WO2009101492A2 - Steam engine heated by the heat of compressed air - Google Patents

Steam engine heated by the heat of compressed air Download PDF

Info

Publication number
WO2009101492A2
WO2009101492A2 PCT/IB2009/000036 IB2009000036W WO2009101492A2 WO 2009101492 A2 WO2009101492 A2 WO 2009101492A2 IB 2009000036 W IB2009000036 W IB 2009000036W WO 2009101492 A2 WO2009101492 A2 WO 2009101492A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
steam
compressed air
air
motor
Prior art date
Application number
PCT/IB2009/000036
Other languages
French (fr)
Other versions
WO2009101492A3 (en
Inventor
Daniel Chablaix
Original Assignee
Daniel Chablaix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daniel Chablaix filed Critical Daniel Chablaix
Publication of WO2009101492A2 publication Critical patent/WO2009101492A2/en
Publication of WO2009101492A3 publication Critical patent/WO2009101492A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle

Definitions

  • the present invention aims to use the heat of compressed air, which can reach more than 800 o C.
  • compressed air which can reach more than 800 o C.
  • the air passes into a heat exchanger in which it heats the steam that operates. the steam engine.
  • the air passes into other heat exchangers in which it still gives heat to heat the central heating water, and, or sanitary, or to heat the cold air before he arrives at the compressor.
  • the cooled compressed air actuates the pneumatic motor in which while relaxing, it loses more heat. This cold air is used for air conditioning and refrigeration.
  • the steam passes into a heat exchanger in which it gives up its heat to heat the condensation water driven by the piston pump.
  • the condensation water flows in the opposite direction to that of the steam leaving the engine.5i although the steam reaches the retention tank in the form of warm water.
  • the condensation water reaches the boiler in the form of steam.
  • the group is started by the electric motor, compressed air, or steam under pressure.
  • Figure I of the accompanying drawing shows by way of example, an embodiment of the invention.
  • the fresh air arrives through the pipe 15, it passes through the pistons before arriving in the cylinders of the compressor I.
  • the compressed and hot air passes from the compressor to the heat exchanger 7, in which it heats the steam . It then passes into the air-water heat exchanger or air-air 8 before arriving in the air motor 3, which it operates.
  • the air cooled and cooled, comes out of the air motor by the pipe 14.
  • the piston pump 5, sucks the water contained in the holding tank 6, and the flush in the heat exchanger consisting of the pipe 9 and the pipe 13. On the way the water absorbs the heat of the steam coming out of the steam engine 2, towards the tank 6.
  • the water arrives in the form of steam through the pipe 9, in the heat exchanger 7, in which it is heated by the heat of the compressed air contained in the pipe Io.
  • the steam passes from the heat exchanger 7, the steam engine 2, through the pipe 13. It gives up its heat in the heat exchanger consisting of the pipes 9 and 13. It comes in the form of warm water in the retention tank 6.
  • the electric motor 4, is used to start the installation. It can also work as a dynamo.
  • the pipes 16 and 17 allow the circulation of air or water in the heat exchanger 8.
  • FIG 2 of the drawing shows a front view, for example, an embodiment of a steam-water heat exchanger and water-vapor.
  • the tube I 9 driving the expanded vapor at its outlet from the engine, to the retention tank 6.
  • the twisted tubes 21, installed in the tube 19, conduct the water from the pressure-retaining tank, from the pump to the tank. 7.
  • the steam enters the tube 19 at point 20 and exits in the form of condensed water at point 22.
  • Figure 3 is a side view of Figure 2. For the sake of clarity the thermal insulation and sound as well as connections, remote control, self - regulation systems, automatic restart, etc., are not shown. In some cases the air will be admitted under pressure into the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressor (AREA)

Abstract

Power plant, in which the steam is heated by the heat released by the compressed air. After it has actuated the steam engine, its heat is recuperated in order to heat the condensation water. The kinetic energy of the compressed air actuates the pneumatic motor coupled to the compressor, to the steam engine and to the starter.

Description

MOTEUR A VAPEUR CHAUFFEE PAR LA CHALEUR DE L'AIR COMPRIME STEAM ENGINE HEATED BY COMPRESSED AIR HEAT
La présente invention a pour but d'utiliser la chaleur de l'air comprimé, qui peut atteindre plus de 800 o C. A sa sortie du compresseur , 1 ' air passe dans un échangeur de chaleur dans lequel il réchauffe la vapeur qui fait fonctionner le moteur a vapeur. A sa sortie de cet échangeur , 1 ' air passe dans d'autres échangeurs de chaleur dans lesquels il cède encore de la chaleur pour chauffer l'eau de chauffage central, et, ou, sanitaire, ou encore chauffer l'air froid avant qu'il arrive au compresseur . L ' air comprimé refroidi , actionne le moteur pneumatique dans lequel en se détendant, il perd encore de la chaleur. Cet air froid est utilisé pour la climatisation et la réfrigération .A sa sortie du moteur à vapeur, la vapeur passe dans un échangeur de chaleur dans lequel elle cède sa chaleur pour réchauffer l'eau de condensation chassée par la pompe à piston. L'eau de condensation circule en sens opposé à celui de la vapeur qui sort du moteur.5i bien que la vapeur arrive au bac de rétention sous forme d'eau tiède. L'eau de condensation arrive au bouilleur sous forme de vapeur. La mise en marche du groupe est effectuée par le moteur électrique , de l'air comprimé, ou de la vapeur sous pression. La figure I, du dessin annexé montre à titre d'exemple, une forme d'exécution de l'invention. L'air frais arrive par le tuyau 15, il passe à travers les pistons avant d'arriver dans les cylindres du compresseur I. L'air comprimé et chaud passe du compresseur à l'échangeur de chaleur 7, dans lequel il réchauffe la vapeur. Il passe ensuite dans l'échangeur de chaleur air-eau ou air-air 8, avant d'arriver dans le moteur pneumatique 3, qu'il fait fonctionner. L'air détendu et refroidi, sort du moteur pneumatique par le tuyau 14. La pompe à piston 5, aspire l'eau contenue dans le bac de rétention 6, et la chasse dans l'échangeur de chaleur constitué par le tuyau 9 et le tuyau 13. En chemin l'eau absorbe la chaleur de la vapeur qui sort du moteur à vapeur 2, en direction du bac de rétention 6. L'eau arrive sous forme de vapeur par le tuyau 9, dans l'échangeur de chaleur 7, dans lequel elle est réchauffée par la chaleur de l'air comprimé contenu dans le tuyau Io.La vapeur passe de l'échangeur de chaleur 7, au moteur à vapeur 2, par le tuyau 13. Elle cède sa chaleur dans l'échangeur de chaleur constitué par les tuyaux 9 et 13. Elle arrive sous forme d'eau tiède dans le bac de rétention 6. Le moteur électrique 4, est utilisé pour faire démarrer l ' installation . Il peut aussi fonctionner comme dynamo. Les tuyaux 16 et 17 permettent la circulation d'air ou d'eau dans l'échangeur de chaleur 8. La prise de force 18 permet d'utiliser l'énergie cinétique fournie par le groupe. Dans certains cas, l'air refroidi à sa sortie du moteur pneumatique 3, sera utilisé pour refroidir l'eau du bac de rétention. La figure 2, du dessin, montre vue de face, à titre d'exemple, une forme d'exécution d'un échangeur de chaleur vapeur-eau et eau-vapeur. Le tube I 9 , conduisant la vapeur détendue à sa sortie du moteur, jusqu'au bac de rétention 6. Les tubes torsadés 21, installés dans le tube 19 , conduisent l'eau du bac de rétention sous pression, de la pompe jusqu'au bouilleur 7. La vapeur entre dans le tube 19 au point 20 et sort sous forme d'eau de condensation au point 22.La figure 3, est une vue de côté de la figure 2. Par souci de clarté l'isolation thermique et phonique de même que les connexions , commande à distance , systèmes d ' autorégulation , de redémarrage automatique , etc , ne sont pas représentés. Dans certains cas l'air sera admis sous pression dans le compresseur. The present invention aims to use the heat of compressed air, which can reach more than 800 o C. As it leaves the compressor, the air passes into a heat exchanger in which it heats the steam that operates. the steam engine. At its exit from this exchanger, the air passes into other heat exchangers in which it still gives heat to heat the central heating water, and, or sanitary, or to heat the cold air before he arrives at the compressor. The cooled compressed air actuates the pneumatic motor in which while relaxing, it loses more heat. This cold air is used for air conditioning and refrigeration. At its output from the steam engine, the steam passes into a heat exchanger in which it gives up its heat to heat the condensation water driven by the piston pump. The condensation water flows in the opposite direction to that of the steam leaving the engine.5i although the steam reaches the retention tank in the form of warm water. The condensation water reaches the boiler in the form of steam. The group is started by the electric motor, compressed air, or steam under pressure. Figure I of the accompanying drawing shows by way of example, an embodiment of the invention. The fresh air arrives through the pipe 15, it passes through the pistons before arriving in the cylinders of the compressor I. The compressed and hot air passes from the compressor to the heat exchanger 7, in which it heats the steam . It then passes into the air-water heat exchanger or air-air 8 before arriving in the air motor 3, which it operates. The air cooled and cooled, comes out of the air motor by the pipe 14. The piston pump 5, sucks the water contained in the holding tank 6, and the flush in the heat exchanger consisting of the pipe 9 and the pipe 13. On the way the water absorbs the heat of the steam coming out of the steam engine 2, towards the tank 6. The water arrives in the form of steam through the pipe 9, in the heat exchanger 7, in which it is heated by the heat of the compressed air contained in the pipe Io.The steam passes from the heat exchanger 7, the steam engine 2, through the pipe 13. It gives up its heat in the heat exchanger consisting of the pipes 9 and 13. It comes in the form of warm water in the retention tank 6. The electric motor 4, is used to start the installation. It can also work as a dynamo. The pipes 16 and 17 allow the circulation of air or water in the heat exchanger 8. The power take-off 18 makes it possible to use the kinetic energy supplied by the group. In some cases, the cooled air at its outlet from the air motor 3 will be used to cool the water in the holding tank. Figure 2 of the drawing shows a front view, for example, an embodiment of a steam-water heat exchanger and water-vapor. The tube I 9, driving the expanded vapor at its outlet from the engine, to the retention tank 6. The twisted tubes 21, installed in the tube 19, conduct the water from the pressure-retaining tank, from the pump to the tank. 7. The steam enters the tube 19 at point 20 and exits in the form of condensed water at point 22. Figure 3 is a side view of Figure 2. For the sake of clarity the thermal insulation and sound as well as connections, remote control, self - regulation systems, automatic restart, etc., are not shown. In some cases the air will be admitted under pressure into the compressor.

Claims

REVENDICATION I CLAIM I
Groupe moteur comportant un démarreur, un compresseur, un moteur r. vapeur, et un moteur à air comprimé.Engine group comprising a starter, a compressor, a motor r. steam, and a compressed air motor.
REVENDICATION IICLAIM II
Groupe moteur selon la revendication I, caractérisé en ce que la vapeur est chauffée par la chaleur dégagée de l'air comprimé.Engine unit according to claim 1, characterized in that the steam is heated by the heat released from the compressed air.
REVENDICATION IIICLAIM III
Groupe moteur selon les revendications I et II, caractérisé en ce que la vapeur à sa sortie du moteur passe dans un έchangeur de chaleur dans lequel elle cède sa chaleur pour réchauffer l'eau de condensation circulant en sens inverse, pour la transformer en vapeur.Power unit according to claims I and II, characterized in that the steam at its output motor passes into a heat exchanger in which it gives up its heat to heat the condensation water flowing in the opposite direction, to turn it into steam.
REVENDICATION IVCLAIM IV
Groupa moteur selon les revendications I à III, caractérisé en ce que l'eau de condensation passe dans l'échangeur de chaleur de la revendication III, dans lequel elle se réchauffe en absorbant la chaleur de la vapeur circulant en sens inverse.Engine group according to claims I to III, characterized in that the condensation water passes into the heat exchanger of claim III, wherein it is heated by absorbing the heat of the circulating steam in the opposite direction.
REVENDICATION VCLAIM V
Groupe mctεur salon les revendications I à IV, caractérisé en ce que la pression de l'air comprimé est déterminée par la différence da volume d'air admis dans le compresseur et le volume d'air comprimé admis dans le moteur pneumatique . REVENDICATION VIThe group claims those I to IV, characterized in that the pressure of the compressed air is determined by the difference of the volume of air admitted into the compressor and the volume of compressed air admitted into the air motor. CLAIM VI
Groupe moteur SBICΠ las revendications I a V, caractérisé en es que la pression de l'air comprimé est équilibrée entre les pistons du compresseur et ceux du moteur pneumatique.SBICΠ motor group Claims I to V, characterized in that the pressure of the compressed air is balanced between the pistons of the compressor and those of the pneumatic motor.
REVENDICATION VIICLAIM VII
Groupe moteur salon les revendications I à VI, caractérisé en ce que des clapets laissent pénétrer de l'air dans les cylindres du moteur à vapeur et ceux du moteur pneumatique, tant que la pression est insuffisante. Engines group claims I to VI, characterized in that valves allow air to enter the cylinders of the steam engine and those of the air motor, as long as the pressure is insufficient.
PCT/IB2009/000036 2008-02-14 2009-01-09 Steam engine heated by the heat of compressed air WO2009101492A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2072008 2008-02-14
CH00207/08 2008-02-14

Publications (2)

Publication Number Publication Date
WO2009101492A2 true WO2009101492A2 (en) 2009-08-20
WO2009101492A3 WO2009101492A3 (en) 2012-01-12

Family

ID=40957325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/000036 WO2009101492A2 (en) 2008-02-14 2009-01-09 Steam engine heated by the heat of compressed air

Country Status (1)

Country Link
WO (1) WO2009101492A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985902A (en) * 2010-07-07 2011-03-16 贾锋胜 Steamer generating equipment capable of heating by automobile exhaust
WO2011127879A3 (en) * 2010-04-12 2013-05-10 Dieter Lang Apparatus for thermal coupling of steam power stations to compressed-air storage power stations
EP3597995A4 (en) * 2017-05-10 2020-05-27 Jin Zhang Air energy furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896102A (en) * 1981-12-02 1983-06-08 Hitachi Ltd Method and device for warming up steam turbine rotor
DE4105128A1 (en) * 1991-02-15 1992-08-20 Ver Energiewerke Ag METHOD FOR TREATING BROWN COAL FOR GAS-STEAM COMBINATION PROCESSES
US5473898A (en) * 1995-02-01 1995-12-12 Westinghouse Electric Corporation Method and apparatus for warming a steam turbine in a combined cycle power plant
WO2007052257A2 (en) * 2005-10-31 2007-05-10 Ormat Technologies Inc. Method and system for producing power from a source of steam
EP1808588A1 (en) * 2006-01-14 2007-07-18 Thermal PowerTec GmbH Augmentation of power output and efficiency in gas turbine and combined cycle plants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896102A (en) * 1981-12-02 1983-06-08 Hitachi Ltd Method and device for warming up steam turbine rotor
DE4105128A1 (en) * 1991-02-15 1992-08-20 Ver Energiewerke Ag METHOD FOR TREATING BROWN COAL FOR GAS-STEAM COMBINATION PROCESSES
US5473898A (en) * 1995-02-01 1995-12-12 Westinghouse Electric Corporation Method and apparatus for warming a steam turbine in a combined cycle power plant
WO2007052257A2 (en) * 2005-10-31 2007-05-10 Ormat Technologies Inc. Method and system for producing power from a source of steam
EP1808588A1 (en) * 2006-01-14 2007-07-18 Thermal PowerTec GmbH Augmentation of power output and efficiency in gas turbine and combined cycle plants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127879A3 (en) * 2010-04-12 2013-05-10 Dieter Lang Apparatus for thermal coupling of steam power stations to compressed-air storage power stations
CN101985902A (en) * 2010-07-07 2011-03-16 贾锋胜 Steamer generating equipment capable of heating by automobile exhaust
EP3597995A4 (en) * 2017-05-10 2020-05-27 Jin Zhang Air energy furnace
RU2728576C1 (en) * 2017-05-10 2020-07-30 Цзинь ЧЖАН Air heat pump

Also Published As

Publication number Publication date
WO2009101492A3 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
RU2017134096A (en) WATER HEAT RECOVERY FOR ENERGY GENERATION AND ENGINE HEATING
RU2007109422A (en) VEHICLE OR STATIONARY POWER PLANT WITH INTERNAL COMBUSTION ENGINE WITH SUPPLY AS A DRIVE SOURCE
CN103115388B (en) Thermal power plant circulating water heat supply system
WO2009101492A2 (en) Steam engine heated by the heat of compressed air
CN102235746B (en) Quick water heating device for heat pump
CN201059768Y (en) Double source double effect heat reclamation heat pump hot-water apparatus
RU159686U1 (en) THERMAL SCHEME OF TRIGENERATION MINI-CHP
EP2638336A1 (en) Method for converting low temperature thermal energy into high temperature thermal energy and mechanical energy and a heat pump device for such conversion
RU157594U1 (en) TRIGGER INSTALLATION
CN107559102B (en) A kind of device for utilizing residual-heat and method based on combined cycle
RU2782089C1 (en) Method for operation and device of maneuverable block combined-cycle cogeneration mini-chp
CN201652796U (en) Quick pump heating and water heating device
RU2420664C2 (en) Multi-mode heat extraction plant
RU51171U1 (en) HEAT WATER BOILER CIRCUIT
FR2975471A1 (en) THERMODYNAMIC WATER HEATER
CN203744544U (en) Evaporator-free absorption heat pump unit
RU2788268C1 (en) Energy complex
CN202119076U (en) Multi-energy water heating device
FR2598786A1 (en) Device for providing hot water by heat pump
CN100526758C (en) Heat, cold bi-directional coexistence system
RU48363U1 (en) POWER PLANT FOR REGULATING THE NETWORK TEMPERATURE ON THE HEAT ELECTROCENTRAL
RU2232277C2 (en) District-heating steam-power plant
RU2425993C1 (en) Mobile self-contained electric power source
CN116105218A (en) Pipe network system and method suitable for heating in winter and cooling in summer
WO2023128774A1 (en) The system and the method for recovery of waste heat energy contained in oil in an oil-cooled air compressor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711273

Country of ref document: EP

Kind code of ref document: A2