FR3068707A1 - Composition, dispositif et procede de refroidissement a temperature cryogenique - Google Patents

Composition, dispositif et procede de refroidissement a temperature cryogenique Download PDF

Info

Publication number
FR3068707A1
FR3068707A1 FR1756516A FR1756516A FR3068707A1 FR 3068707 A1 FR3068707 A1 FR 3068707A1 FR 1756516 A FR1756516 A FR 1756516A FR 1756516 A FR1756516 A FR 1756516A FR 3068707 A1 FR3068707 A1 FR 3068707A1
Authority
FR
France
Prior art keywords
composition
cooling
liquid nitrogen
particles
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1756516A
Other languages
English (en)
Other versions
FR3068707B1 (fr
Inventor
Dominique Belot
Raphael GRANDEAU
Carina Zundel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1756516A priority Critical patent/FR3068707B1/fr
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to PCT/FR2018/051692 priority patent/WO2019012210A1/fr
Priority to CN201880052104.3A priority patent/CN110997859A/zh
Priority to SG11202000084WA priority patent/SG11202000084WA/en
Priority to JP2020500701A priority patent/JP2020526624A/ja
Priority to EP18762568.6A priority patent/EP3652264A1/fr
Priority to US16/630,003 priority patent/US20210088284A1/en
Publication of FR3068707A1 publication Critical patent/FR3068707A1/fr
Application granted granted Critical
Publication of FR3068707B1 publication Critical patent/FR3068707B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/18Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material being contained in rotating drums
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/005Other direct-contact heat-exchange apparatus one heat-exchange medium being a solid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Composition de refroidissement comprenant un mélange de particules solides de CO2 et d'azote liquide dans laquelle : - la teneur en particules solides de CO2 est comprise entre 70 et 85% en masse et - les particules solides de CO2 ont un diamètre inférieur ou égal à 50 µm.

Description

La présente invention est relative à une composition de refroidissement, et un procédé de refroidissement mettant en œuvre ladite composition de refroidissement.
Le besoin de produire des puissances de refroidissement importantes se trouve dans toutes les branches de l'industrie, dans des parties des domaines médicaux, pour refroidir rapidement et profondément des milieux réactionnels, matériaux métalliques, plastiques, organiques, alimentaires, tissus humains, végétaux...
A côté des machines frigorifiques de toute nature, les fluides cryogéniques sont largement utilisés car ils permettent de générer rapidement des puissances frigorifiques importantes avec des équipements de conception simple.
Deux principales technologies sont utilisées :
- immersion du produit à refroidir dans un liquide
-jet divisé projeté sur la surface du produit
Dans la quasi-totalité des cas industriels, les procédés sont mis en œuvre à la pression ambiante. Les principaux média mis en œuvre sont l'azote liquide, l'argon liquide, le gaz carbonique sous forme liquide ou solide.
Du fait d'être à l'équilibre liquide-vapeur ou solide-vapeur lors de la mise en œuvre, il se produit, immédiatement au contact du matériau à refroidir, une couche de gaz entre la surface du matériau à refroidir et le fluide ou solide (couche de caléfaction). Cette couche est de l'ordre de 0,1 à 1 millimètre pour l'azote liquide.
Au sein de cette couche de caléfaction, les échanges thermiques conductifs sont limités par la conductivité thermique du gaz qui est plus faible que celle du liquide et qui réduit très fortement le coefficient d'échange.
La conductivité thermique de N2 gazeux est environ 17 fois moins importante que celle de l'azote liquide, ce qui traduit le fait que la couche de caléfaction agit comme un écran thermique inhibant les transferts de chaleur.
Ceci limite :
les capacités de refroidissement par simple contact et donc l'usage des média cités pour le refroidissement rapide de matériaux solides, congélation et conservation des produits alimentaires, végétaux, tissus végétaux ou humains.
Ce phénomène de caléfaction perdure tant que la température de surface est supérieure à la température de Leidenfrost (température de caléfaction) variable selon le type et nature de surface.
En dessous de cette température, l'échange se fait par un mode d'ébullition normal (ébullition nucléée et de transition) et le flux thermique augmente considérablement bien que l'écart de température devienne faible. Un exemple est présenté figure 1.
En effet, la figure 1 représente le flux thermique exprimé en W.m2 en fonction de l'écart de température à l'interface liquide/solide (température de la surface - la température du liquide) pour un barreau de laiton de diamètre 4cm, et de hauteur 10cm et immergé dans de l'azote liquide. La température initiale du laiton est de 15°C. On peut distinguer trois zones :
- une zone A pendant laquelle l'ébullition est nucléée ;
- une zone B pendant laquelle on observe une ébullition de transition ; et
- une zone C pendant laquelle on observe une ébullition en film (phénomène de caléfaction). Pour tenter de contourner cette limitation, plusieurs artifices peuvent être mis en œuvre :
- Provoquer une forte turbulence autour du matériau à refroidir. Ceci augmente sensiblement le flux thermique mais introduit une dépense d'énergie supplémentaire et une consommation supplémentaire de vecteur de froid.
- Sous-refroidir par exemple l'azote liquide en menant le procédé sous vide partiel (par pompage rapide de la phase gazeuse). Cette technique permet d'augmenter significativement le flux thermique mais au détriment d'une surconsommation majeure du vecteur de froid.
- Disperser des matériaux divisés comme la silice dans le fluide pour favoriser l'échange thermique par contact solide-solide.
Ceci augmente significativement le flux thermique mais oblige à éliminer les matériaux divisés du produit à refroidir ou prendre les matériaux compatibles avec le matériau à refroidir.
- Projeter des jets liquides à haute vitesse sur la surface du produit à refroidir afin de réduire, voire casser, la couche de caléfaction. Ceci permet d'augmenter fortement le flux thermique mais au détriment d'une dépense d'énergie importante et d'une surconsommation du fluide.
Partant de là, un problème qui se pose est de fournir une solution améliorée pour refroidir un élément.
Une solution de la présente invention est une composition de refroidissement comprenant un mélange de particules solides de CO2 et d'azote liquide dans laquelle :
- la teneur en particules solides de CO2 est comprise entre 70 et 85% en masse et
- les particules solides de CO2 ont un diamètre inférieur ou égal à 50 pm.
La composition de refroidissement selon l'invention est de préférence fabriquée au moyen d'un procédé comprenant :
a) une étape de formation des particules de CO2 comprenant la détente de CO2 gazeux, de préférence dans un cône de détente; et
b) une étape de mélange des particules de CO2 et d'azote liquide.
Ces particules peuvent être soit dispersées dans l'azote liquide avec une légère agitation soit l'azote liquide est versé sur les particules contenues dans un récipient. Notons que l'ordre de mise en œuvre n'influe pas sur la taille des particules de CO2 obtenues.
Dans la composition de refroidissement l'azote liquide doit mouiller totalement la masse des particules.
La quantité d'azote liquide par rapporté la quantité de CO2 solide doit être la plus proche possible de la quantité nécessaire pour que :
- l'azote liquide mouille toutes les particules de CO2 solide et
- qu'il y ait un excédent d'azote liquide suffisant pour éviter le séchage très rapide de la masse de CO2 solide (pâte) qui intervient lors des premières secondes de la trempe de l'objet à refroidir et qui est difficilement compensable par injection compensatoire d'azote liquide en surface.
Dans cette configuration, les particules de CO2 solide refroidies à la température de l'azote liquide sont le principal vecteur de l'échange thermique participant à l'échange thermique par les contacts solide/solide directs et minimisent l'effet de caléfaction. Cette composition de refroidissement montre une capacité d'échange thermique fortement augmentée par rapport à l'azote liquide dans les mêmes conditions.
La composition de refroidissement selon l'invention permet d'obtenir un coefficient d'échange thermique égal ou > à 230 W.M-2.K-1 dans la zone de caléfaction soit environ deux fois celui de l'azote liquide dans les mêmes conditions et pouvant aller jusqu'à 210 W.M-2.K-1 selon les conditions dans la zone d'ébullition nucléée soit 10 fois celui de l'azote liquide dans les mêmes conditions.
Cette composition de refroidissement est suffisamment fluide et manipulable pour constituer des bains d'immersion pour le refroidissement en profondeur de métaux, plastiques, produits alimentaires, tissus végétaux et humains. Cela implique un refroidissement très basse température en anglais on parle de « deep freezing ». La composition est transférable et « pompable » par les moyens usuels pour le transfert des fluides cryogéniques.
La présente invention a également pour objet un procédé de refroidissement d'un élément à refroidir, mettant en œuvre une composition de refroidissement telle que définie plus haut comprenant les étapes successives suivantes :
a) brassage de la composition à une vitesse inférieure à 1 tour par seconde,
c) immersion et maintien de l'élément à refroidir dans la composition, avec pendant toute la durée de l'étape c) :
- le brassage de l'étape a) est maintenu, et
- la proportion d'azote liquide dans la composition est mesurée et est maintenue constante à plus ou moins 5% par l'ajout d'azote liquide.
Grâce au procédé de refroidissement selon l'invention un refroidissement à température cryogénique de l'élément à refroidir est rendu possible
De préférence, l'étape c) est réalisée à une pression comprise entre 1 bar absolu et 10 bar absolu. Notons que la durée de refroidissement dépend de la taille de l'élément à refroidir, de sa forme, du type de matériau et aussi de sa température. On peut dire que dans les mêmes conditions et pour un même objet, le gain de temps de refroidissement pour atteindre une température cible obtenu en mettant en œuvre le procédé selon l'invention est au moins de 30 %.
A titre d'exemple pour un barreau de diamètre 40mm et de hauteur 100mm, en laiton (70%Cu/30%Zn), le barreau doit être immergé pendant environ 3 minutes et 30 secondes pour que sa température de surface (mesurée par sonde thermique PtlOO à 3mm du bord du barreau) descende de 13°C à -196°C.
Notons que le brassage de la composition permet le maintien des particules en suspension homogène.

Claims (4)

  1. Revendications
    1. Composition de refroidissement comprenant un mélange de particules solides de CO2 et d’azote liquide dans laquelle :
    - la teneur en particules solides de CO2 est comprise entre 70 et 85% en masse et
    - les particules solides de CO2 ont un diamètre inférieur ou égal à 50 pm.
  2. 2. Procédé de fabrication d'une composition de refroidissement telle que définie dans la revendication 1, comprenant :
    a) une étape de formation des particules solides de CO2 comprenant la détente de CO2 gazeux, de préférence dans un cône de détente ; et
    b) une étape de mélange des particules de CO2 et d'azote liquide.
  3. 3. Procédé de refroidissement d'un élément à refroidir, mettant en œuvre une composition de refroidissement telle que définie dans la revendication 1 comprenant les étapes successives suivantes :
    a) brassage de la composition à une vitesse inférieure à 1 tour par seconde,
    c) immersion et maintien de l'élément à refroidir dans la composition, avec pendant toute la durée de l'étape c) :
    - le brassage de l'étape a) est maintenu, et
    - la proportion d'azote liquide dans la composition est mesurée et est maintenue constante à plus ou moins 5% par l'ajout d'azote liquide.
  4. 4. Procédé selon la revendication 5, caractérisé en ce que l'étape c) est réalisée à une pression comprise entre 1 bar absolu et 10 bar absolu.
FR1756516A 2017-07-10 2017-07-10 Composition, dispositif et procede de refroidissement a temperature cryogenique Active FR3068707B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR1756516A FR3068707B1 (fr) 2017-07-10 2017-07-10 Composition, dispositif et procede de refroidissement a temperature cryogenique
CN201880052104.3A CN110997859A (zh) 2017-07-10 2018-07-05 低温冷却组合物和方法
SG11202000084WA SG11202000084WA (en) 2017-07-10 2018-07-05 Cryogenic cooling composition and method
JP2020500701A JP2020526624A (ja) 2017-07-10 2018-07-05 低温冷却組成物及び方法
PCT/FR2018/051692 WO2019012210A1 (fr) 2017-07-10 2018-07-05 Composition et procede de refroidissement a temperature cryogenique
EP18762568.6A EP3652264A1 (fr) 2017-07-10 2018-07-05 Composition et procede de refroidissement a temperature cryogenique
US16/630,003 US20210088284A1 (en) 2017-07-10 2018-07-05 Cryogenic cooling composition and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1756516 2017-07-10
FR1756516A FR3068707B1 (fr) 2017-07-10 2017-07-10 Composition, dispositif et procede de refroidissement a temperature cryogenique

Publications (2)

Publication Number Publication Date
FR3068707A1 true FR3068707A1 (fr) 2019-01-11
FR3068707B1 FR3068707B1 (fr) 2020-07-31

Family

ID=61873359

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1756516A Active FR3068707B1 (fr) 2017-07-10 2017-07-10 Composition, dispositif et procede de refroidissement a temperature cryogenique

Country Status (7)

Country Link
US (1) US20210088284A1 (fr)
EP (1) EP3652264A1 (fr)
JP (1) JP2020526624A (fr)
CN (1) CN110997859A (fr)
FR (1) FR3068707B1 (fr)
SG (1) SG11202000084WA (fr)
WO (1) WO2019012210A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111690378B (zh) * 2020-05-28 2022-06-28 明日加加科技有限公司 一种超低温微纳米流体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393152A (en) * 1965-08-03 1968-07-16 Air Reduction Composition of matter and methods of making same
EP1856989A1 (fr) * 2006-05-18 2007-11-21 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Utilisation d'un mélange de neige carbonique et d'azote liquide dans des applications de surgélation
EP2629931A1 (fr) * 2010-10-22 2013-08-28 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et installation d'usinage avec refroidissement cryogénique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932521A1 (de) * 1999-07-12 2001-01-18 Abb Research Ltd Kühlmedium für Hochtemperatursupraleiter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393152A (en) * 1965-08-03 1968-07-16 Air Reduction Composition of matter and methods of making same
EP1856989A1 (fr) * 2006-05-18 2007-11-21 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Utilisation d'un mélange de neige carbonique et d'azote liquide dans des applications de surgélation
EP2629931A1 (fr) * 2010-10-22 2013-08-28 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et installation d'usinage avec refroidissement cryogénique

Also Published As

Publication number Publication date
FR3068707B1 (fr) 2020-07-31
US20210088284A1 (en) 2021-03-25
EP3652264A1 (fr) 2020-05-20
SG11202000084WA (en) 2020-02-27
WO2019012210A1 (fr) 2019-01-17
JP2020526624A (ja) 2020-08-31
CN110997859A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
EP1856989B1 (fr) Utilisation d'un mélange de neige carbonique et d'azote liquide dans des applications de surgélation
Kumar et al. Aqueous ionic liquid solutions for boiling heat transfer enhancement in the absence of buoyancy induced bubble departure
FR3068707A1 (fr) Composition, dispositif et procede de refroidissement a temperature cryogenique
Tian et al. Production of fine calcium powders by centrifugal atomization with rotating quench bath
FR2764366A1 (fr) Procede et installation de refroidissement du contenu d'une enceinte
WO2013007755A1 (fr) Dispositif et procédé pour la stérilisation à ultra-haute températured'une émulsion, notamment dermo-cosmétique, instable à la température de stérilisation
FR3083465A1 (fr) Procede et dispositif de granulation
FR3068769A1 (fr) " dispositif et procede de refroidissement a temperature cryogenique"
EP3470509B1 (fr) Procédé et installation de refroidissement du col de bouteilles mettant en uvre un fluide caloporteur solide
Asaoka et al. Vacuum freezing type ice slurry production using ethanol solution 2nd report: Investigation on evaporation characteristics of ice slurry in ice production
FR2577029A1 (fr) Paroi laterale pour four de fusion metallurgique ainsi que les fours obtenus
CA1272038A (fr) Procede et installation de refroidissement, au moyen d'un fluide frigorigene d'une poudre
FR2656002A1 (fr) Procede de fabrication d'une surface de transfert thermique a haute efficacite et surface ainsi fabriquee.
FR2929695A1 (fr) Procede de refroidissement de produits, notamment alimentaires, par immersion dans un liquide cryogenique, en presence d'ultrasons.
FR2552213A1 (fr) Procede et appareil pour la production de pastilles composees de neige carbonique et de liquide congele
FR2997175A1 (fr) Utilisation d'un melange d'azote liquide et d'azote solide pour la surgelation ultra rapide de produits
Hsu et al. Evaporation heat transfer enhancement by a laser-textured heterogeneous surface
CA1332111C (fr) Enceinte et procede de traitement thermique comportant une phase de refroidissement
JP7461777B2 (ja) 沸騰冷却用作動液、それを用いた沸騰冷却装置および沸騰冷却方法
FR2558735A1 (fr) Cryopiege
FR2590498A1 (fr) Procede pour produire en continu du soufre sous forme de particules solides sensiblement spheriques, individuelles et/ou agglomerees
EP3905890A1 (fr) Procédé et installation d'enrobage de produits alimentaires
FR2460169A1 (fr) Procede de refroidissement d'un fil metallique a partir d'un jet liquide
CH396313A (fr) Procédé de conservation de substances biologiques et appareil pour la mise en oeuvre de ce procédé
Kalyuzhny et al. Condensation of FC-72

Legal Events

Date Code Title Description
PLSC Publication of the preliminary search report

Effective date: 20190111

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7