FR3001767A1 - Device for producing electricity by compressing air in tank, has heat pump for cooling air to be stored in tank, and motor and compressor assembly operated as electric generator when assembly is actuated by compressed air from tank - Google Patents

Device for producing electricity by compressing air in tank, has heat pump for cooling air to be stored in tank, and motor and compressor assembly operated as electric generator when assembly is actuated by compressed air from tank Download PDF

Info

Publication number
FR3001767A1
FR3001767A1 FR1300252A FR1300252A FR3001767A1 FR 3001767 A1 FR3001767 A1 FR 3001767A1 FR 1300252 A FR1300252 A FR 1300252A FR 1300252 A FR1300252 A FR 1300252A FR 3001767 A1 FR3001767 A1 FR 3001767A1
Authority
FR
France
Prior art keywords
air
tank
compressor
motor
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1300252A
Other languages
French (fr)
Inventor
Jean Joseph Picq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR1300252A priority Critical patent/FR3001767A1/en
Publication of FR3001767A1 publication Critical patent/FR3001767A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

The device has an assembly of an electric motor (8) and a compressor (6) supplying compressed air to a storage tank (2). A cooling unit i.e. heat pump (5), for cooling air to be stored in the tank. The motor-compressor assembly operates as an electric generator when the motor-compressor assembly is actuated by the compressed air from the storage tank. Canadian wells (9) provide the air at 18 degree Celsius if the outside temperature is greater a preset value. The heat pump cools the compressed air towards the tank. The compressor turns the air from the tank in opposite direction to drive the motor in opposite direction.

Description

Comprimer de l'air dans des citernes par apport d'énergie électrique et réemployé. Cet air comprimé pour générer de l'électricité selon les besoins sans certaines modifications entrainera la perte d'environ cinquante pour cent d'énergie (électrique) de manque - perdu car en compressant l'air, il se réchauffe puis en refroidissant perd ainsi son énergie. C'est pour palier en partie à cette perte que des modifications seront apportées pour palier à ce problème. Le but recherché est de ne faire que cinq à dix pour cent de perte d'énergie. Les moyens appliqués seront figure 1 les croquis présentés dans ce brevet sont Figure I plan de montage moteur, compresseur, pompe à chaleur et citerne Figure II fonctionnement du compresseur dans la fonction compresseur Figure III fonctionnement du compresseur dans la fonction générateur d'énergie dans la fonction générateur d'énergie en vue d'entrainer le moteur qui fera fonction de production électrique. par température excédant 18° l'emploi d'un puits canadien (9) qui a pour but de fournir gratuitement de l'air à 18° toute l'année. Si la température extérieure est inférieure à 18°, la prendre à l'extérieur (7) bouche d'air extérieur et si possible selon les circonstances compressé de nuit. Il sera prévu une pompe à chaleur (5) qui fournira de l'air froid poussé dans les citernes (2) de 0° è 5°. Une partie de cet air froid servira à refroidir le compresseur (6) par le tuyau (10) par l'addition de ces procédés, l'air compressé dans les citernes ne doit pas dépasser 5° ainsi sera résolu la perte d'énergie de cinquante pour cent car pour entrainer une pompe à chaleur, peu d'énergie est employée. Une autre disposition sera prévue pour augmenter à peu de frais (énergie) la compression de l'air dans les citernes (2), il s'agira d'introduire dans celle-ci des radiateurs électriques (3) qui en chauffant l'air comprimé, se dilatera augmentant ainsi la pression d'air et donc l'énergie produite. Le gain est calculé selon l'apport de l'électricité fournie et la production une fois l'air comprimé chauffé (ces radiateurs seront employés lors de la génération d'électricité). Afin d'économiser l'investissement de matériel de compression d'air, il peut être envisagé que le groupe moteur (8) et compresseur (5) une fois plein d'air comprimé fini dans la 5 citerne. Le groupe servira aussi à générer de l'électricité en faisant retour d'air comprimé par la sortie d'air du compresseur (5), ce qui fait qu'il tournera en sens inverse que la compression et entrainera le moteur (8) qui fera le rôle de générateur d'électricité.Compress air in tanks by supplying electrical energy and reused. This compressed air to generate electricity as needed without some modifications will result in the loss of about fifty percent of (lost) electrical energy - lost because by compressing the air, it heats up and then cools down so loses its energy. This is partly to overcome this loss that changes will be made to overcome this problem. The goal is to do only five to ten percent of energy loss. The means applied will be figure 1 the sketches presented in this patent are Figure I engine assembly plan, compressor, heat pump and tank Figure II operation of the compressor in the compressor function Figure III operation of the compressor in the energy generator function in the energy generator function to train the engine that will function of electric production. by temperature exceeding 18 ° the use of a Canadian well (9) which aims to provide free air at 18 ° all year round. If the outside temperature is below 18 °, take it outside (7) outside air vent and if possible according to the circumstances compressed overnight. A heat pump (5) will be provided which will supply cold air pushed into the tanks (2) from 0 ° to 5 °. Part of this cold air will serve to cool the compressor (6) by the pipe (10) by the addition of these processes, the compressed air in the tanks must not exceed 5 ° so will be solved the energy loss of fifty percent because to train a heat pump, little energy is used. Another provision will be made to increase the compression of the air in the tanks (2) at low cost (energy), it will be necessary to introduce into it electric radiators (3) which by heating the air compressed, will expand thus increasing the air pressure and thus the energy produced. The gain is calculated according to the contribution of the electricity supplied and the production once the compressed air heated (these radiators will be used during the generation of electricity). In order to save the investment of air compression equipment, it can be envisaged that the engine (8) and compressor (5) once full of finished compressed air in the tank. The group will also be used to generate electricity by returning compressed air through the air outlet of the compressor (5), so that it will turn in the opposite direction as the compression and drive the motor (8) which will act as the generator of electricity.

10 Figure II fonctionnement du compressage dans les citernes figure du type moteur seront ouvertes pour renvoyer 15 (6) qui fera tourner sens inverse fonction de générateur, renverra de l'électricité vers le réseau. Donc ce genre de moteur existant, il n'y a plus qu'à l'employer ; du côté compresseur qui peut faire de deux c'est à dire envoyer de (les modèles n'existent pas) 20 fonctionnant sens inverse c'est à dire l'air compressé venait des citernes (2) et le fera tourner en sens inverse entrainant ainsi le moteur (8) transformé en générateur (je présente un prototype figure II et III). Quant au système de refroidissement (5) (pompe à chaleur) où il sera copié sur tous les systèmes existants pour 25 générer du froid exemple réfrigérateur, pompe à chaleur etc. Le compresseur présenté figure II est équipé comme un compresseur classique, d'une bielle vilebrequin, piston etc. sauf que la soupape d'admission (10) est placée au point mort bas du cylindre (11) récupérant l'air glacé vers moins 10° de la pompe à chaleur 30 (5). Cet air est fourni sous pression par un ventilateur ce qui a pour effet de projeter de l'air froid dans les citernes (2) et en même temps, refroidir le générateur (6). L'air froid arrivera donc dans les citernes (2) à température à peine négative et donc ne baisseront pas de pression sans ce système. Il n'y aura donc à 35 déduire en dépense que l'électricité employée par la pompe chaleur qui est minime. Ce compresseur fonctionne donc figure II : d'entrainement tournant dans un sens à compresser l'air dans les citernes (2) et générateur électrique lorsque les vannes (1) l'air comprimé vers le compresseur le moteur (8) qui étant en I. Le moteur électrique (8) sera choisi l'air compressé dans les citernes croquis 1 refoulement vers citernes par l'injection d'air refroidi raf,1114, turbine (3), la soupape (10) étant entre ouverte, l'air commence à passer vu que le piston (11) dégage un peu le passage croquis 2, le piston (11) étant à son point « mort bas », la 5 soupape (10) étant ouverte à fond, l'air froid rentre dans le cylindre, les soupapes jumelles (12) étant ouvertes, l'air est poussé de force vers les citernes (2) croquis 3 , l'on voit la remontée du piston (11) et les soupapes(12) ouvertes croquis 4. Le piston (11) est rendu au point « mort haut » les soupapes (2) 10 se sont fermées, l'air froid est poussé dans les citernes (2) croquis 1. Les soupapes (12) étant fermées, le piston (1i) redescend et aspire de l'air venant de la soupape (10) qui est ouverte. Figure III fonctionnement du compresseur (6) dont le rôle est 15 d'entrainer le moteur (8) en générateur électrique croquis 1. Les soupapes jumelles (12) sont fermées, le piston(11) est à son point « mort haut », la soupape (10) d'admission est fermée figure 3. Les soupapes (12) sont ouvertes, le piston (11) est repoussé par l'air comprimé des citernes (2), la soupape (10) est fermée 20 croquis 3. Les soupapes (12) sont ouvertes, l'air pousse le piston (11) qui est à son point « mort bas », la soupape (10) est ouverte et l'air est refoulé et puis aspiré par la turbine qui tourne sens inverse croquis 4. Le piston (11) commence à remonter, la soupape (10) est entrouverte laissant passer un peu d'air, la soupape (12) 25 est refermée. Ainsi le cycle est reparti pour faire tourner le compresseur à l'envers entrainant ainsi le moteur (8) transformé en générateur. Pour mieux fonctionner, ce compresseur (6) sera muni d'au moins de deux pistons ou plus (3 ou4), ce qui générera un flux d'air continu entrainant le générateur plus régulièrement.10 Figure II operation of the compressor in tanks figure of the engine type will be open to return 15 (6) which will make reverse direction generator function, will send electricity back to the grid. So this kind of existing engine, there is more than to use it; the compressor side that can do two ie send (the models do not exist) 20 running opposite direction ie the compressed air came from tanks (2) and will turn it in the opposite direction causing thus the engine (8) transformed into a generator (I present a prototype figure II and III). As for the cooling system (5) (heat pump) where it will be copied to all existing systems to generate cold example refrigerator, heat pump etc. The compressor shown in Figure II is equipped as a conventional compressor, a crankshaft connecting rod, piston etc. except that the intake valve (10) is placed at the bottom dead center of the cylinder (11) recovering the chilled air to minus 10 ° of the heat pump 30 (5). This air is supplied under pressure by a fan which has the effect of projecting cold air into the tanks (2) and at the same time, cool the generator (6). The cold air will therefore arrive in tanks (2) at barely negative temperature and therefore will not drop pressure without this system. It will therefore be necessary to deduce in expenditure only the electricity used by the heat pump which is minimal. This compressor thus operates Figure II: drive rotating in one direction to compress the air in the tanks (2) and electric generator when the valves (1) the compressed air to the compressor the engine (8) which is in I The electric motor (8) will be chosen compressed air in tanks sketch 1 discharge to tanks by the injection of cooled air raf, 1114, turbine (3), the valve (10) being between open, the air As the piston (11) is at its "low dead" point, the valve (10) is fully open, the cold air enters the cylinder, the twin valves (12) being open, the air is pushed by force towards the tanks (2) sketch 3, we see the rise of the piston (11) and the valves (12) open sketch 4. The piston (11) is returned to the point "death high" the valves (2) 10 have closed, the cold air is pushed into the tanks (2) sketch 1. The valves (12) being closed, the piston (1i) descends and draws air from the valve (10) which is open. Figure III operation of the compressor (6) whose role is to drive the motor (8) in electrical generator sketch 1. The twin valves (12) are closed, the piston (11) is at its point "dead high", the valve (10) is closed. The valves (12) are open, the piston (11) is pushed back by the compressed air of the tanks (2) and the valve (10) is closed. The valves (12) are open, the air pushes the piston (11) which is at its point "dead low", the valve (10) is open and the air is discharged and then sucked by the turbine which turns in the opposite direction sketch 4. The piston (11) begins to rise, the valve (10) is ajar allowing a little air, the valve (12) 25 is closed. Thus the cycle is distributed to turn the compressor upside down thus causing the engine (8) converted into a generator. To work better, this compressor (6) will be provided with at least two or more pistons (3 or 4), which will generate a continuous air flow causing the generator more regularly.

30 Cet effet est aussi valable pour le compressage d'air. L'on remarquera que pour passer du compresseur au générateur, il suffira d'inverser l'arrivée d'air soit par les soupapes (12) ou par la soupape d'admission. 35This effect is also valid for air compression. It will be noted that to pass from the compressor to the generator, it will suffice to reverse the air supply either by the valves (12) or by the intake valve. 35

Claims (4)

REVENDICATIONS1) Dispositif permettant de produire de l'électricité à la demande par stockage d'air comprimé caractérisé en ce qu'il comporte un ensemble moteur-compresseur (8 et 6) alimentant en air comprimé une citerne de stockage (2) et un moyen de refroidissement (5) de l'air destiné à être stocké dans la citerne et en ce que l'ensemble moteur-compresseur (8 et 6) est 10 apte à fonctionner en générateur électrique lorsqu'il est actionné par l'air comprimé issu de la citerne.CLAIMS1) Device for producing electricity on demand by storage of compressed air characterized in that it comprises a motor-compressor assembly (8 and 6) supplying compressed air to a storage tank (2) and a means for cooling (5) the air intended to be stored in the tank and in that the motor-compressor unit (8 and 6) is able to operate as an electric generator when it is actuated by compressed air of the tank. 2) Dispositif selon la revendication 1 caractérisé en ce qu'un puits canadien (9) fourni l'air à 18° si la température extérieur est au-dessus. 152) Device according to claim 1 characterized in that a Canadian well (9) provides air at 18 ° if the outside temperature is above. 15 3) Dispositif selon la revendication 1 caractérisé en ce qu'une pompe à chaleur (5) soit employée pour refroidir l'air compressé vers les citernes (2). Ce procédé permet de stocker plus d'air dans les citernes.3) Device according to claim 1 characterized in that a heat pump (5) is used to cool the compressed air to the tanks (2). This process makes it possible to store more air in the tanks. 4) Dispositif selon la revendication 1 caractérisé en ce que 20 pour la production d'électricité, le groupe moteur et compresseur (6 et 8) sont convertis en générateur électrique, le compresseur (6) tournant sens inverse (l'air venant des citernes (2) entrainant le moteur (8) aussi sens inverse faisant ainsi l'office de générateur électrique.4) Device according to claim 1 characterized in that 20 for the production of electricity, the power unit and compressor (6 and 8) are converted into an electric generator, the compressor (6) rotating in the opposite direction (the air coming from the tanks (2) driving the motor (8) also opposite direction thus doing the office of electric generator.
FR1300252A 2013-02-07 2013-02-07 Device for producing electricity by compressing air in tank, has heat pump for cooling air to be stored in tank, and motor and compressor assembly operated as electric generator when assembly is actuated by compressed air from tank Withdrawn FR3001767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1300252A FR3001767A1 (en) 2013-02-07 2013-02-07 Device for producing electricity by compressing air in tank, has heat pump for cooling air to be stored in tank, and motor and compressor assembly operated as electric generator when assembly is actuated by compressed air from tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1300252A FR3001767A1 (en) 2013-02-07 2013-02-07 Device for producing electricity by compressing air in tank, has heat pump for cooling air to be stored in tank, and motor and compressor assembly operated as electric generator when assembly is actuated by compressed air from tank

Publications (1)

Publication Number Publication Date
FR3001767A1 true FR3001767A1 (en) 2014-08-08

Family

ID=49619967

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1300252A Withdrawn FR3001767A1 (en) 2013-02-07 2013-02-07 Device for producing electricity by compressing air in tank, has heat pump for cooling air to be stored in tank, and motor and compressor assembly operated as electric generator when assembly is actuated by compressed air from tank

Country Status (1)

Country Link
FR (1) FR3001767A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765142A (en) * 1987-05-12 1988-08-23 Gibbs & Hill, Inc. Compressed air energy storage turbomachinery cycle with compression heat recovery, storage, steam generation and utilization during power generation
US20100251712A1 (en) * 2007-01-25 2010-10-07 Michael Nakhamkin Advanced Adiabatic Compressed Air Energy Storage System
WO2011059557A2 (en) * 2009-11-13 2011-05-19 General Electric Company System and method for secondary energy production in a compressed air energy storage system
WO2012158781A2 (en) * 2011-05-17 2012-11-22 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
WO2013057427A1 (en) * 2011-10-17 2013-04-25 Electricite De France Improved adiabatic storage of energy in the form of heat and compressed air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765142A (en) * 1987-05-12 1988-08-23 Gibbs & Hill, Inc. Compressed air energy storage turbomachinery cycle with compression heat recovery, storage, steam generation and utilization during power generation
US20100251712A1 (en) * 2007-01-25 2010-10-07 Michael Nakhamkin Advanced Adiabatic Compressed Air Energy Storage System
WO2011059557A2 (en) * 2009-11-13 2011-05-19 General Electric Company System and method for secondary energy production in a compressed air energy storage system
WO2012158781A2 (en) * 2011-05-17 2012-11-22 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
WO2013057427A1 (en) * 2011-10-17 2013-04-25 Electricite De France Improved adiabatic storage of energy in the form of heat and compressed air

Similar Documents

Publication Publication Date Title
CN105531456B (en) Operation of internal combustion engine method and the internal combustion engine for completing this method
EP1121742A1 (en) Auxiliary power unit using compressed air
FR2945574A1 (en) DEVICE FOR MONITORING THE WORKING FLUID CIRCULATING IN A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND METHOD FOR SUCH A DEVICE
CN106304838A (en) Quartastroke engine with pre-cold compression
WO2005103453A1 (en) System for recovering heat energy from a heat engine vehicle
EP2381072A1 (en) Closed circuit operating according to a Rankine cycle and method using such a circuit
FR3004487A1 (en) METHOD FOR CONTROLLING THE OPERATION OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND CIRCUIT USING SUCH A METHOD.
CA3122306A1 (en) Gas expansion and fluid compression station
CN106677850B (en) The device externally to be done work using environment thermal energy
FR3001767A1 (en) Device for producing electricity by compressing air in tank, has heat pump for cooling air to be stored in tank, and motor and compressor assembly operated as electric generator when assembly is actuated by compressed air from tank
US20110297120A1 (en) RAKH Cycle, Boilerless, Airless, Hydrogen Fueled, Closed Cycle, Steam Engine
CN101482056B (en) Heat absorption and energy recovery type internal combustion engine
CN202266346U (en) Engine exhaust afterheat recycling control system based on organic rankine cycle
KR20180080050A (en) A combined heat and power generating system and A method for controlling the same
WO2009101492A2 (en) Steam engine heated by the heat of compressed air
Buchman et al. Method for Turbocharging Single Cylinder Four Stroke Engines
Buchman et al. Validating a method for turbocharging single cylinder four stroke engines
JP2007085322A (en) Capacity differential external combustion engine
RU49960U1 (en) DEVICE FOR HEATING THE HEAT
WO2011124786A1 (en) Supercharged combustion engine and method of regulating the said engine
CN201381910Y (en) Heat-absorptive energy recovery combustion engine
WO2008087342A2 (en) Multifunction thermal management system and method for a hybrid vehicle
US20240141882A1 (en) Power system
RU89179U1 (en) INTERNAL COMBUSTION ENGINE
CN201041176Y (en) Movable type hydraulic pumping station

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 4

ST Notification of lapse

Effective date: 20171031