :
XP—CH2R3
R2(HD;
- la réaction du composé de formule générale (III) avec un composé de formule générale (IV) :
H^OR4
Ha< OR4 (|V) dans laquelle Z représente un atome d'oxygène ou de soufre, R4 représente un groupe alkyle linéaire ou ramifié comprenant de 1 à 16 atomes de carbone, un groupe aromatique monocyclique ou un groupe hétéroaromatique monocyclique, et Hal représente un atome d'halogène, pour obtenir un composé de formule générale (V) :
R<H Π /OR4
l'hydrolyse du composé de formule générale (V) pour transformer au moins l'un des deux groupes -OR4 en un groupe hydroxyle -OH.
En variante, les composés de formule générale (I) peuvent également être obtenus par un deuxième procédé de synthèse qui comprend :
- la réaction d'un composé de formule générale (VI) :
/Ρ-Νχ ci Alk (VI) dans laquelle Alk représente un groupe alkyle quelconque, par exemple méthyle, éthyle ou isopropyle, avec :
• si R1 et R2 sont identiques entre eux dans le composé de formule générale (I), un composé organométallique comprenant un groupe alkyle linéaire ou ramifié, ayant de 2 à 16 atomes de carbone, et • si R1 et R2 sont différents l'un de l'autre dans le composé de formule générale (I), un premier et un deuxième composé organométallique comprenant chacun un groupe alkyle linéaire ou ramifié, ayant de 2 à 16 atomes de carbone, le groupe alkyle du deuxième composé organométallique étant différent du groupe alkyle du premier composé organométallique, pour obtenir un composé de formule générale (VII) :
dans laquelle R1 et R2, identiques ou différents, représentent un groupe alkyle linéaire ou ramifié, comprenant de 2 à 16 atomes de carbone ;
la complexation du composé de formule générale (VII) par le borane, par exemple par réaction avec du diméthylsulfure de borane, puis acidolyse pour obtenir un composé de formule générale (VIII) :
(VIII);
- la réaction du composé de formule générale (VIII) avec un composé de formule générale (IX) :
H/OR4 r’ch/^oR4 (ix) dans laquelle R3 représente un groupe alkyle linéaire ou ramifié, comprenant de 1 à atomes de carbone, Z représente un atome d'oxygène ou de soufre et R4 représente un groupe alkyle linéaire ou ramifié comprenant de 1 à 16 atomes de carbone, un groupe aromatique monocyclique ou un groupe hétéroaromatique monocyclique, pour obtenir un composé de formule générale (X) :
- la réaction du composé de formule générale (X) avec du soufre pour obtenir un composé de formule générale (XI) :
R (XI) ; et
- l'hydrolyse du composé de formule générale (XI) pour transformer au moins l'un des deux groupes -OR4 en un groupe hydroxyle (-OH).
Aussi, l'invention a-t-elle également pour objet ces deux procédés de synthèse, lesquels sont illustrés sur les figures 1 et 2 jointes en annexe et décrits de façon détaillée dans l'exemple I ci-après.
Les composés de l'invention se sont révélés extraire très efficacement l'uranium(VI) d'une solution aqueuse fortement acide telle qu'une solution aqueuse à 30% massiques d'anhydride phosphorique (P2O5) et ce, avec une très forte sélectivité visà-vis du fer.
L'invention a donc encore pour objet l'utilisation des composés de l'invention en tant qu'extractants de l'uranium(VI) et, en particulier, pour extraire l'uranium(VI) d'une solution aqueuse comprenant de l'acide phosphorique.
Cette solution aqueuse, qui comprend, de préférence, de 3 mol/L à 8 mol/L d'acide phosphorique, peut notamment être une solution qui résulte de l'attaque d'un phosphate naturel par l'acide sulfurique.
Ainsi, les composés de l'invention peuvent notamment être utilisés dans un procédé permettant de récupérer l'uranium présent dans une solution aqueuse d'acide phosphorique issue de l'attaque d'un phosphate naturel par l'acide sulfurique, lequel procédé comprend :
a) une extraction de l'uranium, à l'état d'oxydation VI, de la solution aqueuse par mise en contact de la solution aqueuse avec une phase organique comprenant un composé tel que précédemment défini, puis séparation de la solution aqueuse de la phase organique ;
b) un lavage de la phase organique obtenue à l'issue de l'étape a) par mise en contact de la phase organique avec une solution aqueuse, par exemple une solution aqueuse d'acide sulfurique ou une solution aqueuse d'oxalate d'ammonium, puis séparation de la phase organique de la solution aqueuse ; et
c) une désextraction de l'uranium(VI) présent dans la phase organique obtenue à l'issue de l'étape b) par mise en contact de la phase organique avec une solution aqueuse comprenant un carbonate, par exemple un carbonate d'ammonium ou de sodium, puis séparation de la phase organique de la solution aqueuse.
Dans ce procédé, le composé de l'invention est avantageusement utilisé à une concentration allant de 0,05 mol/L à 0,5 mol/L et, mieux encore, de 0,1 mol/L à 0,2 mol/L, dans un diluant organique, lequel diluant est, de préférence, un hydrocarbure acyclique ou un mélange d'hydrocarbures acycliques, par exemple le n-dodécane, le tétrapropylène hydrogéné (TPH), le kérosène ou l'Isane™ IP-185.
La solution aqueuse d'acide phosphorique, qui est utilisée à l'étape a), comprend, de préférence, de 3 mol/L à 8 mol/L d'acide phosphorique. La solution aqueuse qui est utilisée à l'étape b), peut comprendre de 0,1 mol/L à 6 mol/L d'acide sulfurique ou de 0,1 à 0,5 mol/L d'oxalate d'ammonium, tandis que la solution aqueuse de carbonate, qui est utilisée à l'étape c), peut comprendre de 0,1 mol/L à 1,5 mol/L de carbonate.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture du complément de description qui suit, qui se rapporte à des exemples de synthèse de composés de l'invention et de démonstration de leurs propriétés et qui est donné en référence aux figures annexées.
Bien entendu, ce complément de description n'est fourni qu'à titre d'illustration de l'objet de l'invention et ne constitue en aucun cas une limitation de cet objet.
BRÈVE DESCRIPTION DES FIGURES
La figure 1 illustre le premier procédé de synthèse de l'invention.
La figure 2 illustre le deuxième procédé de synthèse de l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
EXEMPLE I : SYNTHÈSE DES COMPOSÉS DE L'INVENTION
1.1 - Procédés de synthèse :
Les composés de l'invention peuvent notamment être obtenus par les deux procédés de synthèse dits ci-après « procédé de synthèse 1 » et « procédé de synthèse 2 » et qui sont respectivement illustrés sur les figures 1 et 2.
Les procédés de synthèse 1 et 2 peuvent être utilisés pour synthétiser tous les composés de formule générale (I) quelles que soient les significations de R1, R2, R3, Z et R4.
* Procédé de synthèse 1 :
Comme visible sur la figure 1, ce procédé de synthèse comprend dans une première étape, notée A, la réaction d'une phosphine de trialkyle, notée 10, de formule (R1)(R2)P(CH2R3) dans laquelle R1, R2 et R3 sont tels que définis dans la formule générale (I), avec du soufre, par exemple sous la forme de soufre S8, pour obtenir le composé noté 11. Cette réaction est, par exemple, réalisée dans du dichlorométhane.
Puis, dans une deuxième étape, notée B sur la figure 1, le composé 11 est mis à réagir avec un halogéno(thio)phosphate de dialkyle, noté 12, de formule (Hal)P(Z)(OR4)2 dans laquelle Z représente un atome d'oxygène ou de soufre, R4 est tel que défini dans la formule générale (I) mais est différent d'un atome d'hydrogène et Hal représente un atome d'halogène tel qu'un atome de chlore ou de brome, pour obtenir, après hydrolyse du mélange réactionnel par un acide fort tel que HCl, le composé noté
13. Cette réaction est, par exemple, réalisée en présence d'un amidure tel que le diisopropylamidure de lithium (ou LDA), qui est apporté dans le milieu réactionnel sous la forme de n-butyllithium et de diisopropylamine, dans du tétrahydrofurane (ou THF).
Lorsque l'halogéno(thio)phosphate de dialkyle 12 n'est pas disponible commercialement, alors celui-ci peut être préalablement obtenu en faisant réagir le trihalogénure correspondant P(Z)(Hal3) avec 2 équivalents d'un alcool de formule R4OH dans laquelle R4 est tel que défini dans la formule générale (I) mais est différent d'un atome d'hydrogène. Cette réaction est, par exemple, réalisée en présence de triéthylamine dans de l'éther diéthylique.
Le composé 13 obtenu à l'étape B est ensuite soumis :
- soit à une étape d'hydrolyse partielle, notée C sur la figure 1, que l'on réalise avec une base forte, par exemple de la soude ou de la potasse en milieu alcoolique (par exemple, éthanolique), ou bien avec de l'iodure de sodium Nal en milieu alcoolique (par exemple, isopropanolique), pour obtenir le composé noté 14 qui correspond aux composés de formule générale (I) dans laquelle R4 est différent d'un atome d'hydrogène ;
- soit à une étape d'hydrolyse totale, notée D sur la figure 1, que l'on réalise avec un halogénure de triméthylsilyle, par exemple le bromure de triméthylsilyle (ou TMSBr), pour obtenir le composé noté 15 qui correspond aux composés de formule générale (I) dans laquelle R4 représente un atome d'hydrogène.
* Procédé de synthèse 2 :
Comme visible sur la figure 2, ce procédé de synthèse comprend dans une première étape, notée A, la réaction d'une dialkylaminodichlorophosphine, notée 20, de formule (CI2)P(N(Alk)2) dans laquelle Alk représente un groupe alkyle quelconque, par exemple méthyle, éthyle ou isopropyle, avec :
- soit 2 équivalents d'un composé organométallique comprenant un groupe alkyle linéaire ou ramifié, ayant de 2 à 16 atomes de carbone, dans le cas où R1 et R2 sont identiques entre eux dans le composé de formule générale (I),
- soit 1 équivalent d'un premier composé organométallique puis 1 équivalent d'un deuxième composé organométallique, chacun des premier et deuxième composés organométalliques comprenant un groupe alkyle linéaire ou ramifié, ayant de 2 à 16 atomes de carbone, le groupe alkyle du premier composé organométallique étant différent du groupe alkyle du deuxième composé organométallique, dans le cas où R1 et R2 sont différents dans le composé de formule générale (I).
Est ainsi obtenu le composé noté 21 sur la figure 2.
Le ou les composés organométalliques susceptibles d'être utilisés à l'étape A sont, par exemple, des organomagnésiens de formule RMgHal dans laquelle R représente le groupe alkyle en C2 à Ci2 tandis que Hal représente un atome d'halogène, par exemple de chlore, de brome ou d'iode, ou bien des organolithiens de formule RLi dans laquelle R représente le groupe alkyle en C2 à C12 (et. J. M. Denis et al, Tetrahedron Letters 1995, 36, 4421-4424, référence [7] ; A. Kostyuk et al, European Journal of Inorganic Chemistry 2016, 628-632, référence [8]).
Lorsque la dialkylaminodichlorophosphine 20 n'est pas disponible commercialement, alors elle peut être préalablement obtenue en faisant réagir la dialkylamine correspondante HN(Alk)2 avec du trichlorure de phosphore PCI3 comme décrit par R. B. King et N. D. Sadanani dans Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 1985,15(2), 149-153, référence [9], ou par A. B. Burg et al dans Journal of the American ChemicalSociety 1958, 80 (5), 1107-1109, référence [10].
Dans une deuxième étape, notée B sur la figure 2, le composé 21 est complexé par le borane, par exemple par réaction avec du diméthylsulfure de borane, pour obtenir, après hydrolyse du mélange réactionnel avec de l'eau, le composé noté 22.
Dans une troisième étape, notée C sur la figure 2, le composé 22 est soumis à une acidolyse, par exemple par un excès d'acide chlorhydrique sec en solution dans le toluène, pour donner le composé noté 23.
Dans une quatrième étape, notée D sur la figure 2, le composé 23 est mis à réagir avec un alkyl(thio)phosphonate de dialkyle, noté 24, de formule (R3CH2)P(Z)(OR4)2 dans laquelle Z représente un atome d'oxygène ou de soufre, R3 et R4 sont tels que définis dans la formule générale (I) à ceci près que R4 est différent d'un atome d'hydrogène, pour obtenir, après hydrolyse du mélange réactionnel par de l'eau ou du chlorure d'ammonium faiblement concentré (10%), le composé noté 25. Cette réaction est, par exemple, réalisée dans un mélange de THF et d'hexane, en présence de n-butyllithium qui va permettre de déprotonerau préalable le composé 24.
Lorsque l'alkyl(thio)phosphonate de dialkyle 24 n'est pas disponible commercialement, alors celui-ci peut être préalablement obtenu en faisant réagir le dihalogénure correspondant (R3CH2)P(Z)(Hal)2 avec 2 équivalents d'un alcool de formule R4OH dans laquelle R4 est tel que défini dans la formule générale (I) mais est différent d'un atome d'hydrogène. Cette réaction est, par exemple, réalisée en présence d'une base organique ou minérale dans de l'éther diéthylique ou dans l'alcool correspondant.
L'alkyl(thio)phosphonate de dialkyle 24 peut aussi être synthétisé à partir de son dérivé (R3CH2)P(O)(Hal)2 correspondant, qui sera mis en présence du réactif de Lawesson.
Puis, dans une cinquième étape, notée E sur la figure 2, le composé 25 est mis à réagir avec du soufre, par exemple sous la forme S8, en présence de l,4-diazabicyclo[2.2.2]octane (ou DABCO) ou d'octène, pour obtenir le composé noté 26. Cette réaction est, par exemple, réalisée dans le toluène ou l'octène.
Le composé 26 obtenu à l'étape E est ensuite soumis :
- soit à une étape d'hydrolyse partielle, notée F sur la figure 2, que l'on réalise avec une base forte, par exemple de la soude ou de la potasse en milieu alcoolique (par exemple, éthanolique), ou bien avec de l'iodure de sodium Nal en milieu alcoolique (par exemple, isopropanolique), pour obtenir le composé noté 27 qui correspond aux composés de formule générale (I) dans laquelle R4 est différent d'un atome d'hydrogène ;
- soit à une étape d'hydrolyse totale, notée G sur la figure 2, que l'on réalise avec un halogénure de triméthylsilyle, par exemple le TMSBr, pour obtenir le composé noté 28 qui correspond aux composés de formule générale (I) dans laquelle R4 représente un atome d'hydrogène.
1.2 - Synthèse du composé S2 :
Le composé S2, qui répond à la formule générale (I) dans laquelle R1 = R2 = n-octyle, R3 = n-heptyle, Z = O et R4 = éthyle, est synthétisé en mettant en œuvre les étapes A, B et C du procédé de synthèse 1.
* Étape A :
Une solution de 11,84 g (31,9 mmol) de tri-n-octylphosphine (composé 10 dans lequel R1 = R2 = R3 = n-octyle et qui est disponible commercialement) et de 1,24 g (38,7 mmol) de soufre dans 120 mL de dichlorométhane fraîchement distillé est agitée pendant une nuit à température ambiante, filtrée sur millipore puis évaporée sous pression réduite pour conduire à 12,6 g du composé 11 dans lequel R4= R2 = R3 = n-octyle, sous la forme d'une huile incolore (Rdt : 98 %). La caractérisation de ce composé par RMN du 31P est donnée ci-après.
RMN 31P (600 MHz, CDCI3) : δ (ppm) = +48,6 (s) * Étape B :
mL (47,5 mmol) d'une solution de n-butyllithium sont additionnés à une solution de 4,9 g (48,5 mmol) de diisopropylamine dans 26 mL de THF à 0°C. La solution obtenue est additionnée à une solution de 3,8 g (9,5 mmol) du composé 11 dans 35 mL de THF refroidi à 0°C sous argon. Puis, 7,0 g (40,4 mmol) de chlorophosphate de diéthyle (composé 12 dans lequel Z = O, R4 = éthyle et qui est disponible commercialement) sont ensuite additionnés. Après une nuit d'agitation à température ambiante, le mélange est hydrolysé par addition de 50 mL d'acide chlorhydrique 1 M. Le mélange acide est concentré à l'évaporateur rotatif, puis dilué par addition de 50 mL d'eau et de 50 mL de dichlorométhane. La phase aqueuse est de nouveau extraite par 3 x 20 mL de dichlorométhane. Les phases organiques réunies sont séchées sur MgSO4, filtrées sur coton et évaporées sous pression réduite puis le résidu obtenu est purifié par chromatographie sur gel de silice (éluant : heptane/acétate d'éthyle 9/1) pour donner 2,35 g du composé 13 dans lequel R1 = R2 = n-octyle, R3 = n-heptyle, Z = O, R4 = éthyle, sous la forme d'une huile jaune (Rdt : 46 %). Les caractérisations de ce composé par RMN du 1H et du 31P sont données ci-après.
RMN 2H (300 MHz, CDCI3) : δ (ppm) = 0,89 (t, J = 6,9 Hz, 9H, CH3), 1,29-1,39 (m, 36H, CH2, CH3), 1,60-1,81 (m, 5H, CH2, CH), 1,93-2,38 (m, 6H, CH2,), 4,07-4,20 (m, 4H, OCH2)
RMN 31P (202 MHz, CDCI3) : δ (ppm) = +56,7 (s), +25,7 (s) * Étape C :
Une solution de 1,16 g (2,16 mmol) du composé 13 et 3,33 g (22,2 mmol) d'iodure de sodium dans 15 mL d'isopropanol est chauffée à 110°C pendant trois jours, puis refroidie à température ambiante. Le solvant est évaporé sous pression réduite, puis le résidu obtenu est repris dans 40 mL de dichlorométhane, lavé avec 40 mL d'une solution d'acide chlorhydrique 1 M, puis avec 40 mL d'eau et finalement avec 40 mL d'une solution saturée de NaCI. Les phases organiques réunies sont séchées sur MgSO4/ filtrées sur coton puis évaporées pour fournir 1,08 g du composé S2 sous la forme d'une huile jaune (Rdt : 98 %). Les caractérisations de ce composé sont données ci-après.
RMN 2H (600 MHz, CDCI3) : δ (ppm) = 0,85 (m, 9H, CH3), 1,15-1,42 (m, 35H, CH2, CH3), 1,51-1,83 (m, 6H, CH2), 1,84-2,08 (m, 2H, CH2), 2,09-2,42 (m, 1H, CH), 4,12 (dq, J = 7,3,
12.1 Hz, 2H, OCH2), 10,32 (s, 1H, OH)
RMN 23C (75 MHz, CDCI3) : δ (ppm) = 61,8 (d, J = 7,2 Hz, OCH2), 38,5 (dd, J = 131,0 Hz,
34,3 Hz, CH), 14,1, 16,3 (d, J = 6,7 Hz, CH3), 22,5 (d, J = 4,0 Hz), 22,6 (d, J = 3,8 Hz), 22,7, 25,3, 29,1, 29,2, 29,3, 29,4, 30,0, 30,7 (d, J = 2,2 Hz), 30,7, 30,8 (d, J = 1,9 Hz), 31,0 (d, J =
16.2 Hz), 31,1 (d, J = 15,9 Hz), 31,3, 31,9, 32,0
RMN 32P (242,97 MHz, CDCI3) : δ (ppm) = +55,8 (d, J = 1 Hz), +28,7 (d, J = 1 Hz) HRMS (m/z) : [M+H]+ : calculée pourCzeHseOsPzS = 511,3498 ; trouvée = 511,3479
1.3 - Synthèse du composé S8 :
Le composé S8, qui répond à la formule générale (I) dans laquelle R1 = R2 = n-octyle, R3 = n-heptyle, Z = O et R4 = n-octyle, est synthétisé en mettant en œuvre les étapes A, B et C du procédé de synthèse 1.
* Étape A :
Cette étape, qui consiste à synthétiser le composé 11 dans lequel RT= R2 = R3 = n-octyle, est identique à l'étape A décrite au point 1.2 ci-avant.
* Étape B :
8,4 mL de n-butyllithium (21 mmol) sont additionnés à une solution de mL de diisopropylamine (21 mmol) dans 10 mL de THF refroidie à 0°C. La solution obtenue est additionnée à une solution de 3,38 g (8,4 mmol) du composé 11 dans 20 mL de THF refroidie à 0°C. Puis, 5,25 g (16 mmol) de chlorophosphate de di-n-octyle (composé 12 dans lequel Z = O, R4 = n-octyle, ayant été préalablement obtenu par réaction du chlorure de phosphoryle P(O)CI3 avec deux équivalents de n-octanol) sont additionnés. Après 15 heures d'agitation à température ambiante, le milieu réactionnel est hydrolysé par addition de 20 mL d'acide chlorhydrique 1 M. Le mélange acide est concentré à l'évaporateur rotatif, puis dilué par 50 mL d'eau et extrait par 2 x 50 mL de dichlorométhane. Les phases organiques sont ensuite séchées, filtrées et évaporées sous vide. Le produit brut est purifié par chromatographie sur silice (éluant : éther de pétrole/acétate d'éthyle 99:1 à 95:5) pour obtenir 1,82 g du composé 13 dans lequel R1 = R2 = n-octyle, R3 = n-heptyle, Z = O, R4 = n-octyle, sous la forme d'une huile incolore (Rdt : 46 %). Les caractérisations de ce composé sont données ci-après.
RMN2H (300 MHz, CDCIs) : δ (ppm) = 0,84-0,91 (m, 15H, CH3), 1,21-1,50 (m, 48H, CH2), 1,52-1,85 (m, 11H, CH2), 1,98-2,14 (m, 4H, CH2), 2,23-2,42 (m, 2H, CH2), 4,02-4,14 (m, 4H, CH2O)
RMN13C (125.76 MHz, CDCI3) : ô(ppm) = 14,0 (CH3), 14,1 (CH3), 22,5 (t, J = 5,8 Hz, CH2),
22,6 (CH2), 25,4 (d, J = 3,4 Hz, CH2), 25,7 (d, J = 3,1 Hz, CH2), 29,0 (CH2), 29,1 (CH2), 29,2 (d, J = 5,4 Hz, CH2), 29,3 (CH2), 30,3 (d, J = 49,3 Hz, PCH2), 30,6 (d, J = 6,35 Hz, CH2), 30,9 (d, J = 15,9 Hz, CH2), 31,0 (CH2), 31,1 (CH2), 31,7 (d, J = 52,7 Hz, CH2), 31,8 (CH2), 31,9 (CH2),
38,6 (dd, J = 34,9, 127,9 Hz, CH), 66,3 (OCH2), 66,4 (d, J = 1,9 Hz, OCH2)
RMN31P (150,94 MHz, CDCI3) : ô(ppm) = +56,80 (si), +25,68 (s) IRFTfcm1) = 2954, 2924, 2855, 2361, 2338, 1634, 1556, 1378, 1245, 1149, 1113, 992, 924, 847, 803, 761, 730, 681
HRMS (m/z) : [M+Na]+ : calculée pour C40H84O3NaiP2S = 729,5509 ; trouvée = 729,5489 * Étape C :
À une solution de 10,4 g (14,7 mmol) du composé 13 dans 60 mL d'isopropanol sont ajoutés 22 g (147 mmol) de Nal. Après 3 jours d'agitation à 110°C, le mélange réactionnel est refroidi à température ambiante et le solvant évaporé. Le résidu obtenu est dissous dans 50 mL de cyclohexane, filtré puis le solvant est évaporé. L'opération est répétée avec 50 mL de dichlorométhane et la solution est filtrée puis lavée avec 50 mL d'acide chlorhydrique 1 M. La phase aqueuse est extraite par 50 mL supplémentaires de dichlorométhane. Après filtration et évaporation, le produit brut est purifié par chromatographie sur gel de silice (éluant : éther de pétrole/acétate d'éthyle 98:2 à 70:30 auquel est ajouté 1 % d'acide acétique) pour obtenir 5,2 g du composé S8 sous la forme d'une huile jaune (Rdt : 59 %). Les caractérisations de ce composé sont données ci-après.
RMN2H (300 MHz, CDCIs) : δ (ppm) = 0,79-0,82 (m, 12H, CH3), 1,13-1,37 (m, 40H, CH2), 1,49-1,67 (m, 8H, CH2), 1,82-1,99 (m, 3H, CH2,CH), 2,02-2,18 (m, 2H, CH2), 3,99 (d, J = 5,61 Hz, 2H, CH2O)
RMN13C (125,76 MHz, CDCI3) : δ (ppm) = 14,0 (CH3), 14,1 (CH3), 22,6 (CH2), 25,3 (CH2), 25,8 (CH2), 25,7 (d, J = 3,1 Hz, CH2), 29,0 (CH2), 29,2 (d, J = 7,4 Hz, CH2), 29,4 (CH2), 30,0 (CH2), 30,5 (d, J = 6,03 Hz, CH2), 30,6 (d, J = 7,4 Hz, CH2), 30,9 (CH2), 31,0 (CH2), 31,2 (CH2), 31,6 (CH2), 31,8 (CH2), 31,9 (CH2), 38,5 (dd, J = 32,9, 131,7 Hz CH), 65,6 (d, J = 3,8 Hz, OCH2) RMN 31P (150.94 MHz, CDCI3) : δ (ppm) = +55,69 (s), +28,77 (s) /RFT (cm1) : 3355, 2954, 2923, 2854, 2390, 2166, 1641, 1460, 1379, 1197, 1145, 1115, 980, 847, 794, 757, 719
HRMS (m/z) : [M+H]+ : calculée pour C32H69O4P2 = 579,4666 ; trouvée = 579,4653
EXEMPLE II : PROPRIÉTÉS DES COMPOSÉS DE L'INVENTION
Les propriétés des composés de l'invention sont mises en évidence par des tests d'extraction que l'on réalise en utilisant :
- comme phases organiques : des solutions comprenant soit 0,125 mol/L du composé S2 soit 0,125 mol/L du composé S8 soit encore 0,5 mol/L du composé S8 dans de l'Isane™ IP-185 ; et
- comme phases aqueuses : des aliquotes d'une solution aqueuse d'acide phosphorique industriel marocain comprenant 30 % massiques de P2O5 (soit 4,8 mol/L H3PO4), 144 mg /L d'uranium(VI) et 2, 17 g/L de fer(lll).
Ces tests d'extraction sont réalisés en mettant en contact dans des tubes, 2,5 mL de chaque phase organique avec 10 mL de chaque phase aqueuse pendant une heure sous agitation, à 25°C. Après quoi, les phases organiques et aqueuses sont séparées par décantation gravitaire en moins de 3 minutes.
Les concentrations en uranium et en fer sont mesurées par spectrométrie d'émission atomique par torche à plasma (ou ICP-AES) dans la solution aqueuse d'acide phosphorique avant que les aliquotes de cette solution ne soient mises en contact avec les phases organiques et dans les phases aqueuses après leur séparation des phases organiques.
À partir des résultats de ces mesures, on détermine les coefficients de distribution de l'uranium et du fer et les facteurs de séparation entre l'uranium et le fer et ce, conformément aux conventions du domaine des extractions liquide-liquide, à savoir que :
- le coefficient de distribution d'un élément métallique M, noté DM, entre deux phases, respectivement organique et aqueuse, est égal à :
_ [MJorg, M ’ [M]aq.
avec :
[M]org. = concentration de l'élément métallique dans la phase organique (en g/L) ; et [M]aq. = concentration de l'élément métallique dans la phase aqueuse (en g/L) ;
- le facteur de séparation entre deux éléments métalliques Ml et M2, noté FSmi/mz, est égal à :
DM1
F$M1/M2 =7j UM2 avec :
Dmi = coefficient de distribution de l'élément métallique Ml ; et
Dm2 = coefficient de distribution de l'élément métallique M2.
À titre de comparaison, des tests d'extraction sont également réalisés dans des conditions expérimentales strictement identiques à celles décrites ci-dessus en utilisant comme phases organiques :
- une phase organique comprenant 0,125 mol/L d'un composé, dit ciaprès C2, ne se différenciant du composé S2 qu'en ce qu'il comprend une fonction oxyde de phosphine en lieu et place de la fonction thiophosphine du composé S2, dans de l'Isane™ IP-185 ;
- une phase organique comprenant 0,125 mol/L d'un composé, dit ciaprès C8, ne se différenciant du composé S8 qu'en ce qu'il comprend une fonction oxyde de phosphine en lieu et place de la fonction thiophosphine du composé S8, dans de l'Isane™ IP-185; et
- une phase organique comprenant 0,125 mol/L du composé C2 et 0,1 mol/L d'acide bis(2,4,4-triméthylpentyl)phosphinique, encore connu sous le nom Cyanex 272, dans de l'Isane™ IP-185.
Les résultats de ces différents tests d'extraction sont présentés dans le tableau I ci-après.
Tableau I
Composés testés [C] (mol/L) Du Dpe FSu/Fe jème phase
Composés de l'invention S o Oct\H H/OH /Ρ'Ύ'Ρ\ Oct T OEt Hept S2 0,125 10,2 0,1 92 NON
S O Oct\l| H/OH Oct I Oct Hept S8 0,125 0,5 18.5 43.5 0,11 0,33 167 132 NON NON
Composés comparatifs O O Oct\l| Il/OH Oct T OEt Hept C2 0,125 25,3 0,7 37 OUI
0 0 Oct\l| |I/OH Oct I Oct Hept C8 0,125 24,1 1,0 24 NON
C2 + Cyanex 272 0,125 + 0,1 42,8 1,0 43 NON
Oct = n-octyle ; Hept = n-heptyle ; Et = éthyle
Ce tableau montre qu'à concentrations égales (0,125 mol/L), les composés de l'invention S2 et S8 extraient sensiblement moins bien l'uranium que les composés C2 et C8 mais extraient beaucoup moins fortement le fer(lll) que ces derniers en sorte que les facteurs de séparation U/Fe obtenus pour les composés S2 et S8 sont nettement plus élevés que ceux obtenus pour les composés C2 et C8 (92 pour S2 versus 37 pour C2 ; 167 pour S8 versus 24 pour C8).
II montre également qu'à concentrations identiques (0,125 mol/L), le composé C2 conduit à la formation d'une troisième phase à l'extraction (sauf à utiliser ce composé conjointement avec un modificateur de phase tel que le Cyanex 272), ce qui n'est pas le cas du composé S2.
Ainsi, la présence d'une fonction thiophosphine en lieu et place de la fonction oxyde de phosphine que présentent les composés proposés dans la référence [6] se traduit par une augmentation importante de la sélectivité d'extraction de l'uranium vis-à-vis du fer(lll) et permet de plus de supprimer la nécessité de recourir à un modificateur de phase pour prévenir toute formation d'une troisième phase.
Ce tableau montre en outre qu'à concentrations égales (0,125 mol/L), le composé S8 conduit à un coefficient de distribution de l'uranium plus élevé que celui obtenu pour le composé S2 (18,5 versus 10,2) mais sans modification sensible du coefficient de distribution du fer(lll), d'où l'obtention d'un facteur de séparation U/Fe significativement plus élevé pour le composé S8 (167 versus 92).
Ce résultat, qui s'explique par une plus grande lipophilie du composé S8 par rapport à celle du composé S2, liée à l'allongement de la chaîne alkyle de la fonction phosphonate (n-octyle versus éthyle) que présentent ces composés, permet d'entrevoir la possibilité d'obtenir une sélectivité d'extraction de l'uranium vis-à-vis du fer(lll) encore plus élevée en augmentant encore cette lipophilie, par exemple par l'introduction d'un ou de deux atomes de carbone supplémentaires dans la chaîne alkyle de la fonction phosphonate du composé S8.
RÉFÉRENCES CITÉES [1] F. J. Hurst et al., Industrial & Engineering Chemistry Process Design and Development 1972, 11(1), 122-128 [2] W. D. Arnold et al., Industrial and Engineering Chemistry Process Design and Development 1982, 21, 301-308 [3] S. Khorfan, Chemical Engineering and Processing 1993, 32, 273-276 [4] Demande de brevet EP 0 053 054 [5] Demande internationale PCT WO-A-2013/167516 [6] Demande internationale PCT WO-A-2016/156593 [7] J. M. Denis et al, Tetrahedron Letters 1995, 36, 4421-4424 [8] A. Kostyuk et al, European Journal of Inorganic Chemistry 2016, 628-632 [9] R. B. King et N. D. Sadanani, Synthesis and Reactivity in Inorganic and Metal-Organic
Chemistry 1985, 15(2), 149-153 [10] A. B. Burg et al, Journal ofthe American Chemical Society 1958, 80 (5), 1107-1109

Claims (16)

1. Composé de formule générale (I) :
d S Z R\l| H/0H
R2 T OR4
R3 (I) dans laquelle :
R1 et R2, identiques ou différents, représentent chacun un groupe alkyle linéaire ou ramifié, comprenant de 2 à 16 atomes de carbone ;
R3 représente un groupe alkyle linéaire ou ramifié, comprenant de 1 à 15 atomes de carbone ;
Z représente un atome d'oxygène ou de soufre ; et
R4 représente un atome d'hydrogène, un groupe alkyle linéaire ou ramifié comprenant de 1 à 16 atomes de carbone, un groupe aromatique monocyclique ou un groupe hétéroaromatique monocyclique.
2. Composé selon la revendication 1, dans lequel R1 et R2 sont identiques entre eux.
3. Composé selon la revendication 1 ou la revendication 2, dans lequel R1 et R2 représentent chacun un groupe alkyle linéaire ou ramifié, comprenant de 6 à 12 et, mieux encore, de 6 à 10 atomes de carbone, de préférence n-hexyle, n-octyle, 2-éthylhexyle ou n-décyle.
4. Composé selon l'une quelconque des revendications 1 à 3, dans lequel R3 représente un groupe alkyle linéaire, comprenant de 6 à 12 et, mieux encore, de 6 à 10 atomes de carbone, de préférence n-heptyle.
5. Composé selon l'une quelconque des revendications 1 à 4, dans lequel Z représente un atome d'oxygène.
6. Composé selon l'une quelconque des revendications 1 à 5, dans lequel R4 représente un groupe alkyle linéaire ou ramifié, comprenant de 2 à 12 et, mieux encore, de 2 à 10 atomes de carbone, de préférence éthyle, n-butyle, n-hexyle, n-octyle, 2-éthylhexyle ou n-décyle.
7. Composé selon l'une quelconque des revendications 1 à 6, qui est choisi parmi :
- le composé dans lequel R1 et R2 représentent chacun un groupe n-octyle, R3 représente un groupe n-heptyle, Z représente un atome d'oxygène et R4 représente un groupe éthyle ; et
- le composé dans lequel R1 et R2 représentent chacun un groupe n-octyle, R3 représente un groupe n-heptyle, Z représente un atome d'oxygène et R4 représente un groupe n-octyle.
8. Procédé de synthèse d'un composé de formule générale (I) selon la revendication 1, qui comprend :
- la réaction d'un composé de formule générale (II) :
Rk o XP—CH2R3
R2 (H) dans laquelle R1 et R2, identiques ou différents, représentent un groupe alkyle linéaire ou ramifié, comprenant de 2 à 16 atomes de carbone, et R3 représente un groupe alkyle linéaire ou ramifié, comprenant de 1 à 15 atomes de carbone, avec du soufre pour obtenir un composé de formule générale (III) :
R<S XP—CH2R3
R2 (HD;
- la réaction du composé de formule générale (III) avec un composé de formule générale (IV) :
H^OR4
Ha< OR4 (|V) dans laquelle Z représente un atome d'oxygène ou de soufre, R4 représente un groupe alkyle linéaire ou ramifié comprenant de 1 à 16 atomes de carbone, un groupe aromatique monocyclique ou un groupe hétéroaromatique monocyclique, et Hal représente un atome d'halogène, pour obtenir un composé de formule générale (V) :
R (V) ;
- l'hydrolyse du composé de formule générale (V) pour transformer au moins l'un des deux groupes -OR4 en un groupe hydroxyle.
9. Procédé de synthèse d'un composé de formule générale (I) selon la revendication 1, qui comprend :
- la réaction d'un composé de formule générale (VI) :
CL .Alk /P-N
Cl Alk (VI) dans laquelle Alk représente un groupe alkyle quelconque avec :
• un composé organométallique comprenant un groupe alkyle linéaire ou ramifié, ayant de 2 à 16 atomes de carbone, si R1 et R2 sont identiques entre eux dans le composé de formule générale (I), • un premier et un deuxième composé organométallique comprenant chacun un groupe alkyle linéaire ou ramifié, ayant de 2 à 16 atomes de carbone, le groupe alkyle du deuxième composé organométallique étant différent du groupe alkyle du premier composé organométallique, si R1 et R2 sont différents l'un de l'autre dans le composé de formule générale (I), pour obtenir un composé de formule générale (VII) :
R1 .Alk ,/P_Nx
R2 Alk (vu) dans laquelle R1 et R2, identiques ou différents, représentent un groupe alkyle linéaire ou ramifié, comprenant de 2 à 16 atomes de carbone ;
- la complexation du composé de formule générale (VII) par le borane, puis acidolyse pour obtenir un composé de formule générale (VIII) :
(VIII);
- la réaction du composé de formule générale (VIII) avec un composé de formule générale (IX) :
H/OR4 r3c<PNr4 (|x) dans laquelle R3 représente un groupe alkyle linéaire ou ramifié, comprenant de 1 à
15 atomes de carbone, Z représente un atome d'oxygène ou de soufre et R4 représente un groupe alkyle linéaire ou ramifié comprenant de 1 à 16 atomes de carbone, un groupe aromatique monocyclique ou un groupe hétéroaromatique monocyclique, pour obtenir un composé de formule générale (X) :
- la réaction du composé de formule générale (X) avec du soufre pour obtenir un composé de formule générale (XI) :
R (xi);
- l'hydrolyse du composé de formule générale (XI) pour transformer au moins l'un des deux groupes -OR4 en un groupe hydroxyle (-OH).
10. Utilisation d'un composé selon l'une quelconque des revendications
1 à 7, en tant qu'extractant de l'uranium(VI).
11. Utilisation selon la revendication 10, dans laquelle le composé est utilisé pour extraire l'uranium(VI) d'une solution aqueuse comprenant de l'acide phosphorique.
12. Utilisation selon la revendication 11, dans laquelle la solution aqueuse comprend de 3 mol/L à 8 mol/L d'acide phosphorique.
13. Utilisation selon la revendication 11 ou la revendication 12, dans laquelle la solution aqueuse est issue de l'attaque d'un phosphate naturel par l'acide sulfurique.
14. Procédé de récupération de l'uranium présent dans une solution aqueuse d'acide phosphorique issue de l'attaque d'un phosphate naturel par l'acide sulfurique, lequel procédé comprend :
a) une extraction de l'uranium, à l'état d'oxydation VI, de la solution aqueuse par mise en contact de la solution aqueuse avec une phase organique comprenant un composé selon l'une quelconque des revendications 1 à 7, puis séparation de la solution aqueuse de la phase organique ;
b) un lavage de la phase organique obtenue à l'issue de l'étape a) par mise en contact de la phase organique avec une solution aqueuse, puis séparation de la phase organique de la solution aqueuse ; et
c) une désextraction de l'uranium(VI) présent dans la phase organique obtenue à l'issue de l'étape b) par mise en contact de la phase organique avec une solution aqueuse comprenant un carbonate, puis séparation de la phase organique de la solution aqueuse.
15. Procédé selon la revendication 14, dans lequel la phase organique de l'étape a) comprend le composé à une concentration de 0,05 mol/L à 0,5 mol/L dans un diluant organique.
16. Procédé selon la revendication 14 ou la revendication 15, dans lequel la solution aqueuse d'acide phosphorique comprend de 3 mol/L à 8 mol/L d'acide phosphorique.
FR1757306A 2017-07-31 2017-07-31 Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procedes de synthese et leurs utilisations Active FR3069539B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1757306A FR3069539B1 (fr) 2017-07-31 2017-07-31 Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procedes de synthese et leurs utilisations
MA47891A MA47891B1 (fr) 2017-07-31 2018-07-30 Composés bifonctionnels à fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procédés de synthèse et leurs utilisations
PCT/FR2018/051957 WO2019025714A1 (fr) 2017-07-31 2018-07-30 Composés bifonctionnels à fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procédés de synthèse et leurs utilisations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757306 2017-07-31
FR1757306A FR3069539B1 (fr) 2017-07-31 2017-07-31 Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procedes de synthese et leurs utilisations

Publications (2)

Publication Number Publication Date
FR3069539A1 true FR3069539A1 (fr) 2019-02-01
FR3069539B1 FR3069539B1 (fr) 2019-08-30

Family

ID=60888468

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1757306A Active FR3069539B1 (fr) 2017-07-31 2017-07-31 Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l'uranium(vi), leurs procedes de synthese et leurs utilisations

Country Status (3)

Country Link
FR (1) FR3069539B1 (fr)
MA (1) MA47891B1 (fr)
WO (1) WO2019025714A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156593A1 (fr) * 2015-04-03 2016-10-06 Commissariat à l'énergie atomique et aux énergies alternatives NOUVEAUX COMPOSÉS BIFONCTIONNELS, UTILES COMME LIGANDS DE L'URANIUM(VI), ET LEURS UTILISATIONS, NOTAMMENT POUR EXTRAIRE l'URANIUM(VI) DE SOLUTIONS AQUEUSES D'ACIDE PHOSPHORIQUE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2494258A1 (fr) 1980-11-14 1982-05-21 Commissariat Energie Atomique Procede de recuperation de l'uranium present dans des solutions d'acide phosphorique
FR2990206B1 (fr) 2012-05-07 2014-06-06 Commissariat Energie Atomique Nouveaux composes bifonctionnels utiles comme ligands de l'uranium(vi), leurs procedes de synthese et leurs utilisations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016156593A1 (fr) * 2015-04-03 2016-10-06 Commissariat à l'énergie atomique et aux énergies alternatives NOUVEAUX COMPOSÉS BIFONCTIONNELS, UTILES COMME LIGANDS DE L'URANIUM(VI), ET LEURS UTILISATIONS, NOTAMMENT POUR EXTRAIRE l'URANIUM(VI) DE SOLUTIONS AQUEUSES D'ACIDE PHOSPHORIQUE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEYDIER ANTOINE ET AL: "Recovery of uranium (VI) from concentrated phosphoric acid using bifunctional reagents", HYDROMETALLURGY, ELSEVIER SCIENTIFIC PUBLISHING CY. AMSTERDAM, NL, vol. 171, 25 May 2017 (2017-05-25), pages 262 - 266, XP085111743, ISSN: 0304-386X, DOI: 10.1016/J.HYDROMET.2017.05.008 *

Also Published As

Publication number Publication date
MA47891B1 (fr) 2020-10-28
MA47891A1 (fr) 2020-04-30
FR3069539B1 (fr) 2019-08-30
WO2019025714A1 (fr) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2013167516A1 (fr) Nouveaux composés bifonctionnels utiles comme ligands de l&#39;uranium(vi), leurs procédés de synthèse et leurs utilisations
Richard et al. gem-Bis-(disubstituted-phosphinyl)-alkanes. I. Synthesis and Properties of Bis-(di-n-hexylphosphinyl)-methane and Related Compounds1a, 1b
EP0085321A2 (fr) Dérivés d&#39;acides diphosphoniques et préparations pharmaceutiques les contenant
WO2014139869A1 (fr) Utilisation de composés à fonctions amide et phosphonate pour extraire l&#39;uranium(vi) de solutions aqueuses d&#39;acide sulfurique, issues notamment de la lixiviation sulfurique de minerais uranifères
CA2984579C (fr) Utilisation de composes pour l&#39;extraction selective de terres rares de solutions aqueuses comprenant de l&#39;acide phosphorique et procede d&#39;extraction associe
Ragulin ω-haloalkylphosphoryl compounds: Synthesis and properties
FR3069539B1 (fr) Composes bifonctionnels a fonction thiophosphine, utiles comme extractants de l&#39;uranium(vi), leurs procedes de synthese et leurs utilisations
CN102603793B (zh) 用于制备烷基磷酸酯的方法
US8420848B2 (en) Process for the synthesis of beta glycerol phosphate
Szabó et al. Interesting by-products in the synthesis of chiral α-aminophosphinates from enantiopure sulfinimines
WO2016156593A1 (fr) NOUVEAUX COMPOSÉS BIFONCTIONNELS, UTILES COMME LIGANDS DE L&#39;URANIUM(VI), ET LEURS UTILISATIONS, NOTAMMENT POUR EXTRAIRE l&#39;URANIUM(VI) DE SOLUTIONS AQUEUSES D&#39;ACIDE PHOSPHORIQUE
FR2980478A1 (fr) Sondes luminescentes pour le marquage biologique et l&#39;imagerie, et leur procede de preparation.
EP1648883B1 (fr) Complexes de lanthanides, leur preparation et leurs utilisations
FR2588004A1 (fr) Ester phosphorique
US3607910A (en) Process for producing dimethyliminodiacetate
Chen et al. The study of phosphoramidite as O-phosphitylation agent and its reactivity
JP5907737B2 (ja) アルキルホスフェートを調製するための方法
CN102603792B (zh) 用于制备烷基磷酸酯的方法
EP0540437B1 (fr) Procédé de production d&#39;acides, de sels et/ou d&#39;esters aminoalcanephosphoniques
Mamedova et al. Isosteviol acylphosphonates
Gazizov et al. Synthesis and oxidation of (4-hydroxy-3, 5-di-tert-butylphenyl)-methanebis [diethyl (diphenyl) phosphine oxides].
Grachev et al. Mild regioselective phosphorylation of β-cyclodextrin with trivalent phosphorus acid amides
Zhu et al. A convenient synthesis of N-perfluoroalkanesulfonylphosphoramidates
Nuretdinov et al. Synthesis and structure of O-alkyl alkylphosphonoselenoic acids and their salts
JP2816760B2 (ja) ビス(アルキルシクロヘキシル)リン酸の製造方法

Legal Events

Date Code Title Description
PLSC Publication of the preliminary search report

Effective date: 20190201

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7