FR3037856A1 - PROCESS FOR PRODUCING A RIGID COMPOSITE STRUCTURE OBTAINED BY WELDING PROFILES AND RIGID FRAMES OBTAINED THEREBY - Google Patents
PROCESS FOR PRODUCING A RIGID COMPOSITE STRUCTURE OBTAINED BY WELDING PROFILES AND RIGID FRAMES OBTAINED THEREBY Download PDFInfo
- Publication number
- FR3037856A1 FR3037856A1 FR1501371A FR1501371A FR3037856A1 FR 3037856 A1 FR3037856 A1 FR 3037856A1 FR 1501371 A FR1501371 A FR 1501371A FR 1501371 A FR1501371 A FR 1501371A FR 3037856 A1 FR3037856 A1 FR 3037856A1
- Authority
- FR
- France
- Prior art keywords
- profiles
- profile
- pultruded
- production method
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/18—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
- B29C65/20—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/116—Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
- B29C66/1162—Single bevel to bevel joints, e.g. mitre joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/52—Joining tubular articles, bars or profiled elements
- B29C66/524—Joining profiled elements
- B29C66/5243—Joining profiled elements for forming corner connections, e.g. for making window frames or V-shaped pieces
- B29C66/52431—Joining profiled elements for forming corner connections, e.g. for making window frames or V-shaped pieces with a right angle, e.g. for making L-shaped pieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/63—Internally supporting the article during joining
- B29C66/636—Internally supporting the article during joining using a support which remains in the joined object
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0021—Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/11—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/15—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
- B29C48/151—Coating hollow articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/288—Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
- B29C48/2883—Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of preformed parts, e.g. inserts fed and transported generally uninfluenced through the extruder or inserts fed directly to the die
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/56—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
- B29C65/562—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using extra joining elements, i.e. which are not integral with the parts to be joined
- B29C65/564—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using extra joining elements, i.e. which are not integral with the parts to be joined hidden in the joint, e.g. dowels or Z-pins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7212—Fibre-reinforced materials characterised by the composition of the fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7214—Fibre-reinforced materials characterised by the length of the fibres
- B29C66/72141—Fibres of continuous length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7214—Fibre-reinforced materials characterised by the length of the fibres
- B29C66/72143—Fibres of discontinuous lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7311—Thermal properties
- B29C66/73113—Thermal conductivity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7311—Thermal properties
- B29C66/73115—Melting point
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7311—Thermal properties
- B29C66/73117—Tg, i.e. glass transition temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2012/00—Frames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/001—Profiled members, e.g. beams, sections
- B29L2031/003—Profiled members, e.g. beams, sections having a profiled transverse cross-section
- B29L2031/005—Profiled members, e.g. beams, sections having a profiled transverse cross-section for making window frames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/778—Windows
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/96—Corner joints or edge joints for windows, doors, or the like frames or wings
- E06B3/9604—Welded or soldered joints
- E06B3/9608—Mitre joints
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/96—Corner joints or edge joints for windows, doors, or the like frames or wings
- E06B3/964—Corner joints or edge joints for windows, doors, or the like frames or wings using separate connection pieces, e.g. T-connection pieces
- E06B3/968—Corner joints or edge joints for windows, doors, or the like frames or wings using separate connection pieces, e.g. T-connection pieces characterised by the way the connecting pieces are fixed in or on the frame members
- E06B3/9681—Corner joints or edge joints for windows, doors, or the like frames or wings using separate connection pieces, e.g. T-connection pieces characterised by the way the connecting pieces are fixed in or on the frame members by press fit or adhesion
- E06B3/9682—Mitre joints
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Procédé de production d'une structure rigide obtenue par assemblage de profilés structuraux dans laquelle les profilés structuraux sont obtenus par une technologie de pultrusion et caractérisé en ce que : - la matrice utilisée pour production par pultrusion desdits profilés est une résine thermoplastique de la famille des acryliques et/ou des acrylates et/ou des polyacryliques et/ou des polyacrylates - les angles de liaison entre les profilés sont assemblés par soudage d'au moins une extrémité des profilés avec un autre profilé de même section.Process for producing a rigid structure obtained by assembling structural sections in which the structural sections are obtained by pultrusion technology and characterized in that: the matrix used for pultrusion production of said profiles is a thermoplastic resin of the family of acrylics and / or acrylates and / or polyacrylics and / or polyacrylates - the angles of connection between the profiles are assembled by welding at least one end of the profiles with another profile of the same section.
Description
La présente invention concerne un procédé de production d'une structure rigide à partir de profilés composites pultrudés, c'est-à-dire obtenu par la technologie de pultrusion. Elle concerne également les applications potentielles d'une telle structure sous la forme de cadres.The present invention relates to a method for producing a rigid structure from pultruded composite profiles, that is to say obtained by pultrusion technology. It also relates to the potential applications of such a structure in the form of frames.
Traditionnellement, les profilés composites obtenus à partir de résines thermodurcissables sont utilisés dans de nombreuses applications à vocation structurelles, et notamment en remplacement de l'aluminium dans les situations où une isolation thermique améliorée est souhaitable.Traditionally, composite profiles obtained from thermosetting resins are used in many applications for structural purposes, and in particular to replace aluminum in situations where improved thermal insulation is desirable.
C'est notamment le cas d'applications comme les capteurs solaires thermiques ou bien encore les cadre de fenêtres. Pour ce dernier exemple, d'autres solutions de profilés à base de polymères extrudés (comme le PVC) existent et occupent la grande majorité du marché. Ces profilés sont généralement obtenus par la technique d'extrusion et présente des propriétés mécaniques relativement faibles notamment en flexion au regard d'autres matériaux comme l'aluminium. Dans certaines applications requérant une bonne résistance à la flexion sous charge comme dans le cas des profilés de grandes fenêtres ou véranda, il est donc connu de venir renforcer localement ces profilés plastiques par des profilés composites pultrudés communément appelés « inserts » présentant une haute résistance en traction/flexion de manière à venir rigidifier le profilé plastique et en limiter sa dilation thermique. Néanmoins, la rigidité globale obtenue pour le profilé est nettement inférieure à celle de l'Aluminium et limite ses usages à des applications plus restreintes en 25 termes de dimensions de cadre. Une autre approche plus récente consiste à utiliser des profilés pultrudés traditionnels obtenus sur base de résines thermodurcissables. Compte tenu de la grande fragilité de ces résines thermodurcissables, ces matériaux composites sont 30 généralement obtenus à partir d'un arrangement multidirectionnel de fibres ; lesdites fibres étant principalement orientées dans le sens de la grande longueur du profilé pour privilégier une bonne rigidité à la flexion longitudinale et minoritairement dans le sens transverse pour garantir un minium de tenue transverse. Dans cette configuration, les valeurs moyennes de rigidité longitudinale 3037856 sont de l'ordre de 30 à 40 Gpa, parfois 45 Gpa. Ces valeurs restent malgré tout nettement inférieures à celle de l'Aluminium avec 70 Gpa. Enfin, les profilés pultrudés thermodurcissables ne sont ni déformables à chaud, ni soudables. Ils imposent donc un mode d'assemble par vissage et/ou 5 collage lorsqu'il s'agit de construire une structure rigide de type cadre. Ce mode de construction n'est absolument pas utilisé par les industrielles de la fabrication de fenêtres en PVC ci-dessus mentionnées, qui représentent 75% du marché de la fenêtre.This is particularly the case for applications such as solar thermal collectors or even window frames. For this last example, other extruded polymer profile solutions (such as PVC) exist and occupy the vast majority of the market. These profiles are generally obtained by the extrusion technique and have relatively low mechanical properties, especially in flexion compared to other materials such as aluminum. In certain applications requiring good resistance to flexing under load as in the case of profiles of large windows or veranda, it is therefore known to reinforce locally these plastic profiles by pultruded composite profiles commonly called "inserts" with a high resistance. traction / bending so as to stiffen the plastic profile and limit its thermal expansion. Nevertheless, the overall stiffness obtained for the profile is much lower than that of aluminum and limits its use to more restricted applications in terms of frame dimensions. Another more recent approach is to use traditional pultruded profiles obtained on the basis of thermosetting resins. In view of the great fragility of these thermosetting resins, these composite materials are generally obtained from a multidirectional arrangement of fibers; said fibers being mainly oriented in the direction of the long length of the profile to favor a good rigidity to the longitudinal bending and minority in the transverse direction to ensure a minimum transverse strength. In this configuration, the average values of longitudinal stiffness 3037856 are of the order of 30 to 40 Gpa, sometimes 45 Gpa. These values are still significantly lower than that of aluminum with 70 Gpa. Finally, the thermosetting pultruded profiles are neither hot deformable nor weldable. They therefore impose an assembly mode by screwing and / or gluing when it comes to building a rigid frame-type structure. This mode of construction is absolutely not used by the manufacturers of PVC windows mentioned above, which account for 75% of the window market.
10 La présente invention vise à résoudre l'ensemble de ces problèmes en proposant un procédé de fabrication d'une structure rigide (pouvant prendre la forme d'un cadre de fenêtre) par assemblage soudé de plusieurs profilés pultrudés. L'invention permet donc de produire des cadres avec des profilés 15 composites présentant : - une rigidité comparable en flexion longitudinale à celle de l'aluminium, - une conductivité thermique 500 fois plus faible que celle de l'aluminium - une technique d'assemblage par soudage rapide et peu onéreuse, similaire voire identique à celle utilisée pour l'assemblage de profilés PVC 20 Précisément, l'invention porte sur un procédé de production d'une structure rigide obtenue par assemblage de profilés structuraux dans laquelle les profilés structuraux sont obtenus par une technologie de pultrusion et caractérisé en ce que : - la matrice utilisée pour la production par pultrusion desdits profilés est une résine thermoplastique de la famille des acryliques et/ou des acrylates et/ou des polyacryliques et/ou des polyacrylates, - les angles de liaison entre les profilés sont assemblés par soudage d'au moins une extrémité des profilés avec un autre profilé de même section sous l'action de la température et d'une force de pression. Grace à l'utilisation d'une résine thermoplastique, deux profilés chauffés et mis en contact sous pression présente une zone de contact ou la matrice et les fibres des deux profilés s'interpénètrent et forment une zone de liaison rigide après refroidissement.The present invention aims to solve all these problems by proposing a method of manufacturing a rigid structure (which can take the form of a window frame) by welded assembly of several pultruded profiles. The invention thus makes it possible to produce frames with composite profiles having: - comparable stiffness in longitudinal flexion to that of aluminum, - thermal conductivity 500 times lower than that of aluminum - an assembly technique by fast and inexpensive welding, similar or even identical to that used for the assembly of PVC profiles. Precisely, the invention relates to a method for producing a rigid structure obtained by assembling structural sections in which the structural sections are obtained. by a pultrusion technology and characterized in that: - the matrix used for the pultrusion production of said profiles is a thermoplastic resin of the family of acrylics and / or acrylates and / or polyacrylics and / or polyacrylates, - the angles connection between the profiles are assembled by welding at least one end of the profiles with another profile of the same ction under the action of temperature and a pressure force. Thanks to the use of a thermoplastic resin, two sections heated and put in contact under pressure has a contact zone where the matrix and the fibers of the two sections interpenetrate and form a rigid connection zone after cooling.
3037856 Les profilés pultrudés composant les structures rigides objets de la présente invention sont obtenus par le procédé de pultrusion thermoplastique. Ils peuvent être obtenus par imprégnation des fibres de renforts avec un polymère fondu puis 5 refroidie lors de la phase de calibrage ou bien être obtenus par la technique de pultrusion thermoplastique dite réactive. Dans le cas de l'invention, la matrice du profilé pultrudée sera préférentiellement obtenue à partir d'un sirop polymérisable, constitué avant polymérisation d'une solution d'au moins un précurseur liquide sous forme de 10 monomères et/ou d'oligomères et/ou de polymères thermoplastiques solubilisés et polymérisable sous l'action d'un catalyseur et/ou d'un amorceur et/ou d'un activateur de manière à former après polymérisation ladite résine thermoplastique de la famille des acryliques et/ou des acrylates et/ou des polyacryliques et/ou des polyacrylates.The pultruded sections constituting the rigid structures that are the subject of the present invention are obtained by the thermoplastic pultrusion process. They can be obtained by impregnating the reinforcing fibers with a molten polymer and then being cooled during the calibration phase or else be obtained by the so-called reactive thermoplastic pultrusion technique. In the case of the invention, the matrix of the pultruded profile will preferably be obtained from a polymerizable syrup constituted before polymerization of a solution of at least one liquid precursor in the form of monomers and / or oligomers and and / or thermoplastic polymers solubilized and polymerizable under the action of a catalyst and / or an initiator and / or an activator so as to form, after polymerization, said thermoplastic resin of the family of acrylics and / or acrylates and and / or polyacrylics and / or polyacrylates.
15 Dans ce cas, et de manière connue en soit, les fibres de renforts sont introduites dans une première unité d'imprégnation où au moins un précurseur à très faible viscosité vient imprégner lesdites fibres. Avant que la polymérisation ne soit (trop) avancée, les fibres imprégnées sont tirées au travers d'une unité de polymérisation grâce à un système de tirage de 20 type Caterpillar. Cette unité de polymérisation qui peut ou non donner sa forme définitive au profilé, a pour rôle d'activer et/ou d'accélérer la cinétique de polymérisation. Dans le cadre de l'invention, des moyens traditionnels de type outillage chauffé ou tunnel chauffant à air et/ou rayonnement peuvent être employés.In this case, and in a manner known per se, the reinforcing fibers are introduced into a first impregnation unit where at least one precursor with a very low viscosity impregnates said fibers. Before the polymerization is (too) advanced, the impregnated fibers are drawn through a curing unit through a Caterpillar type pulling system. This polymerization unit which may or may not give its final shape to the profile, has the role of activating and / or accelerate the kinetics of polymerization. In the context of the invention, traditional means of the heated tooling type or air heating tunnel and / or radiation can be used.
25 Les précurseurs pourront préférentiellement être choisis dans la classe des méthacryliques et/ou des méthacrylates et/ou des polyméthacryliques (oligomères) et/ou des polyméthacrylates (oligomères) de manière à former après polymérisation un polymère de la classe des polyméthacryliques et/ou des polyméthacrylates. Les amorceurs peuvent être de type peroxyde.The precursors may preferentially be selected from the class of methacrylics and / or methacrylates and / or polymethacrylics (oligomers) and / or polymethacrylates (oligomers) so as to form, after polymerization, a polymer of the class of polymethacrylics and / or polymethacrylates. The initiators may be of the peroxide type.
30 A titre d'exemple, on pourra utiliser un sirop de précurseurs à base de copolymères acryliques et de méthacrylates de méthyle (MMA) de viscosité 150 mPa.s à 20°C amorcés avec 2,0% de peroxyde de benzoyle. L'approche par voie réactive qui consiste à polymériser in situ au milieu des 35 fibres le polymère final permet de travailler avec des précurseurs liquides de très 3037856 faible viscosité. Ce choix permet donc d'imprégner une très grande quantité de fibres de renfort et donc d'atteindre des rigidités encore inégalées pour le profile composite. Sur les profilés réalisés, un module de 62 à 65 Gpa dans le sens des fibres a 5 été mesuré pour un arrangement unidirectionnel de fibres de verre. Avec une telle valeur, la rigidité spécifique (rigidité/densité) du profilé pultrudé selon l'invention ( 65/2,1 = 31) est supérieure à celle de l'aluminium ( 70/2,7 =26) c'est-à-dire que l'on peut obtenir une rigidité supérieure à celle de l'aluminium à masse égale.By way of example, it is possible to use a precursor syrup based on acrylic copolymers and methyl methacrylates (MMA) with a viscosity of 150 mPa.s at 20 ° C., initiated with 2.0% benzoyl peroxide. The reactive approach of polymerizing the final polymer in situ in the middle of the fibers makes it possible to work with liquid precursors of very low viscosity. This choice therefore makes it possible to impregnate a very large quantity of reinforcing fibers and thus to achieve rigidities that are still unequaled for the composite profile. On the formed profiles, a 62 to 65 Gpa modulus in the fiber direction was measured for a unidirectional arrangement of glass fibers. With such a value, the specific rigidity (rigidity / density) of the pultruded section according to the invention (65 / 2.1 = 31) is greater than that of aluminum (70 / 2.7 = 26). that is, higher stiffness can be achieved than aluminum of equal mass.
10 Par ailleurs, l'invention propose une étape de co-extrusion réalisée préférentiellement « en ligne » c'est-à-dire dans la continuité du procédé de pultrusion, d'un polymère de la famille des PVC ( Polychlorure de Vinyle) formant une couche de recouvrement déposée autour du profile pultrudé, ladite couche de recouvrement présentant des liaisons chimiques avec la matrice et/ou la surface 15 des fibres du profilé pultrudé de manière à être parfaitement solidaire dudit profilé pultrudé, à la manière d'un collage. Pour le profilé pultrudé, le choix de précurseurs dans la classe des méthacrylates et/ou méthacryliques et notamment de précurseurs contenant du 20 méthacrylate de méthyle (MMA) et conduisant après polymérisation à la formation d'un polyméthacrylates de méthyle (PMMA) permet en effet d'obtenir une excellente compatibilité chimique naturelle avec du PVC Enfin le PMMA est un polymère amorphe dont la température de transition 25 vitreuse peut se situer autour 80-110°C. Il commence donc à se ramollir au-delà de cette température pour devenir très mou voir fondu autour de 180 à 200°C. Cette température est bien inférieure à la température utilisée avec les machines de soudage des profilés PVC, typiquement 230-250°C.Furthermore, the invention proposes a coextrusion step preferably carried out "in line", that is to say in the continuity of the pultrusion process, with a polymer of the PVC (polyvinyl chloride) family forming a covering layer deposited around the pultruded profile, said covering layer having chemical bonds with the matrix and / or the surface of the fibers of the pultruded profile so as to be perfectly integral with said pultruded profile, in the manner of a bonding. For the pultruded profile, the choice of precursors in the class of methacrylates and / or methacrylics and especially precursors containing methyl methacrylate (MMA) and leading after polymerization to the formation of a polymethyl methacrylate (PMMA) makes it possible to obtain excellent natural chemical compatibility with PVC Finally PMMA is an amorphous polymer whose glass transition temperature can be around 80-110 ° C. It begins to soften beyond this temperature to become very soft or melted around 180 to 200 ° C. This temperature is much lower than the temperature used with PVC profile welding machines, typically 230-250 ° C.
30 Selon l'invention, ladite couche de recouvrement en PVC présente beaucoup d'avantages. Tout d'abord, elle permet d'obtenir un niveau esthétique connu et accepté dans le secteur du bâtiment ainsi qu'une tenue dans le temps éprouvée.According to the invention, said PVC cover layer has many advantages. First, it provides a known and accepted aesthetic level in the building sector as well as a proven durability.
35 3037856 Dans le cas d'un profilé pultrudé uniquement composé d'un arrangement de fibres continues unidirectionnelles comme revendiqué dans la présente invention, cette couche de recouvrement permet d'apporter une résistance transverse non négligeable dans la mesure où elle est liée chimiquement au profilé pultrudé 5 qu'elle recouvre et qu'elle présente des propriétés quasi homogènes et quasi isotropes donc notamment dans le sens transverse ; direction dans laquelle le profilé composite est peu résistant. A titre d'exemple, on mesure des propriétés transverse pour le composite pultrudé selon l'invention de l'ordre de 5 à 8 Gpa et environ 3 Gpa pour la couche de recouvrement en PVC avec un comportement 10 beaucoup plus ductile. Le PVC peut donc représenter de 40% à 60% de la résistance transversale du profilé composite, à cout très compétitif par rapport à celui du composite. Ladite couche de recouvrement pourra donc présenter une épaisseur suffisante, de l'ordre de 0,5 à 3 mm, préférentiellement de 1 à 2 mm localement.In the case of a pultruded profile composed solely of a unidirectional continuous fiber arrangement as claimed in the present invention, this covering layer makes it possible to provide a significant transverse resistance insofar as it is chemically bonded to the profile. pultruded 5 that it covers and that it has properties almost homogeneous and almost isotropic so especially in the transverse direction; direction in which the composite profile is weak. By way of example, transverse properties for the pultruded composite according to the invention are measured in the range of 5 to 8 Gpa and approximately 3 Gpa for the PVC covering layer with a much more ductile behavior. PVC can therefore represent from 40% to 60% of the transverse strength of the composite profile, at a very competitive cost compared to that of the composite. Said covering layer may therefore have a sufficient thickness, of the order of 0.5 to 3 mm, preferably 1 to 2 mm locally.
15 Toujours selon l'invention, le PVC étant un meilleur isolant thermique que le composite, en privilégiant une épaisseur de PVC plus importante que celle du composite dans les zones susceptibles d'avoir un rôle de pont thermique, on peut améliorer les performances énergétiques de la structure objet de l'invention.Still according to the invention, the PVC being a better thermal insulator than the composite, by favoring a PVC thickness greater than that of the composite in the zones likely to have a role of thermal bridge, one can improve the energy performances of the structure which is the subject of the invention.
20 Enfin, ladite couche de recouvrement pourra présenter une épaisseur suffisante, de l'ordre de 0,5 à 3 mm, préférentiellement de 1 à 2 mm, de manière à contribuer après assemblage par soudage à l'étanchéité à l'eau de la structure rigide ainsi obtenue.Finally, said covering layer may have a sufficient thickness, of the order of 0.5 to 3 mm, preferably 1 to 2 mm, so as to contribute, after assembly by welding to the watertightness of the rigid structure thus obtained.
25 Selon l'invention elle pourra également présenter une épaisseur suffisante, de l'ordre 0,5 à 3 mm, préférentiellement de 1 à 2 mm, de manière à contribuer après assemblage par soudage des profilés à la résistance mécanique de la liaison entre profilés de la structure rigide ainsi obtenue.According to the invention it may also have a sufficient thickness, of the order of 0.5 to 3 mm, preferably 1 to 2 mm, so as to contribute, after assembly by welding the profiles to the mechanical strength of the connection between profiles. of the rigid structure thus obtained.
30 Dans ce cas, l'épaisseur de la couche de recouvrement sera préférentiellement maximum au niveau des zones externes du cadre, à l'intérieur et/ou à l'extérieur de manière à reprendre les contraintes maximum qui s'exercent dans un mouvement d'écartement ou de fermeture des angles du cadre.In this case, the thickness of the covering layer will preferably be maximum at the outer zones of the frame, inside and / or outside so as to take up the maximum stresses which are exerted in a movement of spacing or closing the corners of the frame.
3037856 6 En résumé, ladite couche de recouvrement, pourra selon l'invention, être avantageusement utilisée dans les zones du profilé qui: - doivent assurer une liaison mécanique forte par soudage des profilés entre eux 5 - nécessitent une résistance transverse accrue à moindre coût, - contribuent peu à la rigidité en flexion longitudinale - sont susceptibles d'avoir un rôle de pont thermique - sont destinées à accueillir un vissage - peuvent être exposées à un feu, le PVC disposant d'un classement M2 ou M.In summary, said cover layer, according to the invention, can be advantageously used in the areas of the profile which: - must provide a strong mechanical connection by welding the profiles together - require increased transverse strength at lower cost, - contribute little to the rigidity in longitudinal flexion - are likely to have a role of thermal bridge - are intended to accommodate a screw - can be exposed to a fire, the PVC having a classification M2 or M.
10 Comme indiqué ci-dessus, le profilé pultrudé pourra avantageusement être composé d'un arrangement de fibres continues unidirectionnelles uniquement ou pour des applications plus contraignantes (en terme d'effort de torsion par exemple) être composé d'un arrangement de fibres continues, parallèles à la 15 direction principale du profile combinées à des fibres formant un angle non nul avec les précédentes pour une meilleure résistance transverse. Un autre avantage de l'invention lié à la très faible viscosité des précurseurs utilisés dans la fabrication du profilé pultrudé, réside dans l'obtention d'un taux 20 volumique de fibres de renfort très important, supérieur à 50%, typiquement de 60% à 80%, et préférentiellement de 65% à 75%, permettant d'atteindre des rigidités longitudinales extrêmement élevées mentionnées préalablement avec des fibres économiquement abordables. Selon l'invention, ledit profilé pultrudé présente un module de flexion 25 longitudinal supérieur à 35 Gpa, typiquement de 50 Gpa à 68 Gpa, et préférentiellement de 55 Gpa à 65 Gpa. Les fibres peuvent être des fibres continues ou discontinues, de type fibres de verre et/ou fibres de basalte et/ou des fibres naturelles de type fibres de lin 30 et/ou fibres de chanvre et/ou fibres de bambou. Les fibres de carbones, bien que très onéreuses peuvent être également utilisées, au moins localement pour accentuer la rigidité. Le procédé de production objet de la présente invention est notamment -caractérisé en ce que l'assemblage par soudage d'au moins une extrémité d'un profilé sur l'autre pour former ladite structure est obtenue par la technique connue 3037856 en soit du miroir chauffant. Cette technique, couramment utilisée chez les fabricants de fenêtre, permet de produire des cadres de façon rapide et fiable. Grace à l'usage d'un profilé composite dont la température de transition vitreuse est supérieure à 80° et dont la fusion complète intervient autour des 180- 5 200°C, il est possible d'offrir une solution : 1. dont l'usage est stable en extérieur dans quasi toutes les situations d'exposition solaire (températures inférieure à 70°C généralement) 2. qui peut convenir au procédé actuel de soudage par miroir chauffant pratiqué à des températures généralement comprises entre 220° à 250°C 10 En effet, à ces températures, sous l'action du miroir chauffant contre lequel les extrémités des profilés issus de l'invention sont plaqués sous pression, la matrice du profilé pultrudé se ramolli sur une profondeur supérieure à 3mm permettant ainsi le rapprochement et l'interpénétration des fibres des deux profilés 15 formant un angle du dit cadre. Lors du refroidissement de l'ensemble, les deux profilés sont rigidement liés. Une couche de recouvrement complémentaire à base de PVC participera à la soudure et renforcera la liaison entre deux profilés. L'invention permet donc la production d'un cadre rigide destiné à la 20 fabrication d'une fenêtre, ou plus avantageusement d'un cadre destiné à la fabrication d'un ouvrant de fenêtre. Ledit cadre combine alors les avantages de rigidité d'un cadre aluminium avec la performance thermique d'un cadre 100% PVC et la technique rapide et fiable d'assemblage par soudage.As indicated above, the pultruded profile may advantageously consist of a unidirectional continuous fiber arrangement only or for more restrictive applications (in terms of torsion force, for example) be composed of a continuous fiber arrangement, parallel to the main direction of the profile combined with fibers forming a non-zero angle with the previous for better transverse strength. Another advantage of the invention, related to the very low viscosity of the precursors used in the manufacture of the pultruded profile, is to obtain a very large volume content of reinforcing fibers, greater than 50%, typically 60%. at 80%, and preferably from 65% to 75%, making it possible to achieve the extremely high longitudinal stiffnesses previously mentioned with economically affordable fibers. According to the invention, said pultruded profile has a longitudinal flexural modulus greater than 35 Gpa, typically from 50 Gpa to 68 Gpa, and preferably from 55 Gpa to 65 Gpa. The fibers may be continuous or discontinuous fibers, glass fiber and / or basalt fibers and / or natural fibers of flax fiber and / or hemp fibers and / or bamboo fibers. Carbon fibers, although very expensive can also be used, at least locally to enhance the rigidity. The production method which is the subject of the present invention is especially characterized in that the assembly by welding at least one end of one section to the other to form said structure is obtained by the known technique 3037856 in either the mirror heating. This technique, commonly used by window manufacturers, makes it possible to produce frames quickly and reliably. Thanks to the use of a composite profile whose glass transition temperature is greater than 80 ° and whose complete melting occurs around 180 ° -200 ° C., it is possible to offer a solution: use is stable outdoors in almost all situations of solar exposure (temperatures below 70 ° C generally) 2. that may be suitable for the current method of welding by heated mirror practiced at temperatures generally between 220 ° to 250 ° C 10 Indeed, at these temperatures, under the action of the heating mirror against which the ends of the profiles resulting from the invention are pressed under pressure, the matrix of the pultruded section is softened to a depth greater than 3 mm thus allowing the approximation and the interpenetration of the fibers of the two sections forming an angle of said frame. During the cooling of the assembly, the two sections are rigidly connected. An additional PVC-based cover layer will participate in the welding and strengthen the connection between two profiles. The invention thus allows the production of a rigid frame for the manufacture of a window, or more preferably a frame for the manufacture of a window sash. The frame combines the stiffness advantages of an aluminum frame with the thermal performance of a 100% PVC frame and the fast and reliable welding assembly technique.
25 Toujours selon l'invention, ladite structure pourra être obtenue par soudage des profilés entre eux au moyen d'une pièce rapportée qui pourra par exemple être en PVC et sera introduite dans les profilés au niveau de la zone de liaison de manière à venir renforcer cette dernière une fois soudée.Still according to the invention, said structure may be obtained by welding the profiles together by means of an insert which may for example be made of PVC and will be introduced into the profiles at the level of the connection zone so as to strengthen the latter once welded.
30 Sans être limitatif, l'invention permet aussi d'adresser avantageusement la fabrication d'un cadre destiné à accueillir des cellules photovoltaïques ou d'un cadre destiné à fabriquer l'armature d'un capteur solaire thermique. Dans le premier cas, la faible dilatation thermique du profilé pultrudé ainsi que la non conductivité électrique sont des avantages cruciaux par rapport à l'aluminium.Without being limiting, the invention also makes it possible to advantageously address the manufacture of a frame intended to accommodate photovoltaic cells or a frame intended to manufacture the frame of a solar thermal collector. In the first case, the low thermal expansion of the pultruded profile and the electrical non-conductivity are crucial advantages over aluminum.
35 Dans le second cas, la capacité d'isolation thermique du cadre objet de l'invention 3037856 contribuera à l'amélioration de la performance énergétique du capteur solaire thermique. Dans ce cas, la formulation des précurseurs intervenants dans la composition du profilé pultrudé est adaptée de manière à obtenir une température de transition vitreuse d'environ 110°C. De façon non limitative, l'invention pourra avantageusement offrir une solution pour les structures assemblées en extérieur de type abri de bus ou bien encore les vérandas, les façades vitrées de bâtiments de type « mur rideau » ou toutes autres structures, notamment celles destinées à accueillir un vitrage.In the second case, the thermal insulation capacity of the frame of the invention 3037856 will contribute to improving the energy performance of the solar thermal collector. In this case, the formulation of the precursors involved in the composition of the pultruded profile is adapted so as to obtain a glass transition temperature of about 110 ° C. Without limitation, the invention may advantageously provide a solution for structures assembled outdoors bus shelter type or even verandas, glazed facades of buildings of the type "curtain wall" or any other structures, including those intended for accommodate a glazing.
5 10 3037856 L'invention sera bien comprise, et d'autres caractéristiques et avantages de celle-ci apparaîtront, en référence aux dessins schématiques annexés, lesquels représentent, à titre d'exemple non limitatif, des formes de réalisation possible de la présente invention.The invention will be better understood, and other features and advantages thereof will become apparent with reference to the accompanying diagrammatic drawings, which show, by way of non-limiting example, possible embodiments of the present invention. .
5 La figure 1 représente un profilé pultrudé (1) selon l'invention. La figure 2 représente le profilé pultrudé (4) correspondant au profilé pultrudé (1) recouvert d'une couche de recouvrement (2) en PVC sur la totalité de sa surface externe.Figure 1 shows a pultruded section (1) according to the invention. FIG. 2 represents the pultruded section (4) corresponding to the pultruded section (1) covered with a PVC covering layer (2) over its entire external surface.
10 La figure 3 représente le profilé pultrudé (4) coupé à 45° en vue d'un assemblage pour former par soudage l'angle (5) d'une structure de la présente invention La figure 4 représente un tel angle (5) formé par l'assemblage soudé de 2 profilés pultrudés selon l'invention.FIG. 3 shows the pultruded section (4) cut at 45 ° for assembly to form by welding the angle (5) of a structure of the present invention. FIG. 4 shows such an angle (5) formed by the welded assembly of 2 pultruded sections according to the invention.
15 La figure 5 représente un cadre (6) objet de la présente invention, La figure 6 représente un angle (5) en cour de réalisation par soudage au miroir chauffant (7) Sur la figure 1, le profilé est brut, c'est-à-dire qu'il n'est pas recouvert de la 20 couche de recouvrement (2) visible à la figure 2. Le profilé présente un module de 62 Gpa pour un arrangement de fibres unidirectionnelles. Le profilé dispose de cloisons internes (3) qui contribuent à sa rigidité et à l'isolation thermique. Ces cloisons sont généralement d'épaisseur inférieure à celles se situant en extérieure du profilé. Les dimensions hors tout du profilé sont de l'ordre de 75 mm.FIG. 5 shows a frame (6) which is the subject of the present invention; FIG. 6 shows an angle (5) during production by heating with a heating mirror (7). In FIG. 1, the profile is raw, it is that is, it is not covered with the covering layer (2) visible in FIG. 2. The profile has a 62 Gpa module for a unidirectional fiber arrangement. The profile has internal partitions (3) which contribute to its rigidity and thermal insulation. These partitions are generally of less thickness than those located outside the section. The overall dimensions of the profile are of the order of 75 mm.
25 Sur la figure 2, le profilé (4) dispose d'une couche de recouvrement (2) recouvrant l'intégralité de la surface extérieure du profilé (1) de manière à contribuer efficacement à l'étanchéité de l'assemblage après soudage. On notera également que la couche de recouvrement (2) présente une épaisseur supérieure 30 dans les zones externes (2a) et internes (2b) de l'angle (5) formé et illustré en figure 4.In Figure 2, the profile (4) has a cover layer (2) covering the entire outer surface of the profile (1) so as to effectively contribute to the sealing of the assembly after welding. It will also be noted that the covering layer (2) has a greater thickness in the external (2a) and internal (2b) zones of the angle (5) formed and illustrated in FIG. 4.
3037856 Ào La figure 4 illustre un angle (5) dont la zone de contrainte maximale (8), en cas d'effort ouverture (dans la direction A) ou de fermeture (dans la direction B) dudit angle, est renforcée par la présence d'une épaisseur accrue de la couche de 5 recouvrement (2a) et (2b) La figure 5 représente un cadre (6) objet de la présente invention de forme rectangulaire dans le cas présenté, et obtenu par l'assemblage soudé de 4 profilés pultrudés selon l'invention. Il est bien compris que les cadres objets de la présente 10 invention ne sont pas nécessairement de forme rectangulaire mais qu'ils peuvent prendre toutes formes géométriques. Un cadre ainsi réalisé, et lorsqu'il est muni d'un vitrage présente l'avantage d'avoir un coefficient de dilation extrêmement proche de celui du verre qui compose le vitrage. Contrairement aux solutions en PVC ou en aluminium, la structure vitrée obtenue selon l'invention se comporte 15 comme un seul élément du point de vue de la dilation thermique et permet ainsi de conserver, quelles que soit les variations de température, une parfaite étanchéité à l'air. Il 'agit là d'un avantage précieux lorsque ladite structure est un cadre de fenêtre qui doit garantir un niveau d'isolation thermique constant dans un bâtiment. La figure 6 représente un angle (5) en cour de réalisation par soudage au 20 miroir chauffant (7) qui est inséré entre les extrémités des profilés à souder d manière à ramollir et faire fondre leurs extrémités sur environ 3 à 5 mm préalablement à la mise en contact sous pression des profilés entre eux. Le temps de chauffage dans le cas de l'invention pourra durer de l'ordre de 30 à 60 secondes pour des températures de l'ordre de 240°C en fonction des épaisseurs 25 des diverses sections des profilés.FIG. 4 illustrates an angle (5) whose zone of maximum stress (8), in the case of force opening (in direction A) or closing (in direction B) of the said angle, is reinforced by the presence of an increased thickness of the covering layer (2a) and (2b) Figure 5 shows a frame (6) object of the present invention of rectangular shape in the case presented, and obtained by the welded assembly of 4 sections pultruded according to the invention. It is well understood that the frames object of the present invention are not necessarily of rectangular shape but that they can take any geometric shapes. A frame thus produced, and when it is provided with a glazing has the advantage of having a coefficient of expansion extremely close to that of the glass that composes the glazing. Unlike PVC or aluminum solutions, the glazed structure obtained according to the invention behaves as a single element from the point of view of thermal expansion and thus makes it possible to maintain, irrespective of the temperature variations, a perfect seal at the air. This is a valuable advantage when said structure is a window frame which must ensure a constant level of thermal insulation in a building. FIG. 6 shows an angle (5) in the process of being made by welding to the heating mirror (7) which is inserted between the ends of the profiles to be welded so as to soften and melt their ends about 3 to 5 mm before the contacting the profiles under pressure. The heating time in the case of the invention may last from about 30 to 60 seconds for temperatures of the order of 240 ° C depending on the thicknesses of the various sections of the profiles.
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1501371A FR3037856A1 (en) | 2015-06-29 | 2015-06-29 | PROCESS FOR PRODUCING A RIGID COMPOSITE STRUCTURE OBTAINED BY WELDING PROFILES AND RIGID FRAMES OBTAINED THEREBY |
EP16176876.7A EP3112130B1 (en) | 2015-06-29 | 2016-06-29 | Method for producing a rigid composite structure obtained by joining sections and rigid frames obtained from said method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1501371A FR3037856A1 (en) | 2015-06-29 | 2015-06-29 | PROCESS FOR PRODUCING A RIGID COMPOSITE STRUCTURE OBTAINED BY WELDING PROFILES AND RIGID FRAMES OBTAINED THEREBY |
Publications (1)
Publication Number | Publication Date |
---|---|
FR3037856A1 true FR3037856A1 (en) | 2016-12-30 |
Family
ID=54608571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1501371A Pending FR3037856A1 (en) | 2015-06-29 | 2015-06-29 | PROCESS FOR PRODUCING A RIGID COMPOSITE STRUCTURE OBTAINED BY WELDING PROFILES AND RIGID FRAMES OBTAINED THEREBY |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3037856A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3628790A1 (en) * | 2018-09-26 | 2020-04-01 | Fundacíon Tecnalia Research & Innovation | Composite profile for curtain walls |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4492063A (en) * | 1981-04-15 | 1985-01-08 | Schock & Co. Gmbh | Extruded plastics material hollow profiled strip for window frames, window frames produced from this type of profiled strips and method for the production of a window frame of this type |
US5824403A (en) * | 1996-04-15 | 1998-10-20 | Pella Corporation | Electrostatically coated pultrusions and methods of making |
US6197412B1 (en) * | 1996-05-28 | 2001-03-06 | Tecton Products | Method of manufacture of a plastic component which is insensitive to the elements, and a plastic component so manufactured |
-
2015
- 2015-06-29 FR FR1501371A patent/FR3037856A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4492063A (en) * | 1981-04-15 | 1985-01-08 | Schock & Co. Gmbh | Extruded plastics material hollow profiled strip for window frames, window frames produced from this type of profiled strips and method for the production of a window frame of this type |
US5824403A (en) * | 1996-04-15 | 1998-10-20 | Pella Corporation | Electrostatically coated pultrusions and methods of making |
US6197412B1 (en) * | 1996-05-28 | 2001-03-06 | Tecton Products | Method of manufacture of a plastic component which is insensitive to the elements, and a plastic component so manufactured |
Non-Patent Citations (1)
Title |
---|
CHEN-CHI M ET AL: "Pultruded Fiber Reinforced Thermoplastic Poly(Methyl Methacrylate) Composites. Part II: Mechanical and Thermal Properties", vol. 31, no. 15, 15 August 1991 (1991-08-15), pages 1094 - 1100, XP002719647, ISSN: 0032-3888, Retrieved from the Internet <URL:http://onlinelibrary.wiley.com/doi/10.1002/pen.760311504/pdf> [retrieved on 20140203] * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3628790A1 (en) * | 2018-09-26 | 2020-04-01 | Fundacíon Tecnalia Research & Innovation | Composite profile for curtain walls |
WO2020064516A1 (en) * | 2018-09-26 | 2020-04-02 | Fundación Tecnalia Research & Innovation | Composite profile for curtain walls |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2717558A1 (en) | Structural element and its manufacturing process. | |
CH639494A5 (en) | FLEXIBLE RADIATION ENERGY REFLECTOR AND METHOD FOR MANUFACTURING THE SAME. | |
WO2008107612A2 (en) | Spacer frame for an insulating window element comprising at least one convex pane | |
EP3112130B1 (en) | Method for producing a rigid composite structure obtained by joining sections and rigid frames obtained from said method | |
FR3037856A1 (en) | PROCESS FOR PRODUCING A RIGID COMPOSITE STRUCTURE OBTAINED BY WELDING PROFILES AND RIGID FRAMES OBTAINED THEREBY | |
EP2123147A1 (en) | Device for fixing flexible material covering a greenhouse | |
EP3868970B1 (en) | Mixed prefabricated slab for construction, in particular for floors or walls, and manufacturing method | |
FR3006233A1 (en) | PROFILE IN COMPOSITE MATERIAL FOR REINFORCING A PVC PROFILE, AND PROCESS FOR PRODUCING THE PROFILE | |
FR2948895A1 (en) | MANUFACTURE AND USE OF A PROFILE REINFORCED IN THERMOPLASTIC MATERIAL | |
FR3037857A1 (en) | PROCESS FOR PRODUCING A RIGID COMPOSITE STRUCTURE OBTAINED BY ASSEMBLING RIGID PROFILES AND FRAMES OBTAINED THEREBY | |
EP3406838B1 (en) | Profile member of a window opening, frame including such a profile member and associated assembly method | |
EP2142742A1 (en) | Insulation glazing member | |
FR2948722A1 (en) | OPENING CHASSIS CARRYING GLASS GLAZING | |
EP3468792B1 (en) | Fireproof glazing | |
EP1412593A1 (en) | Insulating material based on mineral wool, insulation system, insulation method | |
FR2852041A1 (en) | A integrated sandwich roofing panel providing a one piece roof and ceiling for houses and extensions comprising an outer layer resembling tiles or slates, an insulating core, a stiffening panel and interior decorative panel | |
FR2950374A1 (en) | Prefabricated front panel for construction of building, has threaded part screwed within wood skeleton frame and provided with net ridge with thickness decreasing toward end opposed to head, where frame is connected with concrete skin | |
EP3468793A1 (en) | Fire resistant glazing | |
FR2962461A1 (en) | Monolithic construction panel for constructing walls of building e.g. roof, has peripheral joint assuring chemical sealing between glass or vitreous elements and plate such that monolithic panel comprises smooth and sealed surface | |
EP2516782A2 (en) | Insulating system for attaching glazing to a bearing structure | |
FR3038963A1 (en) | PROFILE STABILIZED AND PROFILE A BREAK OF THERMAL BRIDGE COMPRISING SUCH A PROFILE | |
EP2301747A1 (en) | Reinforces glass | |
FR3087813A1 (en) | INSULATING GLASS SUB-ASSEMBLY READY TO FILL WITH INSULATING GAS | |
WO2019122276A1 (en) | Spacer for insulating glazing | |
FR3098994A1 (en) | Photovoltaic cell laminate and associated manufacturing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20161230 |
|
PLFP | Fee payment |
Year of fee payment: 3 |