WO2021078887A1 - Système de propulsion pour un véhicule - Google Patents
Système de propulsion pour un véhicule Download PDFInfo
- Publication number
- WO2021078887A1 WO2021078887A1 PCT/EP2020/079800 EP2020079800W WO2021078887A1 WO 2021078887 A1 WO2021078887 A1 WO 2021078887A1 EP 2020079800 W EP2020079800 W EP 2020079800W WO 2021078887 A1 WO2021078887 A1 WO 2021078887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- propulsion system
- torque
- differential
- electric machine
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/006—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/087—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
- F16H3/089—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/02—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/001—Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/42—Clutches or brakes
- B60Y2400/424—Friction clutches
- B60Y2400/4244—Friction clutches of wet type, e.g. using multiple lamellae
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/61—Arrangements of controllers for electric machines, e.g. inverters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/0021—Transmissions for multiple ratios specially adapted for electric vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/003—Transmissions for multiple ratios characterised by the number of forward speeds
- F16H2200/0034—Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/68—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
- F16H61/684—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
- F16H61/688—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- TITLE Propulsion system for a vehicle.
- the present invention relates to an electric vehicle propulsion system, in particular of a motor vehicle, in particular of a motor vehicle having a high torque to the wheel, for example greater than 3800 Nm, in particular greater than 4400 Nm, and a high wheel speed, for example greater than 1300 revolutions per minute, in particular greater than 1600 revolutions per minute, such as a sports utility vehicle also called an SUV.
- a high torque to the wheel for example greater than 3800 Nm, in particular greater than 4400 Nm
- a high wheel speed for example greater than 1300 revolutions per minute, in particular greater than 1600 revolutions per minute, such as a sports utility vehicle also called an SUV.
- Such propulsion systems conventionally have an electrical machine with an inverter having a supply voltage of 400V, these machines being able to reach a speed of 16,000 revolutions per minute and being associated with a mechanical transmission having a single reduction ratio.
- the invention therefore aims to reduce losses (iron losses, alternating current losses, drag torque, bubbling, etc.), to increase the efficiency of the propulsion system, and to increase autonomy.
- the invention relates to an electric propulsion system for a vehicle, in particular a motor vehicle, comprising: an electric machine with permanent magnets configured to be supplied by an inverter, the electric machine comprising a rotor having six or eight poles, and a stator having a stator body provided with notches, the notches receiving conductors forming a winding, the number of notches in the stator body being between 48 and 72, a differential capable of driving an output shaft bearing at its ends two laterally opposite wheels of the vehicle, a transmission device arranged kinematically between the electric machine and the differential, the transmission device comprising a first transmission path of the torque having a first reduction ratio and a second torque transmission path having a second reduction ratio, the transmission device comprising a coupling device for transmitting torque between the electric machine and the differential selectively via the first transmission path or via the second transmission path.
- the implementation of a transmission device having at least two reduction ratios with this type of electric machine allows the electric machine to work in its best zone of efficiency and to improve efficiency. This also makes it easier to achieve the objectives of maximum wheel speed (greater than 1300 revolutions per minute, in particular greater than 1600 revolutions per minute), and wheel torque (greater than 3800 Nm, in particular greater than 4400 Nm).
- the use of at least two gear ratios allows to reconcile high starting torque and maximum speed and therefore to reduce the time required for the vehicle to reach high speed.
- the choice of two speed ratios offers a good compromise between the complexity of the transmission, dynamic performance, vehicle consumption and the size of the electric machine. A high number of notches, such as 48, 54 or 72, results in a better rotating field, less torque ripple and less iron loss.
- ACV for "Noise, vibration, and hardness
- the electrical machine is a three-phase (three-phase) machine.
- the poles are arranged in pairs, for example three or four pairs of poles.
- the implementation of 3 pairs of poles makes it possible in particular to lower the level of vibrations.
- the rotor has exactly six poles, in particular three pairs of poles.
- the number of notches is 54 or 72.
- the electric machine is configured to have a maximum speed of less than 14,000 revolutions per minute, for example less than 13,000 revolutions per minute, in particular between 10,000 and 14,000 revolutions per minute, for example between 11,000 and 13,000 revolutions per minute, for example 12,000 revolutions per minute per minute.
- a transmission device having at least two reduction ratios makes it possible to use an electric machine whose maximum speed can be lowered compared to known propulsion systems with a single ratio.
- the yield losses inherent in very high rotational speeds are avoided.
- instead of using an electric machine with a maximum speed of 16,000 revolutions per minute it is possible to use an electric machine with a maximum speed of 12,000 revolutions per minute. Reducing the speed of the electric machine contributes to reducing the electric frequency of the machine, which reduces iron losses and alternating current losses.
- the propulsion system is configured so that the driving torque of the differential is produced only by the electric machine, regardless of the vehicle speed.
- the electric machine does not intervene in addition to another machine or another engine, to drive the differential.
- a motor and / or other electrical machine can be used within the vehicle to drive other wheels of the vehicle.
- the propulsion system shown here can be provided in a first electric axle of the vehicle, and the vehicle can have a second axle with two further laterally opposed wheels, which second axle can be driven by another electric machine and / or a thermal motor.
- the propulsion system is configured so that the torque passing through the transmission device to the differential is generated only by the electric machine.
- the electric propulsion system includes an inverter configured to power said electric machine.
- the stator is supplied by the inverter.
- the supply voltage of the inverter is between 600V and 1000V, for example between 700V and 900V, for example 800V.
- the losses at the level of the inverter are reduced.
- the current of the electric machine is between 480 A and 800 A, for example between 533 A and 685 A, for example 600 A.
- the maximum speed of the electric machine is less than 14,000 revolutions per minute, in particular less than 13,000 revolutions per minute, for example between 10,000 and 14,000 revolutions per minute, in particular between 11,000 and 13,000 revolutions per minute, for example 12,000 revolutions per minute. minute, for an intensity of less than 800 A, in particular between 480 A and 800 A, for example between 533 A and 685 A, for example 600 A and / or for an inverter supply voltage of between 600 V and 1000V, for example between 700V and 900V, for example 800V.
- the electric machine has a machine torque of between 380 and 490 N.m, for example between 400 and 460 N.m, for example 440 N.m.
- a machine torque of between 380 and 490 N.m, for example between 400 and 460 N.m, for example 440 N.m.
- the stator winding is a pin winding.
- the pin winding increases the fill factor of the slots and also helps reduce losses, including DC losses and Joule losses.
- the layers of conductors are arranged in a direction substantially radial to the axis of rotation of the electrical machine.
- the notches are regularly arranged around the axis of rotation X of the rotor.
- the electric machine has a peak power of between 230 and 270 kW, for example 250 kW.
- the maximum electric frequency of the electric machine is between 500 and 700 Hz, for example 600 Hz.
- iron losses are reduced, especially at low operating torque.
- the poles are evenly distributed around the axis of rotation of the rotor.
- the transmission device comprises at least two reduction ratios, for example two ratios or three ratios.
- the transmission device comprises a transmission shaft arranged to transmit a torque from the first transmission path to the differential and from the second transmission path to the differential.
- one or the other of the first and second transmission paths rotates the transmission shaft which in turn drives the differential, notably via a gear train.
- the coupling device comprises a first clutch comprising a first input element capable of being driven by the electric machine and a first output element, a torque being able to be transmitted between the first input element and the first output element when the first clutch is closed.
- the coupling device comprises a second clutch comprising a second input element capable of being driven by the electric machine and a second output element, a torque being able to be transmitted between the second input element and the second output element when the second clutch is closed.
- the first clutch is a progressive clutch.
- the second clutch is a progressive clutch.
- the first clutch is a wet multi-plate clutch.
- the second clutch is a wet multi-plate clutch.
- clutches in particular progressive multi-disc clutches, also helps ensure user comfort by avoiding abrupt gear changes and noticeable variations in acceleration.
- the first transmission path is arranged to transmit a torque between the first output element and the differential.
- the second transmission path is arranged to transmit a torque between the second output element and the differential.
- the first transmission path has a lower speed ratio than the second transmission path.
- the propulsion system is configured so that the transmission of torque between the first output member of the first clutch and the differential is allowed when the first clutch is closed, the transmission of torque between the first output member of the first clutch and differential is prevented when the first clutch is open and when the second clutch is closed.
- the propulsion system is configured so that the mutual rotational drive between the first output member of the first clutch and the differential is allowed when the first clutch is closed, and the mutual rotational drive between the first member. output of the first clutch and the differential is inhibited when the first clutch is open and when the second clutch is closed.
- the transmission device comprises a connection element arranged to allow or interrupt the transmission of a torque between the first output element of the first clutch and the differential.
- connection element it is possible to interrupt the drive of the output element of the first clutch, and in particular the output friction discs of the first clutch, when the second clutch is closed. This can significantly limit or even eliminate the drag torque at the first clutch when the second clutch is closed, improving the efficiency of the propulsion system.
- the opening the connection element allows to avoid excessive centrifugation of the first output member of the first clutch which could rotate at a speed greater than that of the electric machine when the second clutch is closed and the first clutch is open.
- the first transmission path would act as a speed multiplier with respect to the first output element of the first clutch when the torque is transmitted by the second clutch. The invention therefore not only reduces losses, but also improves the safety of the torque transmission device. Excessive speed of the first output element, in particular greater than the speed of the machine, would be liable to create problems with mechanical strength and would reduce efficiency.
- the first input element and the second input element are arranged to be driven by a common torque input shaft.
- the first transmission path includes a first gear train.
- the first transmission path comprises a first input shaft integral in rotation with a first input toothed wheel, and a first output toothed wheel meshing, directly or indirectly (via one or more intermediate toothed wheels), with the first input gear wheel.
- the second transmission path includes a second gear train.
- the second transmission path comprises a second input shaft integral in rotation with a second input toothed wheel, and a second output toothed wheel meshing, directly or indirectly (via one or more intermediate toothed wheels), with the second input gear wheel.
- At least one of the first input shaft and the second input shaft is a hollow shaft and the other of the first input shaft and the second input shaft extends inside the shaft. 'hollow tree.
- the first input shaft is coupled to the first output member of the first clutch.
- the second input shaft is coupled to the second output member of the second clutch.
- the connecting element is a synchronizer.
- the first reduction ratio is between 0.05 and 0.1, in particular between 0.06 and 0.08 and the second reduction ratio is between 0.12 and 0.2, in particular between 0.14 and 0.17. Combined with the torque and / or speed characteristics of the electric machine mentioned above, these speed ratios are suitable for motor vehicles, in particular of the sports utility type also called SUV.
- the invention also relates to an electric axle, in particular a rear axle, comprising a propulsion system as described above, an output shaft coupled to the differential, the output shaft being able to drive at its ends, two laterally opposite wheels of the vehicle.
- the invention also relates to a vehicle, in particular a motor vehicle, in particular a sports utility motor vehicle also called an SUV, comprising a propulsion system or an electric axle as described above.
- the maximum torque to the vehicle wheel is greater than 3800 N.m, in particular greater than 4200 N.m, in particular greater than 4400 N.m.
- the electric propulsion system is such that the electric machine, the differential, the transmission device, and where applicable the inverter, are integrated together. In particular, they are mounted on top of each other.
- the electrical machine, the differential, the transmission device, and optionally the inverter each have at least one housing attached to at least one of the other housings.
- the vehicle is suitable for driving at a maximum speed which is greater than 180 km / h, in particular greater than 200 km / h.
- FIG.l is a block diagram of a propulsion system according to a first embodiment of the invention.
- FIG.2 is a schematic sectional view of the propulsion system according to the first embodiment of the invention.
- FIG.3 is a sectional view of a propulsion system according to a second embodiment
- FIG.4 is a side view of the propulsion system according to the second embodiment
- FIG.5 is an enlarged sectional view of the connection member of the second embodiment
- FIG.6 is a perspective view of the electric machine.
- the “axial” and “radial” orientations will be used to denote, according to the definitions given in the description, elements of the transmission device.
- the "radial” orientation is directed orthogonally to the axial orientation.
- Axial orientation refers, depending on the context, to the axis of rotation of one of the shafts, for example the output shaft of the electrical machine or the output shaft of the propulsion system.
- input designates, from a kinematic point of view, what is located on the side of the electric machine and the term “output” designates, from a kinematic point of view, what is located on the side of the wheels of the machine. vehicle.
- Figure 1 is a block diagram illustrating a first embodiment of the invention. It is a device for propelling an electric vehicle axle.
- FIG. 1 illustrates a propulsion system comprising an electric machine 4, a differential 7 driving an output shaft 70 intended to carry at its ends two laterally opposite wheels of the vehicle, and a transmission device 10 arranged kinematically between the electric machine 4 and the differential 7.
- the propulsion system is configured so that the driving torque of the differential 7 is produced only by the electric machine 4, regardless of the speed of the vehicle.
- the electric machine does not intervene in addition to another machine or another motor to drive the differential 7.
- a motor and / or another electric machine can be used. used within the vehicle to drive other wheels of the vehicle.
- the propulsion system presented here can be provided in a first electric axle of the vehicle, and the vehicle can have a second axle with two other laterally opposed wheels, this second axle being able to be driven by another electric machine and / or a motor.
- the electric machine 4 is reversible. This electric machine is able to operate in motor mode to ensure propulsion of the vehicle. This machine is also able to operate in generator mode to supply energy to the vehicle battery.
- the electric machine is installed on the rear axle of the vehicle.
- the transmission device 10 comprises a first torque transmission path 11 having a first reduction ratio and a second torque transmission path 12 having a second reduction ratio.
- the transmission device 10 comprises a coupling device 1, 2 making it possible to transmit a torque between the electric machine 4 and the differential 7 selectively via the first transmission path 11 or via the second transmission path 12.
- the coupling device comprises a first clutch 1 capable of authorizing or interrupting the transmission of a torque between the electric machine 4 and the first transmission path 11.
- the coupling device also comprises a second clutch 2 capable of authorizing or interrupting the transmission. a couple between the electric machine 4 and the second transmission path 12.
- the first transmission path 11 makes it possible to reduce the speed of rotation and to increase the torque, according to the first reduction ratio and the second transmission path 12 makes it possible to reduce the speed of rotation and increase the torque, according to the second reduction ratio.
- the output of the second transmission path 12 rotates faster than the output of the first transmission path 11.
- the first reduction ratio of the transmission device 10 is between 0.06 and 0.08 and the second reduction ratio of the transmission device 10 is between 0.14 and 0.17.
- the transmission device 10 comprises a transmission shaft 5 arranged so as to transmit a torque from the first transmission path 11 to the differential 7 and from the second transmission path 12 to the differential 7.
- a speed reduction stage is here formed between the transmission shaft 5 and the differential 7 with a pinion 9 integral in rotation. of the transmission shaft 5 and a toothed wheel arranged at the input of the differential 7, the toothed wheel meshing with the pinion
- the first transmission path 11 is a speed reduction gear train (from the electric machine to the differential).
- the second transmission path 12 is also a speed reduction gear train. These gear trains can be mounted to bubble in the oil.
- the first transmission path 11 has a lower speed ratio than the second transmission path 12.
- the first transmission path 11 is used to propel the vehicle at relatively low speeds, and the second transmission path 12 is used to propel the vehicle at relatively high speeds.
- the transmission device 10 comprises a connection element 6 configured to prevent the driving of the first transmission path 11 when the second clutch 2 is closed and it transmits a torque traveling from the electric machine 4 to the differential 7, via the second transmission path 12.
- a connection element 6 configured to prevent the driving of the first transmission path 11 when the second clutch 2 is closed and it transmits a torque traveling from the electric machine 4 to the differential 7, via the second transmission path 12.
- the first transmission path 11 comprises a first input shaft 41 integral in rotation with a pinion 42, and a first output toothed wheel 43 here meshing directly with the pinion 42.
- the second transmission path 12 comprises a second input shaft 51 integral in rotation with a pinion 52, and a second output toothed wheel 53 here meshing directly with the pinion 52.
- the second input shaft is a hollow shaft 51 and the first input shaft 41 extends inside this hollow shaft 51.
- the second input shaft 51 and the first input shaft 41 are coaxial.
- the first input shaft 41 can be formed in one piece with the pinion 42.
- the second input shaft 51 can be formed in one piece. with pinion 52.
- the second output toothed wheel 53 is integral in rotation with the transmission shaft 5, for example via splines.
- the first output toothed wheel 43 can be made integral in rotation with the transmission shaft 5, by means of the connection element 6.
- the first output toothed wheel 43 is rotatably mounted on a portion of the transmission shaft 5, for example via a rolling or needle bearing. Another portion of the transmission shaft 5 allows the coupling of the transmission shaft 5 and the first output toothed wheel 43 via the connection element 6.
- the transmission device further comprises an actuator capable of changing the connection element 6 from a first operating mode in which the first output toothed wheel 43 is rotatably secured to the transmission shaft 5 to a second mode. operating mode in which the first output toothed wheel 43 is movable in rotation with respect to the transmission shaft 5.
- connection element 6 is preferably of the normally open type. In other words, the connection element 6 is closed in the first mode of operation of the connection element and the connection element 6 is open in the second mode of operation of the connection element.
- the connection element 6 can be operated hydraulically.
- connection element is a synchronizer 6.
- a synchronizer is shown in Figure 5.
- a synchronizer is a device known to those skilled in the art.
- FIG. 5 represents the synchronizer of the second embodiment, but it can also be used for the first embodiment.
- the second embodiment of FIG. 3 shows an exemplary embodiment of the coupling device comprising a first clutch 1 and a second clutch 2.
- the first clutch 1 comprises a first input element 31 capable of being driven by the electric machine 4 and a first output element 33, a torque being transmitted between the first input element 31 and the first output element 33 when the first clutch 1 is closed.
- the second clutch 2 comprising a second input element 32 capable of being driven by the electrical machine 4 and a second output element 34, a torque being transmitted between the second input element 32 and the second output element 34 when the second clutch 2 is closed.
- the first transmission path 11 transmits a torque between the first output element 33 and the differential 7, according to a first speed ratio.
- speed is meant the ratio between the speed at the exit of the transmission path and the speed at the entry of the transmission path.
- the second transmission path 12 transmits a torque between the second output element 34 and the differential 7 according to a second speed ratio different from the first speed ratio.
- the first input element 31 of the first clutch 1 and the second input element 32 of the second clutch 2 are arranged to be driven by a common torque input shaft 8 which is here the output shaft of the electric machine. 4.
- the clutches 1 and 2 are placed kinematically as close as possible to the electric machine 4, upstream of the speed reduction, which means that the two clutches are placed in a portion of the transmission chain where the torque is. the weakest. In the case of progressive friction clutches in particular, this makes it possible to have better compactness of the clutches.
- the first clutch 1 is a progressive friction clutch and the second clutch is a progressive friction clutch. So gear changes can be smooth and gradual without abrupt acceleration.
- the term “progressive clutch” is understood to mean a clutch, the transmissible torque of which can be controlled in a progressive manner.
- the first clutch 1 and the second clutch 2 jointly form a double clutch.
- the first input member 31 and the second input member 32 together form an input member of the double clutch.
- the first input member 31 and the second input member 32 have a common input shaft coupling portion 8.
- the first input element 31 and the second input element 32 can be formed in one part.
- the first clutch 1 and the second clutch 2 are coaxial and radially offset from each other.
- the first input member 31 has a disk carrier portion coupled to a plurality of input friction disks.
- the first clutch 1 comprises a first output element 33 mounted integral in rotation with the first input shaft 41 of the first transmission path, for example by splines.
- the first clutch 1 comprises a plurality of output friction discs rotatably coupled to the first output member 33.
- the input friction discs and the output friction discs are arranged to be pressed against each other by a piston 35 to transmit a torque between the first input member 31 and the first output member 33.
- a hydraulic actuator 37 makes it possible to move the piston to change the first clutch 1 from a disengaged (open) position to an engaged (closed) position.
- the second input member 32 has a disk carrier portion coupled to a plurality of input friction disks.
- the second clutch 2 comprises a second output element 34 mounted integral in rotation with the second input shaft 51 of the second transmission path, for example by splines.
- the second clutch 2 includes a plurality of output friction discs rotatably coupled to the second output member 34.
- the input friction discs and the output friction discs are arranged to be pressed against each other by a piston 36 to transmit torque between the second input member 32 and the second output member 34.
- a hydraulic actuator 38 makes it possible to move the piston to change the second clutch 2 from a disengaged (open) position to an engaged (closed) position.
- the actuators 37, 38 can be coaxial and overlap radially, for example in the form of a double actuator.
- the first clutch and the second clutch are preferably of the normally open type.
- the first clutch 1 comprises a multi-disc assembly made up of input disks and output disks which follow one another alternately.
- the second clutch 2 comprises a multi-disc assembly made up of input disks and output disks which follow one another alternately.
- the multidisc assembly of the first clutch 1 is located radially inside the multidisc assembly of the second clutch 2 with radial overlap.
- the first clutch and the second clutch are wet clutches.
- the torque transmission device may include a common reduction gearbox loaded regardless of the path taken by the torque coming from the electric machine.
- a common reduction gear 14 formed by the pinion 9 of the transmission device and the toothed wheel coupled to the differential 7.
- common two-stage reduction gear 15, 14 also formed by a gear train between the transmission shaft 5 and the differential 7.
- connection element 6 is arranged to allow or interrupt the transmission of a torque between the first output element 33 of the first clutch 1 and the differential 7.
- the propulsion system is configured so that the transmission of torque between the first output member 33 of the first clutch 1 and the differential 7 is permitted when the first clutch 1 is closed. On the other hand, the transmission of a torque between the first output element 33 of the first clutch 1 and the differential 7 is prevented when the first clutch 1 is open and when the second clutch 2 is closed.
- connection element 6 is arranged to allow the mutual driving in rotation between the first output element 33 of the first clutch 1 and the differential 7, via the first transmission path 11, when the first clutch 1 is closed, and to interrupt the mutual drive in rotation between the first output element of the first clutch 1 and the differential 7, through the first transmission path 11, when the first clutch is open, and when the second clutch is closed.
- the synchronizer 6 comprises a hub 61 integral in rotation with the transmission shaft 5.
- the synchronizer 6 comprises a synchronization ring 62 forming with the first output toothed wheel 43 a bevel clutch by friction.
- the synchronizer 6 further comprises a slide 63 integral in rotation with keys 64, themselves integral in rotation with the hub 61.
- the keys 64 can slide axially relative to the hub 61.
- the slide 63 can also slide axially relative to the hub 61 by axially driving the keys 64.
- the keys 64 are arranged to rub against the synchronization ring 62.
- the slide 63 comprises teeth 67 and the second output wheel 43 comprises complementary teeth 68 able to cooperate with the teeth 67 of the slide 63, to drive at the same speed the slide 63 and the second output wheel 43 during the first operating mode.
- the bevel friction clutch allows a smooth shifting between the second mode of operation and the first mode of synchronizer operation. Friction occurs between the first output toothed wheel 43 and the synchronization ring 62 as long as the speeds of the first output toothed wheel 43 and the driveshaft 5 are not equal.
- An actuator is used to move the player to switch the connection element 6.
- the electrical machine is also configured in such a way as to limit losses.
- An example of an electric machine is shown in Figure 6. This electric machine can be used for either of the previous two embodiments.
- the electric machine 4 is a machine with permanent magnets.
- the electric propulsion system may further include an inverter 90 configured to control the electric machine 4.
- the inverter 90 can have a supply voltage of 800V.
- the currents flowing in the inverter may be lower, and thus the losses at the inverter level are reduced.
- the electric machine 4 has a machine torque of between 380 and 490 N.m, for example between 400 and 460 N.m.
- a machine torque of between 380 and 490 N.m, for example between 400 and 460 N.m.
- the size of the electric machine is smaller, the electric machine is less complex and the efficiency of the electric machine is better than with a machine torque greater than 500 N.m.
- the electric machine 4 is a rotating electric machine comprising a stator 410 powered by the inverter 90.
- the stator comprises a stator body 414 with notches which are provided to receive four to eight layers of conductors forming the coil 411, for example six layers C1-C6, arranged in a direction substantially radial with respect to the axis of rotation of the coil. rotor.
- the stator comprises a coil 411 with pins 412.
- the coil with pins makes it possible to increase the filling coefficient of the slots and also contributes to the reduction of losses, in particular direct current losses and Joule losses.
- the number of notches 413 of the stator body here is 54.
- the notches 413 are regularly arranged around the axis of rotation X of the rotor.
- the electric machine 4 comprises a rotor having six poles. Indeed, it has been observed that the electric frequency is reduced by 25% with a six-pole machine compared to an eight-pole machine, which reduces the losses of alternating current.
- the poles are evenly distributed around the axis of rotation of the rotor.
- the maximum speed of the electric machine is between 11,000 and 13,000 revolutions per minute, for example 12,000 revolutions per minute.
- the electric machine 4 has a peak power of between 230 and 270 kW, for example 250 kW.
- the maximum electric frequency of the electric machine 4 is between 500 and 700 Hz, for example 600 Hz.
- the iron losses are reduced, in particular. at low operating torque.
- the alternating current losses in the stator 410, called AC losses, are also reduced.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
L'invention porte sur un système de propulsion électrique pour un véhicule, notamment un véhicule automobile, comprenant : • - une machine électrique à aimants permanents (4) configurée pour être alimentée par un onduleur (90), la machine électrique comportant un rotor ayant six ou huit pôles, et un stator (410), le stator (410) ayant un corps de stator doté d'encoches (413), les encoches recevant des conducteurs formant un bobinage (411), le nombre d'encoches du corps de stator étant compris entre 48 et 72 • - un différentiel (7) apte à entraîner un arbre de sortie portant à ses extrémités deux roues latéralement opposées du véhicule, • - un dispositif de transmission (10) agencé cinématiquement entre la machine électrique (4) et le différentiel (7), le dispositif de transmission comprenant un premier chemin de transmission du couple (11) présentant un premier rapport de réduction et un deuxième chemin de transmission du couple (12) présentant un deuxième rapport de réduction, le dispositif de transmission (10) comprenant un dispositif de couplage (1, 2) permettant de transmettre un couple entre la machine électrique (4) et le différentiel (7) sélectivement via le premier chemin de transmission (11) ou via le deuxième chemin de transmission (12).
Description
DESCRIPTION
TITRE : Système de propulsion pour un véhicule.
La présente invention concerne un système de propulsion électrique de véhicule, notamment de véhicule automobile, en particulier de véhicule automobile disposant d’un couple à la roue important, par exemple supérieur à 3800 Nm, en particulier supérieur à 4400 Nm, et d’une vitesse à la roue importante, par exemple supérieure à 1300 tours par minute, en particulier supérieure à 1600 tours par minute, tel qu’un véhicule utilitaire sportif appelé aussi SUV.
De tels systèmes de propulsion possèdent classiquement une machine électrique avec un onduleur ayant une tension d’alimentation de 400V, ces machines pouvant atteindre une vitesse de 16000 tours par minute et étant associées à une transmission mécanique présentant un seul rapport de réduction.
Avec de telles architectures, il est souvent difficile de trouver un bon compromis entre le besoin de fort couple à la roue (supérieur à 3800 N.m, en particulier supérieur à 4400 N.m) et le besoin d’atteindre des vitesses relativement élevées (supérieures à 180km/h, en particulier supérieures à 200 km/h). De plus, le fonctionnement de ces systèmes de propulsion génère des pertes qui sont néfastes pour l’efficacité du système de propulsion et pour l’autonomie du véhicule.
L’invention vise donc à réduire les pertes (pertes fer, pertes de courant alternatif, couple de traînée, barbotage...), à augmenter le rendement du système de propulsion, et à augmenter l’autonomie.
A cet effet, l’invention concerne un système de propulsion électrique pour un véhicule, notamment un véhicule automobile, comprenant : une machine électrique à aimants permanents configurée pour être alimentée par un onduleur, la machine électrique comportant un rotor ayant six ou huit pôles, et un stator ayant un corps de stator doté d’encoches, les encoches recevant des conducteurs formant un bobinage, le nombre d’encoches du corps de stator étant compris entre 48 et 72, un différentiel apte à entraîner un arbre de sortie portant à ses extrémités deux roues latéralement opposées du véhicule, un dispositif de transmission agencé cinématiquement entre la machine électrique et le différentiel, le dispositif de transmission comprenant un premier chemin de transmission du
couple présentant un premier rapport de réduction et un deuxième chemin de transmission du couple présentant un deuxième rapport de réduction, le dispositif de transmission comprenant un dispositif de couplage permettant de transmettre un couple entre la machine électrique et le différentiel sélectivement via la premier chemin de transmission ou via le deuxième chemin de transmission.
Ainsi, la mise en œuvre d’un dispositif de transmission présentant au moins deux rapports de réduction avec ce type de machine électrique permet à la machine électrique de travailler dans sa meilleure zone d’efficacité et d’améliorer le rendement. Cela permet également d’atteindre plus facilement les objectifs de vitesse maximale à la roue (supérieure à 1300 tours par minute, en particulier supérieure à 1600 tours par minute), et de couple à la roue (supérieur à 3800 Nm, en particulier supérieur à 4400 Nm). L’utilisation d’au moins deux rapports de vitesses permet de concilier couple de démarrage élevé et vitesse maximale et par conséquent de réduire le temps nécessaire au véhicule pour atteindre une vitesse élevée. Le choix de deux rapports de vitesse offre un bon compromis entre complexité de la transmission, performances dynamiques, consommation du véhicule, et taille de la machine électrique. Un nombre d’encoches élevé, tel que 48, 54 ou 72 permet d’obtenir un meilleur champ tournant, moins d’ondulation de couple et moins de pertes fer. L’association de ce type de machine électrique avec un dispositif de transmission à deux rapports permet en outre d’obtenir un bon comportement ACV (NVH en anglais pour « Noise, vibration, and hardness ») en évitant les phénomènes de résonnance entre la machine électrique et le dispositif de réduction à deux rapports.
Le système de propulsion électrique peut comporter en outre une ou plusieurs des caractéristiques ci-dessous :
De préférence, la machine électrique est une machine à trois phases (triphasée).
Les pôles sont arrangés par paires, par exemple trois ou quatre paires de pôles. La mise en œuvre de 3 paires de pôles permet notamment d’abaisser le niveau de vibrations.
Le rotor a exactement six pôles, en particulier trois paires de pôles.
Le cas échéant, le nombre d’encoches est de 54 ou 72.
Il a été observé que la fréquence électrique est réduite de 25% avec un rotor à six pôles par rapport à un rotor à huit pôles, ce qui réduit les pertes de courant alternatif et les pertes fer, en
particulier à faible couple de fonctionnement, par exemple en dessous de lOONm, notamment en dessous de 50Nm.
La machine électrique est configurée pour avoir une vitesse maximum inférieure à 14000 tours par minute, par exemple inférieure à 13000 tours par minute, notamment comprise entre 10000 et 14000 tours par minute, par exemple entre 11000 et 13000 tours par minute, par exemple 12000 tours par minute. En effet, la mise en œuvre d’un dispositif de transmission présentant au moins deux rapports de réduction permet d’utiliser une machine électrique dont la vitesse maximum peut être abaissée par rapport aux systèmes de propulsion connus présentant un seul rapport. Ainsi, les pertes de rendement inhérentes aux vitesses de rotation très élevées sont évitées. Par exemple, au lieu d’utiliser une machine électrique ayant une vitesse maximum de 16000 tours par minute, il est possible d’utiliser une machine électrique ayant une vitesse maximum de 12000 tours par minute. La réduction de la vitesse de la machine électrique contribue à réduire la fréquence électrique de la machine, ce qui fait diminuer les pertes fer et les pertes de courant alternatif.
Le système de propulsion est configuré de sorte que le couple d’entrainement du différentiel est produit uniquement par la machine électrique, quel que soit la vitesse du véhicule. Autrement dit, au sein du système de propulsion, la machine électrique n’intervient pas en complément d’une autre machine ou d’un autre moteur, pour entraîner le différentiel. Ceci étant, un moteur et/ou une autre machine électrique peuvent être utilisés au sein du véhicule pour entraîner d’autres roues du véhicule. Par exemple, le système de propulsion présenté ici peut être fourni dans un premier essieu électrique du véhicule, et le véhicule peut présenter un deuxième essieu avec deux autres roues latéralement opposées, ce deuxième essieu pouvant être entraîné par une autre machine électrique et/ou un moteur thermique.
Le système de propulsion est configuré de sorte que le couple transitant dans le dispositif de transmission vers le différentiel est généré uniquement par la machine électrique.
Le système de propulsion électrique comprend un onduleur configuré pour alimenter ladite machine électrique.
Le stator est alimenté par l’onduleur.
La tension d’alimentation de l’onduleur est comprise entre 600V et 1000V, par exemple comprise entre 700V et 900V, par exemple 800V. Ainsi, par rapport aux onduleurs dont la tension d’alimentation est de 400V, les pertes au niveau de l’onduleur sont réduites.
L’intensité de la machine électrique est comprise entre 480 A et 800 A, par exemple comprise entre 533 A et 685 A, par exemple 600 A.
Notamment, la vitesse maximum de la machine électrique est inférieure à 14000 tours par minute, notamment inférieure à 13000 tours par minute, par exemple comprise entre 10000 et 14000 tours par minute, notamment entre 11000 et 13000 tours par minute, par exemple 12000 tours par minute, pour une intensité inférieure à 800 A, notamment comprise entre 480 A et 800 A, par exemple comprise entre 533 A et 685 A, par exemple 600 A et/ou pour une tension d’alimentation de l’onduleur comprise entre 600V et 1000V, par exemple comprise entre 700V et 900V, par exemple 800V.
La machine électrique a un couple machine compris entre 380 et 490 N.m, par exemple compris entre 400 et 460 N.m, par exemple 440 N.m. Ainsi, l’encombrement de la machine électrique est plus réduit, et l’efficacité de la machine électrique est meilleure qu’avec un couple machine supérieur à 500 N.m.
Le bobinage du stator est un bobinage à épingles. Le bobinage à épingles permet d’augmenter le coefficient de remplissage des encoches et contribue aussi à la réduction des pertes, notamment les pertes de courant continu et pertes Joule.
Quatre à huit couches de conducteurs formant le bobinage, par exemple six couches, sont reçues dans les encoches. Ainsi les pertes sont réduites.
Les couches de conducteurs sont disposées dans une direction sensiblement radiale par rapport à l’axe de rotation de la machine électrique.
Les encoches sont régulièrement disposées autour de l’axe de rotation X du rotor.
La machine électrique a une puissance de crête comprise entre 230 et 270 kW, par exemple 250 kW.
La fréquence électrique maximum de la machine électrique est comprise entre 500 et 700 Hz, par exemple 600 Hz. Ainsi, notamment en comparaison avec des machines électriques dont la
fréquence électrique maximum atteint plus de 1000 Hz, les pertes fer sont réduites, en particulier à faible couple de fonctionnement. Les pertes de courant alternatif dans le stator, dites pertes AC, sont aussi réduites.
De préférence, les pôles sont régulièrement répartis autour de l’axe de rotation du rotor.
Le dispositif de transmission comprend au moins deux rapports de réduction, par exemple deux rapports ou trois rapports.
Le dispositif de transmission comprend un arbre de transmission agencé de manière à transmettre un couple du premier chemin de transmission vers le différentiel et du deuxième chemin de transmission vers le différentiel. Autrement dit, l’un ou l’autre des premier et deuxième chemins de transmission entraîne en rotation l’arbre de transmission qui entraîne à son tour le différentiel, notamment via un train d’engrenages.
Le dispositif de couplage comprend un premier embrayage comprenant un premier élément d’entrée apte à être entraîné par la machine électrique et un premier élément de sortie, un couple pouvant être transmis entre le premier élément d’entrée et le premier élément de sortie lorsque le premier embrayage est fermé.
Le dispositif de couplage comprend un deuxième embrayage comprenant un deuxième élément d’entrée apte à être entraîné par la machine électrique et un deuxième élément de sortie, un couple pouvant être transmis entre le deuxième élément d’entrée et le deuxième élément de sortie lorsque le deuxième embrayage est fermé.
Le premier embrayage est un embrayage progressif.
Le deuxième embrayage est un embrayage progressif.
Le premier embrayage est un embrayage multi-disques humide.
Le deuxième embrayage est un embrayage multi-disques humide. L’utilisation des embrayages, notamment des embrayages multidisques progressifs, permet également de garantir le confort de l’utilisateur en évitant les changements de rapports brusques ainsi que les variations perceptibles d’accélération.
Le premier chemin de transmission est agencé pour transmettre un couple entre le premier élément de sortie et le différentiel.
Le deuxième chemin de transmission est agencé pour transmettre un couple entre le deuxième élément de sortie et le différentiel.
Le premier chemin de transmission a un rapport de vitesse plus faible que le deuxième chemin de transmission.
Le système de propulsion est configuré de sorte que la transmission d’un couple entre le premier élément de sortie du premier embrayage et le différentiel est autorisée lorsque le premier embrayage est fermé, la transmission d’un couple entre le premier élément de sortie du premier embrayage et le différentiel est empêché lorsque le premier embrayage est ouvert et lorsque le deuxième embrayage est fermé.
Autrement dit, le système de propulsion est configuré de sorte que l’entrainement mutuel en rotation entre le premier élément de sortie du premier embrayage et le différentiel est autorisé lorsque le premier embrayage est fermé, et l’entrainement mutuel en rotation entre le premier élément de sortie du premier embrayage et le différentiel est empêché lorsque le premier embrayage est ouvert et lorsque le deuxième embrayage est fermé.
Le dispositif de transmission comprend un élément de connexion agencé pour autoriser ou interrompre la transmission d’un couple entre le premier élément de sortie du premier embrayage et le différentiel.
Ainsi, grâce à l’actionnement de l’élément de connexion, il est possible d’interrompre l’entrainement de l’élément de sortie du premier embrayage, et notamment les disques de friction de sortie du premier embrayage, lorsque le deuxième embrayage est fermé. Cela permet de limiter significativement, voire de supprimer le couple de traînée au niveau du premier embrayage lorsque le deuxième embrayage est fermé, ce qui permet d’améliorer le rendement du système de propulsion.
De plus, lorsque le premier chemin de transmission est un réducteur de vitesse avec un rapport de vitesse faible et/ou lorsque le ratio entre le rapport de réduction du deuxième chemin de transmission et le rapport de réduction du premier chemin de transmission (appelé aussi rapport d’ouverture de la boite de vitesse) est élevé, par exemple compris entre 1,3 et 2, et à fortiori lorsque les premier et deuxième élément d’entrée des embrayages sont entraînés directement, sans réducteur intermédiaire, par la machine électrique, l’ouverture de l’élément de connexion permet
d’éviter une centrifugation excessive du premier élément de sortie du premier embrayage qui pourrait tourner à une vitesse supérieure à celle de la machine électrique lorsque le deuxième embrayage est fermé et que le premier embrayage est ouvert. En effet, le premier chemin de transmission agirait comme un multiplicateur de vitesse vis-à-vis du premier élément de sortie du premier embrayage lorsque le couple est transmis par le deuxième embrayage. L’invention permet par conséquent non seulement de diminuer les pertes, mais aussi d’améliorer la sécurité du dispositif de transmission de couple. Une vitesse excessive du premier élément de sortie, notamment supérieure à la vitesse de la machine, serait susceptible de créer des problèmes de tenue mécanique et réduirait le rendement.
Le premier élément d’entrée et le deuxième élément d’entrée sont agencés pour être entraînés par un arbre d’entrée de couple commun.
Le premier chemin de transmission comprend un premier train d’engrenages.
Le premier chemin de transmission comprend un premier arbre d’entrée solidaire en rotation d’une première roue dentée d’entrée, et une première roue dentée de sortie engrenant, directement ou indirectement (via une ou plusieurs roues dentées intermédiaires), avec la première roue dentée d’entrée.
Le deuxième chemin de transmission comprend un deuxième train d’engrenages.
Le deuxième chemin de transmission comprend un deuxième arbre d’entrée solidaire en rotation d’une deuxième roue dentée d’entrée, et une deuxième roue dentée de sortie engrenant, directement ou indirectement (via une ou plusieurs roues dentées intermédiaires), avec la deuxième roue dentée d’entrée.
L’un au moins parmi le premier arbre d’entrée et le deuxième arbre d’entrée est un arbre creux et l’autre parmi le premier arbre d’entrée et le deuxième arbre d’entrée s’étend à l’intérieur de l’arbre creux.
Le premier arbre d’entrée est couplé au premier élément de sortie du premier embrayage.
Le deuxième arbre d’entrée est couplé au deuxième élément de sortie du deuxième embrayage. L’élément de connexion est un synchroniseur.
Le premier rapport de réduction est compris entre 0.05 et 0.1, notamment entre 0.06 et 0.08 et le deuxième rapport de réduction est compris entre 0.12 et 0.2, notamment entre 0.14 et 0.17. Combiné aux caractéristiques de couple et/ ou de vitesse de la machine électrique mentionnées précédemment, ces rapports de vitesse sont adaptés aux véhicules automobiles, notamment de type utilitaires sportifs appelés aussi SUV.
L’invention porte aussi sur un essieu électrique, notamment un essieu arrière, comprenant un système de propulsion tel que décrit précédemment, un arbre de sortie couplé au différentiel, l’arbre de sortie étant apte entraîner à ses extrémités, deux roues latéralement opposées du véhicule.
L’invention porte aussi sur un véhicule, notamment un véhicule automobile, en particulier un véhicule automobile utilitaire sportif appelé aussi SUV, comprenant un système de propulsion ou un essieu électrique tel que décrit précédemment.
Le couple à la roue maximum du véhicule est supérieur à 3800 N.m, notamment supérieur à 4200 N.m, en particulier supérieur à 4400 N.m.
Notamment, le système de propulsion électrique est tel que la machine électrique, le différentiel, le dispositif de transmission, et le cas échéant l’onduleur, sont intégrés ensemble. En particulier, ils sont montés les uns sur les autres.
Par exemple, la machine électrique, le différentiel, le dispositif de transmission, et le cas échéant l’onduleur, ont chacun au moins un carter fixé sur l’un au moins des autres carters.
Le véhicule est apte à rouler à une vitesse maximum qui est supérieure à 180km/h, en particulier supérieure à 200 km/h.
Brève description des figures
[Fig.l] est un schéma de principe d’un système de propulsion selon un premier mode de réalisation de l’invention ;
[Fig.2] est un une vue de coupe schématique du système de propulsion selon le premier mode de réalisation de l’invention ;
[Fig.3] est une vue en coupe d’un système de propulsion selon un deuxième mode de réalisation ; [Fig.4] est une vue de côté du système de propulsion selon le deuxième mode de réalisation ;
[Fig.5] est une vue en coupe agrandie de l’élément de connexion du deuxième mode de réalisation ;
[Fig.6] est une vue en perspective de la machine électrique.
Dans la description et les revendications, on utilisera les orientations "axiale" et "radiale" pour désigner, selon les définitions données dans la description, des éléments du dispositif de transmission. Par convention, l'orientation "radiale" est dirigée orthogonalement à l’orientation axiale. L’orientation axiale se rapporte, suivant le contexte, à l’axe de rotation de l’un des arbres, par exemple l’arbre de sortie de la machine électrique ou l’arbre de sortie du système de propulsion.
Le terme « entrée » désigne, d’un point de vue cinématique, ce qui est situé du côté de la machine électrique et le terme « sortie » désigne, d’un point de vue cinématique, ce qui est situé du côté des roues du véhicule.
La figure 1 est un schéma de principe illustrant un premier mode de réalisation de l’invention. Il s’agit d’un dispositif de propulsion d’un essieu électrique de véhicule.
La figure 1 illustre un système de propulsion comprenant une machine électrique 4, un différentiel 7 entraînant un arbre de sortie 70 destiné à porter à ses extrémités deux roues latéralement opposées du véhicule, et un dispositif de transmission 10 agencé cinématiquement entre la machine électrique 4 et le différentiel 7.
Le système de propulsion est configuré de sorte le couple d’entrainement du différentiel 7 est produit uniquement par la machine électrique 4, quel que soit la vitesse du véhicule. Autrement dit, au sein du système de propulsion, la machine électrique n’intervient pas en complément d’une autre machine ou d’un autre moteur pour entraîner le différentiel 7. Ceci étant, un moteur et/ou une autre machine électrique peuvent être utilisés au sein du véhicule pour entraîner d’autres roues du véhicule. Par exemple le système de propulsion présenté ici peut être fourni dans un premier essieu électrique du véhicule, et le véhicule peut présenter un deuxième essieu avec deux autres roues latéralement opposées, ce deuxième essieu pouvant être entraîné par une autre machine électrique et/ou un moteur thermique.
La machine électrique 4 est réversible. Cette machine électrique est apte à fonctionner en mode moteur pour assurer une propulsion du véhicule. Cette machine est également apte à fonctionner en mode générateur pour fournir de l’énergie à la batterie du véhicule.
Selon un mode de réalisation la machine électrique est implantée sur le train arrière du véhicule.
Le dispositif de transmission 10 comprend un premier chemin de transmission du couple 11 présentant un premier rapport de réduction et un deuxième chemin de transmission du couple 12 présentant un deuxième rapport de réduction. Le dispositif de transmission 10 comprend un dispositif de couplage 1 ,2 permettant de transmettre un couple entre la machine électrique 4 et le différentiel 7 sélectivement via le premier chemin de transmission 11 ou via le deuxième chemin de transmission 12.
Le dispositif de couplage comprend un premier embrayage 1 apte à autoriser ou interrompre la transmission d’un couple entre la machine électrique 4 et le premier chemin de transmission 11. Le dispositif de couplage comprend également un deuxième embrayage 2 apte à autoriser ou interrompre la transmission d’un couple entre la machine électrique 4 et le deuxième chemin de transmission 12.
Le premier chemin de transmission 11 permet de réduire la vitesse de rotation et d’augmenter le couple, selon le premier rapport de réduction et le deuxième chemin de transmission 12 permet de réduire la vitesse de rotation et d’augmenter le couple, selon le deuxième rapport de réduction. Pour une vitesse d’entrée identique, la sortie du deuxième chemin de transmission 12 tourne plus vite que la sortie du premier chemin de transmission 11. Par exemple, le premier rapport de réduction du dispositif de transmission 10 est compris entre 0.06 et 0.08 et le deuxième rapport de réduction du dispositif de transmission 10 est compris entre 0.14 et 0.17.
Le dispositif de transmission 10 comprend un arbre de transmission 5 agencé de manière à transmettre un couple du premier chemin de transmission 11 vers le différentiel 7 et du deuxième chemin de transmission 12 vers le différentiel 7.
Pour augmenter le couple et faire baisser davantage la vitesse de rotation à la sortie du dispositif de transmission de couple 10, un étage de réduction de vitesse est ici formé entre l’arbre de transmission 5 et le différentiel 7 avec un pignon 9 solidaire en rotation de l’arbre de transmission
5 et une roue dentée agencée à entrée du différentiel 7, la roue dentée engrenant avec le pignon
9.
Le premier chemin de transmission 11 est un train d’engrenages réducteur de vitesse (de la machine électrique vers le différentiel). Le deuxième chemin de transmission 12 est aussi un train d’engrenages réducteur de vitesse. Ces trains d’engrenage peuvent être montés de façon à barboter dans l’huile. Le premier chemin de transmission 11 a un rapport de vitesse plus faible que le deuxième chemin de transmission 12. Le premier chemin de transmission 11 est utilisé pour propulser le véhicule à des vitesses relativement basses, et le deuxième chemin de transmission 12 est utilisé pour propulser le véhicule à des vitesses relativement élevées.
Le dispositif de transmission 10 comprend un élément de connexion 6 configuré pour empêcher l’entrainement du premier chemin de transmission 11 lorsque le deuxième embrayage 2 est fermé et qu’il transmet un couple cheminant de la machine électrique 4 au différentiel 7, via le deuxième chemin de transmission 12. En évitant d’entraîner le premier chemin de transmission 11 de façon inutile, on évite d’avoir des pertes de rendements préjudiciables au niveau du premier chemin de transmission 11, pertes qui pourraient être liées en particulier au barbotage des éléments de transmission tournants et à la centrifugation des éléments de sortie du premier embrayage.
Le premier chemin de transmission 11 comprend un premier arbre d’entrée 41 solidaire en rotation d’un pignon 42, et une première roue dentée de sortie 43 engrenant ici directement avec le pignon 42.
Le deuxième chemin de transmission 12 comprend un deuxième arbre d’entrée 51 solidaire en rotation d’un pignon 52, et une deuxième roue dentée de sortie 53 engrenant ici directement avec le pignon 52.
Le deuxième arbre d’entrée est un arbre creux 51 et le premier arbre d’entrée 41 s’étend à l’intérieur de cet arbre creux 51. Le deuxième arbre d’entrée 51 et le premier arbre d’entrée 41 sont coaxiaux.
Comme on peut le voir sur schéma de la figure 2, le premier arbre d’entrée 41 peut être formé d’une seule pièce avec le pignon 42. De même, le deuxième arbre d’entrée 51 peut être formé d’une seule pièce avec le pignon 52.
La deuxième roue dentée de sortie 53 est solidaire en rotation de l’arbre de transmission 5, par exemple via des cannelures. La première roue dentée de sortie 43 peut être rendue solidaire en rotation de l’arbre de transmission 5, par l’intermédiaire de l’élément de connexion 6.
La première roue dentée de sortie 43 est montée rotative sur une portion de l’arbre de transmission 5, par exemple via un palier à roulement ou à aiguilles. Une autre portion de l’arbre de transmission 5 permet l’accouplement de l’arbre de transmission 5 et de la première roue dentée de sortie 43 via l’élément de connexion 6.
Le dispositif de transmission comprend en outre un actionneur apte à faire passer l’élément de connexion 6 d’un premier mode de fonctionnement dans lequel la première roue dentée de sortie 43 est solidaire en rotation de l’arbre de transmission 5 à un deuxième mode de fonctionnement dans lequel la première roue dentée de sortie 43 est mobile en rotation par rapport à l’arbre de transmission 5.
L’élément de connexion 6 est de préférence du type normalement ouvert. Autrement dit, l’élément de connexion 6 est fermé dans le premier mode de fonctionnement de l’élément de connexion et l’élément de connexion 6 est ouvert dans le deuxième mode de fonctionnement de l’élément de connexion. L’élément de connexion 6 peut être commandé hydrauliquement.
De préférence, l’élément de connexion est un synchroniseur 6. Un tel synchroniseur est représenté sur la figure 5. Un synchroniseur est un dispositif connu par l’homme du métier. La figure 5 représente le synchroniseur du deuxième mode de réalisation mais il peut être utilisé également pour le premier mode de réalisation.
Le deuxième mode de réalisation de la figure 3 présente un exemple de réalisation du dispositif de couplage comprenant un premier embrayage 1 et un deuxième embrayage 2.
Le premier embrayage 1 comprend un premier élément d’entrée 31 apte à être entraîné par la machine électrique 4 et un premier élément de sortie 33, un couple étant transmis entre le premier élément d’entrée 31 et le premier élément de sortie 33 lorsque le premier embrayage 1 est fermé.
Le deuxième embrayage 2 comprenant un deuxième élément d’entrée 32 apte à être entraîné par le machine électrique 4 et un deuxième élément de sortie 34, un couple étant transmis entre le
deuxième élément d’entrée 32 et le deuxième élément de sortie 34 lorsque le deuxième embrayage 2 est fermé.
Le premier chemin de transmission 11 transmet un couple entre le premier élément de sortie 33 et le différentiel 7, selon un premier rapport de vitesses. On entend par rapport de vitesse, le ratio entre la vitesse à la sortie du chemin de transmission et la vitesse à l’entrée du chemin de transmission.
Le deuxième chemin de transmission 12 transmet un couple entre le deuxième élément de sortie 34 et le différentiel 7 selon un deuxième rapport de vitesses différent du premier rapport de vitesse.
Le premier élément d’entrée 31 du premier embrayage 1 et le deuxième élément d’entrée 32 du deuxième embrayage 2 sont agencés pour être entraînés par un arbre d’entrée de couple commun 8 qui est ici l’arbre de sortie de la machine électrique 4. Ainsi, les embrayages 1 et 2 sont placés cinématiquement au plus près de la machine électrique 4, en amont de la réduction de vitesse, ce qui signifie que les deux embrayages sont placés dans une portion de la chaîne de transmission où le couple est le plus faible. Dans le cas d’embrayages progressifs par friction notamment, cela permet d’avoir une meilleure compacité des embrayages.
Le premier embrayage 1 est un embrayage progressif par friction et le deuxième embrayage est un embrayage progressif par friction. Ainsi les changements de vitesses peuvent être lisses et progressifs sans accélérations brusques. On entend par embrayage progressif, un embrayage dont le couple transmissible est contrôlable de façon progressive.
Le premier embrayage 1 et le deuxième embrayage 2 forment conjointement un double embrayage. Le premier élément d’entrée 31 et le deuxième élément d’entrée 32 forment conjointement un organe d’entrée du double embrayage.
Le premier élément d’entrée 31 et le deuxième élément d’entrée 32 ont une portion d’accouplement à l’arbre d’entrée 8 commune. Le premier élément d’entrée 31 et le deuxième élément d’entrée 32 peuvent être formés dans une même pièce.
Le premier embrayage 1 et le deuxième embrayage 2 sont coaxiaux et décalés radialement l’un de l’autre.
Le premier élément d’entrée 31 a une portion formant un porte-disque couplé à une pluralité de disques de friction d’entrée. Le premier embrayage 1 comprend un premier élément de sortie 33 monté solidaire en rotation au premier arbre d’entrée 41 du premier chemin de transmission par exemple par des cannelures.
Le premier embrayage 1 comprend une pluralité de disques de friction de sortie couplés en rotation au premier élément de sortie 33.
Les disques de friction d’entrée et les disques de friction de sortie sont agencés de sorte à être pressés les uns contre les autres par un piston 35 pour transmettre un couple entre le premier élément d’entrée 31 et le premier élément de sortie 33. Un actionneur hydraulique 37 permet de déplacer le piston pour faire passer le premier embrayage 1 d’une position débrayée (ouverte) à une position embrayée (fermée).
De même, le deuxième élément d’entrée 32 a une portion formant un porte-disque couplé à une pluralité de disques de friction d’entrée. Le deuxième embrayage 2 comprend un deuxième élément de sortie 34 monté solidaire en rotation au deuxième arbre d’entrée 51 du deuxième chemin de transmission par exemple par des cannelures.
Le deuxième embrayage 2 comprend une pluralité de disques de friction de sortie couplés en rotation au deuxième élément de sortie 34.
Les disques de friction d’entrée et les disques de friction de sortie sont agencés de sorte à être pressés les uns contre les autres par un piston 36 pour transmettre un couple entre le deuxième élément d’entrée 32 et le deuxième élément de sortie 34. Un actionneur hydraulique 38 permet de déplacer le piston pour faire passer le deuxième embrayage 2 d’une position débrayée (ouverte) à une position embrayée (fermée).
Les actionneurs 37, 38 peuvent être coaxiaux et se superposer radialement, par exemple sous la forme d’un double actionneur. Le premier embrayage et le deuxième embrayage sont de préférence du type normalement ouverts.
Le premier embrayage 1 comprend un ensemble multi-disques composé des disques d’entrée et des disques de sortie qui se succèdent de façon alternée. De même, le deuxième embrayage 2 comprend un ensemble multi-disques composé des disques d’entrée et des disques de sortie qui se succèdent de façon alternée. L’ensemble multidisque du premier embrayage 1 se situe radialement
à l’intérieur de l’ensemble multidisque du deuxième embrayage 2 avec recouvrement radial. Le premier embrayage et le deuxième embrayage sont des embrayages humides.
Le dispositif de transmission de couple peut comprendre un réducteur commun sollicité quel que soit le chemin emprunté par le couple venant de la machine électrique. Dans le premier mode de réalisation schématisé sur la figure 1, il existe un réducteur commun 14 formé par le pignon 9 du dispositif de transmission et la roue dentée couplée au différentiel 7. Dans le deuxième mode de réalisation représenté sur la figure 3, il existe un réducteur commun à deux étages 15, 14 formé également par un train d’engrenages entre l’arbre de transmission 5 et le différentiel 7.
L’élément de connexion 6 est agencé pour autoriser ou interrompre la transmission d’un couple entre le premier élément de sortie 33 du premier embrayage 1 et le différentiel 7.
Le système de propulsion est configuré de sorte que la transmission d’un couple entre le premier élément de sortie 33 du premier embrayage 1 et le différentiel 7 est autorisée lorsque le premier embrayage 1 est fermé. Par contre, la transmission d’un couple entre le premier élément de sortie 33 du premier embrayage 1 et le différentiel 7 est empêchée lorsque le premier embrayage 1 est ouvert et lorsque le deuxième embrayage 2 est fermé.
Autrement dit, l’élément de connexion 6 est agencé pour autoriser l’entrainement mutuel en rotation entre le premier élément de sortie 33 du premier embrayage 1 et le différentiel 7, par l’intermédiaire du premier chemin de transmission 11, lorsque le premier embrayage 1 est fermé, et pour interrompre l’entrainement mutuel en rotation entre le premier élément de sortie du premier embrayage 1 et le différentiel 7, par l’intermédiaire du premier chemin de transmission 11, lorsque le premier embrayage est ouvert, et lorsque le deuxième embrayage est fermé.
Le synchroniseur 6 comprend un moyeu 61 solidaire en rotation de l’arbre de transmission 5. Le synchroniseur 6 comprend un anneau de synchronisation 62 formant avec la première roue dentée de sortie 43 un embrayage conique par friction. Le synchroniseur 6 comprend en outre un baladeur 63 solidaire en rotation de clavettes 64, elles même solidaires en rotation du moyeu 61. Les clavettes 64 peuvent coulisser axialement par rapport au moyeu 61. Le baladeur 63 peut également coulisser axialement par rapport au moyeu 61 en entraînant axialement les clavettes 64. Les clavettes 64 sont agencées pour frotter contre l’anneau de synchronisation 62. Le baladeur 63 comprend des dents 67 et la deuxième roue de sortie 43 comprend des dents complémentaires 68
aptes à coopérer avec les dents 67 du baladeur 63, pour entraîner à la même vitesse le baladeur 63 et la deuxième roue de sortie 43 lors du premier mode de fonctionnement.
L’embrayage conique par friction permet un changement de vitesse progressif entre le deuxième mode de fonctionnement et le premier mode de fonctionnement du synchroniseur. Une friction intervient entre la première roue dentée de sortie 43 et l’anneau de synchronisation 62 tant que les vitesses de la première roue dentée de sortie 43 et de l’arbre de transmission 5 ne sont pas égales.
Un actionneur permet de déplacer le baladeur pour permuter l’élément de connexion 6.
Comme évoqué ci-dessous, la machine électrique est elle aussi configurée de manière à limiter les pertes. Un exemple de machine électrique est illustré sur la figure 6. Cette machine électrique peut être utilisée pour l’un ou l’autre des deux modes de réalisation précédents.
La machine électrique 4 est une machine à aimants permanents. Le système de propulsion électrique peut comprendre en outre un onduleur 90 configuré pour contrôler la machine électrique 4. L’onduleur 90 peut avoir une tension d’alimentation de 800V. Ainsi, par rapport aux onduleurs dont la tension d’alimentation est de 400V, les courants circulant dans l’onduleur peuvent être plus faibles, et ainsi les pertes au niveau de l’onduleur sont réduites.
La machine électrique 4 a un couple machine compris entre 380 et 490 N.m, par exemple compris entre 400 et 460 N.m. Ainsi, l’encombrement de la machine électrique est plus réduit, la machine électrique est moins complexe et l’efficacité de la machine électrique est meilleure qu’avec un couple machine supérieur à 500 N.m.
La machine électrique 4 est une machine électrique tournante comprenant un stator 410 alimenté par l’onduleur 90.
Le stator comporte un corps 414 de stator avec des encoches qui sont prévues pour recevoir quatre à huit couches de conducteurs formant le bobinage 411, par exemple six couches C1-C6, disposées dans une direction sensiblement radiale par rapport à l’axe de rotation du rotor.
Le stator comporte un bobinage 411 à épingles 412. Le bobinage à épingles permet d’augmenter le coefficient de remplissage des encoches et contribue aussi à la réduction des pertes, notamment les pertes de courant continu et pertes Joule.
Le nombre d’encoches 413 du corps de stator est ici de 54. Les encoches 413 sont régulièrement disposées autour de l’axe de rotation X du rotor.
Pour réduire les pertes, la machine électrique 4 comporte un rotor ayant six pôles. En effet, Il a été observé que la fréquence électrique est réduite de 25% avec une machine à six pôles par rapport à une machine à huit pôles, ce qui réduit les pertes de courant alternatif. De préférence, les pôles sont régulièrement répartis autour de l’axe de rotation du rotor.
De préférence, la vitesse maximum de la machine électrique est comprise entre 11000 et 13000 tours par minute, par exemple 12000 tours par minute.
La machine électrique 4 a une puissance de crête comprise entre 230 et 270 kW, par exemple 250 kW.
La fréquence électrique maximum de la machine électrique 4 est comprise entre 500 et 700 Hz, par exemple 600 Hz. Ainsi, notamment en comparaison avec des machines électriques dont la fréquence électrique maximum atteint plus de 1000 Hz, les pertes fer sont réduites, en particulier à faible couple de fonctionnement. Les pertes de courant alternatif dans le stator 410, dites pertes AC, sont aussi réduites.
Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention.
Claims
1. Système de propulsion électrique pour un véhicule, notamment un véhicule automobile, comprenant : une machine électrique à aimants permanents (4) configurée pour être alimentée par un onduleur (90), la machine électrique comportant un rotor ayant six ou huit pôles, et un stator (410) ayant un corps de stator doté d’encoches (413), les encoches recevant des conducteurs formant un bobinage (411), le nombre d’encoches du corps de stator étant compris entre 48 et 72, un différentiel (7) apte à entraîner un arbre de sortie portant à ses extrémités deux roues latéralement opposées du véhicule, un dispositif de transmission (10) agencé cinématiquement entre la machine électrique (4) et le différentiel (7), le dispositif de transmission comprenant un premier chemin de transmission du couple (11) présentant un premier rapport de réduction et un deuxième chemin de transmission du couple (12) présentant un deuxième rapport de réduction, le dispositif de transmission (10) comprenant un dispositif de couplage (1, 2) permettant de transmettre un couple entre la machine électrique (4) et le différentiel (7) sélectivement via la premier chemin de transmission (11) ou via le deuxième chemin de transmission (12).
2. Système de propulsion électrique selon la revendication 1 dans lequel le rotor a exactement six pôles, en particulier trois paires de pôles.
3. Système de propulsion électrique selon la revendication 1 ou 2 dans lequel la machine électrique est configurée pour avoir une vitesse maximum inférieure à 14000 tours par minute, par exemple inférieure à 13000 tours par minute, notamment comprise entre 10000 et 14000 tours par minute, par exemple entre 11000 et 13000 tours par minute, par exemple 12000 tours par minute.
4. Système de propulsion électrique selon l’une des revendications précédentes dans lequel le système de propulsion est configuré de sorte le couple d’entrainement du différentiel (7) est produit uniquement par la machine électrique (4), quelle que soit la vitesse du véhicule.
5. Système de propulsion électrique selon l’une des revendications précédentes dans lequel le système de propulsion électrique comprend un onduleur (90) configuré pour alimenter ladite machine électrique, la tension d’alimentation de l’onduleur (90) étant comprise entre 600V et 1000V, par exemple comprise entre 700V et 900V, par exemple 800V.
6. Système de propulsion électrique selon l’une des revendications précédentes dans lequel la machine électrique (4) a un couple machine compris entre 380 et 490 N.m, par exemple compris entre 400 et 460 N.m.
7. Système de propulsion électrique selon l’une des revendications précédentes dans lequel le bobinage (411) du stator est un bobinage à épingles (412).
8. Système de propulsion électrique selon l’une des revendications précédentes dans lequel quatre à huit couches de conducteurs sont reçues dans les encoches (413), par exemple six couches (C1-C6).
9. Système de propulsion électrique selon l’une des revendications précédentes dans lequel la machine électrique (4) a une puissance de crête comprise entre 230 et 270 kW, par exemple 250 kW.
10. Système de propulsion électrique selon l’une des revendications précédentes dans lequel la fréquence électrique maximum de la machine électrique (4) est comprise entre 500 et 700 Hz, par exemple 600 Hz.
11. Système de propulsion électrique selon l’une des revendications précédentes dans lequel le dispositif de couplage comprend :
- un premier embrayage (1) comprenant un premier élément d’entrée (31) apte à être entraîné par la machine électrique (4) et un premier élément de sortie (33), un couple pouvant être transmis entre le premier élément d’entrée (31) et le premier élément de sortie (33) lorsque le premier embrayage (1) est fermé, le premier chemin de transmission (11) étant agencé pour transmettre un couple entre le premier élément de sortie (33) et le différentiel (7),
- un deuxième embrayage (2) comprenant un deuxième élément d’entrée (32) apte à être entraîné par la machine électrique (4) et un deuxième élément de sortie (51), un couple pouvant être transmis entre le deuxième élément d’entrée (32) et le deuxième élément de sortie (51) lorsque le deuxième embrayage (2) est fermé, le deuxième chemin de transmission (11) étant agencé pour transmettre un couple entre le deuxième élément de sortie (51) et le différentiel (7).
12. Système de propulsion électrique selon la revendication précédente dans lequel le premier embrayage (1) est un embrayage multi-disques humide et le deuxième embrayage (2) est un embrayage multi-disques humide.
13. Système de propulsion électrique selon l’une des revendications 11 ou 12 dans lequel le premier chemin de transmission (11) a un rapport de vitesse plus faible que le deuxième chemin de transmission (12), et dans lequel le dispositif de transmission (10) comprend un élément de connexion (6) agencé pour autoriser ou interrompre la transmission d’un couple entre le premier élément de sortie (33) du premier embrayage (1) et le différentiel (7), le système de propulsion étant configuré de sorte que la transmission d’un couple entre le premier élément de sortie (33) du premier embrayage (1) et le différentiel (7) est autorisée lorsque le premier embrayage (1) est fermé, et de sorte que la transmission d’un couple entre le
premier élément de sortie (33) du premier embrayage (1) et le différentiel (7) est empêchée lorsque le premier embrayage (1) est ouvert et lorsque le deuxième embrayage (2) est fermé.
14. Essieu électrique comprenant un système de propulsion selon l’une des revendications précédentes, un arbre de sortie (70) couplé au différentiel, l’arbre de sortie (70) étant apte à entraîner à ses extrémités, deux roues latéralement opposées du véhicule.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20792460.6A EP4048538A1 (fr) | 2019-10-25 | 2020-10-22 | Système de propulsion pour un véhicule |
CN202090000929.3U CN218519523U (zh) | 2019-10-25 | 2020-10-22 | 用于车辆的推进系统和电动轮轴 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1912008A FR3102525B1 (fr) | 2019-10-25 | 2019-10-25 | Système de propulsion pour un véhicule. |
FRFR1912008 | 2019-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021078887A1 true WO2021078887A1 (fr) | 2021-04-29 |
Family
ID=69468794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2020/079800 WO2021078887A1 (fr) | 2019-10-25 | 2020-10-22 | Système de propulsion pour un véhicule |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4048538A1 (fr) |
CN (1) | CN218519523U (fr) |
FR (1) | FR3102525B1 (fr) |
WO (1) | WO2021078887A1 (fr) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2958882A1 (fr) * | 2010-04-16 | 2011-10-21 | Renault Sa | Systeme de motorisation hybride |
EP3246188A1 (fr) * | 2016-05-19 | 2017-11-22 | MAN Truck & Bus AG | Véhicule utilitaire comprenant un groupe motopropulseur hybride parallèle |
DE102017220073A1 (de) * | 2017-11-10 | 2018-10-31 | Zf Friedrichshafen Ag | Getriebe für ein Elektrofahrzeug |
FR3069113A1 (fr) * | 2017-07-11 | 2019-01-18 | Valeo Equipements Electriques Moteur | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede |
EP3499687A1 (fr) * | 2017-12-13 | 2019-06-19 | Baumüller Nürnberg GmbH | Rotor d'une machine électrique |
FR3075502A1 (fr) * | 2017-12-20 | 2019-06-21 | Valeo Equipements Electriques Moteur | Stator pour machine electrique tournante |
WO2019152065A1 (fr) * | 2018-02-02 | 2019-08-08 | Dana Automotive Systems Group, Llc | Essieu de moteur électrique à boîte de vitesses multi-étagée |
-
2019
- 2019-10-25 FR FR1912008A patent/FR3102525B1/fr active Active
-
2020
- 2020-10-22 WO PCT/EP2020/079800 patent/WO2021078887A1/fr unknown
- 2020-10-22 CN CN202090000929.3U patent/CN218519523U/zh active Active
- 2020-10-22 EP EP20792460.6A patent/EP4048538A1/fr active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2958882A1 (fr) * | 2010-04-16 | 2011-10-21 | Renault Sa | Systeme de motorisation hybride |
EP3246188A1 (fr) * | 2016-05-19 | 2017-11-22 | MAN Truck & Bus AG | Véhicule utilitaire comprenant un groupe motopropulseur hybride parallèle |
FR3069113A1 (fr) * | 2017-07-11 | 2019-01-18 | Valeo Equipements Electriques Moteur | Procede de pilotage d'une machine electrique tournante polyphasee et machine electrique tournante mettant en oeuvre ce procede |
DE102017220073A1 (de) * | 2017-11-10 | 2018-10-31 | Zf Friedrichshafen Ag | Getriebe für ein Elektrofahrzeug |
EP3499687A1 (fr) * | 2017-12-13 | 2019-06-19 | Baumüller Nürnberg GmbH | Rotor d'une machine électrique |
FR3075502A1 (fr) * | 2017-12-20 | 2019-06-21 | Valeo Equipements Electriques Moteur | Stator pour machine electrique tournante |
WO2019152065A1 (fr) * | 2018-02-02 | 2019-08-08 | Dana Automotive Systems Group, Llc | Essieu de moteur électrique à boîte de vitesses multi-étagée |
Also Published As
Publication number | Publication date |
---|---|
EP4048538A1 (fr) | 2022-08-31 |
FR3102525A1 (fr) | 2021-04-30 |
CN218519523U (zh) | 2023-02-24 |
FR3102525B1 (fr) | 2021-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8210974B2 (en) | Hubs incorporating a variable ratio transmission system | |
EP3581416B1 (fr) | Dispositif de transmission, notamment pour véhicule électrique | |
WO2003043846A1 (fr) | Dispositif de transmission de puissance a au moins deux trains epicycloïdaux | |
FR2881290A1 (fr) | Roue electrique | |
FR2869968A1 (fr) | Transmission variable en continu du type a courroie | |
FR2989539A1 (fr) | Dispositif de traction pour un vehicule automobile | |
FR2800527A1 (fr) | Systeme d'entrainement a groupe electrique, avec boite de vitesses et embrayage | |
FR2824509A1 (fr) | Dispositif de traction du type "hybride parallele", notamment pour vehicule automobile | |
WO2006100404A1 (fr) | Dispositif de transmission de puissance entre une sortie d'un moteur thermique et un arbre de roues et procede de transmission de puissance associe | |
WO2017081377A1 (fr) | Groupe motopropulseur d'un vehicule | |
FR2983787A1 (fr) | Vehicule a traction electrique | |
FR3005810A1 (fr) | Dispositif de traction electrique integre completement | |
FR2689821A1 (fr) | Groupe motopropulseur bi-mode et véhicule équipé d'un tel groupe. | |
FR2928583A1 (fr) | Transmission pour machine electrique de vehicule hybride. | |
EP2123498B1 (fr) | Dispositif de traction électrique pour véhicule hybride | |
FR2977197A1 (fr) | Groupe motopropulseur hybride a moteur thermique, machine electrique et systeme d'accouplement par roue libre pour vehicule automobile | |
WO2021078887A1 (fr) | Système de propulsion pour un véhicule | |
WO2014087021A1 (fr) | Transmission hydrostatique pour véhicule avec engagement de moteurs selon leurs plages de fonctionnement optimales | |
EP2505409A1 (fr) | Groupe motopropulseur pour véhicule hybride. | |
FR2966786A3 (fr) | Systeme de motorisation hybride pour vehicule automobile | |
EP3931464B1 (fr) | Dispositif de transmission de couple pour un vehicule automobile | |
WO2014087019A1 (fr) | Transmission hydrostatique de véhicule avec engagement de moteurs selon leurs plages de fonctionnement optimales | |
EP2505410A1 (fr) | Groupe motopropulseur pour véhicule hybride | |
FR2811267A1 (fr) | Groupe motopropulseur pour vehicule a motorisation hybride avec deux machines electriques concentriques | |
EP4446607A1 (fr) | Mécanisme de transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20792460 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020792460 Country of ref document: EP Effective date: 20220525 |