FR2981366A1 - METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD - Google Patents
METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD Download PDFInfo
- Publication number
- FR2981366A1 FR2981366A1 FR1103137A FR1103137A FR2981366A1 FR 2981366 A1 FR2981366 A1 FR 2981366A1 FR 1103137 A FR1103137 A FR 1103137A FR 1103137 A FR1103137 A FR 1103137A FR 2981366 A1 FR2981366 A1 FR 2981366A1
- Authority
- FR
- France
- Prior art keywords
- metal substrate
- solid metal
- solution
- cerium
- treatment solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 195
- 239000002184 metal Substances 0.000 title claims abstract description 192
- 239000000758 substrate Substances 0.000 title claims abstract description 184
- 239000007787 solid Substances 0.000 title claims abstract description 156
- 238000000034 method Methods 0.000 title claims abstract description 80
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 75
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical group [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- -1 cerium cation Chemical class 0.000 claims abstract description 51
- 239000011159 matrix material Substances 0.000 claims abstract description 42
- 150000001768 cations Chemical class 0.000 claims abstract description 25
- 238000009833 condensation Methods 0.000 claims abstract description 22
- 230000005494 condensation Effects 0.000 claims abstract description 22
- 230000007062 hydrolysis Effects 0.000 claims abstract description 21
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims description 93
- 238000005260 corrosion Methods 0.000 claims description 88
- 230000007797 corrosion Effects 0.000 claims description 77
- 229910052782 aluminium Inorganic materials 0.000 claims description 46
- 238000000576 coating method Methods 0.000 claims description 41
- 239000011248 coating agent Substances 0.000 claims description 40
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 39
- 150000004703 alkoxides Chemical class 0.000 claims description 36
- 239000003112 inhibitor Substances 0.000 claims description 30
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000002791 soaking Methods 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical class [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 150000002602 lanthanoids Chemical group 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 238000004381 surface treatment Methods 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 6
- 125000000962 organic group Chemical group 0.000 claims description 5
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 4
- 125000002252 acyl group Chemical group 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical class Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910018540 Si C Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000006193 liquid solution Substances 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000000243 solution Substances 0.000 description 179
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 58
- 229910001593 boehmite Inorganic materials 0.000 description 50
- 239000002105 nanoparticle Substances 0.000 description 47
- 239000010410 layer Substances 0.000 description 41
- 238000007654 immersion Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 23
- 238000001246 colloidal dispersion Methods 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000005238 degreasing Methods 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 11
- 238000000151 deposition Methods 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- 229910002651 NO3 Inorganic materials 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 230000032798 delamination Effects 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 6
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 229960005235 piperonyl butoxide Drugs 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000001935 peptisation Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 4
- 229910000547 2024-T3 aluminium alloy Inorganic materials 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000001476 alcoholic effect Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000004530 micro-emulsion Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- XQTIWNLDFPPCIU-UHFFFAOYSA-N cerium(3+) Chemical compound [Ce+3] XQTIWNLDFPPCIU-UHFFFAOYSA-N 0.000 description 2
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 2
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 2
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 2
- 229940107698 malachite green Drugs 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 2
- 230000007847 structural defect Effects 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- YZVRVDPMGYFCGL-UHFFFAOYSA-N triacetyloxysilyl acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)OC(C)=O YZVRVDPMGYFCGL-UHFFFAOYSA-N 0.000 description 2
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- NMSBTWLFBGNKON-UHFFFAOYSA-N 2-(2-hexadecoxyethoxy)ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCO NMSBTWLFBGNKON-UHFFFAOYSA-N 0.000 description 1
- NLMKTBGFQGKQEV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hexadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO NLMKTBGFQGKQEV-UHFFFAOYSA-N 0.000 description 1
- BGGIUGXMWNKMCP-UHFFFAOYSA-N 2-methylpropan-2-olate;zirconium(4+) Chemical compound CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C BGGIUGXMWNKMCP-UHFFFAOYSA-N 0.000 description 1
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 1
- 229910001250 2024 aluminium alloy Inorganic materials 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HBQWJZFNRVQCJH-UHFFFAOYSA-N C(C)OCCOC([O-])C.[Al+3].C(C)OCCOC([O-])C.C(C)OCCOC([O-])C Chemical compound C(C)OCCOC([O-])C.[Al+3].C(C)OCCOC([O-])C.C(C)OCCOC([O-])C HBQWJZFNRVQCJH-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 101100498930 Mus musculus Degs1 gene Proteins 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 229920002415 Pluronic P-123 Polymers 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- RKSHVUADCDIOSG-UHFFFAOYSA-N [O--].[V+5].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] Chemical compound [O--].[V+5].CC(C)C[O-].CC(C)C[O-].CC(C)C[O-] RKSHVUADCDIOSG-UHFFFAOYSA-N 0.000 description 1
- HKLIZKNBGAFNIP-UHFFFAOYSA-N [O-2].[V+5].CC(C)[O-].CC(C)[O-].CC(C)[O-] Chemical compound [O-2].[V+5].CC(C)[O-].CC(C)[O-].CC(C)[O-] HKLIZKNBGAFNIP-UHFFFAOYSA-N 0.000 description 1
- NJSVDVPGINTNGX-UHFFFAOYSA-N [dimethoxy(propyl)silyl]oxymethanamine Chemical compound CCC[Si](OC)(OC)OCN NJSVDVPGINTNGX-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229960001506 brilliant green Drugs 0.000 description 1
- HXCILVUBKWANLN-UHFFFAOYSA-N brilliant green cation Chemical compound C1=CC(N(CC)CC)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](CC)CC)C=C1 HXCILVUBKWANLN-UHFFFAOYSA-N 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- ODPUKHWKHYKMRK-UHFFFAOYSA-N cerium;nitric acid Chemical compound [Ce].O[N+]([O-])=O ODPUKHWKHYKMRK-UHFFFAOYSA-N 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- ASBGGHMVAMBCOR-UHFFFAOYSA-N ethanolate;zirconium(4+) Chemical compound [Zr+4].CC[O-].CC[O-].CC[O-].CC[O-] ASBGGHMVAMBCOR-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000001905 inorganic group Chemical group 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- 229910000311 lanthanide oxide Inorganic materials 0.000 description 1
- 229910000354 lanthanide sulfate Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- ITNVWQNWHXEMNS-UHFFFAOYSA-N methanolate;titanium(4+) Chemical compound [Ti+4].[O-]C.[O-]C.[O-]C.[O-]C ITNVWQNWHXEMNS-UHFFFAOYSA-N 0.000 description 1
- IQLZWWDXNXZGPK-UHFFFAOYSA-N methylsulfonyloxymethyl methanesulfonate Chemical compound CS(=O)(=O)OCOS(C)(=O)=O IQLZWWDXNXZGPK-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- LHBNLZDGIPPZLL-UHFFFAOYSA-K praseodymium(iii) chloride Chemical compound Cl[Pr](Cl)Cl LHBNLZDGIPPZLL-UHFFFAOYSA-K 0.000 description 1
- 238000001314 profilometry Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 1
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 231100001260 reprotoxic Toxicity 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- WOZZOSDBXABUFO-UHFFFAOYSA-N tri(butan-2-yloxy)alumane Chemical compound [Al+3].CCC(C)[O-].CCC(C)[O-].CCC(C)[O-] WOZZOSDBXABUFO-UHFFFAOYSA-N 0.000 description 1
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- MDDPTCUZZASZIQ-UHFFFAOYSA-N tris[(2-methylpropan-2-yl)oxy]alumane Chemical compound [Al+3].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] MDDPTCUZZASZIQ-UHFFFAOYSA-N 0.000 description 1
- OEJSTGAKVVRHER-UHFFFAOYSA-N tris[2-(2-ethoxyethoxy)ethoxy]alumane Chemical compound [Al+3].CCOCCOCC[O-].CCOCCOCC[O-].CCOCCOCC[O-] OEJSTGAKVVRHER-UHFFFAOYSA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/56—Treatment of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/04—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/122—Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
- C23C2222/20—Use of solutions containing silanes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
L'invention concerne un procédé de traitement anticorrosion dans lequel on applique sur une surface oxydable d'un substrat métallique solide, une solution, dite solution de traitement, liquide comprenant : O au moins un alcoxysilane, et O au moins un cation du cérium (Ce) ; dans une composition hydro-alcoolique liquide, ladite solution de traitement étant adaptée pour pouvoir former en surface du substrat métallique solide, une matrice hybride par hydrolyse/condensation de chaque alcoxysilane(s) et de chaque cation de cérium (Ce) ; la solution de traitement présentant un rapport (Si/Ce) molaire d'élément silicium du(des) alcoxysilane(s) par rapport au(x) cation(s) du cérium (Ce) compris entre 50 et 500 ; caractérisé en ce que le(s) cation(s) du cérium (Ce) présente(nt) une concentration comprise entre 0,005 mole/L et 0,015 mole/L dans la solution de traitement.The invention relates to an anticorrosive treatment method in which a solution, called a liquid treatment solution, is applied to an oxidizable surface of a solid metal substrate, comprising: O at least one alkoxysilane, and O at least one cerium cation ( This); in a liquid hydro-alcoholic composition, said treatment solution being adapted to form on the surface of the solid metal substrate, a hybrid matrix by hydrolysis / condensation of each alkoxysilane (s) and each cerium cation (Ce); the treatment solution having a molar ratio (Si / Ce) of silicon element of the alkoxysilane (s) relative to the cerium (Ce) cation (s) of between 50 and 500; characterized in that the cation (s) of the cerium (Ce) has a concentration of between 0.005 mol / L and 0.015 mol / L in the treatment solution.
Description
2 9 8 1 3 6 6 PROCÉDÉ DE TRAITEMENT ANTICORROSION D'UN SUBSTRAT MÉTALLIQUE SOLIDE ET SUBSTRAT MÉTALLIQUE SOLIDE TRAITÉ SUSCEPTIBLE D'ÊTRE OBTENU PAR UN TEL PROCÉDÉ L'invention concerne un procédé de traitement anticorrosion 5 d'un substrat métallique solide, notamment d'un substrat en aluminium ou en alliage d'aluminium. L'invention concerne en outre un substrat métallique solide traité contre la corrosion, susceptible d'être obtenu par un tel procédé. Un tel procédé de traitement anticorrosion présente des applications dans le domaine général du traitement de surface de substrats 10 métalliques solides, notamment de pièces métalliques. Un tel procédé trouve ses applications dans le domaine des véhicules de transport, notamment des navires, des véhicules automobiles et des aéronefs dans lequel se pose le problème de la lutte contre la corrosion des pièces métalliques. On connaît déjà des procédés de traitement de surface d'un 15 substrat métallique solide dans lequel on utilise des réactifs à base de chrome. De tels réactifs sont toxiques pour l'environnement et pour la santé humaine et leur utilisation est règlementée. Pour pallier les inconvénients liés à l'utilisation du chrome, il a été proposé (Pepe et al., 2004, Journal of Non-Crystalline Solids, 348 , 162-171) 20 de former un revêtement à base de gel de silice en surface d'un substrat en alliage d'aluminium par un procédé sol/gel. On réalise un tel traitement par trempage et retrait ("dip-coating") du substrat en alliage d'aluminium dans une solution hybride de tetraéthylorthosilicate (TEOS) et de méthyltriéthoxysilane (MTES) contenant du nitrate de cérium. Un tel procédé ne permet pas d'obtenir un revêtement 25 anticorrosion présentant en même temps des propriétés de résistance mécanique notamment une résistance à l'arrachement- améliorées et aussi des propriétés de cicatrisation et un effet barrière améliorés. L'invention vise à pallier les inconvénients précédemment évoqués en proposant un procédé de traitement anticorrosion d'un substrat 30 métallique solide qui ne nécessite pas l'utilisation de dérivés du chrome -notamment du chrome VI- qui est cancérigène, mutagène et reprotoxique. il 2981366 L'invention vise à proposer un procédé de traitement anticorrosion adapté pour former un revêtement anticorrosion en surface d'un substrat métallique solide qui est de grande résistance mécanique. L'invention vise également à proposer un tel procédé de traitement anticorrosion qui permette l'obtention d'une couche de revêtement anticorrosion d'épaisseur contrôlée -notamment comprise entre 1 ium et 15 gm- et compatible avec les préconisations industrielles, notamment dans le domaine de l'aéronautique. Un autre objectif de l'invention est de proposer un procédé de 10 traitement anticorrosion d'un substrat métallique solide -notamment de pièces métalliques pour l'aéronautique- adapté pour permettre la formation d'un revêtement anticorrosion dudit substrat métallique solide qui soit d'épaisseur sensiblement homogène sur la surface du substrat métallique solide, qui soit couvrant et qui soit aussi nivelant. Par nivelant, on entend qu'un tel revêtement 15 présente une surface extérieure libre -c'est-à-dire opposée au substrat- qui soit sensiblement plane indépendamment de la présence de défauts structurels en surface du substrat métallique solide sous-jacent. En particulier, l'invention vise à proposer un tel procédé adapté pour permettre la formation d'un revêtement anticorrosion ne présentant pas de fissuration au niveau desdits défauts structurels. 20 L'invention vise aussi un tel procédé qui soit adapté pour permettre la formation d'une couche anticorrosion qui soit résistante à la fissuration. L'invention vise en outre un tel procédé adapté pour permettre la formation d'un revêtement anticorrosion de surface d'un substrat métallique solide présentant en même temps des propriétés de protection passive -en 25 particulier, par effet barrière- dudit substrat vis-à-vis d'un environnement extérieur corrosif et des propriétés de protection active de cicatrisation et de limitation de la progression de la corrosion au niveau d'une piqure accidentelle susceptible d'affecter le revêtement anticorrosion. L'invention vise aussi un tel procédé de traitement 30 anticorrosion adapté pour pouvoir être appliqué sur un substrat métallique solide poli ou sur un substrat métallique solide non poli. 3 2981366 L'invention vise également à atteindre tous ces objectifs à moindre coût, en proposant un procédé qui soit simple et qui ne nécessite pour sa mise en oeuvre que des étapes de mise en contact d'un substrat métallique solide et de solutions liquides. The invention relates to a method for the anticorrosion treatment of a solid metal substrate, in particular of a solid metal substrate, and especially to a method for the anti-corrosion treatment of a solid metal substrate, in particular of a solid metal substrate. an aluminum or aluminum alloy substrate. The invention further relates to a corrosion-resistant solid metal substrate obtainable by such a method. Such an anticorrosive treatment method has applications in the general field of surface treatment of solid metal substrates, especially metal parts. Such a method has its applications in the field of transport vehicles, including ships, motor vehicles and aircraft in which the problem of the fight against corrosion of metal parts arises. Methods for surface treatment of a solid metal substrate in which chromium-based reagents are used are already known. Such reagents are toxic to the environment and to human health and their use is regulated. To overcome the disadvantages associated with the use of chromium, it has been proposed (Pepe et al., 2004, Journal of Non-Crystalline Solids, 348, 162-171) to form a surface silica gel coating. of an aluminum alloy substrate by a sol / gel process. Such treatment is carried out by soaking and shrinking ("dip-coating") of the aluminum alloy substrate in a hybrid solution of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) containing cerium nitrate. Such a process does not make it possible to obtain an anticorrosive coating which, at the same time, exhibits improved mechanical strength properties, in particular improved tearing resistance, and also improved healing properties and barrier effect. The invention aims to overcome the disadvantages mentioned above by proposing a method of anticorrosion treatment of a solid metal substrate which does not require the use of chromium derivatives, in particular chromium VI, which is carcinogenic, mutagenic and reprotoxic. It is an object of the invention to provide an anticorrosive treatment method adapted to form a surface anticorrosion coating of a solid metal substrate which is of high mechanical strength. The invention also aims at providing such an anticorrosion treatment method which makes it possible to obtain a layer of anti-corrosive coating of controlled thickness, in particular between 1 and 15 gm, and compatible with industrial recommendations, particularly in the field. aeronautics. Another object of the invention is to provide a method for the anticorrosion treatment of a solid metal substrate - particularly metallic parts for aeronautics - adapted to allow the formation of an anticorrosion coating of said solid metal substrate which is substantially homogeneous thickness on the surface of the solid metal substrate, which is covering and which is also leveling. By leveling, it is meant that such a coating has a free outer surface-i.e., opposed to the substrate-which is substantially planar regardless of the presence of structural defects on the surface of the underlying solid metal substrate. In particular, the invention aims to provide such a method adapted to allow the formation of an anticorrosion coating having no cracking at said structural defects. The invention also aims at such a process which is adapted to allow the formation of an anticorrosion layer which is resistant to cracking. The invention furthermore aims at such a method adapted to allow the formation of a surface anticorrosion coating of a solid metal substrate having at the same time passive protection properties - in particular, by barrier effect of said substrate vis-à-vis -vis of a corrosive external environment and active healing protection properties and limiting the progression of corrosion at the level of an accidental bite that may affect the anticorrosive coating. The invention is also directed to such an anti-corrosive treatment method adapted to be applied to a polished solid metal substrate or an unpolished solid metal substrate. The invention also aims to achieve all these objectives at lower cost, by proposing a method which is simple and which requires for its implementation that steps of contacting a solid metal substrate and liquid solutions.
L'invention vise également et plus particulièrement à proposer un tel procédé qui soit compatible avec les contraintes de sécurité et de respect de l'environnement. L'invention vise de surcroît à proposer une telle solution qui préserve les habitudes de travail des personnels, soit facile à utiliser, et n'implique 10 pour sa mise en oeuvre que peu de manipulations. L'invention vise aussi un tel procédé de traitement anticorrosion utilisant une solution de traitement qui soit simple dans sa composition par rapport aux solutions liquides de traitement de l'état de la technique.The invention also aims and more particularly to provide such a method that is compatible with the constraints of safety and respect for the environment. The invention further aims to provide such a solution that preserves the work habits of staff, is easy to use, and imply 10 for its implementation that few manipulations. The invention also aims at such an anticorrosion treatment method using a treatment solution that is simple in its composition compared to liquid treatment solutions of the state of the art.
15 L'invention vise donc aussi un revêtement anticorrosion présentant des propriétés protectrices améliorées par rapport aux revêtements anticorrosion de l'état de la technique, notamment des propriétés anticorrosion qui soient améliorées dans le temps. Pour ce faire, l'invention concerne un procédé de traitement 20 anticorrosion dans lequel on applique sur une surface oxydable d'un substrat métallique solide une solution, dite solution de traitement, liquide comprenant : o au moins un alcoxysilane, et ; o au moins un cation du cérium (Ce) ; dans une composition hydro-alcoolique liquide, ladite solution de traitement étant 25 adaptée pour pouvoir former en surface du substrat métallique solide, une matrice hybride par hydrolyse/condensation de chaque alcoxysilane(s) et de chaque cation de cérium (Ce) ; la solution de traitement présentant un rapport (Si/Ce) molaire d'élément silicium du(des) alcoxysilane(s) par rapport au(x) cation(s) du cérium (Ce) compris entre 50 30 et 500, notamment entre 80 et 250 ; 4 2981366 caractérisé en ce que le(s) cation(s) du cérium (Ce) présente(nt) une concentration comprise entre 0,005 mole/L et 0,015 mole/L -notamment comprise entre 0,005 mole/L et 0,01 mole/L, préférentiellement de l'ordre de 0,010 mole/L- dans la solution de traitement.The invention therefore also relates to an anticorrosive coating having improved protective properties compared to anti-corrosion coatings of the state of the art, including anti-corrosion properties which are improved over time. To this end, the invention relates to an anticorrosive treatment method in which a solution, called a liquid treatment solution, is applied to an oxidizable surface of a solid metal substrate, comprising: at least one alkoxysilane, and at least one cation of cerium (Ce); in a liquid hydro-alcoholic composition, said treatment solution being adapted to form on the surface of the solid metal substrate, a hybrid matrix by hydrolysis / condensation of each alkoxysilane (s) and each cerium cation (Ce); the treatment solution having a molar ratio (Si / Ce) of silicon element of the alkoxysilane (s) relative to the cerium (Ce) cation (s) of between 50 and 500, in particular between 80 and 500; and 250; Characterized in that the cation (s) of cerium (Ce) has a concentration of between 0.005 mole / L and 0.015 mole / L, in particular between 0.005 mole / L and 0.01 mole / L, preferably of the order of 0.010 mol / L- in the treatment solution.
5 Les inventeurs ont observé que la sélection des valeurs de concentration des cations de cérium dans la solution de traitement ne constitue pas une sélection arbitraire de concentration, mais au contraire que cette sélection procure un résultat surprenant, totalement imprévisible, non décrit dans l'état de la technique et selon lequel la concentration sélectionnée du cation de cérium (Ce) dans la solution de traitement anticorrosion d'un substrat métallique solide permet en même temps (1) d'obtenir une adhérence optimale de la solution de traitement en surface du substrat métallique solide, (2) la formation d'une matrice hybride de protection passive dudit substrat métallique solide par effet de barrière adapté pour limiter la formation de produits de corrosion du substrat métallique solide - notamment d'un substrat métallique solide présentant une piqure-, et (3) de former une telle matrice hybride de protection présentant des propriétés de résistance physique aux agressions mécaniques -notamment de résistance à la délamination, de résistance à la fissuration, et des propriétés de déformation plastique- et de résistance vis-à-vis de la corrosion -tant à 1 jour, 7 jours et 14 jours de traitement corrosif par immersion dans une solution corrosive de NaCt à 0,05 mole/L dans l'eau- qui sont améliorées. De telles propriétés de résistance physique aux agressions mécaniques sont notamment évaluées par des techniques connues en elles-mêmes de l'homme du métier, en particulier par nano-indentation -pour l'évaluation du module d'élasticité de Young et de la dureté (par exemple, nano-dureté de Vickers)- ou par rayage progressif ("nano-scratch") pour l'évaluation de l'adhérence et de la résistance à la délamination du revêtement anticorrosion en surface du substrat métallique solide. Avantageusement, le cation de cérium est un cation de cérium 30 unique et la concentration du cation de cérium unique dans la solution de traitement 5 2981366 est comprise entre 0,005 mole/L et 0,015 mole/L, notamment comprise entre 0,005 mole/L et 0,01 mole/L, préférentiellement de l'ordre de 0,01 mole/L. Avantageusement, le cation de cérium est une composition comprenant une pluralité de cations de cérium distincts et la concentration cumulée 5 de la pluralité de cations de cérium distincts dans la solution de traitement est elle-même comprise entre 0,005 mole/L et 0,015 mole/L, notamment comprise entre 0,005 mole/L et 0,01 mole/L, préférentiellement de l'ordre de 0,01 mole/L. Un revêtement anticorrosion selon l'invention, c'est à dire un revêtement obtenu avec une solution de traitement comprenant une concentration en 10 cation de cérium -notamment en Ceni- comprise entre 0,005 mole/L et 0,015 mole/L, présente : - une valeur (Hv) critique de déformation plastique mesurée par nano-indentation qui est maximale et de l'ordre de 39 pour une concentration en cérium de 0,01 mole/L dans la solution de traitement ; 15 - une valeur de charge critique de délamination FD (mN) du revêtement anticorrosion sur le substrat métallique solide qui est maximale et de l'ordre de 24 mN pour une concentration en cérium de 0,01 mole/L dans la solution de traitement ; - une valeur de charge critique de fissuration Ff (mN) du revêtement 20 anticorrosion qui est maximale et de l'ordre de 15 mN pour une concentration en cérium de 0,01 mole/L dans la solution de traitement, et ; - une valeur de charge critique de déformation plastique sans fissuration FDp (mN) maximale de l'ordre de 6 mN pour une concentration en cérium de 0,01 mole/L dans la solution de traitement.The inventors have observed that the selection of concentration values of the cerium cations in the treatment solution does not constitute an arbitrary selection of concentration, but on the contrary that this selection provides a surprising result, totally unpredictable, not described in the state. of the technique and according to which the selected concentration of the cerium (Ce) cation in the anticorrosion treatment solution of a solid metal substrate simultaneously makes it possible (1) to obtain optimum adhesion of the surface treatment solution of the substrate solid metal, (2) the formation of a hybrid matrix of passive protection of said solid metal substrate by barrier effect adapted to limit the formation of corrosion products of the solid metal substrate - in particular of a solid metallic substrate having a puncture -, and (3) forming such a hybrid protective matrix having physical strength properties. ue to mechanical aggression -including resistance to delamination, resistance to cracking, and plastic deformation- and corrosion resistance-at 1 day, 7 days and 14 days of corrosive treatment by immersion in a corrosive solution of NaCt at 0.05 mol / L in water which are improved. Such properties of physical resistance to mechanical attack are evaluated in particular by techniques known in themselves to those skilled in the art, in particular by nanoindentation for the evaluation of Young's modulus of elasticity and hardness ( for example, nano-hardness of Vickers) - or by progressive scratching ("nano-scratch") for the evaluation of the adhesion and the resistance to delamination of the anticorrosion coating on the surface of the solid metal substrate. Advantageously, the cerium cation is a single cerium cation and the concentration of the single cerium cation in the treatment solution 2981366 is between 0.005 mole / L and 0.015 mole / L, in particular between 0.005 mole / L and 0 , 01 mol / L, preferably of the order of 0.01 mol / l. Advantageously, the cerium cation is a composition comprising a plurality of distinct cerium cations and the cumulative concentration of the plurality of distinct cerium cations in the treatment solution is itself between 0.005 mole / L and 0.015 mole / L , in particular between 0.005 mol / l and 0.01 mol / l, preferably of the order of 0.01 mol / l. An anticorrosive coating according to the invention, that is to say a coating obtained with a treatment solution comprising a concentration of cerium cation, especially in Cen.sub.1 between 0.005 mol / l and 0.015 mol / l, presents: critical value (Hv) of plastic deformation measured by nano-indentation which is maximum and of the order of 39 for a cerium concentration of 0.01 mol / L in the treatment solution; A delamination critical load value FD (mN) of the corrosion-resistant coating on the solid metal substrate which is maximum and of the order of 24 mN for a cerium concentration of 0.01 mol / L in the treatment solution; a critical cracking load value Ff (mN) of the anticorrosion coating which is maximum and of the order of 15 mN for a cerium concentration of 0.01 mol / l in the treatment solution, and; a peak load value of plastic deformation without cracking FDp (mN) of the order of 6 mN for a cerium concentration of 0.01 mol / l in the treatment solution.
25 Les inventeurs ont observé qu'une concentration en cation de cérium dans la solution de traitement comprise entre 0,005 mole/L et 0,015 mole/L selon l'invention confère au revêtement anticorrosion d'un substrat métallique solide une résistance vis-à-vis de la corrosion qui est optimale après dépôt et avant immersion dans une solution corrosive. En revanche, une concentration en cation de cérium dans la solution de traitement supérieure à 0,015 mole/L conduit à une dégradation significative de l'effet barrière de la couche de protection et une 6 2 9 8 1 3 6 6 résistance vis-à-vis de la corrosion diminuée avant immersion dans une <solution corrosive. La résistance surfacique en milieu corrosif d'une telle couche de protection de 6,3 pin d'épaisseur, obtenue par un traitement anticorrosion d'un substrat métallique solide avec une solution de traitement contenant 0,05 mole/L de 5 cation de cérium, et immédiatement après immersion dudit substrat métallique dans le milieu corrosif est de l'ordre de 2,8.106 n.cm2. La résistance surfacique en milieu corrosif d'une telle couche de protection de 6,3 irm d'épaisseur, obtenue par un traitement anticorrosion d'un substrat métallique solide avec une solution de traitement contenant 0,1 mole/L de cation de cérium, et immédiatement après 10 immersion dudit substrat métallique dans le milieu corrosif est de l'ordre de 2,0.105 acm2 telle que mesurée par spectroscopie d'impédance électrochimique (SIE). En outre, une concentration en cation de cérium dans la solution de traitement comprise entre 0,005 mole/L et 0,015 mole/L selon 15 l'invention permet : - une diminution de l'angle de contact de la solution de traitement sur le substrat métallique solide traduisant une mouillabilité améliorée de la surface du substrat métallique solide vis-à-vis de la solution de traitement et une application améliorée de ladite solution de traitement sur la surface du substrat métallique 20 solide ; - un ancrage amélioré de la matrice hybride obtenue à partir de la solution de traitement sur la surface du substrat métallique solide ; - une prise de masse améliorée de la solution de traitement en surface du substrat métallique solide. Une telle prise de masse révèle un effet structurant de 25 la solution de traitement et de la matrice hybride obtenue à partir de la solution de traitement, et ; - de privilégier le Celn aux dépends du Ceiv dans la solution de traitement et dans le sol hybride. On mesure la distribution. Ceill/Ceiv par spectrométrie photo-électronique X (XPS) de surface connue en elle-même de 30 l'homme du métier.The inventors have observed that a concentration of cerium cation in the treatment solution of between 0.005 mol / l and 0.015 mol / l according to the invention gives the corrosion-resistant coating of a solid metal substrate a resistance against corrosion which is optimal after deposition and before immersion in a corrosive solution. On the other hand, a concentration of cerium cation in the treatment solution of greater than 0.015 mol / L leads to a significant degradation of the barrier effect of the protective layer and a resistance to reduced corrosion screw before immersion in a corrosive solution. The surface resistance in a corrosive medium of such a protective layer of 6.3 μm thick, obtained by an anticorrosion treatment of a solid metal substrate with a treatment solution containing 0.05 mol / l of cerium cation , and immediately after immersion of said metal substrate in the corrosive medium is of the order of 2.8 × 10 6 n.cm2. The surface resistance in corrosive medium of such a protective layer of 6.3 mm thick, obtained by an anticorrosion treatment of a solid metal substrate with a treatment solution containing 0.1 mol / l of cerium cation, and immediately after immersion of said metal substrate in the corrosive medium is of the order of 2.0 × 10 5 ac m 2 as measured by electrochemical impedance spectroscopy (EIS). In addition, a concentration of cerium cation in the treatment solution of between 0.005 mole / L and 0.015 mole / L according to the invention allows: - a decrease in the contact angle of the treatment solution on the metal substrate solid resulting in improved wettability of the surface of the solid metal substrate vis-à-vis the processing solution and improved application of said treatment solution to the surface of the solid metal substrate; an improved anchoring of the hybrid matrix obtained from the treatment solution on the surface of the solid metal substrate; - Improved grounding of the surface treatment solution of the solid metal substrate. Such weight gain reveals a structuring effect of the treatment solution and the hybrid matrix obtained from the treatment solution, and; - to favor the Celn at the expense of the Ceiv in the treatment solution and in the hybrid soil. We measure the distribution. Ceill / Ceiv by X-ray photoelectron spectrometry (XPS) known in itself to those skilled in the art.
7 2981366 Les inventeurs ont observé qu'une telle concentration en cations de cérium comprise entre 0,005 mole/L et 0,015 mole/L dans la solution de traitement est adaptée pour pouvoir pour le moins préserver les propriétés mécaniques de la matrice hybride obtenue à partir de la solution de traitement, pour 5 conférer à la solution de traitement des qualités rhéologiques et d'adhérence en surface du substrat métallique solide qui sont améliorées par rapport à une solution de traitement ne présentant pas une telle concentration, tout en conférant à ladite matrice hybride des propriétés de protection passive du substrat métallique solide par effet barrière.The inventors have observed that such a concentration of cerium cations of between 0.005 mol / l and 0.015 mol / l in the treatment solution is adapted to at least preserve the mechanical properties of the hybrid matrix obtained from the treatment solution, to impart to the treatment solution rheological qualities and surface adhesion of the solid metal substrate which are improved over a treatment solution not having such a concentration, while conferring on said hybrid matrix passive protection properties of the solid metal substrate by barrier effect.
10 Avantageusement et selon l'invention, on choisit chaque alcoxysilane dans le groupe formé : - des tétraalcoxysilanes de formule générale (I) suivante ; Si(O-R1)4 (I), dans laquelle : 15 o Si est l'élément silicium, O est l'élément oxygène ; o R1 est choisi dans le groupe formé : ^ d'un groupement hydrocarboné -notamment un méthyle ou un éthyle- de formule [-CnH2,i+1], n étant un nombre entier supérieur ou égal à 1, ^ du groupement 2-hydroxyéthyle (HO-CH2-CH2-), et ; 20 ^ d'un groupement acyle de formule générale -CO-R'1 dans laquelle R'1 est un groupement hydrocarboné -notamment un méthyle, un éthyle- de formule [-C,,H2n+1], n étant un nombre entier supérieur ou égal à 1, et ; - des alcoxysilanes de formule générale (II) suivante : Si(O-R2)4_a(R3)a (II) ; 25 dans laquelle o R2 est choisi dans le groupe formé ^ d'un groupement hydrocarboné -notamment un méthyle, un éthyle- de formule [-CnEl2n+1], n étant un nombre entier supérieur ou égal à 1, ^ du groupement 2-hydroxyéthyle (HO-CH2-CH2-), et ; 8 2981366 ^ d'un groupement acyle de formule générale -CO-R'1 dans laquelle R'1 est un groupement hydrocarboné -notamment un méthyle, un éthyle- de formule [-Cii112',1], n étant un nombre entier supérieur ou égal à 1, et ; o R3 est un groupement organique -notamment un groupement organique formé d'atome(s) de carbone, d'atome(s) d'hydrogène et le cas échéant d'atome(s) d'azote, d'atome(s) d'oxygène et éventuellement d'atome(s) de soufre et d'atome(s) de phosphore- lié à l'élément silicium (Si) de l'alcoxysilane par une liaison Si-C o a est un nombre entier naturel de l'intervalle ]0 ; 4[, -de préférence 10 égal à 1-. Avantageusement, dans une première variante d'un procédé selon l'invention, on choisit chaque alcoxysilane dans le groupe formé du tétraéthoxysilane (TEOS), du tétraméthoxysilane (TMOS), du tétraacétoxysilane (TAOS) et du tétra-2-hydroxyéthoxysilane (THEOS).Advantageously and according to the invention, each alkoxysilane is selected from the group formed: tetraalkoxysilanes of the following general formula (I); If (O-R 1) 4 (I), wherein: o Si is the silicon element, O is the oxygen element; R1 is selected from the group consisting of: a hydrocarbon group - especially methyl or ethyl - of the formula [-CnH2, i + 1], n being an integer greater than or equal to 1, of the group 2- hydroxyethyl (HO-CH2-CH2-), and; An acyl group of the general formula -CO-R'1 in which R'1 is a hydrocarbon group -not a methyl, an ethyl- of formula [-C ,, H2n + 1], n being a whole number greater than or equal to 1, and; alkoxysilanes of the following general formula (II): Si (O-R 2) 4-a (R 3) a (II); Wherein R 2 is selected from the group consisting of a hydrocarbon group-especially methyl, ethyl of formula [-C n E 1 2 n + 1], where n is an integer greater than or equal to 1, of the group 2- hydroxyethyl (HO-CH2-CH2-), and; An acyl group of the general formula -CO-R'1 in which R'1 is a hydrocarbon group -not a methyl, an ethyl- of formula [-Cii112 ', 1], n being a higher integer or equal to 1, and; o R3 is an organic group -notamment an organic group consisting of carbon atom (s), hydrogen atom (s) and, if appropriate, nitrogen atom (s), atom (s) of oxygen and optionally of sulfur atom (s) and phosphorus atom (s) bound to the silicon (Si) element of the alkoxysilane by an Si-C oa bond is a natural whole number of interval] 0; 4 [, preferably 10, 1-. Advantageously, in a first variant of a process according to the invention, each alkoxysilane is selected from the group consisting of tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetraacetoxysilane (TAOS) and tetra-2-hydroxyethoxysilane (THEOS). .
15 Avantageusement, dans une deuxième variante d'un procédé selon l'invention, on choisit le groupement R3 de chaque alcoxysilane dans le groupe formé des méthacrylates, des acrylates, des vinyles, des époxyalkyles et des époxyalcoxyalkyles dans lesquels le(s) groupement(s) alkyle présente(nt) de 1 à 10 atomes de carbone et est(sont) choisi(s) parmi les groupements alkyle linéaires, les 20 groupements alkyle ramifiés et les groupements alkyle cycliques. Avantageusement, on choisit le groupement R3 de chaque alcoxysilane dans le groupe formé du 3,4-époxycyclohexyléthyle et du glycidoxypropyle. Avantageusement, on choisit chaque alcoxysilane dans le 25 groupe formé du glycidoxypropyltriméthoxysilane (GPTMS), du glycidoxypropylméthyldiméthoxysilane (MDMS), du glycidoxypropylméthyldiéthoxysilane (MDES) du glycidoxypropyltriéthoxysilane (GPTES), du méthyltriéthoxysilane (MTES), du diméthyldiéthoxysilane (DMDES), du métacryloxypropyltriméthoxysilane (MAP), du 3-(triméthoxysilyl)propylamine 30 (APTMS), du 2-(3,4-époxycyclohexyl)éthyl-triéthoxysilane (ECHETES), du 9 2981366 2-(3,4-époxycyclohexyl)éthyl-triméthoxysilane (ECHETMS) 5,6-époxyhexyltriéthoxysilane (ENTES). Dans cette deuxième variante d'un, procédé selon l'invention, on forme, par hydrolyse condensation de chaque alcoxysilane, une matrice hybride 5 organique/inorganique. Avantageusement et selon l'invention, la solution de traitement comprend un alcoxysilane unique. Avantageusement et selon l'invention, la solution de traitement comprend au moins un alcoxyde métallique.Advantageously, in a second variant of a process according to the invention, the R 3 group of each alkoxysilane is selected from the group consisting of methacrylates, acrylates, vinyls, epoxyalkyls and epoxyalkoxyalkyls in which the group (s) ( s) alkyl has from 1 to 10 carbon atoms and is (are) selected from linear alkyl groups, branched alkyl groups and cyclic alkyl groups. Advantageously, the R 3 group of each alkoxysilane is selected from the group consisting of 3,4-epoxycyclohexylethyl and glycidoxypropyl. Advantageously, each alkoxysilane is selected from the group consisting of glycidoxypropyltrimethoxysilane (GPTMS), glycidoxypropylmethyldimethoxysilane (MDMS), glycidoxypropylmethyldiethoxysilane (MDES) of glycidoxypropyltriethoxysilane (GPTES), methyltriethoxysilane (MTES), dimethyldiethoxysilane (DMDES), metacryloxypropyltrimethoxysilane (MAP ), 3- (trimethoxysilyl) propylamine (APTMS), 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane (ECHETES), 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (ECHETMS) , 6-epoxyhexyltriethoxysilane (ENTES). In this second variant of a process according to the invention, an organic / inorganic hybrid matrix is formed by hydrolyzing the condensation of each alkoxysilane. Advantageously and according to the invention, the treatment solution comprises a single alkoxysilane. Advantageously and according to the invention, the treatment solution comprises at least one metal alkoxide.
10 Avantageusement et selon l'invention, chaque alcoxyde métallique est de formule générale (VII) suivante : M'(0-R9),f, (VII), dans laquelle : o M' est un élément métallique choisi dans le groupe formé de 15 l'aluminium (At), du vanadium (V), du titane (Ti) et du zirconium (Zr), o R9 est un groupement hydrocarboné aliphatique de formule [-CnE12,1] -notamment choisi dans le groupe formé d'un méthyle, d'un éthyle, d'un propyle, d'un butyle, en particulier d'un butyle secondaire de formule [CH3-CH2-(CH3)CH-]- dans laquelle n est un nombre entier supérieur ou 20 égal à 1, et ; o n" est un nombre entier naturel représentant la valence de l'élément métallique M'. Dans un procédé selon l'invention, on forme par hydrolyse de chaque alcoxysilane et de chaque alcoxyde métallique des espèces réactives 25 réparties de façon homogène dans la solution de traitement et aptes à polymériser et à former une matrice hybride organique/inorganique. On forme ainsi une matrice hybride organique/inorganique par hydrolyse condensation de chaque alcoxysilane et de chaque alcoxyde métallique. Avantageusement, on choisit chaque alcoxyde métallique dans 30 le groupe formé des alcoxydes d'aluminium -notamment du tri(s-butoxyde) d'aluminium, du tri(n-butoxyde) d'aluminium, du tri(éthoxyde) d'aluminium, du 10 2981366 tri(éthoxyéthoxyéthoxyde) d'aluminium et du tri(isopropoxyde) d'aluminium-, des alcoxydes de titane -notamment du tétra(n-butoxyde) de titane, du tétra(isobutoxyde) de titane, du tétra(isopropoxyde) de titane, du tétra(méthoxyde) de titane et du tétra(éthoxyde) de titane-, des alcoxydes de vanadium, -notamment 5 du tri(isobutoxyde)oxyde de vanadium et du tri(isopropoxyde)oxyde de vanadium et des alcoxydes de zirconium -notamment du tétra(éthoxyde) de zirconium, du tétra(isopropoxyde) de zirconium, du tétra(n-propoxyde) de zirconium, du tétra(n-butoxyde) de zirconium et du tétra(t-butoxyde) de zirconium. Avantageusement, chaque alcoxyde métallique est un 10 alcoxyde d'aluminium de formule générale (III) suivante : At(OR4)' (III), dans laquelle : o At et O sont respectivement les éléments aluminium et oxygène, et ; 15 o R4 est un groupement hydrocarboné aliphatique présentant de 1 à 10 atomes de carbone -notamment choisi dans le groupe formé d'un méthyle, d'un éthyle, d'un propyle, d'un butyle, en particulier d'un butyle secondaire de formule [CH3-CH2(CH3)-CH-]- ; o n est un nombre entier naturel représentant la valence de l'élément 20 aluminium (At). Avantageusement et selon l'invention, la solution de traitement comprend un alcoxyde métallique unique. On forme ainsi une matrice hybride inorganique par hydrolyse condensation de chaque alcoxysilane et de l'alcoxyde métallique unique. Avantageusement, la solution de traitement comprend 25 un alcoxyde métallique unique et un alcoxysilane unique. On forme ainsi une matrice hybride inorganique par hydrolyse condensation de l'alcoxysilane unique et de l'alcoxyde métallique unique. Avantageusement, la solution de traitement comprend, à titre d' alcoxyde métallique unique, un alcoxyde d'aluminium unique.Advantageously and according to the invention, each metal alkoxide has the following general formula (VII): M '(O-R9), f, (VII), in which: M' is a metal element selected from the group consisting of Aluminum (At), vanadium (V), titanium (Ti) and zirconium (Zr), where R9 is an aliphatic hydrocarbon group of formula [-CnE12.1] -particularly selected from the group consisting of methyl, ethyl, propyl, butyl, in particular secondary butyl of formula [CH 3 -CH 2 - (CH 3) CH -] - in which n is a whole number greater than or equal to at 1, and; In a process according to the invention, each alkoxysilane and each metal alkoxide are hydrolyzed by reacting homogeneously distributed reactive species in the reaction solution of the metal element M '. The process is thus capable of polymerizing and forming an organic / inorganic hybrid matrix, thereby forming an organic / inorganic hybrid matrix by hydrolyzing the condensation of each alkoxysilane and each metal alkoxide Advantageously, each metal alkoxide is selected from the group consisting of alkoxides. of aluminum, especially aluminum tri (t-butoxide), aluminum tri (n-butoxide), aluminum tri (ethoxide), aluminum tri (ethoxyethoxyethoxide) and tri ( aluminum isopropoxide), titanium alkoxides -including titanium tetra (n-butoxide), titanium tetra (isobutoxide), titanium tetra (isopropoxide), titanium tetra (methoxide) and titanium. titanium tetra (ethoxide), vanadium alkoxides, especially tri (isobutoxide) vanadium oxide and tri (isopropoxide) vanadium oxide and zirconium alkoxides, especially tetra (ethoxide) zirconium, tetra (zirconium isopropoxide), zirconium tetra (n-propoxide), zirconium tetra (n-butoxide) and zirconium tetra (t-butoxide). Advantageously, each metal alkoxide is an aluminum alkoxide of the following general formula (III): ## STR3 ## wherein: At and O are respectively the aluminum and oxygen elements, and R4 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, especially selected from the group consisting of methyl, ethyl, propyl, butyl, especially secondary butyl; of formula [CH3-CH2 (CH3) -CH-] -; o n is a natural integer representing the valency of the aluminum element (At). Advantageously and according to the invention, the treatment solution comprises a single metal alkoxide. An inorganic hybrid matrix is thus formed by condensation hydrolysis of each alkoxysilane and the single metal alkoxide. Advantageously, the treatment solution comprises a single metal alkoxide and a single alkoxysilane. An inorganic hybrid matrix is thus formed by condensation hydrolysis of the single alkoxysilane and the single metal alkoxide. Advantageously, the treatment solution comprises, as a single metal alkoxide, a single aluminum alkoxide.
30 On forme ainsi une solution de traitement comprenant un alcoxyde métallique -notamment un alcoxyde d'aluminium- unique et un 11 2 9 8 1 3 6 6 alcoxysilane unique, ladite solution de traitement étant d'une grande simplicité dans sa composition et malgré tout adaptée pour procurer un revêtement anticorrosion hautement performant. Avantageusement, l'alcoxyde d'aluminium unique est choisi 5 dans le groupe formé du tri(s-butoxyde) d'aluminium, du tri(n-butoxyde) d'aluminium, du tri(éthoxyde) d'aluminium, du tri(éthoxyéthoxyéthoxyde) d'aluminium et du tri(isopropoxyde) d'aluminium. Avantageusement, le rapport molaire des alcoxysilanes par rapport aux alcoxydes métalliques dans la solution de traitement est compris entre 10 99/1 et 50/50. Avantageusement, le rapport molaire de l'ensemble des alcoxysilanes par rapport à l'ensemble des alcoxydes métalliques dans la solution de traitement est compris entre 99/1 et 50/50. Avantageusement et selon l'invention, le rapport molaire des alcoxysilanes et des alcoxydes métalliques -notamment de l'alcoxyde d'aluminium- 15 dans la solution de traitement est compris entre 85/15 et 6/4 notamment compris entre 8/2 et 64/36. Avantageusement, le rapport molaire de l'ensemble des alcoxysilanes par rapport à l'ensemble des alcoxydes métalliques dans la solution de traitement est compris entre 8/2 et 6/4. Avantageusement et selon l'invention, le substrat métallique 20 solide est formé d'un matériau choisi dans le groupe formé des matériaux oxydables -notamment de l'aluminium (par exemple l'alliage 2024T3), du titane (par exemple l'alliage TA6V), du magnésium (par exemple, l'alliage AZ30) et de leurs alliages-. Avantageusement et selon l'invention, on applique la solution de traitement par trempage/retrait du substrat métallique solide dans ladite solution 25 de traitement. Avantageusement, on réalise le retrait du substrat métallique solide de la solution de traitement avec une vitesse prédéterminée comprise entre 5 cm/min et 10 cm/min. Avantageusement et selon l'invention, on applique la solution 30 de traitement par pulvérisation atmosphérique en surface du substrat métallique solide.Thus, a treatment solution comprising a metal alkoxide, especially a single alkoxide of aluminum and a single alkoxysilane, is formed, said treatment solution being of great simplicity in its composition and nevertheless adapted to provide a high performance anticorrosive coating. Advantageously, the single aluminum alkoxide is selected from the group consisting of aluminum tri (s-butoxide), aluminum tri (n-butoxide), aluminum tri (ethoxide), tri ( aluminum ethoxyethoxyethoxide) and aluminum tri (isopropoxide). Advantageously, the molar ratio of the alkoxysilanes with respect to the metal alkoxides in the treatment solution is between 99/1 and 50/50. Advantageously, the molar ratio of all the alkoxysilanes relative to the total of metal alkoxides in the treatment solution is between 99/1 and 50/50. Advantageously and according to the invention, the molar ratio of the alkoxysilanes and metal alkoxides-in particular of the aluminum alkoxide-in the treatment solution is between 85/15 and 6/4, in particular between 8/2 and 64. / 36. Advantageously, the molar ratio of all the alkoxysilanes relative to the total of metal alkoxides in the treatment solution is between 8/2 and 6/4. Advantageously and according to the invention, the solid metal substrate 20 is formed from a material chosen from the group consisting of oxidizable materials-in particular aluminum (for example alloy 2024T3), titanium (for example alloy TA6V ), magnesium (for example, the AZ30 alloy) and their alloys. Advantageously and according to the invention, the treatment solution is applied by soaking / removal of the solid metal substrate in said treatment solution. Advantageously, the solid metal substrate is removed from the treatment solution with a predetermined speed of between 5 cm / min and 10 cm / min. Advantageously and according to the invention, the atmospheric spray treatment solution 30 is applied to the surface of the solid metal substrate.
12 2 9 8 1 3 6 6 Les inventeurs ont observé qu'il est possible de contrôler l'épaisseur de la matrice hybride par la vitesse du retrait du substrat >métallique solide de la solution de traitement. Conformément à la loi de Landau-Levich (Landau L.D. et Levich B.G., (1942), Acta Physiochim. URSS, 17, 42-54) il est possible, pour une solution de traitement de viscosité connue, de, faire varier l'épaisseur de la matrice hybride anticorrosion d'une valeur de 1 grn pour une vitesse de retrait de 1 cm/min, jusqu'à une valeur de 14 gm pour une vitesse de retrait de 20 cm/min. En particulier, une vitesse de retrait de 7 cm/min permet l'obtention d'une matrice hybride d'une épaisseur de 5 pin.The inventors have observed that it is possible to control the thickness of the hybrid matrix by the rate of removal of the solid metal substrate from the treatment solution. According to the Landau-Levich law (Landau LD and Levich BG, (1942), Acta Physiochim, USSR, 17, 42-54), it is possible for a known viscosity treatment solution to vary the thickness of the hybrid anti-corrosion matrix of a value of 1 grn for a withdrawal speed of 1 cm / min, up to a value of 14 gm for a shrinkage speed of 20 cm / min. In particular, a withdrawal speed of 7 cm / min makes it possible to obtain a hybrid matrix with a thickness of 5 μm.
10 On mesure l'épaisseur de la matrice hybride par des méthodes connues en elles-mêmes de l'homme du métier, notamment par profilométrie interférométrique ou par mesure de courants de Foucault induits. Avantageusement, la solution de traitement comprend en outre un plastifiant choisi dans le groupe formé des PEG.The thickness of the hybrid matrix is measured by methods known in themselves to those skilled in the art, in particular by interferometric profilometry or by measurement of induced eddy currents. Advantageously, the treatment solution further comprises a plasticizer selected from the group consisting of PEG.
15 Avantageusement, la solution de traitement liquide comprend un colorant. On choisit un tel colorant dans le groupe formé de la rhodamine B (CAS 81-88-9), du vert de malachite ("brilliant green", CAS 633-03-4) et du xylène cyanole (CAS 2850-17-1). Avantageusement, on utilise la rhodamine B à une concentration dans la solution de traitement liquide comprise entre 5.10-4 mole/L 20 et 10-3 mole/L, le vert de malachite à une concentration dans la solution de traitement liquide comprise entre 5.10-4 mole/L et 10-3 mole/L et le xylène cyanole à une concentration dans la solution de traitement liquide comprise entre 5.10-4 mole/L et 10-3 mole/L. Avantageusement, dans un procédé de traitement 25 anticorrosion selon l'invention, la solution de traitement comprend une charge de nanoparticules formée d'une dispersion colloïdale de la boehmite dans la solution de traitement, c'est-à-dire des nanoparticules solides de boehmite de formule générale [-AlO(OH)-] formant une dispersion colloïdale de nanoparticules de boehmite dans la solution de traitement.Advantageously, the liquid treatment solution comprises a dye. Such a dye is selected from the group consisting of rhodamine B (CAS 81-88-9), malachite green ("brilliant green", CAS 633-03-4) and xylene cyanole (CAS 2850-17-1). ). Advantageously, rhodamine B is used at a concentration in the liquid treatment solution of between 5 × 10 -4 mol / l and 10 3 mol / l, the malachite green at a concentration in the liquid treatment solution of between 5 × 10 -4 mol / l. 4 mol / L and 10-3 mol / L and xylene cyanole at a concentration in the liquid treatment solution of between 5.10-4 mol / L and 10-3 mol / L. Advantageously, in an anticorrosion treatment process according to the invention, the treatment solution comprises a nanoparticle feedstock formed of a colloidal dispersion of boehmite in the treatment solution, ie solid boehmite nanoparticles. of general formula [-AlO (OH) -] forming a colloidal dispersion of boehmite nanoparticles in the treatment solution.
30 Dans un procédé de traitement anticorrosion selon l'invention, pour préparer une solution de traitement on dissout chaque alcoxysilane, chaque 13 2 9 8 1 3 6 6 alcoxyde d'aluminium et, le cas échéant, chaque alcoxyde métallique dans un alcool -notamment choisi dans le groupe formé de l'éthanol, du propanol-1 et du propano1-2- puis on ajoute une quantité d'eau ou, le cas échéant, une quantité d'une solution aqueuse contenant au moins un cation de lanthanide et/ou de la boehmite 5 colloïdale de façon à former une solution de traitement anticorrosion. Avantageusement, à une solution alcoolique on ajoute du(des) alcoxysilane(s) et l'(les) alcoxyde(s) métallique(s) et une quantité d'eau ou, le, cas échéant, une quantité d'une solution aqueuse contenant au moins un cation de lanthanide et/ou des nanoparticules de boehmite colloïdale de façon à conserver 10 sensiblement les propriétés rhéologiques et thixotropiques de la solution de traitement. Avantageusement, dans une troisième variante d'un procédé de traitement anticorrosion selon l'invention, on forme une solution de traitement comprenant des nanoparticules de boehmite de formule générale A10(OH) et 15 présentant une distribution surfacique de cations de lanthanides -notamment des cations de cérium- et/ou de vanadate. On obtient de telles nanoparticules de boehmite, dites nanoparticules de boehmite physisorbées, par un procédé connu en lui-même de l'homme du métier et notamment adapté d'un procédé décrit par Yoldas (Yoldas B.E. et al., (1975), J. Mater. Sci., 10, 1856).In an anticorrosive treatment process according to the invention, in order to prepare a treatment solution, each alkoxysilane, each aluminum alkoxide and, where appropriate, each metal alkoxide in an alcohol is dissolved-notably selected from the group consisting of ethanol, propanol-1 and propano-2-then a quantity of water or, where appropriate, an amount of an aqueous solution containing at least one lanthanide cation and / or or colloidal boehmite so as to form an anti-corrosion treatment solution. Advantageously, alkoxysilane (s) and the metal (s) alkoxide (s) and an amount of water or, if appropriate, an amount of an aqueous solution, are added to an alcoholic solution. containing at least one lanthanide cation and / or colloidal boehmite nanoparticles so as to substantially retain the rheological and thixotropic properties of the treatment solution. Advantageously, in a third variant of an anticorrosion treatment process according to the invention, a treatment solution comprising boehmite nanoparticles of general formula A10 (OH) and having a surface distribution of lanthanide cations-notably cations is formed. of cerium- and / or vanadate. Such boehmite nanoparticles, called physisorbed boehmite nanoparticles, are obtained by a process known in itself to those skilled in the art and in particular adapted from a process described by Yoldas (Yoldas BE et al., (1975), J. Mater Sci., 10, 1856).
20 Dans cette troisième variante d'un procédé selon l'invention, les inventeurs ont constaté une amélioration de la résistance à la corrosion d'un substrat métallique solide traité par une solution de traitement soumis à une immersion dans un bain corrosif de NaCt à 0,05 mole/L. Avantageusement, dans une quatrième variante d'un procédé 25 de traitement anticorrosion selon l'invention, on forme une solution de traitement comprenant des nanoparticules de boehmite, dite boehmite dopée, de formule générale (VIII) suivante : Ati,(X)x0(OH) (VIII), dans laquelle 30 - X est un élément, dit élément de dopage, choisi dans le groupe formé des lanthanides trivalent -notamment du cérium trivalent-, et ; 14 2 9 8 1 3 6 6 - x est un nombre relatif compris entre 0,002 et 0,01. On obtient de telles nanoparticules de boehmite dopée par un procédé dans lequel on mélange une solution d'au moins un précurseur d'aluminium -notamment du At(0C4H9)3- dans l'eau et une solution d'un cation 5 d'un élément de dopage choisi dans le groupe formé d'un nitrate, d'un sulfate, d'un acétate et d'un chlorure de l'élément de dopage. Dans cette quatrième variante d'un procédé selon l'invention, les inventeurs ont constaté une amélioration de la résistance à la corrosion d'un substrat métallique solide traité par une solution de traitement soumis à une 10 immersion dans un bain corrosif de NaCt à 0,05 mole/L. Avantageusement, les nanoparticules de boehmite physisorbée et les nanoparticules de boehmite dopée présentent une plus grande dimension et deux plus petites dimensions, perpendiculaires entre elles et perpendiculaires à ladite plus grande dimension, ladite plus grande dimension est inférieure à 200 mn 15 -notamment inférieure à 100 nm, particulièrement inférieure à 50 nm, de préférence comprise entre 5 nm et 20 nm-, et les deux plus petites dimensions sont inférieures à 10 nm, de préférence de l'ordre de 3 nm. Avantageusement et selon l'invention, la solution de traitement comprend une charge de nanoparticules de boehmite creuses.In this third variant of a method according to the invention, the inventors have found an improvement in the corrosion resistance of a solid metal substrate treated with a treatment solution subjected to immersion in a corrosive NaCl bath at 0.degree. , 05 mole / L. Advantageously, in a fourth variant of an anticorrosion treatment process according to the invention, a treatment solution is formed comprising boehmite nanoparticles, called doped boehmite, of the following general formula (VIII): Ati, (X) xO ( OH) (VIII), wherein: - X is an element, referred to as a doping element, selected from the group consisting of trivalent lanthanides, especially trivalent cerium, and; 14 2 9 8 1 3 6 6 - x is a relative number between 0.002 and 0.01. Such doped boehmite nanoparticles are obtained by a process in which a solution of at least one aluminum precursor - notably At (OC 4 H 9) 3 - in water and a solution of a cation of a doping element selected from the group consisting of a nitrate, a sulfate, an acetate and a chloride of the doping element. In this fourth variant of a method according to the invention, the inventors have found an improvement in the corrosion resistance of a solid metal substrate treated with a treatment solution subjected to immersion in a corrosive bath of NaCl at 0.degree. , 05 mole / L. Advantageously, the physisorbed boehmite nanoparticles and the doped boehmite nanoparticles have a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger dimension, said larger dimension is less than 200 nm, in particular less than 100. nm, particularly less than 50 nm, preferably between 5 nm and 20 nm-, and the two smaller dimensions are less than 10 nm, preferably of the order of 3 nm. Advantageously and according to the invention, the treatment solution comprises a charge of hollow boehmite nanoparticles.
20 Avantageusement et selon l'invention, après l'application de la solution de traitement, on réalise un traitement thermique du substrat métallique adapté pour permettre la formation de la matrice hybride et l'évaporation des solvants. Avantageusement dans un procédé selon l'invention, avant 25 d'appliquer la solution de traitement, on plonge ladite surface oxydable du substrat métallique solide dans une solution, dite solution de conversion, liquide formée d'au moins un inhibiteur de corrosion dans l'eau, ledit inhibiteur de corrosion étant choisi dans le groupe formé des cations de lanthanide et on maintient en contact ladite surface oxydable du substrat métallique solide avec la solution de conversion 30 pendant une durée adaptée pour former une couche de conversion formée dudit 15 2981366 lanthanide lié par au moins une liaison covalente à la surface oxydable et s'étendant en surface du substrat métallique solide. Dans une cinquième variante d'un procédé de traitement anticorrosion selon l'invention, on forme d'abord une couche de conversion sur la 5 surface oxydable d'un substrat métallique solide par mise en contact de ladite surface oxydable avec la solution de conversion. Un traitement par une telle solution de conversion constitue un traitement anticorrosion en cela qu'il permet la formation d'une couche de conversion en surface du substrat métallique solide, en lieu et place d'une couche d'oxyde du métal du substrat métallique solide, ladite 10 couche de conversion présentant une résistance vis-à-vis de la corrosion -notamment mesurée par spectroscopie d'impédance électrochimique (SIE)- qui est accrue par rapport à la résistance vis-à-vis de la corrosion de la couche d'oxyde formée naturellement en surface du substrat métallique solide. En fait, les inventeurs ont observé qu'un traitement 15 anticorrosion selon l'invention dans lequel on forme d'abord une couche de conversion en surface d'un substrat métallique solide, puis on applique une solution de traitement comprenant au moins un alcoxysilane, un cation de cérium à une concentration comprise entre 0,005 mole/L et 0,015 mole/L, et le cas échéant, au moins un alcoxyde métallique, permet d'augmenter la résistance vis-à-vis de la 20 corrosion de la surface oxydable d'un substrat métallique solide, même après immersion de la surface oxydable du substrat métallique solide pendant une durée prédéterminée -notamment une durée supérieure à 1 heure- dans un bain de corrosion, notamment un bain aqueux de NaCC 0,05 mole/L. Les inventeurs supposent que le traitement de la surface 25 oxydable du substrat métallique solide par la solution de conversion conduit à la formation d'une couche de conversion de résistance vis-à-vis de la corrosion augmentée par rapport à la couche d'oxyde métallique du substrat métallique solide non traité par la solution de conversion. Une telle couche de conversion se caractérise, selon une représentation, dite représentation de "Nyquist", du 30 diagramme d'impédance électrochimique par une valeur Z'(w) de résistance surfacique (û.cm2) augmentée par rapport à la valeur Z'(w) de la résistance 16 2981366 surfacique d'une couche d'oxyde métallique solide naturellement formée en surface d'un substrat métallique solide. On réalise les mesures d'impédance Z(co) en mode potentiostatique autour du potentiel libre, avec une perturbation sinusoïdale. L'amplitude de perturbation sinusoïdale est fixée à 10 mV de façon à satisfaire les 5 conditions de linéarité. Les fréquences balayées lors des mesures d'impédance sont comprises entre 65 kHz et 10 mHz avec 10 points par décade. Les inventeurs ont montré par spectroscopy de dispersion d'énergie ("EDS, Energy Dispersive Spectroscopy") que cette couche de conversion est constituée d'oxydes mixtes de lanthanide et du métal constitutif de la surface 10 oxydable du substrat métallique solide. Avantageusement, la couche de conversion s'étendant en surface du substrat métallique solide présente une épaisseur moyenne comprise entre 1 nm et 200 nm. Les inventeurs ont observé que l'augmentation de la durée 15 d'immersion d'un substrat métallique solide dans une solution de conversion selon l'invention permet une augmentation de la valeur de la résistance surfacique de surface qui va au-delà de la valeur limite de la résistance surfacique de la couche d'oxyde d'aluminium formée naturellement en surface d'une pièce d'alliage d' aluminium.Advantageously and according to the invention, after the application of the treatment solution, a heat treatment of the metal substrate adapted to allow the formation of the hybrid matrix and the evaporation of the solvents is carried out. Advantageously in a process according to the invention, before applying the treatment solution, said oxidizable surface of the solid metal substrate is immersed in a so-called conversion solution solution, a liquid formed of at least one corrosion inhibitor in the wherein said corrosion inhibitor is selected from the group consisting of lanthanide cations and said oxidizable surface of the solid metal substrate is maintained in contact with the conversion solution for a period of time suitable to form a conversion layer formed from said bound lanthanide; by at least one covalent bond to the oxidizable surface and extending at the surface of the solid metal substrate. In a fifth variant of an anticorrosion treatment process according to the invention, a conversion layer is first formed on the oxidizable surface of a solid metal substrate by contacting said oxidizable surface with the conversion solution. A treatment with such a conversion solution constitutes an anticorrosion treatment in that it allows the formation of a surface conversion layer of the solid metal substrate, instead of a metal oxide layer of the solid metal substrate. , said conversion layer exhibiting a resistance to corrosion - in particular measured by electrochemical impedance spectroscopy (EIS) - which is increased with respect to the resistance to corrosion of the coating layer. oxide formed naturally on the surface of the solid metal substrate. In fact, the inventors have observed that an anticorrosion treatment according to the invention in which a surface conversion layer of a solid metal substrate is first formed, then a treatment solution comprising at least one alkoxysilane is applied, a cerium cation at a concentration of between 0.005 mol / l and 0.015 mol / l and, if appropriate, at least one metal alkoxide, makes it possible to increase the resistance to corrosion of the oxidizable surface of a solid metal substrate, even after immersing the oxidizable surface of the solid metal substrate for a predetermined period of time - especially a time greater than 1 hour - in a corrosion bath, especially an aqueous bath of NaCC 0.05 mol / L. The inventors assume that the treatment of the oxidizable surface of the solid metal substrate with the conversion solution results in the formation of an increased corrosion resistance layer with respect to the metal oxide layer. solid metal substrate not treated with the conversion solution. Such a conversion layer is characterized, according to a representation, called "Nyquist" representation, of the electrochemical impedance diagram by a value Z '(w) of surface resistance (û.cm2) increased with respect to the value Z' (w) surface resistance of a solid metal oxide layer naturally formed on the surface of a solid metal substrate. The impedance measurements Z (co) are carried out in potentiostatic mode around the free potential, with a sinusoidal disturbance. The sinusoidal disturbance amplitude is set at 10 mV to satisfy the linearity conditions. The frequencies scanned during impedance measurements are between 65 kHz and 10 mHz with 10 points per decade. The inventors have shown by Energy Dispersive Spectroscopy (EDS) that this conversion layer consists of mixed oxides of lanthanide and the constituent metal of the oxidizable surface of the solid metal substrate. Advantageously, the conversion layer extending at the surface of the solid metal substrate has an average thickness of between 1 nm and 200 nm. The inventors have observed that increasing the immersion time of a solid metal substrate in a conversion solution according to the invention makes it possible to increase the value of the surface area resistance which goes beyond the value. limit of the surface resistance of the layer of aluminum oxide formed naturally on the surface of an aluminum alloy piece.
20 En outre, les inventeurs ont aussi observé qu'un tel traitement de la surface oxydable d'un substrat métallique solide par une solution de conversion ne conduit à aucune augmentation détectable de la masse du substrat. Une telle couche de conversion ne correspond pas à une cristallisation d'oxydes/hydroxydes de lanthanide en surface du substrat métallique solide.In addition, the inventors have also observed that such a treatment of the oxidizable surface of a solid metal substrate by a conversion solution does not lead to any detectable increase in the mass of the substrate. Such a conversion layer does not correspond to a crystallization of lanthanide oxides / hydroxides on the surface of the solid metal substrate.
25 En particulier, le traitement de la surface oxydable du substrat métallique solide par la solution de conversion permet la formation d'une couche de conversion de protection active et de cicatrisation en surface du substrat métallique solide par formation d'une pluralité de liaison covalente intervenant entre l'élément lanthanide (Ln) inhibiteur de corrosion et un élément métallique (M) du substrat 30 métallique solide. Les inventeurs ont montré par analyse chimique des énergies de liaison -notamment par spectrométrie photo-électronique X (XPS)- que cette liaison 17 2981366 covalente est du type M-0-Ln-0- dans laquelle M représente un élément métallique du substrat métallique solide, 0 est un atome d'oxygène et Ln représente l'élément inhibiteur de corrosion choisi parmi les lanthanides. Dans un procédé selon l'invention, on applique sur la surface 5 oxydable du substrat métallique solide, et le: cas échéant en surface de la couche de conversion, une solution de traitement formée d'un sol hybride organique/inorganique d'au moins un alcoxysilane -notamment d'un alcoxysilane porteur d'un groupement organique-, d'un cation de cérium à une concentration comprise entre 0,005 mole/L et 0,015 mole/L, et le cas échéant d'au moins un 10 alcoxyde métallique, adapté(s) pour former par hydrolyse/condensation du(des) alcoxysilane(s), du(des) alcoxyde(s) métallique(s) et du cation de cérium une matrice hybride organique/inorganique formée d' enchainements atomiques inorganiques (-Si-O-Si-) et d' enchainements hydrocarbonés organiques. Les inventeurs ont observé que l'immersion d'un substrat 15 métallique solide dans une solution de conversion permet non seulement la formation d'une telle couche de conversion et la protection active du substrat métallique solide vis-à-vis de la corrosion, mais permet en outre une amélioration de l'adhérence d'un sol hybride en surface du substrat métallique solide et une amélioration des propriétés de protection passive dudit substrat métallique solide 20 vis-à-vis de la corrosion. Avantageusement et selon l'invention, on choisit chaque inhibiteur de corrosion de la solution de conversion dans le groupe formé des cations de lanthane (La), des cations de cérium (Ce), des cations de praséodyme (Pr), des cations de néodyme (Nd), des cations de samarium (Sm), des 25 cations d'europium (Eu), des cations de gadolinium (Gd), des cations de terbium (Tb), des cations de dysprosium (Dy), des cations d'holmium (Ho), des cations d'erbium (Er), des cations de thulium (Tm), des cations d'ytterbium (Yb) et des cations de lutécium (Lu). Avantageusement et selon l'invention, on choisit chaque 30 inhibiteur de corrosion de la solution de conversion dans le groupe formé des 18 2981366 chlorures de lanthanide, des nitrates de lanthanide, des acétates de lanthanide et des sulfates de, lanthanide. Avantageusement, on choisit chaque inhibiteur de corrosion de la solution de conversion dans le groupe - formé du chlorure de lanthane (LaCt3), 5 du chlorure de cérium (CeCt3), du chlorure d'yttrium (YCt3), du sulfate de cérium (Ce2(SO4)3), de l'acétate de cérium (Ce(CH3COO)3), du chlorure de praséodyme (PrCt3), du chlorure de néodyme (NdCt3) Avantageusement et selon l'invention, chaque inhibiteur de corrosion de la solution de conversion est un cation de cérium -notamment le nitrate 10 de cérium (Ce(NO3)3), l'acétate de cérium (Ce(CH3COO)3), le sulfate de cérium (Ce2(SO4)3) et le chlorure de cérium (CeCt3)- dans lequel l'élément cérium est de valence III (Cern). Avantageusement et selon l'invention, le cation de cérium (Ce) de la solution de traitement est choisi dans le groupe formé des 15 chlorures de cérium et des nitrates de cérium. En particulier, l'inhibiteur de corrosion de la solution de conversion est du nitrate de cérium Ce(NO3)3. Les inventeurs ont montré que la couche de conversion est constituée d'oxydes mixtes de cérium et du métal constitutif de la surface oxydable du substrat métallique solide. L'analyse chimique par spectroscopie de dispersion 20 d'énergie ("EDS, Energy Dispersive Spectroscopy") présente des raies La et Ma caractéristiques du cérium en surface du substrat métallique solide. Les inventeurs ont observé qu'un tel procédé de traitement anticorrosion permet de former un revêtement anticorrosion formé d'une couche de conversion comprenant au moins un inhibiteur de corrosion et adaptée pour 25 permettre une auto-cicatrisation du substrat métallique solide, ladite couche de conversion étant elle-même protégée par la matrice hybride riche en cérium présentant un effet barrière optimal. Mais les inventeurs ont aussi observé de façon totalement surprenante que la couche de conversion 30 - n'altère pas les propriétés mécaniques de résistance à la délamination et d'adhésion de la matrice hybride sur le substrat métallique solide ; 19 2 9 8 1 3 6 6 - n'altère pas les propriétés barrière de la matrice hybride, telles que mesurées par SIE permet de ralentir la perte de résistance à la corrosion du substrat métallique solide durant aune immersion prolongée de celui-ci dans un bain de 5 corrosion, et - retarde l'apparition des produits de corrosion sur les substrats métalliques subissant un point de corrosion. La présence d'une couche de conversion riche en inhibiteur de corrosion située à l'interface entre le substrat métallique solide et la matrice hybride 10 permet d'apporter une protection active supplémentaire, qui s'ajoute à l'effet protecteur de la matrice hybride. Avantageusement et selon l'invention, la solution de conversion présente une concentration en inhibiteur de corrosion -notamment en cérium (Ce)- comprise entre 0,001 mole/L et 0,5 mole/L, notamment comprise 15 entre 0.05 mole/L et 0,3 mole/L, en particulier de l'ordre de 0,1 mole/L. Avantageusement, la solution de conversion présente une concentration en inhibiteur de corrosion -notamment en cérium (Ce)- comprise entre 0,01 mole/L et 0,5 mole/L, préférentiellement comprise entre 0,1 mole/L et 0,5 mole/L.In particular, the treatment of the oxidizable surface of the solid metal substrate by the conversion solution allows the formation of an active protection conversion layer and surface healing of the solid metal substrate by forming a plurality of covalent bonds involved. between the lanthanide element (Ln) corrosion inhibitor and a metal element (M) of the solid metal substrate. The inventors have shown by chemical analysis of the binding energies - in particular by X-ray photoelectron spectrometry (XPS) - that this covalent bond is of the M-O-Ln-O- type in which M represents a metallic element of the metallic substrate. solid, 0 is an oxygen atom and Ln represents the corrosion inhibiting element chosen from lanthanides. In a process according to the invention, the solid metal substrate, and optionally the surface of the conversion layer, is treated with a treatment solution consisting of an organic / inorganic hybrid soil of at least an alkoxysilane, in particular an alkoxysilane carrying an organic group, a cerium cation at a concentration of between 0.005 mol / l and 0.015 mol / l, and, if appropriate, at least one metal alkoxide, adapted to form by hydrolysis / condensation of alkoxysilane (s), metal alkoxide (s) and cerium cation an organic / inorganic hybrid matrix formed of inorganic atomic chains (-) Si-O-Si-) and organic hydrocarbon chains. The inventors have observed that immersing a solid metal substrate in a conversion solution allows not only the formation of such a conversion layer and the active protection of the solid metal substrate from corrosion, but furthermore allows an improvement in the adhesion of a hybrid soil at the surface of the solid metal substrate and an improvement in the passive protection properties of said solid metal substrate 20 with respect to corrosion. Advantageously and according to the invention, each corrosion inhibitor of the conversion solution is selected from the group consisting of lanthanum (La) cations, cerium (Ce) cations, praseodymium (Pr) cations, neodymium cations. (Nd), samarium (Sm) cations, europium (Eu) cations, gadolinium (Gd) cations, terbium (Tb) cations, dysprosium (Dy) cations, holmium (Ho), erbium cations (Er), thulium cations (Tm), ytterbium cations (Yb) and lutetium cations (Lu). Advantageously and according to the invention, each corrosion inhibitor of the conversion solution is selected from the group consisting of lanthanide chlorides, lanthanide nitrates, lanthanide acetates, and lanthanide sulfates. Advantageously, each corrosion inhibitor of the conversion solution is selected from the group consisting of lanthanum chloride (LaCt3), cerium chloride (CeCt3), yttrium chloride (YCt3), cerium sulphate (Ce2 (SO4) 3), cerium acetate (Ce (CH3COO) 3), praseodymium chloride (PrCt3), neodymium chloride (NdCt3) Advantageously and according to the invention, each corrosion inhibitor of the solution of The conversion is a cerium cation-notably cerium nitrate (Ce (NO3) 3), cerium acetate (Ce (CH3COO) 3), cerium sulphate (Ce2 (SO4) 3) and cerium chloride. (CeCt3) - wherein the cerium element is of valence III (Cern). Advantageously and according to the invention, the cerium (Ce) cation of the treatment solution is chosen from the group consisting of cerium chlorides and cerium nitrates. In particular, the corrosion inhibitor of the conversion solution is cerium nitrate Ce (NO3) 3. The inventors have shown that the conversion layer consists of mixed oxides of cerium and the constituent metal of the oxidizable surface of the solid metal substrate. Chemical analysis by Energy Dispersive Spectroscopy (EDS) has La and Ma lines characteristic of cerium at the surface of the solid metal substrate. The inventors have observed that such an anticorrosion treatment method makes it possible to form an anticorrosion coating formed of a conversion layer comprising at least one corrosion inhibitor and adapted to allow self-healing of the solid metal substrate, said conversion layer being itself protected by the cerium-rich hybrid matrix having an optimal barrier effect. But the inventors have also observed in a totally surprising manner that the conversion layer 30 does not alter the mechanical properties of delamination resistance and adhesion of the hybrid matrix to the solid metal substrate; 19 2 9 8 1 3 6 6 - does not alter the barrier properties of the hybrid matrix, as measured by SIE can slow down the loss of corrosion resistance of the solid metal substrate during a prolonged immersion thereof in a corrosion bath, and - delays the appearance of corrosion products on metal substrates undergoing a point of corrosion. The presence of a conversion layer rich in corrosion inhibitor located at the interface between the solid metal substrate and the hybrid matrix 10 provides additional active protection, which adds to the protective effect of the hybrid matrix. . Advantageously and according to the invention, the conversion solution has a concentration of corrosion inhibitor - in particular cerium (Ce) - of between 0.001 mol / l and 0.5 mol / l, in particular between 0.05 mol / l and 0 mol. , 3 mol / L, in particular of the order of 0.1 mol / L. Advantageously, the conversion solution has a concentration of corrosion inhibitor - in particular cerium (Ce) - of between 0.01 mole / L and 0.5 mole / L, preferably between 0.1 mole / L and 0.5 mol / L.
20 Avantageusement, on maintient en contact la surface oxydable du substrat métallique solide et la solution de conversion pendant une durée prédéterminée comprise entre 1 s et 30 min, notamment entre 1 s et 300 s, de préférence entre 1 s et 15 s, en particulier entre 1 s et 10 s, plus préférentiellement entre 1 s et 3 s.Advantageously, the oxidizable surface of the solid metal substrate is maintained in contact with the conversion solution for a predetermined period of between 1 s and 30 min, in particular between 1 s and 300 s, preferably between 1 s and 15 s, in particular between 1 s and 10 s, more preferably between 1 s and 3 s.
25 Avantageusement, après l'étape de mise en contact de la surface oxydable du substrat métallique solide et de la solution de conversion, on sèche le substrat métallique solide à une température prédéterminée inférieure à 100°C -notamment de l'ordre de 50°C-, de façon à former en surface du substrat métallique solide, une couche, dite couche de conversion, de l'élément 30 Ln (lanthanide) inhibiteur de corrosion lié à un élément M métallique du substrat métallique solide par une liaison du type M-O-Ln-O-.Advantageously, after the step of contacting the oxidizable surface of the solid metal substrate and the conversion solution, the solid metal substrate is dried at a predetermined temperature of less than 100 ° C., in particular of the order of 50 ° C. C-, so as to form on the surface of the solid metal substrate, a layer, referred to as the conversion layer, of the corrosion inhibiting element Ln (lanthanide) bonded to a metal element M of the solid metal substrate by a connection of the type MO. -ln-O-.
20 2 9 8 1 3 6 6 Avantageusement, la solution de conversion présente un pH sensiblement de l'ordre de 4. Avantageusement, on ajuste le pH de la solution de conversion par addition d'un acide minéral -notamment d'acide nitrique- à la solution de conversion.Advantageously, the conversion solution has a pH substantially of the order of 4. Advantageously, the pH of the conversion solution is adjusted by the addition of a mineral acid-in particular nitric acid- to the conversion solution.
5 Les inventeurs ont observé qu'un procédé de traitement anticorrosion d'un substrat métallique solide en deux étapes selon l'invention, permet non seulement une protection active, en particulier par cicatrisation, du substrat métallique solide vis-à-vis de la corrosion mais permet en outre de procurer une protection passive vis-à-vis de ladite corrosion.The inventors have observed that a method for the corrosion treatment of a solid metal substrate in two stages according to the invention not only allows active protection, in particular by healing, of the solid metal substrate with respect to corrosion. but also provides passive protection against said corrosion.
10 Avantageusement et selon l'invention, la composition hydro- alcoolique liquide est formée d'eau et d'au moins un alcool -notamment choisi dans le groupe formé de l'éthanol, du propanol-1 et du propanol-2-. Les inventeurs ont observé qu'un procédé de traitement anticorrosion d'un substrat métallique solide en deux étapes selon l'invention, 15 permet non seulement une protection active, en particulier par cicatrisation, du substrat métallique solide vis-à-vis de la corrosion mais permet en outre de procurer une protection passive vis-à-vis de ladite corrosion. Avantageusement, la solution de conversion présente un pH sensiblement de l'ordre de 4. Avantageusement, on ajuste le pH de la solution de 20 conversion par addition d'un acide minéral -notamment d'acide nitrique- à la solution de conversion. Avantageusement, les nanoparticules de boehmite dopées et/ou physisorbées présentent une plus grande dimension et deux plus petites dimensions, perpendiculaires entre elles et perpendiculaires à ladite plus grande 25 dimension, ladite plus grande dimension est inférieure à 200 nm -notamment inférieure à 100 nm, particulièrement inférieure à 50 nm, de préférence comprise entre 5 nm et 20 nm-, et les deux plus petites dimensions sont inférieures à 10 nm, de préférence de l'ordre de 3 mn. Avantageusement et selon l'invention, la solution de 30 traitement comprend une charge de nanoparticules de boehmite creuses.Advantageously and according to the invention, the liquid aqueous-alcoholic composition is formed of water and at least one alcohol, in particular selected from the group consisting of ethanol, propanol-1 and propanol-2-. The inventors have observed that a method for the corrosion treatment of a solid metal substrate in two stages according to the invention not only allows active protection, in particular by healing, of the solid metal substrate with respect to corrosion. but also provides passive protection against said corrosion. Advantageously, the conversion solution has a pH substantially of the order of 4. Advantageously, the pH of the conversion solution is adjusted by addition of a mineral acid - especially nitric acid - to the conversion solution. Advantageously, the doped and / or physisorbed boehmite nanoparticles have a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger dimension, said larger dimension is less than 200 nm, in particular less than 100 nm, especially less than 50 nm, preferably between 5 nm and 20 nm-, and the two smaller dimensions are less than 10 nm, preferably of the order of 3 min. Advantageously and according to the invention, the treatment solution comprises a charge of hollow boehmite nanoparticles.
21 2981366 L'invention vise aussi un revêtement anticorrosion susceptible d'être obtenu par un procédé selon l'invention. L'invention s'étend par:ailleurs à un revêtement anticorrosion d'un substrat métallique solide formé d'une matrice hybride s'étendant en surface 5 du substrat métallique solide et obtenue par hydrolyse/condensation d'au moins un alcoxysilane ladite matrice hybride présentant un rapport (Si/Ce) molaire d'élément silicium du(des) alcoxysilane(s) par rapport à au moins un cation du cérium (Ce) compris entre 50 et 500, notamment entre 80 et 250.The invention also provides an anticorrosive coating obtainable by a method according to the invention. The invention extends, moreover, to an anticorrosive coating of a solid metal substrate formed by a hybrid matrix extending at the surface of the solid metal substrate and obtained by hydrolysis / condensation of at least one alkoxysilane, said hybrid matrix. having a (Si / Ce) molar ratio of silicon element of (the) alkoxysilane (s) relative to at least one cation of cerium (Ce) between 50 and 500, in particular between 80 and 250.
10 On détermine ce rapport Ce/Si par des méthodes connues en elles-mêmes de l'homme du métier, en particulier par analyse RBS (Rutherford Backscattering Spectrometry) de la diffusion élastique des ions d'un faisceau d'ions incident adaptée pour pouvoir mesurer la quantité d'un élément lourd dans une matrice hybride légère.This Ce / Si ratio is determined by methods known in themselves to those skilled in the art, in particular by RBS (Rutherford Backscattering Spectrometry) analysis of the elastic diffusion of the ions of an incident ion beam adapted to be able to measure the amount of a heavy element in a light hybrid matrix.
15 L'invention s'étend en particulier à un revêtement anticorrosion dans lequel la matrice hybride s'étendant au contact d'un substrat métallique solide et obtenue par hydrolyse/condensation d'au moins un alcoxysilane et, le cas échéant, d'au moins un alcoxyde métallique et comprenant : o au moins un groupement inorganique de formule (IX) générale : 20 -A-0-B- (IX), dans laquelle : ^ O est l'élément oxygène, ^ A et B sont choisis indépendamment l'un de l'autre dans le groupe formé de Si et de M', et ; 25 o au moins un groupement organique de formule (XI) générale : -D-O-R10-0- E- (XI), ^ dans laquelle O est l'élément oxygène, ^ D et E sont choisis indépendamment l'un de l'autre dans le groupe formé de Si, de M' et de Ce, et ; 30 ^ R10 est un groupement hydrocarboné.The invention extends in particular to an anticorrosion coating in which the hybrid matrix extending in contact with a solid metal substrate and obtained by hydrolysis / condensation of at least one alkoxysilane and, where appropriate, from minus a metal alkoxide and comprising: o at least one inorganic group of general formula (IX): -A-O-B- (IX), wherein: O is the oxygen element, A and B are independently selected from each other in the group formed of Si and M ', and; At least one organic group of general formula (XI): -DO-R10-O- E- (XI), in which O is the oxygen element, and D and E are independently selected from one of another in the group consisting of Si, M 'and Ce, and; R10 is a hydrocarbon group.
22 2 9 8 1 3 6 6 Avantageusement, le revêtement anticorrosion présente une épaisseur comprise entre 1 pin et 15 gm. L'invention s'étend par ailleurs à un revêtement anticorrosion présentant au moins l'une des caractéristiques ci-après - la matrice hybride du revêtement anticorrosion est formée d'un matériau composite comprenant un xérogel hybride -notamment un xérogel hybride organique/inorganique- et une charge de nanoparticules de boehmite physisorbée dispersée dans le xérogel hybride - la matrice hybride du revêtement anticorrosion est formée d'un 10 matériau composite comprenant un xérogel hybride -notamment un xérogel hybride organique/inorganique- et une charge de nanoparticules de boehmite dopées de formule générale (VIII) At 1,(X)x0 (OH), (VIII) dans laquelle : 15 o X est un élément, dit élément de dopage, choisi dans le groupe formé des lanthanides trivalents -notamment du cérium trivalent-, et ; o x est un nombre relatif compris entre 0,002 et 0,01 ; ladite charge étant dispersée dans le xérogel hybride ; - la matrice hybride du revêtement anticorrosion est formée d'un 20 matériau composite comprenant un xérogel hybride -notamment un xérogel hybride organique/inorganique- et une charge de nanoparticules de boehmite creuses dispersée dans le xérogel hybride ; - les nanoparticules solides de la charge de nanoparticules de boehmite physisorbées et de la charge de nanoparticules de boehmite dopées présentant une 25 plus grande dimension et deux plus petites dimensions, perpendiculaires entre elles et perpendiculaires à ladite plus grande dimension, la plus grande dimension est inférieure à 200 nm -notamment inférieure à 100 nm, particulièrement inférieure à 50 nm, de préférence comprise entre 5 nm et 20 nm-, et les deux plus petites dimensions sont inférieures à 10 nm, de préférence de l'ordre de 3 nm ; 23 2981366 les nanoparticules solides de la charge de nanoparticules de boehmite creuses sont de forme sensiblement sphérique et présentent un diamètre moyen de l'ordre de 30 nm. Avantageusement, la couche de conversion du revêtement 5 anticorrosion présente une épaisseur comprise entre 1 nm et 200 nm. L'invention s'étend par ailleurs à une surface métallique revêtue d'un revêtement anticorrosion obtenu par un procédé selon l'invention. L'invention concerne également un procédé caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci- 1 0 après. D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante qui se réfère aux figures annexées représentant des modes de réalisation préférentiels de l'invention, donnés uniquement à titre d'exemples non limitatifs, et dans lesquelles : 15 - la figure 1 est une représentation schématique hors proportion d'une variante d'un revêtement anticorrosion selon l'invention ; - la figure 2 en une vue en microscopie électronique à balayage (MEB) d'une coupe transversale d'un revêtement anticorrosion d'un substrat métallique solide obtenu par un procédé selon l'invention ; 20 - la figure 3 est une représentation graphique comparative de l'évolution de la résistance surfacique vis-à-vis de la corrosion d'un substrat métallique solide traité selon deux variantes d'un procédé selon l'invention ; - la figure 4 est une représentation graphique de la résistance surfacique (n.cm2) d'un revêtement anticorrosion en fonction de la concentration en 25 cérium dans la solution de traitement ; - la figure 5 est une représentation graphique de la nano-dureté de Vickers d'un revêtement anticorrosion en fonction de la concentration en cérium dans la solution de traitement - la figure 6 est une représentation graphique de la variation de la valeur 30 du module de Young, en GPa, déterminée par des mesures de nano-indentation ; 24 2981366 - la figure 7 est une représentation graphique de la valeur de la charge critique (mN) de délamination (o), de fissuration (A) et de déformation plastique (o), déterminée par nano-nano-scratch, d'un revêtement anticorrosion en fonction de la concentration en cérium dans la solution de traitement ; 5 - la figure 8 est une représentation de Nyquist de l'impédance électrochimique d'un substrat métallique solide traité (o) ou non traité ( À) avec une solution de conversion ; - la figure 9 est un spectre d'analyse chimique de surface par Spectroscopie de Dispersion Electronique ("Energy Dispersion Spectroscopy (EDS) 10 d'un substrat métallique solide traité avec une solution de conversion selon l' invention. Un revêtement 1 anticorrosion selon l'invention représenté en figure 1 est supporté sur un substrat 2 métallique formé d'éléments M métalliques. Un tel revêtement anticorrosion est formé d'une couche 3 de conversion optionnelle 15 dans laquelle des éléments Ln inhibiteurs de corrosion sont liés par des liaisons covalentes M-O-Ln- à des éléments M métallique du substrat 2 métallique. En outre, des éléments Ln inhibiteurs de corrosion de la couche de conversion forment des liaisons covalentes avec des éléments Si et, le cas échéant, des éléments métalliques M' choisis dans le groupe formé de l'aluminium (A0, du vanadium (V), 20 du titane (Ti) et du zirconium (Zr) et de l'élément cérium (Ce) de la matrice 4 hybride s'étendant en surface de la couche 3 de conversion. La figure 2 représente une coupe en microscopie électronique à balayage (MEB) d'un substrat 2 d'aluminium traité par une variante d'un procédé selon l'invention et comprenant une couche 3 de conversion (optionnelle) 25 s'étendant à l'interface entre le substrat 2 d'aluminium et la matrice 4 hybride. Dans une variante d'un procédé de traitement anticorrosion d'un substrat métallique solide selon l'invention, on réalise d'abord un traitement préparatif de surface d'une pièce d'alliage d'aluminium 2024 T3 laminé. Un tel traitement préparatif, donné uniquement à titre d'exemple non limitatif, a pour 30 objectif d'éliminer de la surface du substrat métallique solide toute trace d'oxydation de l'alliage ou de salissure susceptible de nuire à l'application 25 2 9 8 1 3 6 6 homogène de la solution de conversion et de la solution de traitement sur la surface du substrat lors de son dépôt ("dip-coating", "spray") et à l'ancrage de la matrice hybride anticorrosion obtenue en surface du substrat. Dégraissage du substrat métallique solide par un solvant organique Le traitement préparatif comprend une première étape de dégraissage de la surface du substrat métallique solide lors de laquelle on place la surface dudit substrat en contact avec un solvant de dégraissage. On réalise cette étape de dégraissage par des méthodes connues en elles-mêmes de l'homme du 10 métier, notamment par trempage de la surface du substrat dans le solvant de dégraissage ou en aspergeant ladite surface avec le solvant de dégraissage. A titre d'exemples, le solvant de dégraissage peut être du chlorure de méthylène pur stabilisé (commercialisé sous la marque Methoklone) ou de l'acétone pure. Dans ce cas, on réalise cette étape de dégraissage à une 15 température inférieure à 42°C et pendant une durée comprise entre 5 sec et 3 min. Il est possible de soumettre le substrat métallique solide à un traitement par les ultrasons lors de cette première étape de dégraissage. Dégraissage du substrat métallique solide par une solution alcaline 20 Le traitement préparatif du substrat métallique solide comprend une deuxième étape successive de dégraissage de la surface dudit substrat lors de laquelle on place la surface du substrat en contact avec une préparation alcaline, notamment commercialisée sous la marque TURCO 4215 (HENKEL, Boulogne-Billancourt, France). On réalise cette étape de dégraissage alcalin par des 25 méthodes connues en elles-mêmes de l'homme du métier, notamment par trempage de la surface du substrat dans la préparation alcaline ou en aspergeant ladite surface avec ladite préparation pendant une durée comprise entre 10 min et 30 min. De préférence, on réalise cette étape de dégraissage alcalin à une température comprise entre 50°C et 70°C. Il est possible de soumettre le substrat à un traitement par les 30 ultrasons lors de cette deuxième étape de dégraissage par une solution alcaline.Advantageously, the anticorrosion coating has a thickness of between 1 μm and 15 μm. The invention furthermore extends to an anticorrosive coating having at least one of the following characteristics: the hybrid matrix of the anticorrosive coating is formed of a composite material comprising a hybrid xerogel - in particular an organic / inorganic hybrid xerogel and a physisorbed boehmite nanoparticle feed dispersed in the hybrid xerogel - the hybrid matrix of the anticorrosive coating is formed of a composite material comprising a hybrid xerogel - especially an organic / inorganic hybrid xerogel - and a doped boehmite nanoparticle feed. general formula (VIII) At 1, (X) x 0 (OH), (VIII) wherein: X is an element, referred to as a doping element, selected from the group consisting of trivalent lanthanides, especially trivalent cerium, and ; o x is a relative number between 0.002 and 0.01; said filler being dispersed in the hybrid xerogel; the hybrid matrix of the anticorrosive coating is formed of a composite material comprising a hybrid xerogel-especially an organic / inorganic hybrid xerogel-and a charge of hollow boehmite nanoparticles dispersed in the hybrid xerogel; the solid nanoparticles of the charge of physisorbed boehmite nanoparticles and the charge of doped boehmite nanoparticles having a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger dimension, the largest dimension is smaller; at 200 nm, in particular less than 100 nm, particularly less than 50 nm, preferably between 5 nm and 20 nm, and the two smaller dimensions are less than 10 nm, preferably of the order of 3 nm; The solid nanoparticles of the charge of hollow boehmite nanoparticles are of substantially spherical shape and have a mean diameter of the order of 30 nm. Advantageously, the conversion layer of the anticorrosive coating has a thickness of between 1 nm and 200 nm. The invention also extends to a metal surface coated with an anticorrosion coating obtained by a method according to the invention. The invention also relates to a process characterized in combination by all or some of the characteristics mentioned above or hereinafter. Other objects, features and advantages of the invention will appear on reading the following description which refers to the appended figures representing preferred embodiments of the invention, given solely by way of non-limiting examples, and in which: FIG. 1 is a schematic out-of-proportion representation of a variant of an anticorrosion coating according to the invention; - Figure 2 in a scanning electron microscope (SEM) view of a cross section of an anticorrosion coating of a solid metal substrate obtained by a method according to the invention; FIG. 3 is a comparative graphical representation of the evolution of the surface resistance with respect to the corrosion of a solid metal substrate treated according to two variants of a method according to the invention; FIG. 4 is a graphical representation of the surface resistance (n.cm2) of an anticorrosive coating as a function of the cerium concentration in the treatment solution; FIG. 5 is a graphical representation of the Vickers nano-hardness of an anticorrosion coating as a function of the cerium concentration in the treatment solution; FIG. 6 is a graphical representation of the variation of the value of the Young, in GPa, determined by nano-indentation measurements; FIG. 7 is a graphical representation of the value of the critical load (mN) of delamination (o), cracking (A) and plastic deformation (o), determined by nano-nano-scratch, of a anticorrosion coating according to the concentration of cerium in the treatment solution; Fig. 8 is a Nyquist representation of the electrochemical impedance of a treated (o) or untreated solid metal substrate (A) with a conversion solution; 9 is a spectrum of chemical surface analysis by electron dispersion spectroscopy ("EDP") of a solid metal substrate treated with a conversion solution according to the invention. The invention shown in Figure 1 is supported on a metal substrate 2 formed of metallic elements M. Such an anticorrosion coating is formed of an optional conversion layer 3 in which corrosion inhibiting elements Ln are linked by covalent bonds MO In addition, Ln elements in the conversion layer corrosion inhibitors form covalent bonds with Si elements and, if appropriate, metal elements M 'chosen from the group. formed from aluminum (A 0, vanadium (V), titanium (Ti) and zirconium (Zr) and the cerium element (Ce) from the hybrid matrix 4 on the surface of the conversion layer 3. FIG. 2 represents a scanning electron microscope (SEM) section of an aluminum substrate 2 treated with a variant of a method according to the invention and comprising a conversion layer (optional) 25 extending to interface between the aluminum substrate 2 and the hybrid matrix 4. In a variant of a method for the anticorrosion treatment of a solid metal substrate according to the invention, a preparative surface treatment of a piece of rolled 2024 T3 aluminum alloy is first carried out. Such preparative treatment, given solely by way of nonlimiting example, has the objective of removing from the surface of the solid metal substrate any trace of oxidation of the alloy or of dirt which may be detrimental to the application of the alloy. 9 8 1 3 6 6 of the conversion solution and of the treatment solution on the surface of the substrate during its deposition ("dip-coating", "spray") and the anchoring of the hybrid anti-corrosion matrix obtained in surface of the substrate. Degreasing the solid metal substrate with an organic solvent The preparative treatment comprises a first step of degreasing the surface of the solid metal substrate, during which the surface of said substrate is placed in contact with a degreasing solvent. This degreasing step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the degreasing solvent or by spraying said surface with the degreasing solvent. As examples, the degreasing solvent may be stabilized pure methylene chloride (marketed under the trademark Methoklone) or pure acetone. In this case, this degreasing step is carried out at a temperature of less than 42 ° C. and for a duration of between 5 seconds and 3 minutes. It is possible to subject the solid metal substrate to ultrasonic treatment during this first degreasing step. Degreasing of the solid metal substrate with an alkaline solution The preparative treatment of the solid metal substrate comprises a second successive step of degreasing the surface of said substrate, in which the surface of the substrate is placed in contact with an alkaline preparation, in particular sold under the brand name. TURCO 4215 (HENKEL, Boulogne-Billancourt, France). This alkaline degreasing step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the alkaline preparation or by spraying said surface with said preparation for a period of time of between 10 minutes. and 30 min. Preferably, this alkaline degreasing step is carried out at a temperature of between 50 ° C. and 70 ° C. It is possible to subject the substrate to ultrasonic treatment during this second degreasing step with an alkaline solution.
26 2 9 8 1 3 6 6 Décapage du substrat métallique solide par une solution alcaline Le traitement préparatif selon l'invention comprend une troisième étape successive de décapage de la surface du substrat lors de laquelle on 5 place la surface du substrat en contact avec une préparation alcaline, notamment une solution aqueuse d'hydroxyde de sodium à une concentration comprise entre 30 g/L à 70 g/L. On réalise cette étape de décapage alcalin par des méthodes connues en elles-mêmes de l'homme du métier, notamment par trempage de la surface du substrat dans la préparation alcaline concentrée ou en aspergeant ladite surface avec 10 ladite préparation alcaline concentrée pendant une durée comprise entre 10 sec et 3 min. De préférence, on réalise cette étape de décapage alcalin à une température comprise entre 20°C et 50°C. Il est possible de soumettre le substrat métallique solide à un traitement par les ultrasons lors de cette deuxième étape de décapage par une solution alcaline concentrée.The solidification of the solid metal substrate by an alkaline solution The preparative treatment according to the invention comprises a third successive step of pickling the surface of the substrate in which the surface of the substrate is placed in contact with a substrate. alkaline preparation, in particular an aqueous solution of sodium hydroxide at a concentration of between 30 g / l and 70 g / l. This alkaline pickling step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the concentrated alkaline preparation or by spraying said surface with said concentrated alkaline preparation for a period of time between 10 sec and 3 min. Preferably, this alkaline pickling step is carried out at a temperature of between 20 ° C. and 50 ° C. It is possible to subject the solid metal substrate to ultrasonic treatment during this second etching step with a concentrated alkaline solution.
15 A l'issue de cette troisième étape successive de traitement de la surface du substrat métallique solide, on observe une couche pulvérulente d'oxydes recouvrant la surface du substrat métallique solide. Décapage du substrat métallique solide par une solution acide Le traitement préparatif selon l'invention comprend une 20 quatrième étape successive de dissolution de la couche d'oxydes s'étendant sur la surface du substrat métallique solide lors de laquelle on place la surface dudit substrat en contact avec une préparation acide, par exemple TURCO LIQUID Smut-Go NC (HENKEL, Boulogne-Billancourt, France) ou ARDROX 295 GD (Chemetal GmbH, Francfort, Allemagne).At the end of this third successive step of treating the surface of the solid metal substrate, a powdery layer of oxides covering the surface of the solid metal substrate is observed. Stripping the solid metal substrate with an acidic solution The preparative treatment according to the invention comprises a fourth successive step of dissolving the oxide layer extending over the surface of the solid metal substrate at which the surface of said substrate is contact with an acidic preparation, for example TURCO LIQUID Smut-Go NC (HENKEL, Boulogne-Billancourt, France) or ARDROX 295 GD (Chemetal GmbH, Frankfurt, Germany).
25 On réalise cette étape de dissolution pendant une durée comprise entre 1 min et 10 min à une température comprise entre 10°C et 50°C avec une solution aqueuse comprenant entre 15% (v/v) et 25% (v/v) de TURCO LIQUID Scout-Go NC. En variante, on réalise cette étape de dissolution pendant une 30 durée comprise entre 1 min et 10 min à une température comprise entre 10°C 27 2981366 et 30°C avec une solution aqueuse comprenant entre 15% (v/v) et 30% (v/v) de ARDROX 295 GD. A l'issue de cette étape la surface du substrat métallique solide est adaptée pour pouvoir être traitée selon un traitement anticorrosion 5 conforme à l'invention. Dans une variante d'un procédé de traitement anticorrosion d'un substrat métallique solide selon l'invention, on réalise une étape de formation d'une couche de conversion en surface du substrat métallique solide. On immerge une pièce d'aluminium (At 2024-T3) par 10 "dip-coating" dans une solution de conversion aqueuse contenant une concentration comprise entre 0,001 mole/L et 0,5 mole/L de Ce(NO3)3 dont le pH est ajusté à une valeur de 4 par ajout d'acide nitrique. Après immersion et retrait, la pièce d'aluminium est séchée pendant 10 minutes à 50°C. A l'issue de ce traitement par la solution de conversion, aucune prise de masse de ladite pièce d'aluminium n'est 15 mesurée. Dans un procédé de traitement anticorrosion d'un substrat métallique solide, on prépare une solution de traitement selon les quatre étapes suivantes : - (a) élaboration d'une solution de traitement comme décrit en (A) ci20 après ; - (b) élaboration d'une dispersion colloïdale de nanoparticules de boehmite physisorbées comme décrit en (B) ci-après ; - (c) élaboration d'une dispersion colloïdale de nanoparticules de 25 boehmite dopée comme décrit en (C) ci-après ; - (d) élaboration de nanoparticules d'oxyhydroxyde d'aluminium creuse contenant un inhibiteur de corrosion comme décrit en (D) ci-après ; - (e) élaboration d'une dispersion colloïdale de traitement anticorrosion à partir des compositions comme décrit en (A) ci-dessus, en (B), en (C) et en (D) ci-30 dessous ; 28 2 9 8 1 3 6 6 (f) dépôt de la dispersion colloïdale de traitement anticorrosion sur le substrat métallique solide - (g) traitement thermique. A - Elaboration d'une solution de traitement - sol époxyde 5 Al - Sol époxyde GPTMS/ASB/Ce(NO3)3 Dans un premier mode de réalisation, pour préparer 1 L de sol époxyde on dissout 107,4 g (0,43 moles) de tri(s-butoxyde) d'aluminium (ASB) dans 34,8 mL de propanol-1 par agitation -notamment par agitation magnétique pendant 10 minutes à température ambiante. On ajoute ensuite 470 mL (2,13 moles) 10 de 3-(glycidoxypropyl)-triméthoxysilane (GPTMS). La proportion molaire de GPTMS et d'ASB est de 83/17. On prépare aussi une solution aqueuse de cérium (III) (Ce(NO3)3) à une concentration comprise entre 0,02 mole/L et 0,5 mole/L et on ajoute un volume cette solution aqueuse de cérium dans la solution de précurseur (ASB/GPTMS) de façon à provoquer une 15 hydrolyse/condensation des précurseurs. On maintient le sol époxyde obtenu sous agitation pendant une durée nécessaire à un déclin thermique jusqu'à température ambiante. La concentration finale en cérium dans le sol époxyde est de 0,01 mol/L. On dépose le sol époxyde sur un substrat d'aluminium At 2024-T3 prétraité comme décrit ci-dessus par trempage/retrait du 20 substrat dans ledit sol époxyde. La vitesse de retrait est de 20 cm/min. On chauffe le substrat métallique solide revêtu à une température comprise entre 95°C et 180°C -en particulier 110°C- pendant une durée comprise entre 1 h et 5 h -en particulier 3 h-. On observe la formation d'une matrice hybride de 6 lam d'épaisseur en surface du substrat métallique solide présentant une durée de tenue au brouillard salin comprise 25 entre 96 et 800 heures. A2 - Sol époxyde TEOS/MAP/Ce(NO3b Dans un deuxième mode de réalisation, pour préparer 1 L de sol hybride on ajoute 230 mL de tétraéthoxysilane (TEOS) dans 600 mL d'éthanol. On ajoute ensuite 30 mL de méthacryloxypropyltriméthoxysilane (MAP), puis une 30 solution aqueuse de cérium (III) (Ce(NO3)3) à une concentration de 4,32 g/L de 29 2 9 8 1 3 6 6 façon à provoquer une hydrolyse/condensation des précurseurs TEOS et MAP. Le pH du sol obtenu est de 4,5 et sa viscosité est de 3 mPa.s. B - Elaboration de nanoparticules de boehmite colloïdale physisorbées 5 On réalise une telle dispersion colloïdale de nanoparticules de boehmite fonctionnalisées en surface (dites physisorbées) en deux étapes décrites ci-après dans lesquelles on forme d'abord une solution colloïdale de nanoparticules de boehmite, puis on fonctionnalise lesdites nanoparticules de boehmite par un inhibiteur de corrosion.This dissolution step is carried out for a period of between 1 minute and 10 minutes at a temperature of between 10 ° C. and 50 ° C. with an aqueous solution comprising between 15% (v / v) and 25% (v / v). from TURCO LIQUID Scout-Go NC. Alternatively, this dissolution step is carried out for a period of between 1 minute and 10 minutes at a temperature of between 10 ° C. and 30 ° C. with an aqueous solution comprising between 15% (v / v) and 30%. (v / v) of ARDROX 295 GD. At the end of this step the surface of the solid metal substrate is adapted to be treated according to an anticorrosion treatment 5 according to the invention. In a variant of a method of anticorrosion treatment of a solid metal substrate according to the invention, a step of forming a surface conversion layer of the solid metal substrate is carried out. A piece of aluminum (At 2024-T3) is immersed by "dip-coating" in an aqueous conversion solution containing a concentration of between 0.001 mol / l and 0.5 mol / l of Ce (NO 3) 3, the pH is adjusted to a value of 4 by adding nitric acid. After immersion and shrinkage, the aluminum piece is dried for 10 minutes at 50 ° C. At the end of this treatment with the conversion solution, no weight gain of said aluminum part is measured. In a method of anticorrosion treatment of a solid metal substrate, a treatment solution is prepared according to the following four steps: (a) elaboration of a treatment solution as described in (A) below; (b) developing a colloidal dispersion of physisorbed boehmite nanoparticles as described in (B) below; (c) developing a colloidal dispersion of doped boehmite nanoparticles as described in (C) hereinafter; (d) elaboration of hollow aluminum oxyhydroxide nanoparticles containing a corrosion inhibitor as described in (D) below; (e) developing a colloidal anticorrosive dispersion from the compositions as described in (A) above, (B), (C) and (D) below; (F) depositing the colloidal anticorrosive treatment dispersion on the solid metal substrate; and (g) heat treatment. A - Elaboration of an epoxy sol / epoxy solubilization solution GPTMS / ASB / Ce (NO3) 3 In a first embodiment, to prepare 1 L of epoxide sol, 107.4 g (0.43 g moles) of aluminum tri (s-butoxide) (ASB) in 34.8 mL of 1-propanol by stirring - in particular by magnetic stirring for 10 minutes at room temperature. 470 mL (2.13 moles) of 3- (glycidoxypropyl) trimethoxysilane (GPTMS) are then added. The molar proportion of GPTMS and ASB is 83/17. An aqueous solution of cerium (III) (Ce (NO 3) 3) is also prepared at a concentration of between 0.02 mol / l and 0.5 mol / l and a volume of this aqueous solution of cerium is added to the solution of precursor (ASB / GPTMS) so as to cause hydrolysis / condensation of the precursors. The epoxy sol obtained is stirred for a period of time necessary for a thermal decline to ambient temperature. The final concentration of cerium in the epoxy sol is 0.01 mol / L. The epoxy sol is deposited on an At 2024-T3 aluminum substrate pretreated as described above by dipping / removing the substrate in said epoxy sol. The withdrawal speed is 20 cm / min. The coated solid metal substrate is heated to a temperature of between 95 ° C. and 180 ° C., in particular 110 ° C., for a period of between 1 hour and 5 hours, in particular 3 hours. The formation of a 6 μm thick hybrid matrix is observed at the surface of the solid metal substrate having a salt spray resistance of between 96 and 800 hours. A2 - TEOS / MAP / Ce epoxy sol (NO3b In a second embodiment, to prepare 1 L of hybrid sol 230 ml of tetraethoxysilane (TEOS) is added in 600 ml of ethanol, 30 ml of methacryloxypropyltrimethoxysilane (MAP) are subsequently added. ), followed by an aqueous solution of cerium (III) (Ce (NO 3) 3) at a concentration of 4.32 g / L so as to cause hydrolysis / condensation of the TEOS and MAP precursors. The pH of the sol obtained is 4.5 and its viscosity is 3 mPa.s.B - Development of physisorbed colloidal boehmite nanoparticles 5 Such a colloidal dispersion of surface-functionalized boehmite nanoparticles (called physisorbed) is produced in two Steps described below in which a colloidal solution of boehmite nanoparticles is first formed, then said boehmite nanoparticles are functionalized with a corrosion inhibitor.
10 B1 - Boehmite colloïdale On réalise l'hydrolyse condensation du tri-secbutoxyde (ASB, At(OH)x(0C4H9)3,) d'aluminium selon la méthode décrite par Yoldas B.E. (J. Mater. Sci., (1975), 10, 1856), dans laquelle on ajoute à du tri-secbutoxyde d'aluminium une quantité d'eau préalablement chauffée à une température 15 supérieure à 80°C. On laisse la solution obtenue sous agitation pendant 15 min. A titre d'exemple, on place une telle solution de tri(s-butoxyde) d'aluminium à une concentration de 0,475 mole/L (- 117 g/L) dans de l'eau à la température de 80°C pendant une durée de 15 min. On réalise ensuite une étape, dite étape de peptisation, lors de laquelle on ajoute à la solution 20 d'hydrolyse du tri-secbutoxyde un volume compris entre 1,4 mL et 2,8 mL d'une solution d'acide nitrique à 68%. On place le mélange à 85°C dans un bain d'huile pendant une durée de 24 h. On obtient une dispersion colloïdale d'oxyhydroxyde d'aluminium (boehmite) dans l'eau. La concentration d'acide nitrique dans la dispersion colloïdale est comprise entre 0,033 mole/L et 0,066 mole/L. En variante, 25 il est possible de concentrer la dispersion colloïdale jusqu'à une concentration en oxyhydroxyde d'aluminium de l'ordre de 1 mole/L. D'autres acides minéraux ou organiques peuvent être utilisés lors de cette étape de peptisation, notamment l'acide chlorhydrique et l'acide acétique. On obtient un sol colloïdal transparent et stable présentant par diffraction des rayons X les raies caractéristiques de la 30 boehmite telles que décrite dans la fiche JCPDS 21-1307. B2 - Fonctionnalisation des nanoparticules de boehmite , 30 2981366 A une dispersion colloïdale telle qu'obtenue selon l'étape B1 précédente et présentant une concentration en aluminium comprise entre 0.5 mole/L et 0,8 mole/L, on ajoute, le cas échéant, un tensioactif non ionique -notamment un tensioactif non ionique choisi parmi le Pluronic®, P-123, le Pluronic® F 127 5 (BASF, Mount Olive, New Jersey, USA), du Brij 58 et le Brij 52 dans une proportion massique finale comprise entre 1% et 5%. On ajoute ensuite une quantité d'un inhibiteur de corrosion, notamment du nitrate de cérium (III) (Ce(NO3)3) ou du vanadate de sodium, à une concentration finale comprise entre 0,001 mole/L et 0,5 mole/L. On place cette préparation sous agitation à température ambiante 10 pendant une durée de 6 heures. On obtient une dispersion colloïdale de nanoparticules de boehmite fonctionnalisée en surface -dites nanoparticules de boehmite physisorbées-. Une telle préparation présente en spectroscopie infrarouge en utilisant la technique de réflexion diffuse DRIFT ("Diffuse Reflectance Infra-red Fourrier Transform ») des bandes de vibration à 1460 cm-1 et 1345 cm-1 15 caractéristiques de la coordination du cérium aux ions nitrates. C - Elaboration d'une dispersion colloïdale de nanoparticules de boehmite dopées On réalise une telle dispersion colloïdale de nanoparticules de boehmite dopées en deux étapes décrites ci-après dans lesquelles on réalise (Cl) 20 l'hydrolyse/condensation d'un précurseur -notamment un alcoxyde- d'aluminium et d'un inhibiteur de corrosion. On réalise ensuite une étape (C2), dite étape de peptisation, de traitement en milieu acide de façon à former des nanoparticules de boehmite dopée. Cl - Hydrolyse/condensation de l'ASB et de (Ce(NO3)3) 25 On réalise l'hydrolyse/condensation d'un mélange de précurseur d'aluminium -notamment d'un alcoxyde d'aluminium, en particulier de tri(s-butoxyde) d'aluminium (ASB)- et d'un inhibiteur de corrosion -notamment du nitrate de cérium (III) (Ce(NO3)3)- par addition à ce mélange d'un minimum d'eau chauffée à la température de 85°C. On place ce mélange d'hydrolyse/condensation 30 sous agitation pendant 15 min. La concentration finale d'ASB dans le mélange d'hydrolyse/condensation est de 0,475 mole/L et la concentration finale en 31 2 9 8 1 3 6 6 inhibiteur de corrosion dans le mélange d'hydrolyse/condensation est comprise entre 0,002 mole/L et 0,01 mole/L. C2 - Peptisation On ajoute dans le mélange d'hydrolyse/condensation une 5 solution aqueuse acidifiée -notamment 1,4 mL à 2,8 mL d'une solution d'acide nitrique à 68%- et on place le mélange acidifié à la température de 85°C dans un bain d'huile pendant une durée de 24 h. La concentration d'acide nitrique dans le mélange acidifié est comprise entre 0,033 mole/L et 0,066 mole/L. En variante, il est possible de concentrer la dispersion colloïdale jusqu'à une concentration en 10 oxyhydroxyde d'aluminium de l'ordre de 1 mole/L. On obtient un sol colloïdal transparent et stable présentant, par diffraction des rayons X, les raies caractéristiques de la boehmite telles que décrite dans la fiche JCPDS 21-1307. D - Elaboration de nanoparticules d'oxyhydroxyde d'aluminium (boehmite) creuses contenant l'inhibiteur de corrosion 15 On réalise de telles nanoparticules d'oxyhydroxyde d'aluminium creuses contenant l'inhibiteur de corrosion par formation d'une microémulsion inverse (Daniel H., et al (2007), Nano Lett., 7 ;il, 3489-3492) et encapsulation simultanée de l'inhibiteur de corrosion. On prépare une phase apolaire par mélange d'un alcool 20 -notamment de l'hexanol-, un alcane -notamment du dodécane- et un surfactant -notamment du bromure d'hexadécyltriméthylammonium (CTAB)-. On prépare aussi une phase polaire comprenant de l'eau, un alcool -notamment du méthanol- et un inhibiteur de corrosion -notamment du nitrate de cérium-. On mélange la phase polaire et la phase apolaire et on place ce mélange sous agitation pendant 30 min de 25 façon à former une microémulsion inverse d'eau dans la phase apolaire. On prépare une solution d'un alcoxyde d'aluminium -notamment de tri(s-butoxyde) d'aluminium (ASB) dans un volume de l'alcane -notamment de dodécane.-. On introduit sous agitation la solution d' alcoxyde d'aluminium dans la microémulsion inverse. On laisse le mélange au repos pendant 12 h. On sépare par centrifugation 30 un culot contenant des nanoparticules creuses d'oxyhydroxyde d'aluminium. Après lavage de ce culot avec du diéthylène glycol, on obtient une poudre de 32 2981366 nanoparticules creuses d'oxyhydroxyde d'aluminium contenant l'inhibiteur de corrosion. E - Elaboration d'une solution colloïdale de traitement anticorrosion 5 On prépare une telle dispersion colloïdale de traitement anticorrosion par mélange d'une quantité d'une solution de traitement (sol hybride) tel que préparé en (A), d'une quantité de dispersion colloïdale de nanoparticules de boehmite physisorbées telle que préparée en (B) et/ou d'une quantité d'une dispersion colloïdale de nanoparticules de boehmite dopées telle que préparée 10 en (C) et/ou d'une quantité d'une dispersion de nanoparticules de boehmite creuses. La concentration en aluminium et silicium dans la dispersion colloïdale de traitement anticorrosion est comprise entre 1,66 mole/L et 2 mole/L. La concentration en aluminium apporté par la dispersion colloïdale de nanoparticules de boehmite fonctionnalisée en surface dans le sol hybride est comprise 15 entre 0,1 mole/L et 0,13 mole/L. La concentration en aluminium apportée par la dispersion colloïdale de nanoparticules de boehmite dopée dans le sol hybride est comprise entre 0,1 mole/L et 0,13 mole/L. On laisse au repos le sol hybride ainsi obtenu à la température ambiante pendant une durée de 24 heures. En variante avantageuse selon l'invention, on prépare une 20 solution alcoolique contenant au moins un alcoxysilane et au moins un alcoxyde d'aluminium puis on ajoute à ladite solution alcoolique une quantité de la dispersion colloïdale de nanoparticules de boehmite physisorbées et/ou de nanoparticules de boehmite dopées et/ou de nanoparticules de boehmite creuses. On maitrise de cette façon la viscosité de la solution 25 (dispersion) de traitement qui diminue avec l'addition de la dispersion colloïdale de boehmite. On maitrise ainsi l'épaisseur du gel hybride déposé en surface du substrat métallique solide en particulier en fonction de la vitesse de retrait du substrat métallique solide à partir de la solution (dispersion) de traitement. F - Dépôt de la dispersion colloïdale sur le substrat métallique 30 solide 33 2981366 On réalise une étape de dépôt de la dispersion colloïdale de traitement anticorrosion sur une surface d'un substrat métallique solide notamment d'une pièce d'un alliage d'aluminium 2024 T3 laminé ayant subit préalablement un traitement préparatif tel que décrit ci-dessus. Lors de cette étape de dépôt, une partie 5 du solvant du sol hybride composite s'évapore et simultanément l'hydrolyse/condensation du(des) alcoxysilane(s) et de(s) alcoxyde(s) métallique(s) permet la formation d'une matrice hybride composite anticorrosion en surface du substrat métallique solide. La présence de cérium à titre d'inhibiteur de corrosion, 10 notamment de cérium (Celll) libre, dans la solution de traitement permet la formation lors du dépôt de ladite solution d'une couche de conversion chimiquement stable en milieu corrosif. Une telle couche de conversion est en particulier formée à partir des groupements hydroxylés d'un élément M constitutif du substrat métallique solide et formant une liaison M-O-Ce- avec le cérium.B1 - Colloidal Boehmite Condensation hydrolysis of aluminum tri-secbutoxide (ASB, At (OH) x (OC 4 H 9) 3) is carried out according to the method described by Yoldas BE (J. Mater Sci., (1975) 10, 1856), wherein an amount of water previously heated to a temperature above 80 ° C is added to aluminum tri-butoxide. The resulting solution is left stirring for 15 minutes. By way of example, such an aluminum tri (s-butoxide) solution is placed at a concentration of 0.475 mol / l (-117 g / l) in water at a temperature of 80 ° C. for duration of 15 min. A step, called the peptization step, is then carried out, during which triflutoxide is added to the hydrolysis solution a volume of between 1.4 ml and 2.8 ml of a 68% nitric acid solution. %. The mixture is placed at 85 ° C. in an oil bath for a period of 24 hours. A colloidal dispersion of aluminum oxyhydroxide (boehmite) in water is obtained. The concentration of nitric acid in the colloidal dispersion is between 0.033 mole / L and 0.066 mole / L. Alternatively, it is possible to concentrate the colloidal dispersion to a concentration of aluminum oxyhydroxide of the order of 1 mol / L. Other inorganic or organic acids may be used during this peptization step, in particular hydrochloric acid and acetic acid. A transparent and stable colloidal substrate having, by X-ray diffraction, the characteristic lines of boehmite as described in JCPDS sheet 21-1307 is obtained. B2 - Functionalization of the Boehmite Nanoparticles, To a colloidal dispersion as obtained according to the preceding step B1 and having an aluminum concentration of between 0.5 mol / l and 0.8 mol / l, is added, as appropriate a nonionic surfactant -particularly a nonionic surfactant selected from Pluronic®, P-123, Pluronic® F 127 (BASF, Mount Olive, New Jersey, USA), Brij 58 and Brij 52 in a mass proportion between 1% and 5%. An amount of a corrosion inhibitor, in particular cerium (III) nitrate (Ce (NO 3) 3) or sodium vanadate, is then added to a final concentration of between 0.001 mol / l and 0.5 mol / l. . This preparation is stirred at room temperature for 6 hours. A colloidal dispersion of surface-functionalized boehmite nanoparticles-said physisorbed boehmite nanoparticles-is obtained. Such a preparation is present in infrared spectroscopy by using the Diffuse Reflectance Infra-Red Fourier Transform (DRIFT) technique for vibrating bands at 1460 cm -1 and 1345 cm -1, which are characteristic of the coordination of cerium with nitrate ions. C - Elaboration of a colloidal dispersion of doped boehmite nanoparticles A colloidal dispersion of boehmite nanoparticles doped in two stages, described below, in which the hydrolysis / condensation of a precursor (I) is carried out is carried out. In particular, an alkoxide-aluminum and a corrosion inhibitor are used, followed by a step (C2), called a peptization step, of treatment in an acidic medium so as to form doped boehmite nanoparticles.Cl - Hydrolysis / condensation of ASB and (Ce (NO3) 3). The hydrolysis / condensation of a mixture of aluminum precursor - in particular an aluminum alkoxide, in particular tri (s-butoxide) is carried out. aluminum (ASB) - and a corrosion inhibitor - in particular cerium (III) nitrate (Ce (NO3) 3) - by adding to this mixture a minimum of water heated to 85 ° vs. This hydrolysis / condensation mixture is stirred for 15 minutes. The final concentration of ASB in the hydrolysis / condensation mixture is 0.475 mole / L and the final concentration of corrosion inhibitor in the hydrolysis / condensation mixture is 0.002 mole / cm 2. L and 0.01 mol / L. C2-Peptization An acidified aqueous solution (notably 1.4 ml to 2.8 ml of a 68% nitric acid solution) is added to the hydrolysis / condensation mixture and the acidified mixture is placed at room temperature. 85 ° C in an oil bath for a period of 24 hours. The concentration of nitric acid in the acidified mixture is between 0.033 mol / L and 0.066 mol / L. Alternatively, it is possible to concentrate the colloidal dispersion to a concentration of aluminum oxyhydroxide of the order of 1 mol / L. A transparent and stable colloidal sol having, by X-ray diffraction, the characteristic lines of boehmite as described in JCPDS sheet 21-1307 is obtained. D - Preparation of hollow aluminum oxyhydroxide (boehmite) nanoparticles containing the corrosion inhibitor. Such hollow aluminum oxyhydroxide nanoparticles containing the corrosion inhibitor are produced by formation of an inverse microemulsion (Daniel H ., et al (2007), Nano Lett., 7; 11, 3489-3492) and simultaneous encapsulation of the corrosion inhibitor. An apolar phase is prepared by mixing an alcohol, particularly hexanol, an alkane, especially dodecane, and a surfactant, especially hexadecyltrimethylammonium bromide (CTAB). A polar phase comprising water, an alcohol, in particular methanol, and a corrosion inhibitor, in particular cerium nitrate, is also prepared. The polar phase and the apolar phase are mixed and this mixture is stirred for 30 minutes to form a reverse microemulsion of water in the apolar phase. A solution of an aluminum alkoxide - especially aluminum tri (s-butoxide) (ASB) in a volume of the alkane - especially dodecane - is prepared. The aluminum alkoxide solution is introduced with stirring into the inverse microemulsion. The mixture is allowed to stand for 12 hours. A pellet containing hollow nanoparticles of aluminum oxyhydroxide is centrifuged off. After washing this pellet with diethylene glycol, a powder of 32 2981366 hollow aluminum oxyhydroxide nanoparticles containing the corrosion inhibitor is obtained. E-Elaboration of a Colloidal Solution for Anti-Corrosion Treatment A colloidal anti-corrosion treatment dispersion is prepared by mixing an amount of a treatment solution (hybrid soil) as prepared in (A), an amount of colloidal dispersion of physisorbed boehmite nanoparticles as prepared in (B) and / or an amount of a colloidal dispersion of doped boehmite nanoparticles as prepared in (C) and / or an amount of a dispersion of hollow boehmite nanoparticles. The concentration of aluminum and silicon in the colloidal anti-corrosion treatment dispersion is between 1.66 mol / l and 2 mol / l. The aluminum concentration provided by the colloidal dispersion of surface-functionalized boehmite nanoparticles in the hybrid soil is between 0.1 mole / L and 0.13 mole / L. The aluminum concentration provided by the colloidal dispersion of doped boehmite nanoparticles in hybrid soil is between 0.1 mol / l and 0.13 mol / l. The hybrid soil thus obtained is allowed to stand at ambient temperature for a period of 24 hours. In an advantageous variant according to the invention, an alcoholic solution containing at least one alkoxysilane and at least one aluminum alkoxide is prepared, then an amount of the colloidal dispersion of physisorbed boehmite nanoparticles and / or nanoparticles is added to said alcoholic solution. doped boehmite and / or hollow boehmite nanoparticles. In this way, the viscosity of the treatment solution (dispersion) decreases with the addition of the colloidal boehmite dispersion. This controls the thickness of the hybrid gel deposited on the surface of the solid metal substrate, in particular as a function of the rate of removal of the solid metal substrate from the treatment solution (dispersion). F - Deposition of the Colloidal Dispersion on the Solid Metal Substrate 33 2981366 A step is performed for depositing the colloidal anticorrosive treatment dispersion on a surface of a solid metal substrate, in particular a piece of a 2024 aluminum alloy. Laminated T3 having previously undergone a preparative treatment as described above. During this deposition step, a portion of the solvent of the hybrid composite soil evaporates and simultaneously the hydrolysis / condensation of (the) alkoxysilane (s) and (s) alkoxide (s) metal (s) allows the formation a composite hybrid anti-corrosion matrix on the surface of the solid metal substrate. The presence of cerium as a corrosion inhibitor, in particular free cerium (Cell1), in the treatment solution allows the formation during the deposition of said solution of a chemically stable conversion layer in a corrosive medium. Such a conversion layer is in particular formed from the hydroxyl groups of an element M constituting the solid metal substrate and forming an M-O-Ce- bond with cerium.
15 La présence de nanoparticules de boehmite physisorbées et de nanoparticules de boehmite dopées dans la solution de traitement est adaptée pour permettre la formation de réservoirs d'inhibiteur de corrosion dans la matrice hybride composite constituant le revêtement anticorrosion, lesdits réservoirs étant adaptés pour permettre une libération contrôlée dans le temps de l'inhibiteur de 20 corrosion. On réalise l'application de la solution de traitement en surface du substrat métallique solide par tout moyen connu en lui-même de l'homme du métier, notamment par trempage/retrait ("dip coating"), par pulvérisation ("spray-coating"), ou par application au pinceau, au tampon ou à la brosse pour des 25 utilisations localisées à titre de réparation du revêtement de la surface du substrat métallique solide. Pour la technique de trempage/retrait, la vitesse de retrait permet de contrôler l'épaisseur du dépôt de la solution de traitement pour une viscosité de la solution de traitement donnée. Typiquement la vitesse de retrait varie 30 entre 2 et 53 cm/min. L'application de plusieurs couches successives par des opérations de trempage/retrait successives, chaque opération de trempage/retrait 34 2981366 étant suivie d'une étape de séchage, permet la formation, le cas échéant, d'un revêtement d'épaisseur accrue. Il est aussi possible, lors de l'étape de trempage, d'imposer un temps de séjour du substrat métallique solide dans la solution de traitement qui soit 5 prolongé en vue de favoriser les réactions chimiques entre le substrat métallique solide et la solution de traitement. A titre d'exemple, le temps de séjour prolongé peut varier entre 1 et 300 secondes. Pour la technique de pulvérisation, l'épaisseur des dépôts est contrôlée par la viscosité de la solution de traitement, par les paramètres de 10 pulvérisation, notamment la pression, le débit, les caractéristiques géométriques de buses de pulvérisation, ainsi que par la vitesse de déplacement des buses en regard de la surface du substrat métallique solide et le nombre de passage des buses devant la surface du substrat métallique solide. L'application de la solution de traitement peut être réalisée manuellement ou être robotisée suivant des techniques 15 conventionnelles. Pour la technique d'application manuelle au pinceau, au tampon ou à la brosse, l'épaisseur du dépôt est contrôlée par la viscosité de la solution de traitement et par le nombre d'applications successives sur la surface du substrat métallique solide.The presence of physisorbed boehmite nanoparticles and doped boehmite nanoparticles in the treatment solution is adapted to allow the formation of corrosion inhibitor reservoirs in the composite hybrid matrix constituting the anticorrosion coating, said reservoirs being adapted to allow a release. time-controlled corrosion inhibitor. The application of the surface treatment solution of the solid metal substrate is carried out by any means known in itself to those skilled in the art, in particular by soaking / shrinking ("dip coating"), by spraying ("spray-coating "), or by brush, pad or brush application for localized uses as a coating repair of the surface of the solid metal substrate. For the soaking / shrinking technique, the shrinkage rate makes it possible to control the thickness of the deposition of the treatment solution for a viscosity of the given treatment solution. Typically the shrinkage rate varies between 2 and 53 cm / min. The application of several successive layers by successive soaking / withdrawal operations, each soaking / removal operation followed by a drying step, allows the formation, if necessary, of a coating of increased thickness. It is also possible, during the soaking step, to impose a residence time of the solid metal substrate in the treatment solution which is prolonged in order to promote the chemical reactions between the solid metal substrate and the treatment solution. . For example, the extended residence time may vary between 1 and 300 seconds. For the spraying technique, the thickness of the deposits is controlled by the viscosity of the treatment solution, the sputtering parameters, especially the pressure, the flow rate, the geometric characteristics of the spray nozzles, and the speed of the spray. moving the nozzles facing the surface of the solid metal substrate and the number of nozzles passing the surface of the solid metal substrate. The application of the treatment solution can be carried out manually or be robotized according to conventional techniques. For the technique of manual application by brush, pad or brush, the thickness of the deposit is controlled by the viscosity of the treatment solution and by the number of successive applications on the surface of the solid metal substrate.
20 Il est possible de réaliser cette étape de dépôt de la solution de traitement sur une surface d'un substrat métallique solide dans une enceinte sous atmosphère et humidité contrôlées, notamment de façon à limiter l'évaporation trop rapide du/des solvant(s) et de façon à limiter la pollution de l'atmosphère. Dans un procédé selon l'invention, il est aussi possible de 25 réaliser cette étape de dépôt de la solution de traitement à l'air libre, en particulier par pulvérisation à l'air libre. G - Traitement thermique On réalise un traitement thermique de la solution de traitement appliqué sur la surface du substrat métallique solide de façon à éliminer par 30 évaporation le(s) solvant(s) résiduel(s) de la solution de traitement et à permettre sa polymérisation en une matrice hybride composite. En particulier, un tel traitement 2 9 8 1 3 6 6 thermique comprend deux étapes successives dans lesquelles le substrat métallique solide revêtu de la solution de traitement est d'abord soumis à une première étape de chauffage à une température comprise entre 50°C et 70°C pendant une durée comprise entre 2 h et 24 h, ladite première étape de chauffage étant adaptée pour 5 permettre une élimination des solvants aqueux et/ou organiques, puis à une deuxième étape de chauffage à une température comprise entre 110°C et 180°C pendant une durée comprise entre 3 h et 16 h, ladite deuxième étape de chauffage étant adaptée pour parfaire la polymérisation de la solution de traitement et pour améliorer les propriétés mécaniques de la matrice hybride composite.It is possible to carry out this step of depositing the treatment solution on a surface of a solid metal substrate in an enclosure under controlled atmosphere and humidity, in particular so as to limit the too rapid evaporation of the solvent (s). and in order to limit the pollution of the atmosphere. In a process according to the invention, it is also possible to carry out this step of depositing the treatment solution in the open air, in particular by spraying in the open air. G - Heat treatment A heat treatment of the treatment solution applied on the surface of the solid metal substrate is carried out so as to remove by evaporation the residual solvent (s) from the treatment solution and to allow its polymerization into a composite hybrid matrix. In particular, such a thermal treatment comprises two successive steps in which the solid metal substrate coated with the treatment solution is first subjected to a first heating step at a temperature of between 50.degree. 70 ° C for a period of time between 2 h and 24 h, said first heating step being adapted to allow removal of aqueous and / or organic solvents, then to a second heating step at a temperature between 110 ° C and 180 ° C for a period between 3 h and 16 h, said second heating step being adapted to complete the polymerization of the treatment solution and to improve the mechanical properties of the composite hybrid matrix.
10 La figure 3 représente la variation de la résistance surfacique d'un substrat métallique solide traité par un procédé selon l'invention en fonction de la durée d'immersion de ce substrat métallique solide dans un bain de corrosion (NaCt 0,05 mole/L dans l'eau). La courbe (0) représente la variation de la résistance surfacique d'un substrat métallique solide traité selon un procédé selon 15 l'invention consistant en l'application successive d'une solution de conversion riche en cérium (0,1 mole/L) puis d'une solution de traitement comprenant du cérium (0,01 mole/L). On observe que la résistance surfacique du substrat métallique solide traité (.) décroit plus lentement que la résistance surfacique d'un substrat métallique solide (A) traité avec la même solution de traitement 20 (0,01 mole/L de Ce) mais exempt de couche de conversion. Les valeurs numériques sont données en tableau 1 ci-après. Durée d'immersion, h Résistance surfacique, û.cm2 Avec couche de Sans couche de conversion conversion 1 7870000 8080000 5 7710000 7760000 24 5280000 3980000 48 4050000 2120000 72 2750000 1111000 148 1310000 1080000 240 1180000 1030000 336 1190000 1020000 Tableau 1 36 2981366 On observe en particulier qu'après 48 h d'immersion dans le bain de corrosion, la résistance surfacique du, substrat non traité (A) atteint une valeur de l'ordre de 2,12 106 acm2, alors que la résistance surfacique du substrat (*) traité reste de l'ordre de. 4,05 106 acm2. Après 72 h d'immersion dans 5 le bain de corrosion, la résistance surfacique du substrat non traité (A) atteint une valeur limite de l'ordre de 1,1 106 n.cm2, alors que la résistance surfacique du substrat (*) traité reste de l'ordre de 2,75 106 acm2. Les inventeurs ont aussi observé de façon totalement surprenante et inattendue que le traitement anticorrosion d'un substrat métallique 10 solide selon l'invention avec une solution de traitement comprenant une concentration en cérium comprise entre 0,005 mole/L et 0,015 mole/L permet non seulement d'obtenir une résistance surfacique du revêtement anticorrosion, mesurée par spectroscopie d'impédance électrochimique (figure 4), qui est optimale pour une durée d'immersion du substrat métallique solide dans un bain de corrosion de 15 1 jour (A), 7 jours (o) et 14 jours (lb) dans une solution aqueuse de NaCt 0,05 mole/L, mais qu'un tel traitement permet aussi d'obtenir une nano-dureté (figure 5), un module de Young (figure 6) et une résistance à la délamination (o, figure 7), une résistance à la fissuration (A, figure 7) et une valeur limite de résistance à la déformation plastique (^, figure 7) elles aussi maximales.FIG. 3 represents the variation of the surface resistance of a solid metal substrate treated by a process according to the invention as a function of the immersion time of this solid metal substrate in a corrosion bath (NaCt 0.05 mol / L in the water). Curve (0) represents the variation of the surface resistance of a solid metal substrate treated according to a process according to the invention consisting in the successive application of a cerium-rich conversion solution (0.1 mol / L) then a treatment solution comprising cerium (0.01 mol / L). It is observed that the surface resistance of the treated solid metal substrate (.) Decreases more slowly than the surface resistance of a solid metal substrate (A) treated with the same treatment solution (0.01 mol / L of Ce) but free of conversion layer. The numerical values are given in Table 1 below. Immersion time, h Surface resistance, û.cm2 With layer of Without conversion conversion layer 1 7870000 8080000 5 7710000 7760000 24 5280000 3980000 48 4050000 2120000 72 2750000 1111000 148 1310000 1080000 240 1180000 1030000 336 1190000 1020000 Table 1 36 2981366 We observe in particular, after 48 hours of immersion in the corrosion bath, the surface resistance of the untreated substrate (A) reaches a value of the order of 2.12 × 10 6 acm2, whereas the surface resistance of the substrate (* ) treaty remains of the order of. 4.05 106 acm2. After 72 h of immersion in the corrosion bath, the surface resistance of the untreated substrate (A) reaches a limit value of the order of 1.10 6 ncm 2, whereas the surface resistance of the substrate (*) treated remains of the order of 2.75 106 acm2. The inventors have also observed, in a completely surprising and unexpected manner, that the anticorrosion treatment of a solid metal substrate according to the invention with a treatment solution comprising a cerium concentration of between 0.005 mol / l and 0.015 mol / l makes it possible not only to obtain a surface resistance of the anticorrosive coating, measured by electrochemical impedance spectroscopy (FIG. 4), which is optimal for an immersion time of the solid metal substrate in a 1 day corrosion bath (A), 7 days (o) and 14 days (Ib) in an aqueous solution of 0.05 mol / L NaCl, but that such a treatment also makes it possible to obtain a nano-hardness (FIG. 5), a Young's modulus (FIG. 6) and a delamination resistance (o, FIG. 7), a crack resistance (A, FIG. 7) and a limit value of resistance to plastic deformation (FIG. 7) which are also maximum.
20 On analyse par spectroscopie d'impédance électrochimique la résistance à la corrosion d'un substrat métallique solide M 2024-T3 traité ou non par une solution de conversion selon un procédé conforme à l'invention puis exposé à une étape de corrosion par immersion dans une solution aqueuse de NaCt 0,05 mole/L. Les résultats sont présentés en figure 8 selon la représentation de 25 Nyquist. Le traitement d'une pièce d'aluminium 2024-T3 traitée avec une solution de conversion selon l'invention par immersion dans une solution de corrosion (NaCt 0,05 mole/L) pendant 30 minutes à température ambiante confère à cette dernière une résistance surfacique Z' en représentation de "Nyquist" de l'ordre 30 de 4.104 Slcm2 (o, figure 8). A titre de comparaison, le traitement d'une pièce d'aluminium 2024-T3 brut (c'est-à-dire non traitée avec une solution de conversion 37 2981366 selon l'invention) par immersion dans une solution de corrosion (NaCE 0,05 mole/L) confère à cette dernière une résistance surfacique Z' en représentation de "Nyquist" de l'ordre de 5.103 n.cm2 ( À, figure 8). A titre de comparaison, le traitement d'une pièce 5 d'aluminium 2024-T3 ayant subi préalablement une immersion dans une solution de conversion formée d'eau et de cérium (0,01 mole/L) et sans immersion dans un bain de corrosion, confère une résistance surfacique Z' en représentation de "Nyquist" de valeur supérieure à 6.105 n.cm2. L'augmentation de la durée d'immersion dans le bain de corrosion jusqu'à 168 heures ramène la résistance surfacique de la pièce 10 d'aluminium à la valeur caractéristique de la couche d'oxyde d'aluminium de l'ordre de 5.103 SI.cm2. L'augmentation de la concentration en cérium dans la solution de conversion et l'augmentation de la durée d'immersion de la pièce métallique d'aluminium dans la solution de conversion conduisent à une augmentation de la 15 résistance surfacique de la pièce métallique d'aluminium. En particulier, la résistance surfacique résiduelle Z' mesurée en représentation de "Nyquist" d'une telle pièce d'aluminium après 1 heure d'immersion dans la solution de corrosion (NaCE 0,05 mole/L) est de l'ordre de 1,1.104 acm2 pour une concentration en cérium de 0,01 mole/L dans la solution 20 de conversion et une durée de traitement de conversion de 1 s, de l'ordre de 2.104 acm2 pour une concentration en cérium de 0,05 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s et de l'ordre de 3,3.104 acm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s.Electrochemical impedance spectroscopy is used to analyze the corrosion resistance of an M 2024-T3 solid metal substrate treated or not with a conversion solution according to a process according to the invention then exposed to a step of corrosion by immersion in an aqueous solution of 0.05 mol / L NaCl. The results are presented in Figure 8 according to the Nyquist representation. The treatment of a piece of aluminum 2024-T3 treated with a conversion solution according to the invention by immersion in a corrosion solution (NaCt 0.05 mol / L) for 30 minutes at room temperature gives the latter a resistance. Z 'surface in representation of "Nyquist" of the order of 4.104 Slcm2 (o, Figure 8). By way of comparison, the treatment of a piece of raw 2024-T3 aluminum (i.e., untreated with a conversion solution 2981366 according to the invention) by immersion in a corrosion solution (NaCE 0 , 05 mole / L) gives the latter a surface resistance Z 'in the representation of "Nyquist" of the order of 5.103 n.cm2 (A, Figure 8). By way of comparison, the treatment of an aluminum 2024-T3 piece previously immersed in a conversion solution of water and cerium (0.01 mol / L) and without immersion in a bath of corrosion, confers a surface resistance Z 'in the representation of "Nyquist" with a value greater than 6.105 n.cm2. Increasing the immersion time in the corrosion bath up to 168 hours reduces the surface resistance of the aluminum part to the characteristic value of the aluminum oxide layer of the order of 5 × 10 3 Si. .CM2. Increasing the concentration of cerium in the conversion solution and increasing the immersion time of the aluminum metal part in the conversion solution lead to an increase in the surface resistance of the metal part of the conversion solution. aluminum. In particular, the residual surface resistance Z 'measured as a "Nyquist" representation of such an aluminum piece after 1 hour of immersion in the corrosion solution (NaCE 0.05 mol / L) is of the order of 1.10.10 acm2 for a cerium concentration of 0.01 mol / l in the conversion solution and a conversion treatment time of 1 s, of the order of 2.104 acm2 for a cerium concentration of 0.05 mol. / L in the conversion solution and a conversion treatment duration of 1 s and of the order of 3.3 × 10 4 ac m 2 for a cerium concentration of 0.1 mole / L in the conversion solution and a treatment duration of 1 s conversion.
25 La résistance surfacique résiduelle Z' mesurée en représentation de "Nyquist" d'une pièce d'aluminium après 1 h d'immersion dans la solution de corrosion (NaCE 0,05 mole/L) est de l'ordre de 1,1.104 acm2 pour une concentration en cérium de 0,01 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s, de l'ordre de 2.104 acm2 pour une 30 concentration en cérium de 0,01 mole/L dans la solution de conversion et une durée 38 2 9 8 1 3 6 6 de traitement de conversion de 60 s et de l'ordre de 3,8.104 acm2 pour une concentration en cérium de 0,01 mole/L dans la solution de conversion et une durée de traitement de conversion de 300 s. La résistance surfacique résiduelle Z' mesurée en 5 représentation de "Nyquist" d'une pièce d'aluminium après 1 heure d'immersion dans la solution de corrosion (NaCt 0,05 rnole/L) est de l'ordre de 3,2.104 acm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s, de l'ordre de 4,0.104 acm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée 10 de traitement de conversion de 60 s et de l'ordre de 9,0.104 û.cm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée de traitement de conversion de 300 s. Une immersion prolongée dans le bain de corrosion conduit à une diminution de la valeur de résistance surfacique qui atteint la valeur de la résistance surfacique de l'oxyde d'aluminium en 10 heures.The residual surface resistance Z 'measured in the "Nyquist" representation of an aluminum piece after 1 h of immersion in the corrosion solution (0.05 mol / L NaCE) is of the order of 1.104. acm2 for a cerium concentration of 0.01 mol / L in the conversion solution and a conversion treatment time of 1 s, of the order of 2.104 acm2 for a cerium concentration of 0.01 mol / L in the conversion solution and a conversion time of 60 s and of the order of 3.8 × 10 4 ac m 2 for a cerium concentration of 0.01 mol / l in the conversion solution and a conversion processing time of 300 s. The residual surface resistance Z 'measured in the "Nyquist" representation of an aluminum piece after 1 hour of immersion in the corrosion solution (NaCt 0.05 mmol / L) is of the order of 3.2 × 10 4 acm2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment duration of 1 s, of the order of 4.0 × 10 4 acm2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment time of 60 s and of the order of 9.0 × 10 -4 μCm2 for a cerium concentration of 0.1 mol / L in the conversion solution and a treatment time conversion rate of 300 s. Prolonged immersion in the corrosion bath leads to a decrease in the surface resistance value which reaches the value of the surface resistance of the aluminum oxide in 10 hours.
15 La résistance surfacique Z' d'une pièce d'aluminium traitée par une solution de conversion contenant du cérium à une concentration de 0,5 mole/L pendant une durée de 1 s, 60 s et 300 s reste supérieure à 1.104 SI.cm2 pendant respectivement 40 heures, 70 heures et 90 heures d'immersion dans le bain de corrosion.The surface resistance Z 'of a piece of aluminum treated with a conversion solution containing cerium at a concentration of 0.5 mol / l for a period of 1 s, 60 s and 300 s remains greater than 1 × 10 4 Si. cm2 during 40 hours, 70 hours and 90 hours immersion in the corrosion bath, respectively.
20 Des analyses chimiques (figure 9) par EDS permettent de montrer la présence de cérium Ce(III) en surface du substrat métallique solide traité pendant 300 sec avec une solution de conversion contenant du cérium à une concentration de 0,5 mole/L. Le signal majoritaire est caractéristique du substrat d' aluminium. 25 Chemical analyzes (FIG. 9) by EDS make it possible to show the presence of Ce (III) cerium at the surface of the solid metal substrate treated for 300 sec with a conversion solution containing cerium at a concentration of 0.5 mol / l. The majority signal is characteristic of the aluminum substrate. 25
Claims (1)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1103137A FR2981366B1 (en) | 2011-10-14 | 2011-10-14 | METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD |
US14/351,430 US20140255611A1 (en) | 2011-10-14 | 2012-10-12 | Process for the anticorrosion treatment of a solid metal substrate and treated solid metal substrate capable of being obtained by such a process |
ES12781391.3T ES2609581T3 (en) | 2011-10-14 | 2012-10-12 | Anti-corrosion treatment procedure for a solid metal substrate |
JP2014535154A JP2014528520A (en) | 2011-10-14 | 2012-10-12 | Method for anticorrosion treatment of solid metal substrate and treated solid metal substrate obtainable by such method |
MX2014004512A MX2014004512A (en) | 2011-10-14 | 2012-10-12 | Process for the anticorrosion treatment of a solid metal substrate and treated solid metal substrate capable of being obtained by such a process. |
CA2851499A CA2851499A1 (en) | 2011-10-14 | 2012-10-12 | Process for the anticorrosion treatment of a solid metal substrate and treated solid metal substrate capable of being obtained by such a process |
PCT/FR2012/052337 WO2013054064A1 (en) | 2011-10-14 | 2012-10-12 | Process for the anticorrosion treatment of a solid metal substrate and treated solid metal substrate capable of being obtained by such a process |
EP12781391.3A EP2766508B1 (en) | 2011-10-14 | 2012-10-12 | Process for the anticorrosion treatment of a solid metal substrate |
BR112014008845A BR112014008845A2 (en) | 2011-10-14 | 2012-10-12 | anti-corrosion treatment process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1103137A FR2981366B1 (en) | 2011-10-14 | 2011-10-14 | METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2981366A1 true FR2981366A1 (en) | 2013-04-19 |
FR2981366B1 FR2981366B1 (en) | 2014-10-17 |
Family
ID=47143172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1103137A Expired - Fee Related FR2981366B1 (en) | 2011-10-14 | 2011-10-14 | METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD |
Country Status (9)
Country | Link |
---|---|
US (1) | US20140255611A1 (en) |
EP (1) | EP2766508B1 (en) |
JP (1) | JP2014528520A (en) |
BR (1) | BR112014008845A2 (en) |
CA (1) | CA2851499A1 (en) |
ES (1) | ES2609581T3 (en) |
FR (1) | FR2981366B1 (en) |
MX (1) | MX2014004512A (en) |
WO (1) | WO2013054064A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2915903B1 (en) | 2014-03-05 | 2018-02-21 | The Boeing Company | Chromium-free conversion coating |
US20230203663A1 (en) * | 2017-04-14 | 2023-06-29 | Shilpa Medicare Ltd | Corrosion resistant multilayer coatings |
JP7476823B2 (en) * | 2021-03-03 | 2024-05-01 | 株式会社デンソー | Metal products |
WO2023034488A1 (en) * | 2021-09-01 | 2023-03-09 | Raytheon Company | Hybrid sol-gel coating formulations doped with corrosion inhibitive pigments |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009059798A2 (en) * | 2007-11-08 | 2009-05-14 | Corus Uk Limited | A method for producing a coating on a metal substrate and a coating produced thereby |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5221371A (en) * | 1991-09-03 | 1993-06-22 | Lockheed Corporation | Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys and the process for making the same |
US5591380A (en) * | 1991-12-20 | 1997-01-07 | United Technologies Corporation | Preparation of alumina-silica sol gel compositions |
US5356492A (en) * | 1993-04-30 | 1994-10-18 | Locheed Corporation | Non-toxic corrosion resistant conversion process coating for aluminum and aluminum alloys |
JP4707258B2 (en) * | 2001-05-07 | 2011-06-22 | 日本ペイント株式会社 | Acid cleaning agent for chemical film and treatment method |
ES2387805T3 (en) * | 2003-02-25 | 2012-10-02 | Chemetall Gmbh | Procedure for coating metal surfaces with a polymer-rich composition |
JP2006328445A (en) * | 2005-05-23 | 2006-12-07 | Nippon Parkerizing Co Ltd | Water-based surface treating agent for precoat metal material, surface treating method and method for manufacturing precoat metal material |
JP5313432B2 (en) * | 2005-12-28 | 2013-10-09 | 日本ペイント株式会社 | Metal surface treatment composition, metal surface treatment method and surface-treated galvanized steel sheet |
JP4719662B2 (en) * | 2006-11-21 | 2011-07-06 | 日本パーカライジング株式会社 | Water-based surface treatment agent for environment-friendly precoat metal material, surface treatment metal material, and environment-friendly precoat metal material |
FR2929622B1 (en) * | 2008-04-04 | 2011-03-04 | Eads Europ Aeronautic Defence | MESOSTRUCTURE COATINGS COMPRISING A PARTICULAR TEXTURANT AGENT FOR AERONAUTICAL AND AEROSPATIAL APPLICATION |
JP5438392B2 (en) * | 2009-06-22 | 2014-03-12 | 日本パーカライジング株式会社 | Metal surface treatment agent, surface treatment metal material, and surface treatment method of metal material |
CN102666922A (en) * | 2009-10-30 | 2012-09-12 | 日本帕卡濑精株式会社 | Surface treatment agent for laminated metal material and method for producing laminated metal material |
JP2011153341A (en) * | 2010-01-26 | 2011-08-11 | Nippon Paint Co Ltd | Rustproof treatment method of heat exchanger |
-
2011
- 2011-10-14 FR FR1103137A patent/FR2981366B1/en not_active Expired - Fee Related
-
2012
- 2012-10-12 MX MX2014004512A patent/MX2014004512A/en unknown
- 2012-10-12 WO PCT/FR2012/052337 patent/WO2013054064A1/en active Application Filing
- 2012-10-12 ES ES12781391.3T patent/ES2609581T3/en active Active
- 2012-10-12 BR BR112014008845A patent/BR112014008845A2/en not_active IP Right Cessation
- 2012-10-12 CA CA2851499A patent/CA2851499A1/en not_active Abandoned
- 2012-10-12 US US14/351,430 patent/US20140255611A1/en not_active Abandoned
- 2012-10-12 JP JP2014535154A patent/JP2014528520A/en active Pending
- 2012-10-12 EP EP12781391.3A patent/EP2766508B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009059798A2 (en) * | 2007-11-08 | 2009-05-14 | Corus Uk Limited | A method for producing a coating on a metal substrate and a coating produced thereby |
Non-Patent Citations (4)
Title |
---|
DU Y J ET AL: "Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates", PROGRESS IN ORGANIC COATINGS MAY 2001 ELSEVIER NL, vol. 41, no. 4, May 2001 (2001-05-01), pages 226 - 232, XP002676909, DOI: DOI:10.1016/S0300-9440(01)00133-3 * |
HAMMER P ET AL: "Improvement of the corrosion resistance of polysiloxane hybrid coatings by cerium doping", JOURNAL OF NON-CRYSTALLINE SOLIDS, NORTH-HOLLAND PHYSICS PUBLISHING. AMSTERDAM, NL, vol. 356, no. 44-49, 1 October 2010 (2010-10-01), pages 2606 - 2612, XP027488795, ISSN: 0022-3093, [retrieved on 20100602], DOI: 10.1016/J.JNONCRYSOL.2010.05.013 * |
PALOMINO L M ET AL: "Electrochemical study of modified cerium-silane bi-layer on Al alloy 2024-T3", CORROSION SCIENCE, OXFORD, GB, vol. 51, no. 6, 1 June 2009 (2009-06-01), pages 1238 - 1250, XP026138980, ISSN: 0010-938X, [retrieved on 20090319], DOI: 10.1016/J.CORSCI.2009.03.012 * |
ZHONG X ET AL: "Effect of cerium concentration on microstructure, morphology and corrosion resistance of cerium-silica hybrid coatings on magnesium alloy AZ91D", PROGRESS IN ORGANIC COATINGS, ELSEVIER BV, NL, vol. 69, no. 1, 1 September 2010 (2010-09-01), pages 52 - 56, XP027122753, ISSN: 0300-9440, [retrieved on 20100706] * |
Also Published As
Publication number | Publication date |
---|---|
ES2609581T3 (en) | 2017-04-21 |
MX2014004512A (en) | 2015-05-11 |
JP2014528520A (en) | 2014-10-27 |
US20140255611A1 (en) | 2014-09-11 |
EP2766508A1 (en) | 2014-08-20 |
BR112014008845A2 (en) | 2017-04-18 |
WO2013054064A1 (en) | 2013-04-18 |
CA2851499A1 (en) | 2013-04-18 |
FR2981366B1 (en) | 2014-10-17 |
EP2766508B1 (en) | 2016-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Akhtar et al. | Enhancement of anticorrosion property of 304 stainless steel using silane coatings | |
EP2010612B1 (en) | Use of a nanostructured material, as protective coating of metal surfaces | |
Wang et al. | Sol–gel coatings on metals for corrosion protection | |
EP1629136B1 (en) | Composition for coating metals to protect against corrosion | |
ES2401173T3 (en) | Corrosion protection treatment for zinc and zinc alloy surfaces | |
EP1978055B1 (en) | Specific nanostructured material, as a protective coating for metal surfaces. | |
EP2076570A2 (en) | Mesostructured skins for application in the aeronautics and aerospace industries | |
Jothi et al. | Facile fabrication of core–shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications | |
EP2766508B1 (en) | Process for the anticorrosion treatment of a solid metal substrate | |
EP3146001B1 (en) | Binder composition, method for producing a sacrificial protective coating against corrosion using said composition and a substrate coated with such a coating | |
EP1485519B1 (en) | Coating composition for a metal substrate | |
WO2009136044A2 (en) | Mesostructured coatings comprising a specific texture agent for application in aeronautics and aerospace | |
FR2981367A1 (en) | PROCESS FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND METALLIC SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD | |
Sugama | Cerium acetate-modified aminopropylsilane triol: A precursor of corrosion-preventing coating for aluminum-finned condensers | |
EP3347140B1 (en) | Method for applying a corrosion-resistant coating to a metal part, aqueous coating composition, corrosion-resistant coating for metal parts and coated metal part | |
Pehkonen et al. | Inorganic-Organic Hybrid Coatings | |
JP2006316342A (en) | Metal member, rustproofing agent, and rustproofing method | |
Hajjari et al. | Hybrid sol-gel silane composite coating reinforced with a hybrid organic/inorganic inhibitive pigment: Synthesis, characterization, and electrochemical properties | |
Cini | Sol-gel coatings for the protection of ferrous heritage metal | |
Rout | The effect of dye molecules in titania‐silica hybrid coatings for corrosion protection | |
FR2737217A1 (en) | PROTECTIVE COATING, ESPECIALLY FOR METALLIC SUBSTRATE, OBTAINING AND APPLICATIONS | |
EP0922074A1 (en) | Method for obtaining a protective coating, in particular for metal substrate and applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
ST | Notification of lapse |
Effective date: 20210605 |