FR3029950A1 - PARASISMIC ISOLATION DEVICE AND ASSEMBLY COMPRISING A NUCLEAR REACTOR AND THE PARASISMIC INSULATION DEVICE - Google Patents
PARASISMIC ISOLATION DEVICE AND ASSEMBLY COMPRISING A NUCLEAR REACTOR AND THE PARASISMIC INSULATION DEVICE Download PDFInfo
- Publication number
- FR3029950A1 FR3029950A1 FR1462210A FR1462210A FR3029950A1 FR 3029950 A1 FR3029950 A1 FR 3029950A1 FR 1462210 A FR1462210 A FR 1462210A FR 1462210 A FR1462210 A FR 1462210A FR 3029950 A1 FR3029950 A1 FR 3029950A1
- Authority
- FR
- France
- Prior art keywords
- plate
- end plate
- insulator
- anchor plate
- seismic isolation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 38
- 238000009413 insulation Methods 0.000 title description 2
- 239000012212 insulator Substances 0.000 claims abstract description 44
- 238000004873 anchoring Methods 0.000 claims description 25
- 230000000295 complement effect Effects 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-RNFDNDRNSA-N iron-60 Chemical compound [60Fe] XEEYBQQBJWHFJM-RNFDNDRNSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/022—Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
- G21C13/02—Details
- G21C13/024—Supporting constructions for pressure vessels or containment vessels
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/04—Means for suppressing fires ; Earthquake protection
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Emergency Management (AREA)
- Business, Economics & Management (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Le dispositif d'isolation parasismique (1) comprend : - une plaque d'ancrage inférieure (21) ; - une plaque d'ancrage supérieure (23) ; - un isolateur (25). Le dispositif d'isolation parasismique (1) comprend une plaque d'extrémité (35) rigidement fixée à l'une des extrémité inférieure ou supérieure de l'isolateur (25), et une liaison fusible (37) liant la plaque d'extrémité (35) à la plaque d'ancrage inférieure (21) ou à la plaque d'ancrage supérieure (23).The seismic isolation device (1) comprises: - a lower anchor plate (21); an upper anchor plate (23); an insulator (25). The seismic isolation device (1) comprises an end plate (35) rigidly attached to one of the lower or upper ends of the insulator (25), and a fusible link (37) connecting the end plate (35) to the lower anchor plate (21) or to the upper anchor plate (23).
Description
1 Dispositif d'isolation parasismique et ensemble comprenant un réacteur nucléaire et le dispositif d'isolation parasismique L'invention concerne en général les systèmes d'isolation parasismique destinés à être interposés entre les fondations et une structure telle qu'un immeuble ou un réacteur nucléaire. Plus précisément, l'invention concerne selon un premier aspect un dispositif d'isolation parasismique destiné à être interposé entre des fondations et une structure (5), le dispositif comprenant : - une plaque d'ancrage inférieure, destinée à être rigidement fixée aux fondations ; - une plaque d'ancrage supérieure, destinée à être fixée à la structure ; - un isolateur, interposé verticalement entre les plaques d'ancrages inférieure et supérieure, les plaques d'ancrage inférieure et supérieure étant liées respectivement à des extrémités inférieure et supérieure de l'isolateur, l'isolateur étant dimensionné pour supporter une première tension prédéterminée suivant la direction verticale.1 Seismic isolation device and assembly comprising a nuclear reactor and the seismic isolation device The invention generally relates to seismic isolation systems intended to be interposed between the foundations and a structure such as a building or a nuclear reactor . More specifically, the invention relates in a first aspect to a seismic isolation device intended to be interposed between foundations and a structure (5), the device comprising: - a lower anchor plate, intended to be rigidly fixed to the foundations ; - An upper anchor plate, intended to be fixed to the structure; an isolator vertically interposed between the lower and upper anchor plates, the lower and upper anchor plates being respectively connected to lower and upper ends of the insulator, the insulator being sized to support a first predetermined voltage according to the vertical direction.
Un dispositif de ce type est connu par exemple de JP 2009 024 753. Il permet de réduire de manière considérable les efforts transmis à la structure en cas de séisme. Ce dispositif comporte notamment un isolateur présentant une grande souplesse et une grande capacité de déformation dans un plan horizontal, tout en étant relativement rigide dans la direction verticale.A device of this type is known for example from JP 2009 024 753. It makes it possible to considerably reduce the forces transmitted to the structure in the event of an earthquake. This device comprises in particular an insulator with great flexibility and high deformation capacity in a horizontal plane, while being relatively rigid in the vertical direction.
En plus de sa fonction d'isolation parasismique, ce dispositif supporte généralement la totalité du poids de la structure, de telle sorte qu'une défaillance de ce dispositif entraînerait la chute de la structure, avec notamment pour les installations contenant des matières nucléaires, des conséquences inacceptables. Il est donc nécessaire de concevoir les dispositifs d'isolation parasismique de telle sorte que ceux-ci fonctionnent de la manière attendue dans les situations considérées pour le dimensionnement normal de ce dispositif, mais également de manière à éviter une défaillance du supportage de la charge verticale en cas de séismes extrêmes de niveaux bien plus élevés que ceux considérés pour le dimensionnement normal. Dans la suite, ces séisme seront dénommés « séismes extrêmes ».In addition to its seismic isolation function, this device generally supports the entire weight of the structure, so that a failure of this device would cause the fall of the structure, including for facilities containing nuclear materials, unacceptable consequences. It is therefore necessary to design the seismic isolation devices so that they function in the expected manner in the situations considered for the normal dimensioning of this device, but also in order to avoid a failure of the support of the vertical load in case of extreme earthquakes of levels much higher than those considered for the normal dimensioning. In the following, these earthquakes will be called "extreme earthquakes".
Un mode de défaillance prépondérant des dispositifs d'isolation parasismique du type ci-dessus est le déchirement ou la rupture de l'isolateur sous un chargement combiné de cisaillement et de tension. Dans ce contexte, l'invention vise à proposer un dispositif d'isolation parasismique permettant de limiter les efforts de tension pouvant transiter par l'isolateur pour des séismes extrêmes.A predominant failure mode of seismic isolation devices of the above type is tearing or breaking of the insulator under combined shear and tension loading. In this context, the invention aims to provide a seismic isolation device for limiting the voltage forces that can pass through the insulator for extreme earthquakes.
3029950 2 A cette fin, l'invention porte sur un dispositif d'isolation parasismique du type précité caractérisé en ce que le dispositif d'isolation parasismique comprend une plaque d'extrémité rigidement fixée à l'une des extrémité inférieure ou supérieure de l'isolateur, et une liaison fusible liant la plaque d'extrémité à la plaque d'ancrage inférieure ou à la 5 plaque d'ancrage supérieure, la liaison fusible étant choisie de manière à rompre ou plastifier sous l'effet une seconde tension prédéterminée suivant la direction verticale, la seconde tension étant supérieure à la première tension mais inférieure à la tension pouvant mener à une défaillance de l'isolateur. Le dispositif d'isolation parasismique de l'invention fonctionne sensiblement 10 comme celui de JP 2009 024 753 pour les séismes de niveau inférieur ou égal au niveau maximum considéré pour le dimensionnement normal du dispositif, c'est-à-dire pour ceux générant la première tension prédéterminée dans l'isolateur. Pour ce niveau maximum de séisme, l'isolateur reste lié à la fondation et à la structure. Ceci permet d'une part de respecter les codes de dimensionnement en vigueur, notamment au Japon et en Europe 15 (norme EN 15129). La norme européenne impose notamment un critère de stabilité en roulement que le dispositif de l'invention permet de respecter. Il est à noter qu'un tel critère ne serait pas respecté avec un dispositif d'isolation parasismique ayant des appuis non rigidement liés à la structure, et autorisant un décollement de la structure en cas de réponse verticale importante.To this end, the invention relates to a seismic isolation device of the aforementioned type characterized in that the seismic isolation device comprises an end plate rigidly fixed to one of the lower or upper end of the isolator, and a fusible link connecting the end plate to the lower anchor plate or to the upper anchor plate, the fusible link being selected to break or plasticize under the effect of a second predetermined voltage according to the vertical direction, the second voltage being greater than the first voltage but lower than the voltage may lead to failure of the insulator. The earthquake isolation device of the invention operates substantially like that of JP 2009 024 753 for earthquakes of level lower than or equal to the maximum level considered for the normal dimensioning of the device, that is to say for those generating the first predetermined voltage in the insulator. For this maximum level of earthquake, the insulator remains bound to the foundation and the structure. This allows on the one hand to comply with the sizing codes in force, especially in Japan and Europe 15 (EN 15129). The European standard imposes in particular a rolling stability criterion that the device of the invention makes it possible to respect. It should be noted that such a criterion would not be respected with a seismic isolation device having supports not rigidly related to the structure, and allowing a detachment of the structure in case of significant vertical response.
20 Par ailleurs, le dispositif de l'invention permet de reprendre un moment de basculement de la structure, c'est-à-dire un mouvement de rotation autour d'un axe horizontal. Enfin, le dispositif de l'invention permet de s'assurer de l'absence de décollement de la structure pour le niveau maximum de séisme considéré pour le dimensionnement, et donc de garantir l'absence de choc. De tels chocs se produisent 25 quand la structure revient en position suite à un décollement. En revanche, en cas de séisme extrême, la liaison fusible va rompre ou plastifier, de telle sorte qu'un décollement est autorisé entre la structure et les fondations. Ainsi, l'isolateur n'est pas détruit ou déchiré et est protégé par la liaison, qui joue le rôle de fusible. Quand la structure revient en position, elle est supportée par le dispositif 30 d'isolation parasismique de manière adéquate, puisque le dispositif d'isolation parasismique est encore apte à reprendre des efforts de compression. Le dispositif d'isolation parasismique peut encore présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles : 35 - la liaison fusible comprend au moins un organe fusible choisi dans le groupe suivant : une vis, une tige, une plaque, un cylindre, un crapaud ; 3029950 3 - l'organe fusible est en métal ou en un autre matériau présentant les caractéristiques de rupture ou de plastification requises ; - le dispositif d'isolation parasismique comprend une liaison supplémentaire de la plaque d'extrémité à la plaque d'ancrage inférieure ou supérieure, adaptée pour 5 transmettre un effort horizontal de cisaillement entre la plaque d'extrémité et la plaque d'ancrage inférieure ou supérieure quand la liaison fusible est intacte et quand la liaison fusible est rompue ou plastifiée ; - la liaison supplémentaire comprend une surface latérale solidaire de ou ménagée sur la plaque d'ancrage inférieure ou supérieure et une surface complémentaire solidaire 10 de ou ménagée sur la plaque d'extrémité, la surface latérale et la surface complémentaire étant en contact l'une contre l'autre et s'étendant parallèlement à la direction verticale ; - la surface latérale et la surface complémentaire s'étendent selon un contour sensiblement fermé, autour de l'isolateur ; - la plaque d'ancrage inférieure ou supérieure comprend une zone concave 15 délimitée par un fond et un bord périphérique, la plaque d'extrémité étant engagée dans la zone concave, le bord périphérique définissant la surface latérale ; - la plaque d'extrémité est en appui contre le fond et est liée au fond par la liaison fusible lorsque la liaison fusible est intacte ; - la hauteur de la surface latérale suivant la direction verticale est choisie pour que 20 la plaque d'extrémité ne se désengage pas de la zone concave quand il y a décollement entre la plaque d'extrémité et la plaque d'ancrage inférieure ou la plaque d'ancrage supérieure lors de l'occurrence d'un séisme de niveau extrême ; - le bord périphérique est rapporté contre le fond ; - au moins l'une de la surface latérale et de la surface complémentaire est revêtue 25 d'un revêtement anti-grippage. Selon un second aspect, l'invention porte sur un ensemble comprenant : - des fondations ancrées dans le sol ; - un réacteur nucléaire pourvu d'un radier ; - au moins un dispositif d'isolation parasismique tel que décrit ci-dessus, la plaque 30 d'ancrage inférieure étant rigidement fixée aux fondations, la plaque d'ancrage supérieure étant rigidement fixée au radier. L'ensemble peut en outre présenter au moins une butée limitant le débattement horizontal du réacteur nucléaire. D'autres caractéristiques et avantages de l'invention ressortiront de la description 35 détaillée qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles : 3029950 4 - la figure 1 est une représentation schématique d'un réacteur nucléaire reposant sur des fondations par l'intermédiaire de dispositifs d'isolation conformes à l'invention ; - la figure 2 est une représentation schématique simplifiée d'un des dispositifs d'isolation parasismique de la figure 1, au repos ; 5 - la figure 3 est une vue similaire à celle de la figure 2, et montre le fonctionnement du dispositif d'isolation parasismique en cas de séisme extrême ; - les figures 4 à 6 représentent différentes variantes d'organes fusibles ; et - les figures 7 et 8 représentent des variantes de réalisation de l'invention. Comme le montre la figure 1, le dispositif d'isolation parasismique 1 est destiné à 10 être interposé entre des fondations 3 et une structure 5. Le dispositif 1 est destiné, en cas de séisme, à réduire les efforts transmis par le sol à la structure. Dans l'exemple représenté, les fondations 3 sont disposées dans une excavation 7, creusée dans le sol 9. Plus particulièrement, les fondations 3 comportent une dalle 11 reposant sur le fond de l'excavation 7 et une pluralité de piliers 13 faisant saillie 15 verticalement à partir de la dalle 11. Les piliers sont disposés à distance les uns des autres. Les fondations 3 comportent encore des murs de soutènement 15, disposés contre les parois de l'excavation 7. La structure 5 comporte quant à elle en partie inférieure un radier 17.Furthermore, the device of the invention makes it possible to resume a tilting moment of the structure, that is to say a rotational movement about a horizontal axis. Finally, the device of the invention makes it possible to ensure the absence of detachment of the structure for the maximum level of earthquake considered for the dimensioning, and thus to guarantee the absence of shock. Such shocks occur when the structure returns to position following a peel. On the other hand, in case of extreme earthquake, the fusible link will break or laminate, so that a separation is authorized between the structure and the foundations. Thus, the insulator is not destroyed or torn and is protected by the link, which acts as a fuse. When the structure returns to position, it is supported by the seismic isolation device 30 adequately, since the seismic isolation device is still able to take up compressive forces. The seismic isolation device may also have one or more of the following characteristics, considered individually or in any technically possible combination: the fusible link comprises at least one fusible member chosen from the following group: a screw, a rod , a plate, a cylinder, a toad; 3029950 3 - the fuse member is made of metal or other material having the characteristics of rupture or plasticization required; the seismic isolation device comprises an additional connection of the end plate to the lower or upper anchor plate, adapted to transmit a horizontal shear force between the end plate and the lower anchor plate, or higher when the fuse link is intact and when the fuse link is broken or plasticized; the additional connection comprises a lateral surface secured to or formed on the lower or upper anchoring plate and a complementary surface secured to or formed on the end plate, the lateral surface and the complementary surface being in contact with one another; against the other and extending parallel to the vertical direction; the lateral surface and the complementary surface extend in a substantially closed contour around the insulator; the lower or upper anchoring plate comprises a concave zone delimited by a bottom and a peripheral edge, the end plate being engaged in the concave zone, the peripheral edge defining the lateral surface; - The end plate bears against the bottom and is connected to the bottom by the fuse link when the fuse link is intact; the height of the lateral surface in the vertical direction is chosen so that the end plate does not disengage from the concave zone when there is detachment between the end plate and the lower anchor plate or the plate superior anchorage at the occurrence of an extreme earthquake; - the peripheral edge is attached against the bottom; at least one of the lateral surface and the complementary surface is coated with an anti-seizing coating. According to a second aspect, the invention relates to an assembly comprising: - foundations anchored in the ground; a nuclear reactor provided with a raft; at least one seismic isolation device as described above, the lower anchoring plate being rigidly fixed to the foundations, the upper anchoring plate being rigidly fixed to the base. The assembly may further have at least one stop limiting the horizontal clearance of the nuclear reactor. Other features and advantages of the invention will emerge from the detailed description given below, by way of indication and in no way limiting, with reference to the appended figures, in which: FIG. 1 is a diagrammatic representation a nuclear reactor based on foundations through insulation devices according to the invention; FIG. 2 is a simplified schematic representation of one of the seismic isolation devices of FIG. 1, at rest; FIG. 3 is a view similar to that of FIG. 2, and shows the operation of the earthquake isolation device in the event of an extreme earthquake; - Figures 4 to 6 show different variants of fusible members; and - Figures 7 and 8 show alternative embodiments of the invention. As shown in FIG. 1, the earthquake isolation device 1 is intended to be interposed between foundations 3 and a structure 5. The device 1 is intended, in the event of an earthquake, to reduce the forces transmitted by the ground to the earth. structure. In the example shown, the foundations 3 are disposed in an excavation 7, dug in the ground 9. More particularly, the foundations 3 comprise a slab 11 resting on the bottom of the excavation 7 and a plurality of pillars 13 protruding 15. vertically from the slab 11. The pillars are arranged at a distance from each other. The foundations 3 still include retaining walls 15, arranged against the walls of the excavation 7. The structure 5 comprises in its lower part a raft 17.
20 Dans l'exemple représenté, un dispositif d'isolation parasismique 1 est interposé verticalement entre la surface supérieure de chacun des piliers 13 et le radier 17. Ainsi, la structure 5 repose exclusivement sur les piliers 13, les dispositifs d'isolation parasismique 1 reprenant ensemble la totalité du poids de la structure. Par ailleurs, il apparaît clairement sur la figure 1 des butées 19, limitant le 25 débattement horizontal de la structure 5. Dans l'exemple représenté, les butées 19 sont portées par les murs de soutènement 15. Elles sont disposées verticalement au niveau du radier 17. La structure 5, dans l'exemple représenté, est un réacteur nucléaire. En variante, la structure 5 est un autre bâtiment, par exemple un bâtiment abritant des turbines, une 30 usine, ou une tour, ou encore tout autre type de bâtiment. Il est à noter que les fondations 3 en variante présentent une structure différente de celle représentée sur la figure 1. Notamment, le radier 17 peut reposer non pas sur des piliers 13 mais sur un ou plusieurs massifs, voire même directement sur la dalle 11. Le dispositif d'isolation parasismique 1 est représenté de manière plus détaillée 35 sur la figure 2. Il comprend : 3029950 5 - une plaque d'ancrage inférieure 21, destinée à être rigidement fixée aux fondations 3 ; - une plaque d'ancrage supérieure 23, destinée à être fixée à la structure 5 ; - un isolateur 25, interposé verticalement entre les plaques d'ancrage inférieure et 5 supérieure 21, 23, les plaques d'ancrage inférieure et supérieure 21, 23 étant liées respectivement à des extrémités inférieure et supérieure de l'isolateur 25. La plaque d'ancrage inférieure 21 est typiquement une plaque métallique en acier. Elle est, dans l'exemple représenté, rigidement fixée aux fondations 3 par des 10 organes mécaniques 27, tels que des chevilles, des tiges d'ancrage, des tirants ou tout autre organe adapté. De même, la plaque d'ancrage supérieure 23 est typiquement une plaque métallique en acier, rigidement fixée à la structure 5 par des organes mécaniques 29, par exemple des chevilles, des tiges d'ancrage, des tirants ou tout autre organe adapté.In the example shown, a seismic isolation device 1 is interposed vertically between the upper surface of each of the pillars 13 and the raft 17. Thus, the structure 5 rests exclusively on the pillars 13, the earthquake-proof isolation devices 1 taking together the entire weight of the structure. Furthermore, it clearly appears in FIG. 1 of the stops 19, limiting the horizontal clearance of the structure 5. In the example shown, the stops 19 are carried by the retaining walls 15. They are arranged vertically at the level of the raft 17. The structure 5, in the example shown, is a nuclear reactor. Alternatively, the structure 5 is another building, for example a building housing turbines, a factory, or a tower, or any other type of building. It should be noted that the foundations 3 as a variant have a structure different from that shown in FIG. 1. In particular, the raft 17 may rest not on pillars 13 but on one or more solid masses, or even directly on slab 11. The seismic isolation device 1 is shown in greater detail in FIG. 2. It comprises: a bottom anchoring plate 21, intended to be rigidly fixed to the foundations 3; - An upper anchor plate 23, intended to be fixed to the structure 5; an isolator 25 interposed vertically between the lower and upper anchoring plates 21, 23, the lower and upper anchor plates 21, 23 being respectively connected to the lower and upper ends of the insulator 25. lower anchor 21 is typically a steel plate. It is, in the example shown, rigidly fixed to the foundations 3 by mechanical members 27, such as pegs, anchor rods, tie rods or any other suitable member. Similarly, the upper anchor plate 23 is typically a steel metal plate, rigidly fixed to the structure 5 by mechanical members 29, for example pegs, anchor rods, tie rods or any other suitable member.
15 L'isolateur 25 est, dans l'exemple représenté, un organe en élastomère fretté. Cet organe comporte par exemple une pluralité de couches 31 en élastomère, et une pluralité de plaques métalliques 33 interposées entre les couches d'élastomère 31. Les couches 31 et les plaques 33 sont d'orientation horizontale, sont empilées les unes sur les autres et sont typiquement solidarisées par un processus de vulcanisation. Ainsi, l'isolateur 25 20 présente une grande souplesse et une grande capacité de déformation sous l'effet d'une sollicitation dans un plan horizontal. Ces sollicitations seront appelées efforts de cisaillement dans la description qui va suivre. En revanche, l'isolateur 25 est relativement rigide suivant la direction verticale. La direction verticale est sensiblement perpendiculaire aux couches 31, aux plaques 33, et 25 aux plaques d'ancrage 21 et 23. L'isolateur, en variante, présente toute autre constitution adaptée pour conférer une grande capacité de déformation sous l'effet d'un effort de cisaillement et, en revanche, une relative rigidité suivant la direction verticale. Selon l'invention, le dispositif d'isolation parasismique 1 comprend une plaque 30 d'extrémité 35 rigidement fixée à une extrémité supérieure de l'isolateur 25, et une liaison fusible 37 liant la plaque d'extrémité 35 à la plaque d'ancrage supérieure 23. Il est à noter que, sous une sollicitation en tension, la plaque d'extrémité 35 et la plaque d'ancrage supérieure 23 sont rigidement fixées l'une à l'autre dans la direction verticale seulement par la liaison fusible. En l'absence de liaison fusible, la plaque 35 est 35 susceptible de débattre par rapport à la plaque d'ancrage supérieure 23 suivant la direction verticale.The insulator 25 is, in the example shown, a fretted elastomeric member. This member comprises for example a plurality of layers 31 made of elastomer, and a plurality of metal plates 33 interposed between the elastomer layers 31. The layers 31 and the plates 33 are of horizontal orientation, are stacked on top of one another and are typically joined by a vulcanization process. Thus, the insulator 20 has great flexibility and great deformation capacity under the effect of a bias in a horizontal plane. These stresses will be called shear forces in the following description. On the other hand, the insulator 25 is relatively rigid in the vertical direction. The vertical direction is substantially perpendicular to the layers 31, to the plates 33, and 25 to the anchoring plates 21 and 23. The insulator, as a variant, has any other constitution adapted to confer a large capacity of deformation under the effect of a shear force and, on the other hand, a relative rigidity in the vertical direction. According to the invention, the seismic isolation device 1 comprises an end plate 35 rigidly attached to an upper end of the insulator 25, and a fusible link 37 linking the end plate 35 to the anchor plate. It should be noted that, under stress, the end plate 35 and the upper anchor plate 23 are rigidly fixed to each other in the vertical direction only by the fuse link. In the absence of a fusible connection, the plate 35 is capable of debating with respect to the upper anchor plate 23 in the vertical direction.
3029950 6 Typiquement, la plaque d'extrémité 35 est une plaque métallique, d'orientation horizontale. Elle est typiquement fixée par adhérisation à l'isolateur 25. Plus précisément, elle est rigidement fixée à la couche 31 ou à la plaque 33 située le plus haut dans l'empilement constituant l'isolateur 25.Typically, the end plate 35 is a metal plate, of horizontal orientation. It is typically bonded to the insulator 25. More specifically, it is rigidly attached to the layer 31 or to the plate 33 located highest in the stack constituting the insulator 25.
5 Dans ce cas, la plaque d'ancrage inférieure 21 est rigidement fixée à une extrémité inférieure de l'isolateur 25. Elle est par exemple fixée par adhérisation. Typiquement, elle est fixée à la couche 31 ou à la plaque 33 située le plus bas dans l'empilement constituant l'isolateur 25. L'isolateur 25 est dimensionné pour présenter des marges par rapport au niveau 10 maximum de séisme considéré pour le dimensionnement. Ce séisme se traduit par un effort de cisaillement prédéterminé à transmettre depuis la plaque d'ancrage inférieure 21 jusqu'à la plaque d'ancrage supérieure 23 et à la structure 5, à travers l'isolateur 25. Ce niveau de séisme se traduit également par une première tension prédéterminée suivant la direction verticale, à transmettre depuis la plaque d'ancrage inférieure 21 jusqu'à la 15 plaque d'ancrage supérieure 23, à travers l'isolateur 25. Cette première tension prédéterminée correspond à un effort de traction verticale. L'isolateur 25 est conçu pour pouvoir transmettre cette première tension prédéterminée, sans dégradation. L'isolateur 25 est conçu avec une marge de sécurité par rapport à la première tension prédéterminée, de telle sorte qu'il peut transmettre des efforts supérieurs à la 20 première tension prédéterminée, sans dégradation, comme on le verra plus loin. La première tension prédéterminée ne correspond donc pas à la tension verticale maximum susceptible d'être transmise par l'isolateur 25 avant rupture ou dégradation majeure. La liaison fusible 37 est choisie de manière à se rompre, ou à plastifier, sous l'effet d'une seconde tension prédéterminée suivant la direction verticale, la seconde tension 25 étant supérieure à la première tension, de manière à garantir largement l'absence de rupture du dispositif fusible pour le niveau maximum de séisme de dimensionnement. Plus précisément, la seconde tension prédéterminée est comprise entre la première tension prédéterminée et la tension maximale suivant la direction verticale susceptible d'être transmise par l'isolateur 25 sans dégradation de celui-ci.In this case, the lower anchor plate 21 is rigidly attached to a lower end of the insulator 25. It is for example fixed by adhesion. Typically, it is attached to the lowest layer 31 or plate 33 in the stack constituting the insulator 25. The insulator 25 is sized to present margins with respect to the maximum seismic level considered for sizing. . This earthquake results in a predetermined shear force to be transmitted from the lower anchoring plate 21 to the upper anchoring plate 23 and the structure 5, through the insulator 25. This level of earthquake is also reflected by a first predetermined voltage in the vertical direction, to be transmitted from the lower anchor plate 21 to the upper anchor plate 23, through the insulator 25. This first predetermined voltage corresponds to a vertical tensile force . The isolator 25 is designed to be able to transmit this first predetermined voltage, without degradation. The isolator 25 is designed with a safety margin with respect to the first predetermined voltage, so that it can transmit forces greater than the first predetermined voltage, without degradation, as will be seen later. The first predetermined voltage therefore does not correspond to the maximum vertical voltage likely to be transmitted by the insulator 25 before rupture or major degradation. The fuse link 37 is chosen so as to break, or to plasticize, under the effect of a second predetermined voltage in the vertical direction, the second voltage 25 being greater than the first voltage, so as to largely guarantee the absence rupture of the fuse device for the maximum level of design earthquake. More specifically, the second predetermined voltage is between the first predetermined voltage and the maximum voltage in the vertical direction that can be transmitted by the insulator 25 without degradation thereof.
30 Ainsi, la liaison fusible joue un rôle de protection vis-à-vis de l'isolateur 25 sous un niveau de séisme extrême. Dès que la tension verticale appliquée à l'isolateur dépasse le niveau pour lequel l'isolateur est dimensionné, c'est-à-dire la première tension prédéterminée plus une marge, la liaison fusible va se rompre ou plastifier, de telle sorte que la plaque d'extrémité 35 devient libre par rapport à la plaque d'ancrage supérieure 23 35 dans la direction verticale.Thus, the fuse link plays a protective role with respect to the insulator 25 under extreme earthquake level. As soon as the vertical voltage applied to the insulator exceeds the level for which the insulator is sized, i.e. the first predetermined voltage plus a margin, the fusible link will break or laminate, so that the end plate 35 becomes free with respect to the upper anchor plate 23 in the vertical direction.
3029950 7 Cette rupture, ou cette plastification, intervient en tout état de cause avant qu'un niveau de tension verticale entraînant la rupture ou l'endommagement de l'isolateur soit appliqué à celui-ci. Les liaisons entre la plaque d'ancrage inférieure 21 et l'isolateur 25, entre la 5 plaque d'ancrage inférieure 21 et les fondations 3, entre la plaque d'extrémité 35 et l'isolateur 25, et entre la plaque d'ancrage supérieure 23 et la structure 5, sont toutes plus résistantes à une tension verticale que la liaison fusible 37. Dans l'exemple représenté sur la figure 2, la liaison fusible 37 comprend au moins un organe fusible 39, de préférence une pluralité d'organes fusibles. Chaque organe 10 fusible 39 lie la plaque d'extrémité 35 à la plaque d'ancrage supérieure 23, et est choisi de manière à se rompre ou à plastifier sous l'effet d'une tension verticale prédéterminée. Ensemble, les organes fusibles 39 constituent la liaison fusible 37. On entend ici par rompre le fait que l'organe fusible 39 se sépare en au moins deux morceaux complètement indépendants l'un de l'autre, sans plus de liaison physique 15 entre les morceaux. On entend par plastification le fait que l'organe fusible se déforme par allongement, sans rupture de l'organe physique en deux morceaux indépendants l'un de l'autre. L'allongement du ou des organes fusibles permet un déplacement vertical de la plaque d'extrémité 35 par rapport à la plaque d'ancrage supérieur 23, notamment un 20 décollement. L'allongement est une déformation plastique. Dans l'exemple représenté sur la figure 2, chaque organe fusible 39 est une vis. Dans ce cas, la plaque d'extrémité 35 comporte pour chaque organe fusible 39 un orifice traversant 41, traversant la plaque 35 dans toute son épaisseur. La vis comporte une tête 43, et une tige 45 de section inférieure à la section de l'orifice 41. La tête 43 25 présente une section horizontale supérieure à celle de l'orifice 41, et est en appui contre une grande face inférieure 47 de la plaque d'extrémité 35. Il est à noter que, dans un plan horizontal, la section droite de la plaque 35 est plus grande que la section droite de l'isolateur 25, de telle sorte que la plaque 35 présente une partie annulaire faisant saillie transversalement au-delà de l'isolateur 25. Les orifices 30 41 sont ménagés dans ladite partie annulaire. Une extrémité 49 de la tige 45 est engagée dans un orifice 51 de la plaque d'ancrage supérieure 23. Elle est rigidement fixée dans l'orifice 51. Par exemple, l'extrémité 49 est filetée et l'orifice 51 porte un taraudage interne coopérant avec le filetage externe de l'extrémité 49.3029950 7 This rupture, or this plasticization, occurs in any event before a level of vertical tension resulting in the breakage or damage of the insulator is applied thereto. The connections between the lower anchor plate 21 and the insulator 25, between the lower anchor plate 21 and the foundations 3, between the end plate 35 and the insulator 25, and between the anchor plate 23 and the structure 5, are all more resistant to a vertical voltage than the fuse link 37. In the example shown in Figure 2, the fuse link 37 comprises at least one fuse 39, preferably a plurality of organs fuses. Each fusible member 39 connects the end plate 35 to the upper anchor plate 23, and is selected to break or laminate under the effect of a predetermined vertical voltage. Together, the fusible members 39 constitute the fuse link 37. Here, it is meant to break the fact that the fusible member 39 splits into at least two pieces completely independent of one another, without any further physical connection between the two elements. parts. Plasticization means that the fusible member is deformed by elongation, without breaking the physical organ into two pieces independent of one another. The elongation of the fusible member or members allows vertical movement of the end plate 35 relative to the upper anchor plate 23, in particular a detachment. Elongation is a plastic deformation. In the example shown in Figure 2, each fuse member 39 is a screw. In this case, the end plate 35 comprises for each fuse member 39 a through hole 41, passing through the plate 35 throughout its thickness. The screw comprises a head 43, and a rod 45 of section smaller than the section of the orifice 41. The head 43 has a horizontal section greater than that of the orifice 41, and bears against a large lower face 47 of the end plate 35. It should be noted that, in a horizontal plane, the cross section of the plate 35 is larger than the cross section of the insulator 25, so that the plate 35 has an annular portion protruding transversely beyond the insulator 25. The orifices 41 are formed in said annular portion. One end 49 of the rod 45 is engaged in an orifice 51 of the upper anchoring plate 23. It is rigidly fixed in the orifice 51. For example, the end 49 is threaded and the orifice 51 has an internal thread. cooperating with the external thread of the end 49.
3029950 8 La vis comporte encore une zone de faiblesse 53, qui est ménagée ici dans un tronçon de la tige 45 engagée dans l'orifice 41. La zone de faiblesse 53 est par exemple un tronçon de diamètre réduit de la tige 45. Ainsi, quand la seconde tension prédéterminée est appliquée à la liaison fusible, 5 chacun des organes fusibles 39 va se rompre ou plastifier au niveau de la zone de faiblesse 53, autorisant ainsi un décollement de la plaque d'extrémité 35 par rapport à la plaque d'ancrage supérieure 23. En variante, l'organe fusible n'est pas une vis, mais est une tige 55 (figure 4), une plaque 57 (figure 5), un cylindre ou un crapaud 59 (figure 6).The screw further comprises a zone of weakness 53, which is formed here in a section of the rod 45 engaged in the orifice 41. The zone of weakness 53 is for example a section of reduced diameter of the rod 45. when the second predetermined voltage is applied to the fusible link, each of the fusible members 39 will break or laminate at the area of weakness 53, thereby allowing the end plate 35 to disengage from the plate upper anchorage 23. Alternatively, the fuse member is not a screw, but is a rod 55 (Figure 4), a plate 57 (Figure 5), a cylinder or a toad 59 (Figure 6).
10 L'organe fusible pourrait encore être tout autre organe mécanique adapté. La tige 55 comporte une extrémité rigidement fixée à la plaque d'ancrage supérieure 23, une autre extrémité rigidement fixée à la plaque d'extrémité 35, la zone de faiblesse 53 étant réalisée entre les deux extrémités. La tige peut avoir toutes sortes de sections horizontales : circulaire, carrée, rectangulaire, etc.The fusible member could still be any other suitable mechanical member. The rod 55 has one end rigidly fixed to the upper anchoring plate 23, another end rigidly fixed to the end plate 35, the zone of weakness 53 being formed between the two ends. The stem can have all kinds of horizontal sections: circular, square, rectangular, etc.
15 Sur la figure 5, la plaque 57 est agencée sensiblement comme la tige 55 de la figure 4. Une partie supérieure de la plaque 57 est rigidement fixée à la plaque d'ancrage supérieure 23, et une partie inférieure de la plaque 57 est rigidement fixée à la plaque d'extrémité 35. La zone de faiblesse 53 est réalisée entre les parties supérieure et inférieure.In Fig. 5, the plate 57 is arranged substantially like the rod 55 of Fig. 4. An upper portion of the plate 57 is rigidly attached to the upper anchor plate 23, and a lower portion of the plate 57 is rigidly attached to the end plate 35. The zone of weakness 53 is formed between the upper and lower parts.
20 Le crapaud 59 illustré sur la figure 6 est du type utilisé pour la fixation de rails sur une traverse de chemin de fer. Il comporte un fer plié 60, dont une première partie d'extrémité 61 est rigidement fixée à la plaque d'ancrage supérieure 23. Il comporte une seconde partie d'extrémité 63 rigidement fixée à la plaque d'extrémité, et plus précisément plaquée contre la face inférieure 47 de la plaque d'extrémité 35, et 25 rigidement fixée à cette grande face inférieure 47. La zone de faiblesse 53 est ménagée dans le fer entre les première et seconde parties d'extrémité 61 et 63. L'organe fusible est en métal, acier, plomb ou autre ou en un matériau élastique présentant les caractéristiques de rupture ou de plastification requises. Le dispositif d'isolation parasismique 1 comprend encore une liaison 30 supplémentaire 65 de la plaque d'extrémité 35 à la plaque d'extrémité supérieure 23. La liaison supplémentaire 65 est adaptée pour transmettre un effort horizontal de cisaillement entre la plaque d'extrémité 35 et la plaque d'ancrage 23. Plus précisément, elle est prévue et adaptée pour transmettre ledit effort de cisaillement à la fois quand la liaison fusible 37 est intacte et quand la liaison fusible 37 est rompue ou plastifiée.The toe 59 illustrated in FIG. 6 is of the type used for fastening rails to a railroad tie. It comprises a folded iron 60, a first end portion 61 of which is rigidly fixed to the upper anchoring plate 23. It comprises a second end portion 63 rigidly fixed to the end plate, and more precisely pressed against the lower face 47 of the end plate 35, and 25 rigidly attached to this large lower face 47. The zone of weakness 53 is formed in the iron between the first and second end portions 61 and 63. The fusible member is made of metal, steel, lead or other material or an elastic material having the required breaking or plasticizing characteristics. The seismic isolation device 1 further comprises an additional connection 65 from the end plate 35 to the upper end plate 23. The additional link 65 is adapted to transmit a horizontal shear force between the end plate 35 and the anchor plate 23. Specifically, it is provided and adapted to transmit said shear force at a time when the fuse link 37 is intact and when the fuse link 37 is broken or plasticized.
35 Dans le mode de réalisation représenté sur la figure 2, la liaison supplémentaire 65 comprend une surface latérale 67 ménagée sur la plaque d'ancrage supérieure 23, et 3029950 9 une surface complémentaire 69 ménagée sur la plaque d'extrémité 35, la surface latérale 67 et la surface complémentaire 69 étant en contact l'une contre l'autre et s'étendant parallèlement à la direction verticale. Typiquement, la surface latérale 67 et la surface complémentaire 69 s'étendent 5 selon un contour sensiblement fermé, autour de l'isolateur 25. Le contour est typiquement entièrement fermé, ou en variante présente des interruptions. Dans l'exemple représenté sur la figure 2, la plaque d'ancrage supérieure 23 comprend une zone concave 71. La zone concave 71 est creusée dans une grande face de la plaque d'ancrage supérieure 23 tournée vers le bas. Elle est délimitée par un fond 10 73 et un bord périphérique 74 faisant saillie vers le bas par rapport au fond 73. Elle est ouverte vers le bas. On entend ici par zone concave une zone en creux. Elle est susceptible de présenter toute sorte de forme délimitée par des faces planes ou courbes, par exemple parallélépipédique. La surface du bord périphérique 74 tournée vers l'intérieur de la zone concave 15 définit la surface latérale 67. La plaque d'extrémité 35 est engagée dans la zone concave 71. Elle est en appui par une grande face supérieure contre le fond 73, et est typiquement liée au fond 73 par la liaison fusible 37. Typiquement, considérée perpendiculairement à la direction verticale, la section 20 de la plaque d'extrémité 35 est complémentaire de celle de la zone concave 71. Dans l'exemple représenté, la surface complémentaire 69 correspond à la tranche de la plaque d'extrémité 35. La liaison supplémentaire pourrait être agencée de manière différente, comme représenté sur la figure 7. Par exemple, le bord périphérique 74 est défini par un anneau 25 75 rapporté sur le fond 73 de la plaque d'ancrage supérieure 23. Par exemple, les organes de fixation 29 sont solidaires de l'anneau, et traversent le bord 73 de la plaque d'ancrage supérieure 23 en passant dans des trous 76. Ainsi, le fond de la plaque d'ancrage supérieure 23 est plaqué contre la structure 5 par l'anneau 75. De préférence le bord 73 et l'anneau 75 sont intégrés dans une réservation 78 creusée dans la structure 5.In the embodiment shown in FIG. 2, the additional connection 65 comprises a lateral surface 67 formed on the upper anchoring plate 23, and a complementary surface 69 formed on the end plate 35, the lateral surface. 67 and the complementary surface 69 being in contact with each other and extending parallel to the vertical direction. Typically, the side surface 67 and the complementary surface 69 extend in a substantially closed contour around the insulator 25. The outline is typically fully closed, or alternatively has interruptions. In the example shown in Figure 2, the upper anchoring plate 23 comprises a concave zone 71. The concave zone 71 is hollowed in a large face of the upper anchor plate 23 facing downwards. It is delimited by a bottom 73 and a peripheral edge 74 projecting downwardly from the bottom 73. It is open downwards. Concave zone is here understood to mean a hollow zone. It is likely to have any kind of shape delimited by flat or curved faces, for example parallelepipedic. The surface of the peripheral edge 74 turned towards the inside of the concave zone 15 defines the lateral surface 67. The end plate 35 is engaged in the concave zone 71. It is supported by a large upper face against the bottom 73, and is typically bonded to the bottom 73 by the fusible link 37. Typically considered perpendicular to the vertical direction, the end plate section 20 is complementary to that of the concave zone 71. In the example shown, the surface Complementary 69 corresponds to the wafer of the end plate 35. The additional connection could be arranged differently, as shown in FIG. 7. For example, the peripheral edge 74 is defined by a ring 75 attached to the bottom 73 of the upper anchoring plate 23. For example, the fasteners 29 are integral with the ring, and pass through the edge 73 of the upper anchor plate 23 passing through holes 76. Thus, the bottom of the upper anchoring plate 23 is pressed against the structure 5 by the ring 75. Preferably the edge 73 and the ring 75 are integrated in a reservation 78 dug in the structure 5.
30 La réservation 78, perpendiculairement à la direction verticale, présente une section interne complémentaire de la section externe du fond 73 et de l'anneau 75. De manière à faciliter le mouvement de la plaque d'extrémité 35 par rapport à la plaque d'ancrage supérieure 23, au moins l'une de la surface latérale 67 et de la surface complémentaire 69 peut être revêtue d'un revêtement anti grippage. De préférence, les 35 deux surfaces sont revêtues d'un revêtement anti grippage. Ce revêtement est par 3029950 10 exemple en PTFE, ou est un revêtement zingué, ou est un revêtement anti grippage typiquement utilisé en boulonnerie. La figure 3 illustre la situation du dispositif d'isolation parasismique, quand celui-ci est chargé par des sollicitations de tension et de cisaillement, résultant d'un séisme 5 extrême. Notamment, ce séisme est tel que le dispositif d'isolation parasismique 1 est soumis à une tension supérieure à la première tension plus la marge de dimensionnement, ce qui a pour effet de provoquer la rupture de la liaison fusible 37, comme illustré. On voit que du fait de l'effort de cisaillement, la structure 5, avec la plaque 10 d'ancrage supérieure 23 et la plaque d'extrémité 35, est décalée horizontalement par rapport à la plaque d'ancrage inférieure 21. Sur la figure 3, la plaque d'ancrage supérieure 23 et la plaque d'extrémité 35 sont décalées vers la droite. Ce mouvement s'accompagne d'une distorsion des couches 31, l'isolateur adoptant une forme oblique.The reservation 78, perpendicular to the vertical direction, has an inner section complementary to the outer section of the bottom 73 and the ring 75. In order to facilitate the movement of the end plate 35 with respect to the plate. upper anchor 23, at least one of the lateral surface 67 and the complementary surface 69 may be coated with an anti-seizing coating. Preferably, both surfaces are coated with an anti-seizure coating. This coating is for example made of PTFE, or is a galvanized coating, or is an anti-seizing coating typically used in bolts. Figure 3 illustrates the situation of the seismic isolation device, when it is loaded by stress and shear stresses resulting from an extreme earthquake. In particular, this earthquake is such that the seismic isolation device 1 is subjected to a voltage greater than the first voltage plus the sizing margin, which has the effect of causing the breaking of the fuse link 37, as illustrated. It can be seen that due to the shear force, the structure 5, with the upper anchoring plate 23 and the end plate 35, is offset horizontally with respect to the lower anchor plate 21. In FIG. 3, the upper anchor plate 23 and the end plate 35 are shifted to the right. This movement is accompanied by a distortion of the layers 31, the insulator adopting an oblique shape.
15 Par ailleurs, du fait que la liaison fusible 37 est rompue, la plaque d'ancrage supérieure 23 a un degré de liberté suivant la direction verticale par rapport à la plaque d'extrémité 35. La plaque d'ancrage supérieure 23 peut en effet se décoller de la plaque d'extrémité 35 lors d'un mouvement localement vertical montant de la structure 5 par rapport à la fondation 3. Il se crée donc un interstice 77 entre le fond 73 de la plaque 20 d'ancrage et la plaque d'extrémité 35. De manière à ce que la liaison supplémentaire 65 continue à assurer la transmission des efforts de cisaillement quand la liaison fusible 37 est rompue ou plastifiée et qu'il se produit un décollement, la hauteur de la surface latérale 67 est choisie pour que la plaque d'extrémité 35 ne se désengage pas de la zone concave 71 sous une 25 sollicitation par un séisme de niveau extrême. En d'autres termes, on choisit la hauteur de la surface latérale 67 suffisamment grande pour que le décollement de la plaque d'ancrage supérieure 23 ne soit jamais suffisant, en cas de séisme extrême, pour que la plaque d'extrémité 35 puisse quitter la zone concave 71.Furthermore, because the fusible link 37 is broken, the upper anchor plate 23 has a degree of freedom in the vertical direction relative to the end plate 35. The upper anchor plate 23 may indeed detach from the end plate 35 during a locally vertical movement of the structure 5 relative to the foundation 3. It thus creates a gap 77 between the bottom 73 of the anchor plate 20 and the plate end 35. In such a way that the additional connection 65 continues to ensure the transmission of the shear forces when the fuse link 37 is broken or plasticized and a peeling occurs, the height of the lateral surface 67 is chosen to that the end plate 35 does not disengage from the concave zone 71 under stress from an extreme level earthquake. In other words, the height of the lateral surface 67 is chosen so large that the detachment of the upper anchor plate 23 is never sufficient, in the event of an extreme earthquake, for the end plate 35 to leave the concave zone 71.
30 II est à noter que l'effort de cisaillement auquel le dispositif d'isolation parasismique 1 est soumis peut être limité par la mise en place des butées 19. En effet, ces butées 19 limitent le déplacement de la structure 5 dans un plan horizontal, et limitent donc le déplacement de la plaque d'ancrage supérieure 23 et de la plaque d'extrémité 35 horizontalement par rapport à la plaque d'ancrage inférieure 21.It should be noted that the shear force to which the seismic isolation device 1 is subjected can be limited by the implementation of the stops 19. In effect, these stops 19 limit the displacement of the structure 5 in a horizontal plane. , and thus limit the displacement of the upper anchor plate 23 and the end plate 35 horizontally relative to the lower anchor plate 21.
3029950 11 Ainsi, même en cas de séisme extrême, le dispositif d'isolation parasismique 1 est soumis à une tension limitée, du fait de l'existence de la liaison fusible 37, et à un effort de cisaillement limité, du fait de l'existence des butées 19. Bien entendu, la liaison fusible 37 peut être mise en oeuvre même si le dispositif 5 d'isolation parasismique ne comporte pas la liaison supplémentaire 65. Une variante de réalisation du dispositif d'isolation parasismique 1 va maintenant être décrite, en référence à la figure 8. Seuls les points par lesquels cette variante se distingue de celle des figures 1 à 3 seront détaillés ci-dessous. Les éléments identiques ou assurant la même fonction seront désignés par les mêmes références que dans la 10 variante de réalisation des figures 1 à 3. Dans la variante de réalisation de la figure 8, la liaison fusible 37 assure la fonction de la liaison supplémentaire 65, à savoir transmettre l'effort de cisaillement entre la plaque d'extrémité 35 et la plaque d'ancrage supérieure 23, à la fois quand la liaison fusible 37 est intacte et quand la liaison fusible 37 est rompue ou plastifiée.Thus, even in the event of an extreme earthquake, the earthquake isolation device 1 is subjected to a limited voltage, because of the existence of the fuse link 37, and to a limited shear force, because of the Existence of the stops 19. Of course, the fuse link 37 can be implemented even if the seismic isolation device 5 does not comprise the additional connection 65. An alternative embodiment of the seismic isolation device 1 will now be described, with reference to FIG. 8. Only the points by which this variant differs from that of FIGS. 1 to 3 will be detailed below. The elements that are identical or provide the same function will be designated by the same references as in the variant embodiment of FIGS. 1 to 3. In the variant embodiment of FIG. 8, the fuse link 37 performs the function of the additional link 65, namely to transmit the shear force between the end plate 35 and the upper anchor plate 23, both when the fuse link 37 is intact and when the fuse link 37 is broken or plasticized.
15 Dans la variante de réalisation des figures 1 à 3, la liaison supplémentaire 65 est assurée par des éléments distincts de ceux assurant la liaison fusible 37. Dans l'exemple de réalisation de la figure 8, la liaison fusible 37 comporte une pluralité d'organes fusibles 79 similaires aux vis représentées sur la figure 2, mais légèrement différents toutefois.In the variant embodiment of FIGS. 1 to 3, the additional connection 65 is provided by elements distinct from those providing the fuse link 37. In the embodiment of FIG. 8, the fuse link 37 comprises a plurality of fusible members 79 similar to the screws shown in Figure 2, but slightly different, however.
20 Chaque organe 79 comporte, comme décrit précédemment, une tête 81 et une tige 83. La tête 81 est plaquée sous et contre la grande face inférieure 47 de la plaque d'extrémité 35. La tige 83 présente une partie d'extrémité 85, située à l'opposé de la tête 81, qui est rigidement fixée à la plaque d'ancrage supérieure 23. La tige comporte encore un tronçon intermédiaire 87, raccordant la partie d'extrémité 85 à la tête 81, engagé dans 25 l'orifice 41 de la plaque d'extrémité. La surface externe du tronçon intermédiaire 87 est lisse, et ne porte donc pas de filetage externe. Le tronçon intermédiaire 87 présente une section externe complémentaire de la section interne de l'orifice 41, considéré perpendiculairement à la direction verticale. En d'autres termes, la surface externe du tronçon intermédiaire 87 est plaquée contre la surface interne de l'orifice 41.Each member 79 comprises, as previously described, a head 81 and a rod 83. The head 81 is pressed under and against the large lower face 47 of the end plate 35. The rod 83 has an end portion 85, located opposite the head 81, which is rigidly fixed to the upper anchoring plate 23. The rod further comprises an intermediate section 87, connecting the end portion 85 to the head 81, engaged in the orifice 41 of the end plate. The outer surface of the intermediate portion 87 is smooth, and therefore does not have external threads. The intermediate section 87 has an outer section complementary to the internal section of the orifice 41, considered perpendicular to the vertical direction. In other words, the outer surface of the intermediate portion 87 is pressed against the inner surface of the orifice 41.
30 L'organe 79 comporte une zone de faiblesse 89, à la jonction entre la tige 83 et la tête 81. Par ailleurs, la plaque d'ancrage supérieure 23 ne comporte pas la zone concave 71. La plaque d'extrémité 35 repose donc contre une zone plane de la grande face inférieure de la plaque d'ancrage supérieure. Ainsi, la surface latérale 67 dans l'exemple 35 de la figure 8 correspond à l'ensemble des surfaces internes des orifices 41, et la surface 3029950 12 complémentaire 69 correspond à l'ensemble des surfaces externes des tronçons intermédiaires 87. Quand la liaison fusible 37 est intacte, l'effort de cisaillement est transmis entre la plaque d'ancrage supérieure 23 et la plaque d'extrémité 35 à travers les organes fusibles 5 79, et plus précisément par les surfaces internes des orifices 41 qui sont en contact avec les surfaces externes des tronçons intermédiaires 87. La rupture ou la plastification de la liaison fusible 37 est provoquée par la déformation ou la rupture de la zone de faiblesse 89, pour les organes 79. Typiquement, la tête 81 se détache de la tige 83. La tige 83 reste fixée à la plaque d'ancrage supérieure 10 23, et reste engagée par son tronçon intermédiaire 87 dans l'orifice 41. La plaque d'extrémité 35 peut coulisser le long de la tige 83, suivant une direction verticale, du fait que la tête est séparée de la tige, ou du fait que la zone de faiblesse 89 a été déformée. En revanche, du fait que les tiges 83 ne sont pas désengagées des orifices 41, les efforts de cisaillement continuent à être transmis entre la plaque d'extrémité 35 et la plaque 15 d'ancrage supérieure 23. La hauteur de la plaque d'extrémité 35 est choisie suffisamment importante pour que les tiges 83 ne soient jamais désengagées en cas de séisme extrême. Dans la description qui a été donnée de l'invention, il a été mentionné que la plaque d'extrémité 35 est rigidement fixée à l'extrémité supérieure de l'isolateur 25, et que 20 la liaison fusible 37 lie la plaque d'extrémité 35 à la plaque d'ancrage supérieure 23 du dispositif. Selon une alternative non représentée, la plaque d'extrémité 35 est fixée à une extrémité inférieure de l'isolateur 25, et la liaison fusible 37 lie la plaque d'extrémité 35 à la plaque d'ancrage inférieure 21. De même, la liaison supplémentaire 65 lie la plaque d'extrémité 35 à la plaque d'ancrage inférieure 21, et est adaptée pour transmettre l'effort 25 de cisaillement entre la plaque d'extrémité 35 et la plaque d'ancrage inférieure 21. En revanche, la liaison fusible et la liaison supplémentaire sont du même type que décrit ci-dessus, y compris toutes les variantes envisagées.The member 79 has a zone of weakness 89, at the junction between the rod 83 and the head 81. Moreover, the upper anchoring plate 23 does not have the concave zone 71. The end plate 35 thus rests on against a flat area of the large lower face of the upper anchor plate. Thus, the lateral surface 67 in the example 35 of FIG. 8 corresponds to all the internal surfaces of the orifices 41, and the complementary surface 69 corresponds to all of the external surfaces of the intermediate sections 87. fuse 37 is intact, the shear force is transmitted between the upper anchoring plate 23 and the end plate 35 through the fuse members 79, and more specifically by the internal surfaces of the orifices 41 which are in contact with the the external surfaces of the intermediate sections 87. The rupture or the plasticization of the fusible link 37 is caused by the deformation or rupture of the zone of weakness 89, for the members 79. Typically, the head 81 is detached from the rod 83. The rod 83 remains fixed to the upper anchoring plate 23, and remains engaged by its intermediate section 87 in the orifice 41. The end plate 35 can slide along the rod 83, following in a vertical direction, because the head is separated from the rod, or because the weak zone 89 has been deformed. On the other hand, because the rods 83 are not disengaged from the orifices 41, the shear forces continue to be transmitted between the end plate 35 and the upper anchor plate 23. The height of the end plate 35 is chosen so important that the rods 83 are never disengaged in case of extreme earthquake. In the description which has been given of the invention, it has been mentioned that the end plate 35 is rigidly fixed to the upper end of the insulator 25, and that the fusible link 37 links the end plate. 35 to the upper anchor plate 23 of the device. According to an alternative not shown, the end plate 35 is attached to a lower end of the insulator 25, and the fuse link 37 links the end plate 35 to the lower anchor plate 21. Similarly, the link 65 attaches the end plate 35 to the lower anchor plate 21, and is adapted to transmit the shear force between the end plate 35 and the lower anchor plate 21. fuse and the additional link are of the same type as described above, including all variants considered.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1462210A FR3029950B1 (en) | 2014-12-10 | 2014-12-10 | PARASISMIC ISOLATION DEVICE AND ASSEMBLY COMPRISING A NUCLEAR REACTOR AND THE PARASISMIC INSULATION DEVICE |
PCT/EP2015/079241 WO2016092013A1 (en) | 2014-12-10 | 2015-12-10 | Paraseismic isolation device and assembly comprising a nuclear reactor and the paraseismic isolation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1462210A FR3029950B1 (en) | 2014-12-10 | 2014-12-10 | PARASISMIC ISOLATION DEVICE AND ASSEMBLY COMPRISING A NUCLEAR REACTOR AND THE PARASISMIC INSULATION DEVICE |
FR1462210 | 2014-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3029950A1 true FR3029950A1 (en) | 2016-06-17 |
FR3029950B1 FR3029950B1 (en) | 2019-09-06 |
Family
ID=53039508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1462210A Active FR3029950B1 (en) | 2014-12-10 | 2014-12-10 | PARASISMIC ISOLATION DEVICE AND ASSEMBLY COMPRISING A NUCLEAR REACTOR AND THE PARASISMIC INSULATION DEVICE |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3029950B1 (en) |
WO (1) | WO2016092013A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107605062A (en) * | 2017-09-14 | 2018-01-19 | 云南震安减震科技股份有限公司 | A kind of movable flameproof protection device for architectural vibration-insulation rubber supporting seat |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187573A (en) * | 1977-07-05 | 1980-02-12 | Watson Bowman Associates, Inc. | High load bearing for bridges and similar structures |
JPH11153191A (en) * | 1997-11-25 | 1999-06-08 | Shimizu Corp | Mechanism corresponding to drawing of base isolation device |
JP2008215442A (en) * | 2007-03-01 | 2008-09-18 | Tokyo Institute Of Technology | Isolator protective device and base isolation device |
WO2012094756A1 (en) * | 2011-01-14 | 2012-07-19 | Constantin Christopoulos | Coupling member for damping vibrations in building structures |
EP2537999A1 (en) * | 2010-02-16 | 2012-12-26 | Kenho Okura | Fastening device |
EP2770509A1 (en) * | 2011-10-20 | 2014-08-27 | Mitsubishi Heavy Industries, Ltd. | Foundation structure for reactor containment vessel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009024753A (en) | 2007-07-18 | 2009-02-05 | Bridgestone Corp | Seismic isolation device |
-
2014
- 2014-12-10 FR FR1462210A patent/FR3029950B1/en active Active
-
2015
- 2015-12-10 WO PCT/EP2015/079241 patent/WO2016092013A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187573A (en) * | 1977-07-05 | 1980-02-12 | Watson Bowman Associates, Inc. | High load bearing for bridges and similar structures |
JPH11153191A (en) * | 1997-11-25 | 1999-06-08 | Shimizu Corp | Mechanism corresponding to drawing of base isolation device |
JP2008215442A (en) * | 2007-03-01 | 2008-09-18 | Tokyo Institute Of Technology | Isolator protective device and base isolation device |
EP2537999A1 (en) * | 2010-02-16 | 2012-12-26 | Kenho Okura | Fastening device |
WO2012094756A1 (en) * | 2011-01-14 | 2012-07-19 | Constantin Christopoulos | Coupling member for damping vibrations in building structures |
EP2770509A1 (en) * | 2011-10-20 | 2014-08-27 | Mitsubishi Heavy Industries, Ltd. | Foundation structure for reactor containment vessel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107605062A (en) * | 2017-09-14 | 2018-01-19 | 云南震安减震科技股份有限公司 | A kind of movable flameproof protection device for architectural vibration-insulation rubber supporting seat |
Also Published As
Publication number | Publication date |
---|---|
WO2016092013A1 (en) | 2016-06-16 |
FR3029950B1 (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1284324B1 (en) | Device and process for fastening a building element and a cable structure and suspension bridge having such devices | |
BE1025272B1 (en) | ANCHORING SYSTEM FOR A SECURITY SLIDE POST | |
EP2337984A1 (en) | Vessel with a reinforced corrugated membrane | |
EP0660006B1 (en) | Resonating dynamic damping element and its assembly | |
EP2596255A1 (en) | Aircraft comprising a link rod one part of which is made of composite | |
FR2991941A1 (en) | DEVICE FOR CLOSING AN INFLATABLE CUSHION MODULE COMPRISING A VARIABLE LENGTH HINGE AREA | |
EP2904613B1 (en) | Packaging for transporting and/or storing radioactive materials, including improved means for attaching a shock-absorbing cover | |
FR3021625A1 (en) | FLEXIBLE CONNECTION BETWEEN THE FLOOR STRUCTURE AND THE HULL STRUCTURE OF AN AIRCRAFT. | |
FR3029950A1 (en) | PARASISMIC ISOLATION DEVICE AND ASSEMBLY COMPRISING A NUCLEAR REACTOR AND THE PARASISMIC INSULATION DEVICE | |
EP2774848B1 (en) | System for attaching a load to a rotorcraft, and rotorcraft | |
WO2019239049A1 (en) | Sealed and thermally insulating tank | |
EP0090708A1 (en) | Supporting spacer for floor boards | |
FR2969729A1 (en) | STRUCTURAL PIECE WITH CAPACITY OF ENERGY DISSIPATION | |
WO1994000658A1 (en) | Aseismic insulating devices for buildings and structures | |
EP3411531B1 (en) | Modular device for creating an anchor point in the ground | |
FR2643105A1 (en) | PARASISMIC ISOLATOR FOR THE CONSTRUCTION OF BUILDINGS | |
EP0988446B1 (en) | Device for anchoring a member activating an adjustable nozzle | |
FR2966425A1 (en) | Aircraft i.e. helicopter, has control unit provided against flutter phenomenon, and stiffening units exerting compressive stress on stabilizers portion that are arranged at root portion of stabilizers portion | |
EP3677484B1 (en) | Connection device between the brace and the end platforms of a combined road/rail transport carriage | |
EP2981651B1 (en) | Support and protection barrier for retaining a moving object | |
FR2937350A1 (en) | Composite compensation wedge for use between post and purlin in building, has sealing plate connected on contact face of body, turned in direction of upper concrete element, where sealing plate partially overlaps contact face of body | |
FR3144172A1 (en) | Method of repairing a construction work, and load-bearing element resulting from the process | |
EP3072135A1 (en) | Assembly for protecting a liner of a pool for storing and/or stockpiling or cooling fuel assemblies or radioactive waste stored in a storage rack | |
EP2489417A1 (en) | Moulded block for manufacturing modular devices and manufacturing method | |
EP2383497B1 (en) | Verstellbare Befestigungsvorrichtung, insbesondere für Rohrsystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20160617 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |