FR3017874A1 - Reacteur chimique a plasma ameliore - Google Patents
Reacteur chimique a plasma ameliore Download PDFInfo
- Publication number
- FR3017874A1 FR3017874A1 FR1451439A FR1451439A FR3017874A1 FR 3017874 A1 FR3017874 A1 FR 3017874A1 FR 1451439 A FR1451439 A FR 1451439A FR 1451439 A FR1451439 A FR 1451439A FR 3017874 A1 FR3017874 A1 FR 3017874A1
- Authority
- FR
- France
- Prior art keywords
- plasma
- reaction chamber
- electrodes
- reactor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/06—Continuous processes
- C10J3/18—Continuous processes using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/08—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
- F23G5/085—High-temperature heating means, e.g. plasma, for partly melting the waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/12—Electrodes present in the gasifier
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0976—Water as steam
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/123—Heating the gasifier by electromagnetic waves, e.g. microwaves
- C10J2300/1238—Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
- F23G2201/40—Gasification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2204/00—Supplementary heating arrangements
- F23G2204/20—Supplementary heating arrangements using electric energy
- F23G2204/201—Plasma
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/26—Biowaste
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processing Of Solid Wastes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Le réacteur plasmachimique (1) fonctionne à pression atmosphérique, sans apport de gaz et sans chauffage extérieur ni refroidissement de l'enceinte. De la vapeur d'eau est injectée au niveau des électrodes (5) qui génèrent le plasma. La vapeur d'eau refroidit les électrodes (5) puis se transforme au moins partiellement en plasma. Le plasma, riche en radicaux hydroxyles, circule en boucle grâce à des moyens de ventilation (13) et dégrade rapidement la matière carbonée en gaz de synthèse avec un rendement élevé. Cette dégradation s'effectue à une température régulée entre 300°C et 900°C afin de privilégier au choix la production d'hydrogène, de méthane, de dioxyde de carbone ou de monoxyde de carbone.
Description
REACTEUR CHIMIQUE A PLASMA AMELIORE Domaine technique La présente invention se rapporte au domaine technique général des réacteurs chimiques à plasma, appelés aussi réacteurs plasmachimiques, dans lesquels des électrodes forment des arcs électriques afin de générer un plasma pour gazéifier de la matière carbonée dans le but d'obtenir du gaz de synthèse. L'invention concerne plus particulièrement un réacteur plasmachimique dans lequel un gaz plasmagène, riche en hydroxyles, permet de dégrader la matière carbonée en gaz de synthèse. Le gaz de synthèse est un mélange gazeux combustible comprenant de l'eau, du méthane, du dioxyde de carbone et du syngaz. Le syngaz est un mélange gazeux composé majoritairement de monoxyde de carbone CO et d'hydrogène H2. C'est un gaz habituellement pauvre et faiblement énergétique, qui doit être épuré en raison d'un grand nombre d'impuretés toxiques et corrosives. Une fois épuré, il peut notamment être utilisé pour produire de l'électricité (alimentation d'un groupe électrogène) ou être transformé en molécules de synthèse via un processus catalytique. Habituellement, il est issu d'une réaction chimique impliquant une gazéification par pyrolyse d'une matière organique, en présence d'un agent oxydant volontairement introduit en quantité insuffisante pour une combustion complète. On obtient alors un mélange de gaz comprenant principalement de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone, du méthane, de l'azote et de la vapeur d'eau. On obtient également des résidus de thermolyse, notamment un résidu carboné. La matière organique utilisée peut-être constituée de déchets contenant du carbone ou de biomasse issue de l'agriculture ou de l'exploitation forestière. On peut aussi utiliser de la tourbe. Sa transformation en gaz de synthèse permet par conséquent de valoriser une matière abondante et à très faible prix. Etat de la technique Il existe de nombreux dispositifs thermochimiques permettant ainsi de valoriser la matière carbonée.
Parmi ces dispositifs on compte les gazéificateurs pressurisés, à lit fixe ou fluidisé, dans lesquels la matière carbonée est gazéifiée à très haute température en présence d'un apport de gaz, dans une enceinte fermée maintenue à température et parfois à pression très élevées, généralement à une température de 1500°C et à une pression jusqu'à 30 bars. Le gaz introduit dans l'enceinte est habituellement de l'air ou de l'oxygène, et peut comprendre de la vapeur d'eau. Ces gazéificateurs pressurisés sont peu avantageux en ce qu'ils posent des problèmes d'étanchéité, nécessitent une préparation poussée de la matière organique utilisée afin de respecter une certaine plage granulométrique et impliquent des températures et pressions très élevées, qui impliquent notamment un refroidissement de l'enveloppe extérieure de l'enceinte. En outre, ces gazéificateurs pressurisés consomment beaucoup d'énergie pour le fonctionnement, avec un rendement faible, et sont par conséquent peu rentables. On connaît également les gazéificateurs à plasma, qui utilisent une torche à plasma pour améliorer la transformation de la matière organique en gaz de synthèse après pyrolyse de celle-ci. La température extrêmement élevée du plasma permet une transformation plus complète de la matière organique, avec une pureté plus élevée du gaz de synthèse, pour un meilleur rendement global. Dans ces dispositifs, de l'air, de l'oxygène et/ou de la vapeur d'eau sont introduits dans le milieu réactionnel afin de produire le gaz plasmagène qui décompose la matière organique. En raison de l'utilisation d'un plasma, et d'un arc électrique habituellement en contact direct avec la matière organique à transformer, cette matière est soumise à des températures extrêmes, supérieures à 1000°C, et généralement de l'ordre de plusieurs milliers de degrés Celsius. Dans ces conditions, ces gazéificateurs nécessitent un refroidissement des électrodes. Ces dispositifs thermochimiques sont par conséquent très couteux en dépenses énergétiques, coût qui est encore accru par l'apport de gaz extérieur qui doit être réchauffé. Divulgation de l'invention L'objet de la présente invention vise par conséquent à pallier les inconvénients de l'art antérieur en proposant un nouveau procédé de gazéification.
Un autre objet de la présente invention vise à pallier les inconvénients de l'art antérieur en proposant un nouveau réacteur plasmachimique. Les objets assignés à l'invention sont atteints à l'aide d'un procédé de gazéification de matière carbonée de type biomasse ou déchets organiques pour la génération de gaz de synthèse, dans lequel de la matière carbonée est introduite dans une chambre de réaction située dans une enceinte fermée pour y être transformée en plasma par au moins un arc électrique généré par des électrodes, caractérisé en ce qu'il consiste à : - introduire de la vapeur d'eau dans la chambre de réaction à travers les électrodes, refroidissant ainsi lesdites électrodes, ladite vapeur d'eau étant au moins partiellement transformée en plasma en traversant l'arc électrique ; - maintenir la température de la chambre de réaction inférieure à 1000°C ; - maintenir la pression dans la chambre de réaction à la pression atmosphérique ; et - faire circuler en boucle le plasma et les gaz dans l'enceinte fermée de manière à les faire circuler au niveau des électrodes et dans la chambre de réaction.
Selon un exemple de mise en oeuvre conforme à l'invention, le procédé consiste à introduire de la vapeur d'eau à travers les électrodes en régulant le débit de manière à ce que la concentration en radicaux hydroxyles dans le plasma et les gaz est supérieure à 1% en volume du volume de vapeur d'eau contenue dans la chambre de réaction.
Selon un exemple de mise en oeuvre conforme à l'invention, le procédé consiste à maintenir la température de la chambre de réaction entre 300°C et 900°C selon la composition souhaitée pour le gaz de synthèse. Selon un exemple de mise en oeuvre conforme à l'invention, le procédé consiste à sélectionner une plage de température pour générer majoritairement de l'hydrogène H2. Selon un exemple de mise en oeuvre conforme à l'invention, le procédé consiste à sélectionner une plage de température pour générer majoritairement du méthane CH4. Selon un exemple de mise en oeuvre conforme à l'invention, le procédé consiste à sélectionner une plage de température pour générer majoritairement du syngaz. Les objets assignés à l'invention sont atteints également à l'aide d'un réacteur plasmachimique de gazéification de matière carbonée de type biomasse ou déchets organiques pour la génération de gaz de synthèse, ce réacteur comprenant: - une enceinte fermée ; - un générateur de plasma logé dans l'enceinte fermée et comprenant au moins deux électrodes générant un arc électrique, lesdites électrodes étant alimentées en tension et en intensité par une alimentation électrique ; - une chambre de réaction située dans l'enceinte fermée, dans laquelle de la matière carbonée est dégradée en plasma produit par le générateur de plasma ; - une alimentation en matière carbonée pour introduire de la matière carbonée dans la chambre de réaction ; - une évacuation pour les gaz de synthèse générés dans la chambre de réaction ; caractérisé en ce que : - l'enceinte fermée et la chambre de réaction sont conçues pour fonctionner à pression atmosphérique ; - le générateur de plasma comprend au moins une alimentation en vapeur d'eau qui est injectée dans la chambre de réaction en passant par les électrodes, ladite vapeur d'eau après avoir refroidi lesdites électrodes étant transformée au moins partiellement en plasma grâce à au moins un arc électrique ; - le réacteur plasmachimique comprend en outre des moyens de ventilation pour faire circuler le plasma et les gaz en boucle dans l'enceinte fermée, de manière à les faire passer au niveau des électrodes et dans la chambre de réaction. Selon un exemple de réalisation conforme à l'invention, le réacteur plasmachimique comprend des moyens pour maintenir la température du plasma à une valeur optimale comprise entre 2000°C et 3000°C. Selon un exemple de réalisation conforme à l'invention, les moyens pour maintenir la température du plasma à la valeur optimale comprennent une commande en tension et en intensité de l'alimentation électrique et/ou une commande en débit de l'alimentation de vapeur eau. Selon un exemple de réalisation conforme à l'invention, le réacteur plasmachimique comprend des moyens pour maintenir la température de la chambre de réaction dans une plage de températures déterminée, ladite plage étant située entre 300°C et 900°C, dépendant du gaz à générer.
Selon un exemple de réalisation conforme à l'invention, les moyens pour maintenir la température de la chambre de réaction dans une plage déterminée, comprennent une commande en débit de l'alimentation en matière carbonée. Selon un exemple de réalisation conforme à l'invention, les moyens pour maintenir la température de la chambre de réaction dans une plage déterminée, comprennent une commande en débit de l'alimentation en vapeur d'eau. Selon un exemple de réalisation du réacteur plasmachimique conforme à l'invention, les moyens de ventilation sont associés à un conduit de passage prévu dans le réacteur plasmachimique pour faire circuler le plasma et les gaz depuis la chambre de réaction vers les électrodes après que ceux-ci ont traversé la chambre de réaction, sans changement de leur sens d'écoulement.
Les avantages de la présente invention sont particulièrement nombreux. En effet, le réacteur plasmachimique de l'invention soumet la matière organique à des températures bien plus faibles que dans l'art antérieur, et inférieures à 1000°C, ce qui permet de considérablement réduire les coûts de son fonctionnement et ne nécessite aucun refroidissement du réacteur en lui-même ou de son enceinte. Il est également prévu pour fonctionner à pression atmosphérique, ce qui répond à tous les problèmes et dangers liés à l'étanchéité du réacteur et à l'utilisation de pressions élevées en général. Le réacteur plasmachimique de l'invention génère un plasma non thermique dans lequel le courant de décharge est limité. L'alimentation utilisée est une source de courant électrique haute tension, par exemple de 10 kV, avec une forte inductance pour limiter le courant. Ce type de plasma présente avantageusement un volume de décharge important à pression atmosphérique, habituellement inaccessible aux plasmas froids et thermiques. Le principe de l'invention repose sur l'utilisation de vapeur d'eau qui est injectée dans le réacteur au niveau des électrodes qui génèrent le plasma. Cette vapeur d'eau refroidit les électrodes et se transforme au moins partiellement en gaz plasmagène. En outre, l'énergie nécessaire pour vaporiser de l'eau dans le cadre du procédé conforme à l'invention est bien moins importante que l'énergie nécessaire pour chauffer un gaz à une température suffisante avant son introduction dans un réacteur thermochimique de l'art antérieur.
La vapeur d'eau non transformée en plasma est également utile aux réactions chimiques impliquées pour la transformation de la matière carbonée. En se transformant en gaz plasmagène, cette eau génère une forte quantité de radicaux hydroxyles. La concentration de radicaux hydroxyles à l'intérieur du gaz plasmagène de l'invention est de l'ordre de 1% à 2% en volume de vapeur d'eau, ce qui est 103 à 105 fois plus élevé que dans les zones de réaction des gazéificateurs de l'art antérieur. Cette forte quantité de radicaux hydroxyles permet d'augmenter considérablement la vitesse de décomposition de la matière carbonée. On considère que la vitesse de décomposition au sein du réacteur plasmachimique de l'invention est environ 1000 fois plus rapide que dans les gazéificateurs antérieurs. Cette décomposition est également améliorée par la circulation en boucle du gaz plasmagène et des autres gaz, riches en radicaux hydroxyles, grâce à des moyens de ventilation. Par leur circulation en boucle, ces gaz repassent au niveau des électrodes pour être énergisés par l'arc électrique avant de repasser au niveau de la matière carbonée pour la transformer en gaz de synthèse.
Dans le réacteur plasmachimique conforme à l'invention, l'arc électrique généré par les électrodes est un facteur déterminant pour la production de particules actives d'amorçage des réactions chimiques. Les particules actives les plus importantes sont constituées par les radicaux hydroxyles. Il existe également d'autres particules actives dans le plasma, notamment les atomes excités, les molécules excitées, les ions et les électrons. Ces radicaux hydroxyles sont alors entrainés vers la matière organique à transformer grâce à la circulation en boucle des gaz. La forte quantité de radicaux hydroxyles induit des réactions chimiques qui permettent de transformer directement la matière carbonée et les résidus carbonés en gaz de synthèse. Ces réactions chimiques ne nécessitent aucune étape de pyrolyse préalable pour la matière carbonée et elles présentent une énergie d'activation plus faible que celles habituellement rencontrées dans les gazéificateurs antérieurs. En effet, dans le réacteur plasmachimique de l'invention, les réactions chimiques avec les radicaux hydroxyles permettent de transférer l'atome de carbone de la matière carbonée, habituellement en phase solide, vers la phase gazeuse, avec une énergie d'activation d'environ 2 eV à 3 eV, alors qu'elle est de 7 eV dans une gazéification classique sans plasma. Les réactions chimiques impliquées dans le réacteur plasmachimique de l'invention, et celles impliquées dans les gazéificateurs antérieurs sont données ci-dessous à des fins d'illustration. Réactions chimiques dans le réacteur plasmachimique de l'invention Les réactions de gazéification dans un réacteur plasmachimique conforme à l'invention, sont déterminées dans les grandes lignes par la réaction des matières carbonées avec des éléments réactifs tels que les radicaux hydroxyles, les atomes d'hydrogène et autres molécules activées. On obtient par exemple : Csolide OH CHOgaz CHO + H2O CH2O + OH Ceci est un exemple d'une réaction en chaîne dans laquelle le radical hydroxyle est à nouveau repris. La gazéification se produit aussi via d'autres radicaux à savoir CH, CH2, CH3 et CHO.
Les molécules comprenant des atomes d'hydrogène, du carbone, de l'oxygène en phase gazeuse comme CH2O, ne sont pas stables à des températures supérieures à 600°C. Ces molécules se transforment en des composés plus stables. La composition des substances résultantes est donnée par les conditions d'équilibre thermodynamique. Par exemple, à des températures supérieures à 850°C, on obtient des molécules de monoxyde de carbone et de l'hydrogène : CH20 CO + H2 A des températures inférieures, par exemple entre 650°C et 700°C, l'équilibre de la réaction du monoxyde de carbone avec l'eau est déplacé vers la droite et la majorité du monoxyde de carbone est transformé en hydrogène selon la réaction ci-après. CO + H2O H CO2 + H2 A des températures encore plus basses, les réactions suivantes : 2C0 + 2H20 <-> CO2 + 2H2 CO + 3H2 <-> CH4 + 2H20 deviennent plus importantes et l'équilibre dans ces réactions à des températures de 350°C à 400°C, est déplacé vers la formation de méthane. Réactions chimiques dans les gazéificateurs antérieurs La réaction de la gazéification de la matière carbonée dans un réacteur thermochimique présente une première étape fortement exothermique : Csolide + 02 CO2 Il s'en suit une seconde étape dont la réaction est endothermique : Csolide + CO2 2 CO Il n'est donc pas possible d'effectuer la gazéification de carbone de manière rapide sans brûler une partie du carbone. Malgré le fait que l'équilibre favorise la production de méthane à 350°C, de l'hydrogène à 650°C, le gaz de synthèse à haute énergie à 850°C, une barrière d'activation énorme oblige à brûler une partie de carbone pour obtenir la gazéification C ± H20 E-> CO ± H2 et ce à une température très élevée, supérieure à 1300°C. La barrière d'activation est alors vaincue thermiquement. Dans le cas contraire, la vitesse de réaction serait tellement lente que cela nécessiterait des réacteurs énormes.
Il en résulte des avantages complémentaires pour un réacteur plasmachimique conforme à l'invention par rapport à un réacteur thermochimique. En effet, dans le réacteur thermochimique, où une partie de carbone est brûlée, la température est bien plus élevée que celle correspondant à un équilibre procurant un rendement optimal en produits recherchés. En outre il faut fournir une quantité importante d'énergie pour effectuer la réaction endothermique produisant le gaz de synthèse, même si c'est un produit intermédiaire. Dans un réacteur plasmachimique conforme à l'invention, la barrière d'activation est surmontée par une concentration élevée de particules actives dans le plasma. Ces particules actives augmentent la vitesse de toutes les réactions chimiques, y compris les réactions homogènes. La combustion du charbon n'est donc pas nécessaire et il n'est pas nécessaire d'effectuer les réactions à des températures élevées. Ceci est particulièrement avantageux lors de la réalisation des procédés dans lesquels la fraction de réactions endothermiques est petite, à savoir la production d'hydrogène et l'obtention d'hydrocarbures gazeux et liquides.
Un avantage supplémentaire du réacteur plasmachimique conforme à l'invention réside dans sa polyvalence. Il peut être utilisé pour le traitement des matières pauvres, du genre résidus agricoles, tourbe et pour le traitement de matières riches du genre déchets de la pétrochimie, pneus, matières plastiques usagées.
Il peut par ailleurs être utilisé pour fournir une grande variété de produits du genre gaz de synthèse, hydrogène, méthane et autres hydrocarbures. Brève description des dessins D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui va suivre, faite en référence aux dessins annexés, donnés à titre d'exemples non limitatifs, dans lesquels: la figure 1 est une vue en coupe schématique d'un réacteur plasmachimique selon l'invention ; la figure 2 est une vue en perspective d'un réacteur plasmachimique selon l'invention ; la figure 3 est une vue en coupe schématique d'un générateur de plasma selon l'invention ; et la figure 4 est un graphique indiquant la fraction molaire des différents composants du gaz de synthèse obtenus en fonction de la température dans le réacteur plasmachimique selon l'invention.
Mode(s) de réalisation de l'invention Les éléments structurellement et fonctionnellement identiques présents sur plusieurs figures distinctes, sont affectés d'une même référence numérique ou alphanumérique.
Le réacteur plasmachimique 1 de l'invention utilise un plasma généré par des arcs électriques 2 afin de gazéifier de la matière carbonée dans le but d'obtenir du gaz de synthèse. Le réacteur plasmachimique 1 de l'invention comprend une enceinte fermée 3 à pression atmosphérique. En raison des températures impliquées dans le réacteur plasmachimique 1, cette enceinte fermée 3 ne nécessite pas de refroidissement. Elle est préférentiellement fabriquée en pierres réfractaires. Le réacteur plasmachimique 1 comprend également un générateur de plasma 4 qui est logé dans l'enceinte fermée 3 et prévu pour générer au moins un arc électrique. Ce générateur de plasma 4 comprend au moins deux électrodes 5 générant un arc électrique 2 au niveau de leur extrémité libre 6 et une phase, lesdites électrodes 5 étant alimentées en tension et en intensité par une alimentation électrique commandée par une commande en tension et en intensité.
Le réacteur plasmachimique 1 de l'invention est relié à l'alimentation électrique par l'intermédiaire d'un raccordement électrique 7. Le générateur de plasma 4 comprend préférentiellement deux électrodes 5 par phase. Il utilise préférentiellement une source d'alimentation électrique haute tension alternative, triphasée ou monophasée. Selon un mode de réalisation préféré de l'invention, le générateur de plasma 4 comprend préférentiellement six électrodes 5, qui forment trois arcs électriques 2 en forme de U et d'une longueur de 50 cm à 100 cm. Le générateur de plasma 4 de l'invention peut également être constitué d'un empilement de générateurs de plasma 4 multiples, chacun comportant sa propre alimentation électrique afin de ne pas perturber le fonctionnement des autres jeux d'électrodes 5. L'alimentation électrique du générateur de plasma 4 est de préférence une source d'alimentation électrique avec une tension d'environ 10 kV, avec une force inductance, afin d'avoir un courant de décharge limité, par exemple de sensiblement égal à 3 A. Les arcs électriques 2 générés par le générateur de plasma 4 peuvent être propulsés par une force électromagnétique, ce qui permet de générer un plasma de grand volume. Les arcs électriques 2 générés par le générateur de plasma 4 sont également propulsés par l'écoulement des gaz. Le générateur de plasma 4 comprend également une alimentation en vapeur d'eau. Cette vapeur d'eau peut être fournie au réacteur plasmachimique 1 de l'invention par l'intermédiaire d'un raccordement hydraulique 8. Ce raccordement hydraulique peut par exemple être réalisé par la même pièce de raccordement 9 effectuant également le raccordement électrique 7. La vapeur d'eau fournie au réacteur plasmachimique 1 traverse les électrodes 5 pour les refroidir. Dans ce but, les électrodes 5, en matériau conducteur, présentent chacune un canal intérieur 10 pour la circulation de la vapeur d'eau. La chaleur fournie à la vapeur d'eau par les électrodes 5 n'est pas perdue car elle est transférée au réacteur plasmachimique 1. Les électrodes 5 sont préférentiellement en cuivre, tandis que les extrémités libres 6 des électrodes 5 sont préférentiellement en un matériau dur, par exemple en acier inoxydable. Les électrodes 5 sont préférentiellement montées sur un support isolant 11 ou des isolateurs électriques constitués, par exemple de tubes en matière céramique.
Juste avant leur extrémité, les électrodes 5 présentent préférentiellement des orifices radiaux 12 communiquant avec leur canal intérieur 10 afin d'expulser latéralement la vapeur d'eau. Après avoir refroidis les électrodes 5, la vapeur d'eau traverse alors les arcs électriques 2 générés par le générateur de plasma 4 pour être au moins partiellement transformée en plasma. Ce plasma présente une température 2000°C et 3000°C et est extrêmement riche en radicaux hydroxyles provenant de la vapeur d'eau. Contrairement à l'art antérieur, une température relativement faible est préférée pour le plasma. Ceci permet d'éviter la dégradation des électrodes 5 et du réacteur plasmachimique 1 lui-même. Cela permet également d'obtenir des températures optimales pour les réactions chimiques mises en oeuvre pour la dégradation de la matière carbonée en gaz de synthèse. On maintient préférentiellement la température du plasma comprise entre 2000°C et 3000°C en régulant le courant fourni aux électrodes 5 au moyen de la commande en tension et en intensité de l'alimentation électrique et/ou en régulant la quantité d'eau fournie aux électrodes 5 au moyen d'une commande en débit de l'alimentation en eau. Le réacteur plasmachimique 1 comprend également des moyens de ventilation 13 pour faire circuler le plasma et les gaz en boucle dans l'enceinte fermée 3. Ces moyens de ventilation 13 font de préférence circuler le plasma et les gaz de l'enceinte fermée 3 à une vitesse moyenne de 3 m/s. Cette circulation du plasma et des gaz, en plus de favoriser l'ionisation du plasma, d'accélérer la dégradation de la matière carbonée et de rendre cette dégradation plus complète, permet également de dimensionner les arcs électriques 2 et de les maintenir afin d'éviter qu'ils ne s'effondrent. Ces moyens de ventilation 13 sont préférentiellement associés à un conduit de passage 14, par exemple situé sous le générateur de plasma 4 et sous la chambre de réaction 15, afin de faire circuler le plasma et les gaz depuis la chambre de réaction 15 vers les électrodes 5 après que ceux-ci ont traversé la chambre de réaction 15, sans changement de leur sens d'écoulement. Ainsi, après avoir été généré au niveau du générateur de plasma 4, le plasma est dirigé en direction d'une chambre de réaction 15 située dans l'enceinte fermée 3, juste après le générateur de plasma 4. Cette chambre de réaction 15 est alimentée, de préférence en continu, avec de la matière carbonée. A cet effet, elle comprend une alimentation en matière carbonée 16. La matière carbonée utilisée dans l'invention peut être n'importe quelle matière organique liquide ou solide. Il peut s'agir par exemple de déchets industriels, de résidus du pétrole, de biomasse, de déchets domestiques ou de boues d'épuration, ce qui permet de les valoriser. Il peut également s'agir de charbon, car le réacteur plasmachimique 1 de l'invention permet de transformer efficacement et rapidement cette matière en gaz de synthèse. Tout mélange organique peut être utilisé dans le réacteur plasmachimique 1 de l'invention comme source de matière carbonée. Dans le cas où de la biomasse est utilisée, des essais très concluants ont été obtenus avec des déchets forestiers, de la sciure, des granulés de bois, de la paille et de la tourbe. Dans la chambre de réaction 15, le plasma est mis en contact avec la matière carbonée, qui est alors dégradée en gaz de synthèse et en autres composés. Puisque le gaz plasmagène de l'invention comprend de 1% à 2% de radicaux hydroxyles en volume de vapeur d'eau, alors que les plasmas de l'art antérieur en comprennent généralement 103 à 105 fois moins, ces radicaux hydroxyles dégradent rapidement la matière carbonée et sont les agents de propagations des réactions chimiques en chaîne vues précédemment. En raison des moyens de ventilation 13, le plasma et le gaz plasmagène produits dans la chambre de réaction 15 circulent en boucle dans l'enceinte fermée 3, pour être à nouveau énergisés au niveau des arcs électriques 2 du générateur de plasma 4 puis pour être à nouveau mis en contact avec la matière carbonée au niveau de la chambre de réaction 15. Contrairement à l'art antérieur, on notera que la chambre de réaction 15 est un volume ouvert et dédié de l'enceinte fermée 3. Il ne s'agit pas d'un volume cloisonné au sein de l'enceinte fermé 3. Les seules parois de la chambre de réaction 15 sont celles de l'enceinte fermée 3 et l'éventuelle surface de support 17 sur laquelle la matière carbonée est disposée. Ainsi, on limite au maximum le nombre d'obstacles pouvant s'opposer la libre circulation en boucle du plasma et des gaz au sein de l'enceinte fermée 3. En raison des réactions chimiques impliquées dans la chambre de réaction 15, on maintient la température de celle-ci inférieure à 1000°C, alors que cette température est généralement maintenue à une température supérieure à 1300°C dans les gazéificateurs de l'art antérieur.
En se référant au tableau de la figure 4, on constate que la concentration maximale en méthane est obtenue à une température T1 d'environ 350°C dans la chambre de réaction 15 de l'invention, tandis que la concentration maximale en hydrogène est obtenue à une température T2 d'environ 700°C. A une température T3 d'environ 900°C, la concentration en hydrogène et en monoxyde de carbone est encore très importante, ce qui correspond avantageusement à une température optimale d'obtention du syngaz. On peut également remarquer que le contenu de carbone solide dans les produits de réaction est nul à partir d'une température d'environ 330°C, ce qui est très avantageux. Par conséquent, la chambre de réaction 15 est maintenue à une température comprise entre 300°C et 900°C en agissant sur la quantité de matière carbonée introduite dans la chambre de réaction 15, par exemple au moyen d'une commande en débit de l'alimentation en matière carbonée, et/ou en agissant sur la température du plasma. Il s'agit là d'une gamme de températures très basse par rapport à celles habituellement utilisées dans l'art antérieur, ce qui permet de s'affranchir de tout moyen de refroidissement pour l'enceinte fermée 3, et ce qui permet également de réaliser de substantielles économies en dépenses d'énergie. Le seul refroidissement nécessaire, à savoir celui des électrodes 5, est obtenu la vapeur d'eau qui traverse lesdites électrodes et est introduite ensuite dans la chambre de réaction 15 en étant au moins partiellement transformée en plasma. On remarquera également que, contrairement aux gazéificateurs de l'art antérieur, aucun autre fluide n'est introduit dans le réacteur plasmachimique 1 de l'invention. Seule la vapeur d'eau est nécessaire aux réactions chimiques mise en oeuvre pour transformer la matière carbonée en gaz de synthèse. Grâce au réacteur plasmachimique 1 de l'invention, on obtient un gaz de synthèse très propre, qu'il est inutile de purifier. Il ne produit aucune dioxine. L'ensemble de l'enceinte fermée 3 étant à pression atmosphérique, tout comme la chambre de réaction 15, le gaz de synthèse peut être prélevé très simplement au moyen d'une évacuation des gaz 18, par exemple située après la chambre de réaction 15, en partie supérieur de l'enceinte fermée 3.
Un regard 19 peut également être prévu dans l'enceinte fermée 3 afin de permettre l'observation de ce qui se passe à l'intérieur de celle-ci. Les déchets générés sont en très faible quantité. Il s'agit essentiellement de composés minéraux ne pouvant plus être dégradés par le gaz plasmagène à une température comprise entre 300°C et 900°C. Ces déchets, généralement pulvérulents, peuvent facilement être éliminés, par exemple par gravité au niveau d'une grille de récupération située sous la chambre de réaction 15. Contrairement aux gazéificateurs de l'art antérieur, les déchets générés par l'invention ne comprennent pas de résidus carbonés, habituellement polluants et difficiles à éliminer, car ceux-ci sont rapidement et complètement dégradés par les gaz plasmagènes riches en hydroxyles de l'invention. L'utilisation astucieuse de la vapeur d'eau combinée à la plage de température de fonctionnement du réacteur plasmachimique 1 conforme à l'invention, constitue donc un moyen économique, propre et performant, qui permet d'obtenir du gaz de synthèse de manière plus propre et plus rapide, avec un rendement très supérieur à celui de l'art antérieur et la possibilité d'influer sur la composition du gaz de synthèse obtenu. Le réacteur plasmachimique 1 conforme à l'invention, peut aussi être utilisé comme générateur à air chaud. Dans ce cas de figure, il comporte une chambre de combustion dans laquelle le gaz de synthèse est brûlé. On obtient alors un air chaud en sortie de la chambre de combustion, dont la température est comprise entre 550°C et 2800°C. Il est évident que la présente description ne se limite pas aux exemples explicitement décrits, mais comprend également d'autres modes de réalisation et/ou de mise en oeuvre. Ainsi, une caractéristique technique décrite peut être remplacée par une caractéristique technique équivalente sans sortir du cadre de la présente invention et une étape décrite de mise en oeuvre du procédé peut être remplacée par une étape équivalente sans sortir du cadre de l'invention.
Claims (13)
- REVENDICATIONS1. Procédé de gazéification de matière carbonée de type biomasse ou déchets organiques pour la génération de gaz de synthèse, dans lequel de la matière carbonée est introduite dans une chambre de réaction (15) située dans une enceinte fermée (3) pour y être transformée en plasma par au moins un arc électrique (2) généré par des électrodes (5), caractérisé en ce qu'il consiste à : introduire de la vapeur d'eau dans la chambre de réaction (15) à travers les électrodes (5), refroidissant ainsi lesdites électrodes (5), ladite vapeur d'eau étant au moins partiellement transformée en plasma en traversant l'arc électrique (2) ; maintenir la température de la chambre de réaction (15) inférieure à 1000°C ; maintenir la pression dans la chambre de réaction (15) à la pression atmosphérique ; et faire circuler en boucle le plasma et les gaz dans l'enceinte fermée (3) de manière à les faire circuler au niveau des électrodes (5) et dans la chambre de réaction (15).
- 2. Procédé de gazéification selon la revendication précédente, caractérisé en ce qu'il consiste à introduire de la vapeur d'eau à travers les électrodes (5) en régulant le débit de manière à ce que la concentration en radicaux hydroxyles dans le plasma et les gaz est supérieure à 1% en volume du volume de vapeur d'eau contenue dans la chambre de réaction (15).
- 3. Procédé de gazéification selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à maintenir la température de la chambre de réaction (15) entre 300°C et 900°C selon la composition souhaitée pour le gaz de synthèse.
- 4. Procédé de gazéification selon la revendication 3, caractérisé en ce qu'il consiste à sélectionner une plage de température pour générer majoritairement de l'hydrogène H2.
- 5. Procédé de gazéification selon la revendication 3, caractérisé en ce qu'il consiste à sélectionner une plage de température pour générer majoritairement du méthane CH4.
- 6. Procédé de gazéification selon la revendication 3, caractérisé en ce qu'il consiste à sélectionner une plage de température pour générer majoritairement du syngaz.
- 7. Réacteur plasmachimique (1) de gazéification de matière carbonée de type biomasse ou déchets organiques pour la génération de gaz de synthèse, ce réacteur comprenant : une enceinte fermée (3) ; un générateur de plasma (4) logé dans l'enceinte fermée (3) et comprenant au moins deux électrodes (5) générant un arc électrique (2), lesdites électrodes (5) étant alimentées en tension et en intensité par une alimentation électrique ; une chambre de réaction (15) située dans l'enceinte fermée (3), dans laquelle de la matière carbonée est dégradée en plasma produit par le générateur de plasma (4) ; une alimentation en matière carbonée (16) pour introduire de la matière carbonée dans la chambre de réaction (15) ; une évacuation pour les gaz de synthèse (18) générés dans la chambre de réaction (15) ; caractérisé en ce que : l'enceinte fermée (3) et la chambre de réaction (15) sont conçues pour fonctionner à pression atmosphérique ; le générateur de plasma (4) comprend au moins une alimentation en vapeur d'eau qui est injectée dans la chambre de réaction (15) en passant par les électrodes (5), ladite vapeur d'eau après avoir refroidi lesdites électrodes (5) étant transformée au moins partiellement en plasma grâce à au moins un arc électrique (2) ; le réacteur plasmachimique (1) comprend en outre des moyens de ventilation (13) pour faire circuler le plasma et les gaz en boucle dans l'enceinte fermée (3), de manière à les faire passer au niveau des électrodes (5) et dans la chambre de réaction (15).
- 8. Réacteur plasmachimique (1) selon la revendication précédente, caractérisé en ce qu'il comprend des moyens pour maintenir la température du plasma à une valeur optimale comprise entre 2000°C et 3000°C.
- 9. Réacteur plasmachimique (1) selon la revendication 8, caractérisé en ce que les moyens pour maintenir la température du plasma à la valeur optimale comprennent une commande en tension et en intensité de l'alimentation électrique et/ou une commande en débit de l'alimentation de vapeur eau.
- 10. Réacteur plasmachimique (1) selon l'une quelconque des revendications 7 à 9, caractérisé en ce qu'il comprend des moyens pour maintenirla température de la chambre de réaction (15) dans une plage de températures déterminée, ladite plage étant située entre 300°C et 900°C, dépendant du gaz à générer.
- 11. Réacteur plasmachimique (1) selon la revendication 10, caractérisé en ce que les moyens pour maintenir la température de la chambre de réaction (15) dans une plage déterminée, comprennent une commande en débit de l'alimentation en matière carbonée.
- 12. Réacteur plasmachimique (1) selon la revendication 10 ou 11, caractérisé en ce que les moyens pour maintenir la température de la chambre de réaction (15) dans une plage déterminée, comprennent une commande en débit de l'alimentation en vapeur d'eau.
- 13. Réacteur plasmachimique (1) selon l'une quelconque des revendications 7 à 12, caractérisé en ce que les moyens de ventilation sont associés à un conduit de passage (14) prévu dans le réacteur plasmachimique (1) pour faire circuler le plasma et les gaz depuis la chambre de réaction (15) vers les électrodes (5) après que ceux-ci ont traversé la chambre de réaction (15), sans changement de leur sens d'écoulement.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1451439A FR3017874B1 (fr) | 2014-02-24 | 2014-02-24 | Reacteur chimique a plasma ameliore |
PCT/FR2015/050143 WO2015124839A1 (fr) | 2014-02-24 | 2015-01-21 | Réacteur chimique a plasma amélioré |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1451439A FR3017874B1 (fr) | 2014-02-24 | 2014-02-24 | Reacteur chimique a plasma ameliore |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3017874A1 true FR3017874A1 (fr) | 2015-08-28 |
FR3017874B1 FR3017874B1 (fr) | 2016-03-25 |
Family
ID=50933304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1451439A Expired - Fee Related FR3017874B1 (fr) | 2014-02-24 | 2014-02-24 | Reacteur chimique a plasma ameliore |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3017874B1 (fr) |
WO (1) | WO2015124839A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108954336B (zh) * | 2017-11-23 | 2019-08-16 | 武汉市艾义法德环保科技有限责任公司 | 等离子反应炉系统 |
KR20210134761A (ko) * | 2019-03-11 | 2021-11-10 | 유니버시티 오브 써던 캘리포니아 | 플라즈마 기반 SOx 및 NOx 정화 시스템 및 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10238185A1 (de) * | 2002-08-21 | 2004-03-04 | Kiefer, Clemens, Dr. | Verfahren zur Vergasung von biologischen Rohstoffen |
AU2005237099A1 (en) * | 2005-03-28 | 2006-10-12 | Anatoly Timofeevich Neklesa | Method for thermal recycling household wastes and a device for its realization |
WO2012009783A1 (fr) * | 2010-07-21 | 2012-01-26 | Responsible Energy Inc. | Système et procédé de traitement d'un matériau en vue de la production de gaz de synthèse |
-
2014
- 2014-02-24 FR FR1451439A patent/FR3017874B1/fr not_active Expired - Fee Related
-
2015
- 2015-01-21 WO PCT/FR2015/050143 patent/WO2015124839A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10238185A1 (de) * | 2002-08-21 | 2004-03-04 | Kiefer, Clemens, Dr. | Verfahren zur Vergasung von biologischen Rohstoffen |
AU2005237099A1 (en) * | 2005-03-28 | 2006-10-12 | Anatoly Timofeevich Neklesa | Method for thermal recycling household wastes and a device for its realization |
WO2012009783A1 (fr) * | 2010-07-21 | 2012-01-26 | Responsible Energy Inc. | Système et procédé de traitement d'un matériau en vue de la production de gaz de synthèse |
Non-Patent Citations (1)
Title |
---|
TANG L ET AL: "Development of plasma pyrolysis/gasification systems for energy efficient and environmentally sound waste disposal", JOURNAL OF ELECTROSTATICS, vol. 71, no. 5, 7 June 2013 (2013-06-07), pages 839 - 847, XP028717763, ISSN: 0304-3886, DOI: 10.1016/J.ELSTAT.2013.06.007 * |
Also Published As
Publication number | Publication date |
---|---|
FR3017874B1 (fr) | 2016-03-25 |
WO2015124839A1 (fr) | 2015-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study | |
FR2758317A1 (fr) | Conversion d'hydrocarbures assistee par les arcs electriques glissants en presence de la vapeur d'eau et/ou de gaz carbonique | |
FR2893033A1 (fr) | Procede de production de gaz de synthese a partir de matiere carbonee et d'energie electrique. | |
KR20110052604A (ko) | 바이오매스에서 저-타르 합성가스를 생산하는 방법 및 장치 | |
Saleem et al. | A comparison of the decomposition of biomass gasification tar compound in CO, CO2, H2 and N2 carrier gases using non-thermal plasma | |
FR2768424A1 (fr) | Assistance electrique d'oxydation partielle d'hydrocarbures legers par l'oxygene | |
FR2985265A1 (fr) | Procede et equipement de gazeification en lit fixe | |
CA2680135A1 (fr) | Procede et installation pour la gazeification a puissance variable de matieres combustibles | |
FR2794128A1 (fr) | Procede de gazeification autothermique de combustibles solides, installation pour la mise en oeuvre du procede et utilisation de l'installation | |
JP2011515530A5 (fr) | ||
KR20120022480A (ko) | 2단계 열분해 가스화 장치 및 2단계 열분해 가스화 방법 | |
WO2015124839A1 (fr) | Réacteur chimique a plasma amélioré | |
EP4188873A1 (fr) | Production optimisée d'hydrogène à partir d'un hydrocarbure | |
US20110041404A1 (en) | Plasma-based apparatus for gasifying bio-waste into synthetic gas | |
EP1474500A1 (fr) | Gazeification de dechets par plasma | |
ES2824506T3 (es) | Método para la producción de gas de síntesis | |
KR101038465B1 (ko) | 열분해 개질기 | |
FR2844804A1 (fr) | Procede et installation de valorisation de sous-produits a base de matieres organiques | |
KR101704767B1 (ko) | 열분해가스 순환구조를 갖는 가스화장치 | |
BE1014965A4 (fr) | Dissociation moleculaire du co2 par plasma appliquee a la production d'electricite, de nanotubes, d'hydrogene et de methanol a partir du traitement des dechets urbains. | |
Tamošiūnas et al. | Biomass gasification to hydrogen-rich syngas by thermal arc discharge plasma | |
WO2018189448A1 (fr) | Procédé et installation de production d'électricité à partir d'une charge de csr | |
Prapakarn et al. | Effect of steam on the energy and activated carbon production of a pilot-scale downdraft steam co-gasification | |
FR2916760A1 (fr) | Module, systeme et procede de traitement de biomasse a lit fixe horizontal | |
WO2024008756A1 (fr) | Séparateur de sels intégré, comprenant une vis sans fin creuse et des billes formant des supports de précipitation et d'évacuation de sels, installation de gazéification de biomasse associée. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
ST | Notification of lapse |
Effective date: 20211005 |