FR3069113A1 - Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede - Google Patents
Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede Download PDFInfo
- Publication number
- FR3069113A1 FR3069113A1 FR1756557A FR1756557A FR3069113A1 FR 3069113 A1 FR3069113 A1 FR 3069113A1 FR 1756557 A FR1756557 A FR 1756557A FR 1756557 A FR1756557 A FR 1756557A FR 3069113 A1 FR3069113 A1 FR 3069113A1
- Authority
- FR
- France
- Prior art keywords
- phase
- machine
- angle
- notches
- electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/12—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/12—Machines characterised by the modularity of some components
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Windings For Motors And Generators (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
L'invention concerne un procédé de pilotage d'une machine électrique tournante polyphasée comportant un rotor en rotation relative par rapport à un stator, ledit stator comportant un premier et un second bobinages triphasés (B1, B2) positionnés l'un par rapport à l'autre selon un angle mécanique et un angle électrique, les premier et second bobinages triphasés (B1, B2) définissant un nombre de paires de pôles et de phases autour d'un nombre prédéfini d'encoches (100), dans lequel l'angle électrique entre le premier et le second bobinages triphasés est déphasé par rapport à l'angle mécanique de sorte à optimiser au moins une des caractéristiques techniques du couple de la machine.
Description
PROCEDE DE PILOTAGE D’UNE MACHINE ELECTRIQUE TOURNANTE
POLYPHASEE ET MACHINE ELECTRIQUE TOURNANTE METTANT EN
ŒUVRE CE PROCEDE
DOMAINE TECHNIQUE
La présente invention concerne un procédé de pilotage d’une machine électrique tournante polyphasée pour alternateur, démarreur ou alterno-démarreur. L’invention concerne également une machine électrique tournante mettant en œuvre ce procédé. L’invention trouve des applications dans le domaine des machines électriques tournantes pour véhicules automobiles et, en particulier, dans le domaine des machines électriques fonctionnant en mode alternateur, en mode démarreur ou en mode alterno-démarreur.
ETAT DE LA TECHNIQUE
De façon connue en soi, les machines électriques tournantes comportent un stator et un rotor solidaire d'un arbre central. Le rotor peut être solidaire d'un arbre menant et/ou d’un arbre mené et peut appartenir à une machine électrique tournante sous la forme d'un alternateur, d'un moteur électrique ou d’une machine réversible pouvant fonctionner dans les deux modes.
La machine électrique comporte un carter portant le stator. Ce carter, qui comporte un palier avant et un palier arrière positionnés chacun à une extrémité du stator, est configuré pour porter à rotation l'arbre par l'intermédiaire de roulements, tels que des roulements à billes et/ou à aiguilles.
Le rotor comporte un corps formé par un empilage de feuilles de tôles maintenues sous forme de paquet au moyen d'un système de fixation adapté, tel que des rivets traversant axialement le rotor de part en part. Le rotor comporte des pôles formés par exemple par des aimants permanents logés dans des cavités ménagées dans la masse magnétique du rotor. Alternativement, dans une architecture dite à pôles saillants, les pôles sont formés par des bobines enroulées autour de bras du rotor.
Le stator comporte un corps constitué par un empilage de tôles minces formant une couronne ayant une face cylindrique intérieure et une face cylindrique extérieure. La face cylindrique intérieure est pourvue d'encoches s’étendant axialement et ouvertes radialement vers le rotor pour recevoir des bobinages formant des enroulements de phase. Les encoches sont réparties régulièrement sur la face intérieure du stator avec un pas prédéfini, noté P. Les enroulements de phase sont obtenus soit au moyen d’un fil électriquement conducteur qui entre et sort des encoches à chaque pas P, soit au moyen d’épingles conductrices insérées dans les encoches et connectées entre elles toutes les P encoches. Les enroulements de phase - appelés aussi simplement phases - sont couplés les uns aux autres selon une configuration en étoile ou en triangle.
Dans le domaine de l’automobile, il est connu d’utiliser des machines électriques tournantes polyphasées telles que les machines triphasées ou doubletriphasées. Une machine triphasée comporte généralement trois paires de pôles répartis sur le rotor et trois enroulements de phase répartis angulairement sur la face cylindrique intérieure du stator. Dans une machine triphasée, les phases sont reparties généralement suivant un angle électrique de 120° et un angle mécanique de 120° divisé par le nombre de pôles p. Par exemple, si p=2, alors l’angle mécanique est de 120/2 = 60°ou si p=8, alors l’angle mécanique est de 120/8 = 15°.
Une machine double-triphasée comporte un premier système triphasé B1 et un second système triphasé B2 dont les phases sont décalées par rapport au premier système triphasé de sorte à obtenir six phases réparties régulièrement dans le stator. En effet, dans une machine double-triphasée, le bobinage est réparti à pas régulier entre les encoches dont le nombre est généralement un multiple de 6. Le nombre total d’encoches peut être, par exemple, de 48, 54 ou 72. Chaque enroulement de phase peut remplir une encoche ou deux encoches, voire trois encoches ou 1,5 encoches, selon le nombre d’encoches du stator. Par exemple, dans le cas d’une machine à 6 phases, 3 paires de pôles et 72 encoches, chaque enroulement de phase remplit 2 encoches. Dans le cas d’une machine à 6 phases, 3 paires de pôles et 54 encoches, chaque enroulement remplit 1,5 encoches. Deux exemples de machines électriques tournantes à 6 phases, 3 paires de pôles et 54 encoches (référencées 100) sont représentées, en partie, sur les figures 1 et 2, la figure 1 schématisant un bobinage de stator à pas normal - à savoir un pas de 9 encoches la figure 2 schématisant un bobinage de stator à pas raccourci - à savoir un pas de 8 encoches.
II est connu, dans le domaine automobile, qu’une machine double-triphasée offre généralement un taux d’harmonique plus faible que celui d’une machine triphasée, comme représenté par les courbes des figures 3A et 3B, dans lesquelles la figure 3A montre la force électromotrice obtenue dans une machine triphasée et la figure 3B montre la force électromotrice obtenue dans une machine double triphasée où le déphasage électrique entre le premier et le second système triphasés est nul. II résulte de cette différence du taux d’harmonique que l’ondulation du couple entre le rotor et le stator (ou « ripple >>, en termes anglo-saxons) est réduite dans une machine double-triphasée par rapport à une machine triphasée. Or, l’ondulation du couple est la cause de nombreux désagréments mécaniques, comme des bruits magnétiques, des imprécisions de contrôle du mouvement, etc. Les constructeurs automobiles cherchent donc généralement à réduire au mieux les ondulations de couple. Pour cela, il est connu de décaler le second système triphasé d’un angle de 30° électrique par rapport au premier système triphasé et de déterminer un angle mécanique entre les phases qui soit équivalent à l’angle électrique.
D’autres techniques permettant de diminuer les ondulations de couple ont été décrites l’art antérieur. Ces techniques sont généralement basées sur une modification de la structure électromagnétique de la machine polyphasée ou sur un mode d’alimentation en courants de la machine. Par exemple, une de ces techniques, décrite dans la demande WO 2008/043926 A1, propose d’adapter le pas des encoches du stator à la longueur des griffes du rotor
Toutefois, si ces techniques de l’art antérieur permettent de diminuer l’ondulation de couple, elles ne prennent pas en considération le couple moyen de la machine. Or, il est bien connu que la valeur de couple d’une machine est une caractéristique importante d’une machine électrique tournante.
RESUME DE L’INVENTION
Pour répondre au problème évoqué ci-dessus de la non prise en considération du couple moyen de la machine, le demandeur propose un procédé de pilotage d’une machine électrique tournante polyphasée permettant d’optimiser au moins une des caractéristiques du couple de la machine en fonction des performances à atteindre.
Selon un premier aspect, l’invention concerne un procédé de pilotage d’une machine électrique tournante polyphasée comportant un rotor en rotation relative par rapport à un stator, ledit stator comportant un premier et un second bobinages triphasés positionnés l’un par rapport à l’autre selon un angle mécanique et un angle électrique, les premier et second bobinages triphasés définissant un nombre de paires de pôles et de phases autour d’un nombre prédéfini d’encoches.
Ce procédé se caractérise par le fait que l’angle électrique entre le premier et le second bobinages triphasés est déphasé par rapport à l’angle mécanique de sorte à optimiser au moins une des caractéristiques techniques du couple de la machine.
Ce procédé a pour avantage de permettre une optimisation du couple moyen de la machine ou de l’ondulation de couple, ou des deux, en fonction des performances souhaitées pour la machine. Cette optimisation est obtenue sans surcout, par déphasage de l’angle électrique par rapport à l’angle mécanique.
De façon avantageuse, une valeur de l’angle électrique est déterminée à partir d’une courbe représentant le couple moyen en fonction de l’angle électrique et/ou d’une courbe représentant les ondulations de couple en fonction dudit angle électrique.
Ces courbes permettent une détermination précise de la valeur la plus favorable de l’angle électrique.
Avantageusement, le déphasage de l’angle électrique par rapport à l’angle mécanique est commandé par un onduleur de la machine électrique tournante.
Selon certains modes de réalisation, le déphasage de l’angle électrique est obtenu par décalage temporel de l’alimentation électrique du second bobinage triphasé par rapport au premier bobinage triphasé.
Selon un second aspect, l’invention concerne une machine électrique tournante polyphasée, comportant un rotor en rotation relative par rapport à un stator, ledit stator comportant un premier et un second bobinages triphasés définissant un nombre de paires de pôles et de phases autour d’un nombre prédéfini d’encoches. Cette machine se caractérise par le fait que le premier et le second bobinages triphasés sont positionnés, l’un par rapport à l’autre, selon un angle mécanique prédéfini et selon un angle électrique déphasé de l’angle mécanique.
Selon certains modes de réalisation, le premier et le second bobinages triphasés définissent 6 pôles et 6 phases bobinées autour de 54 encoches.
Selon certains modes de réalisation, le premier et le second bobinages triphasés définissent 12 pôles et 6 phases bobinées autour de 72 encoches.
Selon certains modes de réalisation, le premier et le second bobinages triphasés définissent 8 pôles et 6 phases bobinées autour de 48 encoches.
BREVE DESCRIPTION DES FIGURES
D’autres avantages et caractéristiques de l’invention apparaîtront à la lecture de la description, illustrée par les figures dans lesquelles :
- La figure 1, déjà décrite, représente schématiquement un premier exemple d’un bobinage, partiel, de stator ;
- La figure 2, déjà décrite, représente schématiquement un second exemple d’un bobinage, partiel, de stator ;
- Les figures 3A-3B, déjà décrites, représentent des courbes de la force électromotrice obtenue, respectivement, dans une machine triphasée et dans une machine double triphasée ;
- Les figures 4A-4C représentent un exemple de couple moyen et d’ondulation de couple dans une machine double triphasée comportant 3 paires de pôles et 54 encoches ;
- Les figures 5A-5B représentent un exemple de couple moyen et d’ondulation de couple dans une machine double triphasée comportant 6 paires de pôles et 72 encoches ;
- Les figures 6A-6C représentent un exemple de couple moyen et d’ondulation de couple dans une machine double triphasée comportant 4 paires de pôles et 48 encoches ;
- Les figures 7A-7B représentent un exemple d’un premier et d’un second bobinages déphasés selon le procédé de l’invention ainsi que les courbes représentatives de la force électromotrice et du courant de ces bobinages ;
- Les figures 8A et 8B représentent, respectivement, une vue en coupe schématique et un schéma électrique d’un exemple de machine (rotor et stator) pouvant mettre en œuvre le procédé de l’invention.
DESCRIPTION DETAILLEE D’AU MOINS UN MODE DE REALISATION
Un exemple d'un procédé de pilotage d’une machine électrique tournante polyphasée prenant en considération les performances que la machine doit atteindre est décrit en détail ci-après, en référence aux dessins annexés. Cet exemple illustre les caractéristiques et avantages de l'invention. Il est toutefois rappelé que l'invention ne se limite pas à cet exemple.
Sur les figures, les éléments identiques sont repérés par des références identiques. Pour des questions de lisibilité des figures, les échelles de taille entre éléments représentés ne sont pas respectées.
La machine électrique tournante, dans laquelle le procédé de l’invention est mis en œuvre, est la machine polyphasée décrite précédemment dans le paragraphe intitulé « Etat de la technique >>. Cette machine, dont un exemple est représenté schématiquement sur la figure 8A, est de type double triphasé. Elle comporte un stator 200 équipé d’un nombre prédéterminé d’encoches autour desquelles sont bobinés six enroulements de phase 150. Cette machine comporte également un rotor 300 équipé d’un nombre prédéterminé de paires de pôles. Dans les exemples décrits par la suite, le nombre de paires de pôles du rotor est de 3, 4 ou 6 et le nombre d’encoches du stator est de 48, 54 ou 72, étant entendu que le procédé de l’invention peut s’appliquer à tout type de rotor et de stator de machine double triphasée quel que soit leur nombre de paires de pôles et leur nombre d’encoches.
Le procédé de l’invention propose de piloter une machine double triphasée de façon à optimiser une des caractéristiques techniques du couple de la machine. Le pilotage de la machine est réalisé notamment par un onduleur 400, tel que celui représenté sur la figure 8B. Le couple d’une machine polyphasée est caractérisé par son couple moyen et par son ondulation. Il peut être intéressant, dans certaines applications, de privilégier le couple moyen de la machine et, au contraire, dans d’autres applications, de privilégier la réduction des ondulations de couple. Pour cela, le procédé de l’invention propose de déphaser l’angle électrique entre le premier et le second bobinages par rapport à l’angle mécanique. Autrement dit, il est proposé de désynchroniser les angles électrique et mécanique des bobinages de la machine pour obtenir des caractéristiques du couple différentes.
Les figures 4A-4C représentent un exemple du couple moyen et de l’ondulation de couple dans une machine double triphasée comportant 3 paires de pôles et 54 encoches. La figure 4A montre schématiquement la répartition des phases dans les 54 encoches 100 de la machine. Dans cet exemple, chaque enroulement de phase est bobiné autour de 1,5 encoches du stator. La figure 4C représente un histogramme montrant la force radiale exercée sur le stator pour chacun des ordres harmoniques et pour plusieurs valeurs de l’angle électrique, notamment 0°, 10°, 20°, 30°, 40° et 50°. Le nombre d’ordres harmoniques étant dépendant du nombre d’encoches et du nombre de paires de pôles, il est de 18 dans l’exemple de la figure 4C (54 encoches -? 3 paires de pôles = 18 ordres harmoniques). La figure 4C compare ainsi les ordres harmoniques pour différents angles de décalage. Cette figure 4C montre l’influence de l’angle électrique sur le comportement acoustique de la machine. La figure 4C montre également le contenu des harmoniques des forces dans l’entrefer. Ces forces influencent le niveau acoustique de la machine. Aussi, réduire ces harmoniques permet de réduire le bruit de la machine. La figure 4B montre la courbe du couple moyen Ccm, en Nm, en fonction de l’angle électrique entre les premier et second bobinages triphasés de la machine de la figure 4A et la courbe de l’ondulation de couple Coc, mesurée crête à crête, en %, en fonction de ce même angle électrique. Ces courbes sont données pour un angle de décalage donné, quel que soit l’ordre harmonique. Les courbes de cette figure 4B, représentées pour un même ordre harmonique, montrent que l’ondulation de couple n’est pas optimisée pour le même angle électrique que le couple moyen En effet, dans cet exemple, le couple moyen est optimisé - c'est-à-dire qu’il est à son maximum - pour un angle électrique de 20°, alors que l’ondulation de couple est optimisée - c'est-à-dire qu’elle est à son minimum - pour un angle électrique de 30 à 40°.
Les figures 5A-5B représentent un exemple de couple moyen et d’ondulation de couple obtenu dans une autre machine polyphasée. Dans cet exemple, la machine est une machine double triphasée comportant 6 paires de pôles et 72 encoches. La figure 5A montre que, dans cet exemple, la machine comporte une encoche par pôle et par phase. Autrement dit, l’enroulement d’une phase remplit une encoche par pôle.. La figure 5B montre la courbe du couple moyen Ccm, en Nm, en fonction de l’angle électrique entre les premier et second bobinages triphasés de la machine de la figure 5A et la courbe de l’ondulation de couple Coc, mesurée crête à crête, en %, en fonction de ce même angle électrique. Les courbes de cette figure 5B, montrent que l’ondulation de couple n’est pas optimisée pour le même angle électrique que le couple moyen. En effet, dans cet exemple, le couple moyen est optimisé pour un angle électrique de l’ordre de 35°, alors que l’ondulation de couple est optimisée pour un angle électrique d’environ 10°.
Les figures 6A-6C représentent un exemple de couple moyen et d’ondulation de couple obtenu dans encore une autre machine polyphasée. Dans cet exemple, la machine est une machine double triphasée comportant 4 paires de pôles et 48 encoches. La figure 6A montre schématiquement la répartition des phases dans les 48 encoches de la machine. Dans cet exemple, chaque enroulement de phase remplit une encoche par pôle et par phase . La figure 6C montre la force radiale exercée sur le stator, pour chacun des 12 ordres harmoniques et pour plusieurs valeurs de l’angle électrique, notamment 0°, 10°, 20°, 30°, 40° et 50°. Cette figure 6C montre l’influence de l’angle électrique sur le comportement de la machine. La figure 6B montre la courbe du couple moyen Ccm, en Nm, en fonction de l’angle électrique entre les premier et second bobinages triphasés de la machine de la figure 6A et la courbe de l’ondulation de couple Coc, mesurée crête à crête, en %, en fonction de ce même angle électrique. Les courbes de cette figure 6B, représentées pour un même ordre harmonique, montrent que l’ondulation de couple n’est pas optimisée pour le même angle électrique que le couple moyen. En effet, dans cet exemple, le couple moyen est optimisé - c'est-à-dire qu’il est à son maximum - pour un angle électrique de 20 à 25°, alors que l’ondulation de couple est optimisée - c'est-à-dire qu’elle est à son minimum - pour un angle électrique d’environ 35°.
Les différents exemples des figures 4A à 6C montrent l’intérêt de déphaser l’angle électrique par rapport à l’angle mécanique de la machine. Le comportement de la machine diffère selon l’angle électrique choisi, ce qui permet d’améliorer soit le couple moyen de la machine, soit l’ondulation du couple. L’homme du métier comprendra que l’angle électrique peut également être choisi de sorte à optimiser simultanément les deux caractéristiques du couple (couple moyen et ondulation de couple). Dans ce cas, une valeur de l’angle électrique sera choisie de sorte à trouver un équilibre entre le couple moyen et l’ondulation de couple, sans toutefois que le couple moyen soit maximisé, ni que l’ondulation de couple soit minimisée. La valeur du couple moyen et la valeur de l’ondulation de couple sont alors pondérées l’une en fonction de l’autre. Dans l’exemple des figures 6A-6C, la valeur de l’angle électrique, pour que le couple moyen et l’ondulation de couple soient pondérés, pourrait être, par exemple, comprise entre 8 et 10°.
Comme on le comprend de ce qui précède, la valeur de l’angle électrique le plus favorable peut être déterminée par lecture de courbes telles que celles des figures 4B, 5B et 6B. La valeur choisie est commandée par l’onduleur de la machine polyphasée. En effet, toute machine électrique tournante polyphasée est commandée par un module électronique de puissance appelé onduleur. Un exemple d’un tel onduleur est référencé 400 sur la figure 8B. Ce module électronique de puissance 400 comporte une pluralité de composants électroniques de puissance 410, par exemple des transistors de puissance, connectés de façon à former des interrupteurs de commande du stator. Dans une machine double triphasée classique, les composants électroniques de puissance sont commandés de façon à ce que les signaux émis par les capteurs de la machine soient synchronisés avec la force électromotrice vue par les phases. Les interrupteurs de commande du stator sont donc commutés à l’émission des signaux des capteurs. Dans une machine double triphasée mettant en œuvre le procédé de l’invention, comme celle de la figure 8B, les interrupteurs de commande du stator 200 sont commutés avec un retard temporel par rapport à l’émission des signaux des capteurs, ce retard étant obtenu au moyen d’un compteur monté au sein du module électronique de puissance. Les interrupteurs de commande sont donc commutés avec un décalage temporel qui génère le déphasage de l’angle électrique. L’angle électrique entre les deux bobinages se trouve ainsi déphasé par rapport à l’angle mécanique des enroulements de phases. C’est ce déphasage entre les angles électrique et mécanique qui permet de faire varier les caractéristiques techniques du couple de la machine.
Ce procédé peut être mis en œuvre sur toutes les machines double triphasées, sans surcoût, puisque le déphasage de l’angle électrique par rapport à l’angle mécanique est obtenu uniquement par décalage temporel de la commande des interrupteurs de commande, sans ajout de composants électroniques.
La figure 7A représente un exemple d’un premier bobinage B1 et d’un second bobinage B2 de la machine double triphasée selon l’invention. Le premier bobinage B1 comporte 3 phases, référencées 11, 12, 13 et réparties angulairement selon un angle électrique de 120°. De façon similaire, le second bobinage B2 comporte 3 phases 21, 22, 23 réparties angulairement selon un angle électrique de 120°. Dans cet exemple, les deux bobinages B1, B2 représentés en traits pleins, sont déphasés d’un angle électrique de 30°. Les trains pointillés représentent le positionnement du second bobinage B2 par rapport au premier bobinage B1 lorsque l’angle électrique est différent de 30°, par exemple lorsqu’il est compris entre 0 et 50°.
La figure 7B représente les courbes de la force électromotrice FEM (en volts) et du courant (en ampères) en fonction de l’angle électrique. La force électromotrice est montrée pour chacun des premier et second bobinages B1 et B2. Le courant est montré pour chacun des premier et second bobinages B1 et B2 lorsque le second bobinage B2 est déphasé de 30° électrique par rapport au premier bobinage (courbe B2) et lorsqu’il est déphasé de 0 à 50° par rapport au premier bobinage B1 (courbes B2’ et B2”). Par ces courbes, la figure 7B montre l’effet électrique du déphasage entre les premier et second bobinages B1, B2, cet effet électrique se traduisant par une variation du couple moyen et/ou de l’ondulation de couple d’une machine double triphasée.
Bien que décrit à travers un certain nombre d'exemples, variantes et modes de réalisation, le procédé de pilotage d’une machine électrique tournante polyphasée selon l’invention comprend divers variantes, modifications et perfectionnements qui apparaîtront de façon évidente à l'homme du métier, étant entendu que ces variantes, modifications et perfectionnements font partie de la portée de l'invention.
Claims (8)
- REVENDICATIONS1. Procédé de pilotage d’une machine électrique tournante polyphasée comportant un rotor en rotation relative par rapport à un stator, ledit stator comportant un premier et un second bobinages triphasés (B1, B2) positionnés l’un par rapport à l’autre selon un angle mécanique et un angle électrique, les premier et second bobinages triphasés (B1, B2) définissant un nombre de paires de pôles et de phases autour d’un nombre prédéfini d’encoches (100), caractérisé en ce que l’angle électrique entre le premier et le second bobinages triphasés (B1, B2) est déphasé par rapport à l’angle mécanique de sorte à optimiser au moins une des caractéristiques techniques du couple de la machine.
- 2. Procédé selon la revendication 1, caractérisé en ce qu’une valeur de l’angle électrique est déterminée à partir d’une courbe (Ccm) représentant le couple moyen en fonction de l’angle électrique et/ou d’une courbe (Coc) représentant les ondulations de couple en fonction du dit angle électrique.
- 3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu’un déphasage de l’angle électrique par rapport à l’angle mécanique est commandé par un onduleur de la machine électrique tournante.
- 4. Procédé selon la revendication 3, caractérisé en ce que le déphasage de l’angle électrique est obtenu par décalage temporel de l’alimentation électrique du second bobinage triphasé (B2) par rapport au premier bobinage triphasé (B1).
- 5. Machine électrique tournante polyphasée, comportant un rotor en rotation relative par rapport à un stator, ledit stator comportant un premier et un second bobinages triphasés (B1, B2) définissant un nombre de paires de pôles et de phases autour d’un nombre prédéfini d’encoches (100), caractérisée en ce que le premier et le second bobinages triphasés (B1, B2) sont positionnés, l’un par rapport à l’autre, selon un angle mécanique prédéfini et selon un angle électrique déphasé de l’angle mécanique.
- 6. Machine électrique selon la revendication 5, caractérisée en ce que le premier et le second bobinages triphasés (B1, B2) définissent 6 pôles et 6 phases bobinées autour de 54 encoches.
- 7. Machine électrique selon la revendication 5, caractérisée en ce que le premier et le second bobinages triphasés (B1, B2) définissent 12 pôles et 6 phases bobinées autour de 72 encoches.
- 10 8. Machine électrique selon la revendication 5, caractérisée en ce que le premier et le second bobinages triphasés (B1, B2) définissent 8 pôles et 6 phases bobinées autour de 48 encoches.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1756557A FR3069113A1 (fr) | 2017-07-11 | 2017-07-11 | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede |
EP18737288.3A EP3652840A1 (fr) | 2017-07-11 | 2018-07-11 | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede |
CN201880052525.6A CN110999035A (zh) | 2017-07-11 | 2018-07-11 | 用于控制多相旋转电机的方法以及实施该方法的旋转电机 |
PCT/EP2018/068840 WO2019012010A1 (fr) | 2017-07-11 | 2018-07-11 | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1756557 | 2017-07-11 | ||
FR1756557A FR3069113A1 (fr) | 2017-07-11 | 2017-07-11 | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede |
Publications (1)
Publication Number | Publication Date |
---|---|
FR3069113A1 true FR3069113A1 (fr) | 2019-01-18 |
Family
ID=60450760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1756557A Withdrawn FR3069113A1 (fr) | 2017-07-11 | 2017-07-11 | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3652840A1 (fr) |
CN (1) | CN110999035A (fr) |
FR (1) | FR3069113A1 (fr) |
WO (1) | WO2019012010A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021078887A1 (fr) * | 2019-10-25 | 2021-04-29 | Valeo Embrayages | Système de propulsion pour un véhicule |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11799411B2 (en) * | 2021-08-31 | 2023-10-24 | Kinetic Technologies International Holdings Lp | Multi-phase permanent magnet rotor motor with independent phase coil windings |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128521A2 (fr) * | 2000-02-24 | 2001-08-29 | Mitsubishi Denki Kabushiki Kaisha | Alternateur avec ouvertures d'encoches non-uniformes |
EP1628380A1 (fr) * | 2004-08-17 | 2006-02-22 | Sanyo Denki Co., Ltd. | Ouverture des rainures statorique dans un moteur comprenant des aimants permanents |
WO2015106891A2 (fr) * | 2014-01-20 | 2015-07-23 | Wobben Properties Gmbh | Générateur synchrone d'une éolienne à entraînement direct |
US20150357892A1 (en) * | 2013-04-22 | 2015-12-10 | Mitsubishi Electric Corporation | Permanent magnet type motor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2906942B1 (fr) | 2006-10-10 | 2014-07-04 | Valeo Equip Electr Moteur | Rotor a griffes muni d'elements ferromagnetiques interpolaires de largeur optimisee et machine tournante equipe d'un tel rotor |
DE102013103665A1 (de) * | 2013-04-11 | 2014-10-16 | Feaam Gmbh | Elektrische Maschine |
-
2017
- 2017-07-11 FR FR1756557A patent/FR3069113A1/fr not_active Withdrawn
-
2018
- 2018-07-11 CN CN201880052525.6A patent/CN110999035A/zh active Pending
- 2018-07-11 WO PCT/EP2018/068840 patent/WO2019012010A1/fr unknown
- 2018-07-11 EP EP18737288.3A patent/EP3652840A1/fr not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1128521A2 (fr) * | 2000-02-24 | 2001-08-29 | Mitsubishi Denki Kabushiki Kaisha | Alternateur avec ouvertures d'encoches non-uniformes |
EP1628380A1 (fr) * | 2004-08-17 | 2006-02-22 | Sanyo Denki Co., Ltd. | Ouverture des rainures statorique dans un moteur comprenant des aimants permanents |
US20150357892A1 (en) * | 2013-04-22 | 2015-12-10 | Mitsubishi Electric Corporation | Permanent magnet type motor |
WO2015106891A2 (fr) * | 2014-01-20 | 2015-07-23 | Wobben Properties Gmbh | Générateur synchrone d'une éolienne à entraînement direct |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021078887A1 (fr) * | 2019-10-25 | 2021-04-29 | Valeo Embrayages | Système de propulsion pour un véhicule |
FR3102525A1 (fr) * | 2019-10-25 | 2021-04-30 | Valeo Embrayages | Système de propulsion pour un véhicule. |
Also Published As
Publication number | Publication date |
---|---|
CN110999035A (zh) | 2020-04-10 |
EP3652840A1 (fr) | 2020-05-20 |
WO2019012010A1 (fr) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2786469B1 (fr) | Rotor de machine electrique tournante et machine electrique tournante comprenant un tel rotor | |
WO2013079842A2 (fr) | Rotor de machine electrique tournante et machine electrique tournante comprenant un tel rotor | |
FR2959362A1 (fr) | Rotor de machine electrique tournante avec structures interpolaires | |
FR3069113A1 (fr) | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede | |
EP1678810A2 (fr) | Transmission electrique de puissance mecanique destinee notamment a une transmission de vehicule automobile | |
EP3053262B1 (fr) | Machine electrique tournante polyphasee a au moins cinq phases | |
WO2020234532A1 (fr) | Motoreducteur faible bruit a moteur electrique dissymetrique | |
FR3083022A1 (fr) | Machine electrique tournante ayant une configuration de rotor reduisant les ondulations de couple | |
FR3051295B1 (fr) | Machine electrique tournante a puissance augmentee | |
EP2777135B1 (fr) | Rotor de machine electrique tournante et machine electrique tournante comprenant un tel rotor | |
WO2017098094A1 (fr) | Rotor d'un moteur électromagnétique à flux axial à aimant monobloc de forme ondulée | |
WO2010133796A1 (fr) | Machine vernier a aimants insérés | |
WO2022069500A1 (fr) | Inducteur a flux axial pour machine électrique tournante de traction | |
EP2005554B1 (fr) | Rotor de machine electrique tournante comportant des gorges pour aimants | |
EP2866344B1 (fr) | Machine électrique tournante polyphasée à au moins cinq phases à commande optimisée | |
EP3602753B1 (fr) | Perfectionnement a une machine synchrone a aimants permanents | |
EP3763018B1 (fr) | Machine électrique tournante à bobinage fractionné | |
EP2777139B1 (fr) | Procede de pilotage d'une machine electrique tournante synchrone a double excitation et machine electrique tournante correspondante | |
WO2017093636A1 (fr) | Rotor a griffes de machine electrique tournante muni de griffes a chanfrein de forme courbe | |
FR3025059A1 (fr) | Moteur ou generatrice synchrone electromagnetique a plusieurs entrefers et flux magnetique diagonal | |
WO2020021087A1 (fr) | Machine électrique tournante à configuration optimisee | |
EP2804299B1 (fr) | Machine électrique tournante synchrone polyphasée | |
FR3083384A1 (fr) | Moteur electrique a courant continu sans balai et rotor associe | |
FR3084793A1 (fr) | Machine electrique tournante munie d'un bobinage a configuration optimisee | |
WO2014006294A1 (fr) | Machine electrique tournante a compensation de reaction magnetique d'induit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLSC | Publication of the preliminary search report |
Effective date: 20190118 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
ST | Notification of lapse |
Effective date: 20230305 |