EP2766508B1 - Process for the anticorrosion treatment of a solid metal substrate - Google Patents

Process for the anticorrosion treatment of a solid metal substrate Download PDF

Info

Publication number
EP2766508B1
EP2766508B1 EP12781391.3A EP12781391A EP2766508B1 EP 2766508 B1 EP2766508 B1 EP 2766508B1 EP 12781391 A EP12781391 A EP 12781391A EP 2766508 B1 EP2766508 B1 EP 2766508B1
Authority
EP
European Patent Office
Prior art keywords
metal substrate
solid metal
solution
treatment solution
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12781391.3A
Other languages
German (de)
French (fr)
Other versions
EP2766508A1 (en
Inventor
Florence Ansart
Rudina BLETA
Jean-Pierre Bonino
Julien ESTEBAN
Olivier JAUBERT
Marie GRESSIER
Pascal Lenormand
Marie-Joëlle MENU
Elodie XUEREB
Pierre Bares
Céline GAZEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Toulouse III Paul Sabatier
Mecaprotec Industries SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Toulouse III Paul Sabatier
Mecaprotec Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Toulouse III Paul Sabatier, Mecaprotec Industries SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2766508A1 publication Critical patent/EP2766508A1/en
Application granted granted Critical
Publication of EP2766508B1 publication Critical patent/EP2766508B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the invention relates to a method for anticorrosion treatment of a solid metal substrate, in particular an aluminum or aluminum alloy substrate.
  • the invention further relates to a corrosion-resistant solid metal substrate obtainable by such a method.
  • Such an anticorrosion treatment method has applications in the general field of surface treatment of solid metal substrates, in particular metal parts.
  • Such a method has its applications in the field of transport vehicles, including ships, motor vehicles and aircraft in which the problem of the fight against corrosion of metal parts arises.
  • the invention aims to overcome the disadvantages mentioned above by proposing a method of anticorrosion treatment of a solid metal substrate that does not require the use of chromium derivatives-especially chromium VI- which is carcinogenic, mutagenic and reprotoxic.
  • the object of the invention is to provide an anticorrosive treatment method adapted to form a corrosion-resistant coating on the surface of a solid metal substrate which is of high mechanical strength.
  • the invention also aims at providing such an anticorrosion treatment method which makes it possible to obtain a layer of anticorrosion coating of controlled thickness, in particular between 1 ⁇ m and 15 ⁇ m, and compatible with the industrial recommendations, particularly in the field. aeronautics.
  • Another objective of the invention is to propose a method for the anticorrosion treatment of a solid metal substrate - particularly metallic parts for aeronautics - adapted to allow the formation of an anticorrosion coating of said solid metal substrate which is of thickness substantially homogeneous on the surface of the solid metal substrate, which is covering and which is also leveling.
  • leveling it is meant that such a coating has a free outer surface-that is, opposed to the substrate-which is substantially planar regardless of the presence of structural defects on the surface of the underlying solid metal substrate.
  • the invention aims to provide such a method adapted to allow the formation of an anticorrosion coating having no cracking at said structural defects.
  • the invention also aims at such a method which is adapted to allow the formation of an anticorrosion layer which is resistant to cracking.
  • the invention furthermore aims at such a method adapted to allow the formation of a surface anticorrosion coating of a solid metal substrate having at the same time passive protection properties - in particular, by barrier effect of said substrate vis-à- vis of an outside environment corrosive and protective active healing properties and limiting the progression of corrosion at an accidental bite likely to affect the anticorrosive coating.
  • the invention also aims at such an anticorrosion treatment method adapted to be applied on a polished solid metal substrate or on an unpolished solid metal substrate.
  • the invention also aims to achieve all these objectives at lower cost, by proposing a method which is simple and which requires for its implementation that steps of contacting a solid metal substrate and liquid solutions.
  • the invention also aims and more particularly to provide such a method that is compatible with the constraints of safety and respect for the environment.
  • the invention further aims to provide such a solution that preserves the work habits of staff, is easy to use, and imply for its implementation that little manipulation.
  • the invention also aims at such an anticorrosion treatment method using a treatment solution that is simple in its composition compared to liquid treatment solutions of the state of the art.
  • the invention therefore also relates to an anticorrosive coating having improved protective properties compared to anti-corrosion coatings of the state of the art, including anti-corrosion properties which are improved over time.
  • the invention relates to an anticorrosion treatment method according to claim 1.
  • the treatment solution having a molar ratio (Si / Ce) of silicon element of (the) alkoxysilane (s) relative to the (x) cation (s) of cerium (Ce) between 50 and 500, in particular between 80 and 250.
  • the cation (s) of cerium (Ce) present (s) a concentration of between 0.005 mol / L and 0.015 mol / L -notamment between 0.005 mol / L and 0.01 mol / L, preferably of the order of 0.010 mol / L- in the treatment solution.
  • At least one alkoxysilane and at least one cerium (Ce) cation are mixed in a liquid aqueous-alcoholic solution under conditions suitable for allowing hydrolysis / condensation of said at least one alkoxysilane and said at least one a cation of cerium (Ce), and said treatment solution is applied to the oxidizable surface of a solid metal substrate so as to form on the surface of the solid metal substrate, a hybrid matrix by hydrolysis / condensation of each alkoxysilane (s) and each cation of cerium (Ce).
  • each alkoxysilane (s) is carried out in the treatment solution in the presence of each cation (s) of cerium (Ce), said treatment solution having a ratio (Si / This molar element of silicon of (the) starting alkoxysilane (s) relative to the (x) cation (s) of cerium (Ce) starting between 50 and 500, in particular between 80 and 250.
  • the inventors have observed that the selection of a concentration value of the cerium cations in the treatment solution does not constitute an arbitrary selection of concentration, but on the contrary that this selection provides a surprising result, totally unpredictable, not described in FIG. state of the art and according to which the selected concentration of the cerium (Ce) cation in the solution for the corrosion treatment of a solid metal substrate at the same time allows (1) to obtain optimal adhesion of the surface treatment solution of the solid metal substrate, (2) the formation of a hybrid matrix of passive protection of said solid metal substrate by a barrier effect adapted to limit the formation of corrosion products of the solid metal substrate - in particular of a solid metal substrate having a puncture -, and (3) to form such a hybrid protection matrix having Physical resistance properties to mechanical stresses - including resistance to delamination, crack resistance, and plastic deformation and corrosion resistance - at 1 day, 7 days and 14 days corrosive treatment by immersion in a corrosive solution of NaCl at 0.05 mol / L in water which are improved.
  • Such properties of physical resistance to mechanical attack are evaluated in particular by techniques known in themselves to those skilled in the art, in particular by nanoindentation for the evaluation of Young's modulus of elasticity and hardness (for example, nano-hardness of Vickers) or by progressive scratching ("nano-scratch”) for the evaluation of the adhesion and the resistance to delamination of the anticorrosion coating on the surface of the solid metal substrate.
  • the cerium cation is a single cerium cation and the concentration of the single cerium cation in the treatment solution is between 0.005 mol / L and 0.015 mol / L, especially between 0.005 mol / L and 0.01 mol. / L, preferably of the order of 0.01 mol / l.
  • the cerium cation is a composition comprising a plurality of distinct cerium cations and the cumulative concentration of the plurality of distinct cerium cations in the treatment solution is itself between 0.005 mol / L and 0.015 mol / L, in particular between 0.005 mol / L and 0.01 mol / L, preferably of the order of 0.01 mol / L.
  • a concentration of cerium cation in the treatment solution of between 0.005 mol / l and 0.015 mol / l according to the invention gives the anticorrosion coating of a solid metal substrate a resistance towards corrosion which is optimal after deposition and before immersion in a corrosive solution.
  • a concentration of cerium cation in the treatment solution of greater than 0.015 mol / L leads to a significant degradation of the barrier effect of the protective layer and a reduced resistance to corrosion before immersion in a corrosive solution.
  • the surface resistance in a corrosive medium of such a protective layer of 6.3 ⁇ m thick, obtained by an anticorrosion treatment of a solid metal substrate with a treatment solution containing 0.05 mol / l of cerium cation, and immediately after immersion of said metal substrate in the corrosive medium is of the order of 2.8 ⁇ 10 6 ⁇ .cm 2 .
  • the surface resistance in corrosive medium of such a protective layer of 6.3 ⁇ m thick, obtained by an anticorrosion treatment of a solid metal substrate with a treatment solution containing 0.1 mol / l of cerium cation, and immediately after immersion of said metal substrate in the corrosive medium is of the order of 2.0 ⁇ 10 5 ⁇ .cm 2 as measured by electrochemical impedance spectroscopy (EIS).
  • the inventors have observed that such a concentration of cerium cations of between 0.005 mole / L and 0.015 mole / L in the treatment solution is adapted to at least preserve the mechanical properties of the hybrid matrix obtained from the solution. process for imparting to the treatment solution rheological and surface adherence properties of the solid metal substrate which are improved over a treatment solution not having such a concentration, while imparting to said hybrid matrix passive protection of the solid metal substrate by barrier effect.
  • each alkoxysilane is selected from the group consisting of tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetraacetoxysilane (TAOS) and tetra-2-hydroxyethoxysilane (THEOS). .
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • TAOS tetraacetoxysilane
  • TEEOS tetra-2-hydroxyethoxysilane
  • the R 3 group of each alkoxysilane is selected from the group consisting of methacrylates, acrylates, vinyls, epoxyalkyls and epoxyalkoxyalkyls in which the group (s) ( s) alkyl has from 1 to 10 carbon atoms and is (are) selected from linear alkyl groups, branched alkyl groups and cyclic alkyl groups.
  • the R 3 group of each alkoxysilane is selected from the group consisting of 3,4-epoxycyclohexylethyl and glycidoxypropyl.
  • each alkoxysilane is selected from the group consisting of glycidoxypropyltrimethoxysilane (GPTMS), glycidoxypropylmethyldimethoxysilane (MDMS), glycidoxypropylmethyldiethoxysilane (MDES) of glycidoxypropyltriethoxysilane (GPTES), methyltriethoxysilane (MTES), dimethyldiethoxysilane (DMDES), methacryloxypropyltrimethoxysilane (MAP).
  • GTMS glycidoxypropyltrimethoxysilane
  • MDMS glycidoxypropylmethyldimethoxysilane
  • MDES glycidoxypropylmethyldiethoxysilane
  • GPTES glycidoxypropyltriethoxysilane
  • MTES methyltriethoxysilane
  • DMDES dimethyldiethoxysilane
  • MAP methacryloxypropyltrime
  • ECHETES 3- (trimethoxysilyl) propylamine
  • ECHETES 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane
  • ECHETMS 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane
  • EHTES 5,6 epoxyhexyltriethoxysilane
  • an organic / inorganic hybrid matrix is formed by hydrolyzing the condensation of each alkoxysilane.
  • the treatment solution comprises a single alkoxysilane.
  • the treatment solution comprises at least one metal alkoxide.
  • each reactive species homogeneously distributed in the treatment solution and able to polymerize and form an organic / inorganic hybrid matrix are formed by hydrolysis of each alkoxysilane and each metal alkoxide.
  • An organic / inorganic hybrid matrix is thus formed by condensation hydrolysis of each alkoxysilane and each metal alkoxide.
  • each metal alkoxide is selected from the group consisting of aluminum alkoxides, especially aluminum tri ( s- butoxide), aluminum tri ( n- butoxide), aluminum tri (ethoxide), aluminum, aluminum tri (ethoxyethoxyethoxide) and aluminum tri ( iso- propoxide), titanium alkoxides -including titanium tetra ( n- butoxide), titanium tetra ( iso- butoxide), tetra ( iso- propoxide) of titanium, titanium tetra (methoxide) and titanium tetra (ethoxide), vanadium alkoxides, especially vanadium tri ( iso- butoxide) oxide and vanadium tri ( iso- propoxide) oxide and alkoxides; zirconium-especially tetra (ethoxide) zirconium, tetra (iso-propoxide) zirconium, tetra (n -propoxyde) zirconium, te
  • the treatment solution comprises a single metal alkoxide.
  • An inorganic hybrid matrix is thus formed by condensation hydrolysis of each alkoxysilane and the single metal alkoxide.
  • the treatment solution comprises a single metal alkoxide and a single alkoxysilane.
  • An inorganic hybrid matrix is thus formed by condensation hydrolysis of the single alkoxysilane and the single metal alkoxide.
  • the treatment solution comprises, as a single metal alkoxide, a single aluminum alkoxide.
  • a treatment solution comprising a metal alkoxide, especially a single aluminum alkoxide and a single alkoxysilane, said treatment solution being of great simplicity in its composition and still suitable for providing a high performance anticorrosive coating.
  • the single aluminum alkoxide is selected from the group consisting of aluminum tri ( s- butoxide), aluminum tri ( n- butoxide), aluminum tri (ethoxide), tri (ethoxyethoxyethoxide) ) aluminum and tri ( iso propoxide) aluminum.
  • the molar ratio of the alkoxysilanes with respect to the metal alkoxides in the treatment solution is between 99/1 and 50/50.
  • the molar ratio of all the alkoxysilanes relative to the total of metal alkoxides in the treatment solution is between 99/1 and 50/50.
  • the molar ratio of alkoxysilanes and metal alkoxides-in particular aluminum alkoxide-in the treatment solution is between 85/15 and 6/4 in particular between 8/2 and 64/36.
  • the molar ratio of all the alkoxysilanes relative to the total of metal alkoxides in the treatment solution is between 8/2 and 6/4.
  • the solid metal substrate is formed of a material chosen from the group consisting of oxidizable materials-in particular aluminum (for example alloy 2024T3), titanium (for example alloy TA6V) , magnesium (for example, the AZ30 alloy) and their alloys.
  • aluminum for example alloy 2024T3
  • titanium for example alloy TA6V
  • magnesium for example, the AZ30 alloy
  • the treatment solution is applied by soaking / removal of the solid metal substrate in said treatment solution.
  • the solid metal substrate is removed from the treatment solution with a predetermined speed of between 5 cm / min and 10 cm / min.
  • the atmospheric spray treatment solution is applied to the surface of the solid metal substrate.
  • the inventors have observed that it is possible to control the thickness of the hybrid matrix by the rate of removal of the solid metal substrate from the treatment solution.
  • a known viscosity treatment solution to vary the thickness of the hybrid anti-corrosion matrix by a value of 1 ⁇ m for a withdrawal speed of 1 cm / min, up to a value of 14. ⁇ m for a withdrawal speed of 20 cm / min.
  • a withdrawal rate of 7 cm / min makes it possible to obtain a hybrid matrix with a thickness of 5 ⁇ m.
  • the thickness of the hybrid matrix is measured by methods known in themselves to those skilled in the art, in particular by interferometric profilometry or by measurement of induced eddy currents.
  • the treatment solution further comprises a plasticizer selected from the group consisting of PEG.
  • the liquid treatment solution comprises a dye.
  • a dye is selected from the group consisting of rhodamine B (CAS 81-88-9), malachite green ("brilliant green", CAS 633-03-4) and xylene cyanole (CAS 2850-17-1). ).
  • rhodamine B is used at a concentration in the liquid treatment solution of between 5.10 -4 mol / l and 10 -3 mol / l, the malachite green at a concentration in the liquid treatment solution of between 5.10 -4. mol / L to 10 -3 mol / L and xylene cyanole at a concentration in the liquid treatment solution between 5.10 -4 mol / L to 10 -3 mol / L.
  • the treatment solution comprises a nanoparticle feedstock formed of a colloidal dispersion of boehmite in the treatment solution, that is to say solid nanoparticles of boehmite of general formula [-AlO (OH) -] forming a colloidal dispersion of boehmite nanoparticles in the treatment solution.
  • an alcoholic solution is added alkoxysilane (s) and the (the) alkoxide (s) metal (s) and an amount of water or, if appropriate, an amount of an aqueous solution containing at least one lanthanide cation and / or nanoparticles of colloidal boehmite so as to substantially retain the rheological and thixotropic properties of the treatment solution.
  • a treatment solution comprising boehmite nanoparticles of general formula AlO (OH) and having a surface distribution of lanthanide cations -including cerium- and / or vanadate cations.
  • boehmite nanoparticles called physisorbed boehmite nanoparticles, are obtained by a process known in itself to those skilled in the art and in particular adapted from a process described by Yoldas ( Yoldas BE et al., (1975), J. Mater. Sci., 10, 1856 ).
  • the inventors have found an improvement in the corrosion resistance of a solid metal substrate treated with a treatment solution subjected to immersion in a corrosive bath of NaCl at 0, 05 mole / L.
  • Such doped boehmite nanoparticles are obtained by a process in which a solution of at least one aluminum precursor - notably Al (OC 4 H 9 ) 3 - in water and a solution of a cation of a doping element selected from the group consisting of a nitrate, a sulfate, an acetate and a chloride of the doping element.
  • a solution of at least one aluminum precursor - notably Al (OC 4 H 9 ) 3 - in water and a solution of a cation of a doping element selected from the group consisting of a nitrate, a sulfate, an acetate and a chloride of the doping element.
  • the inventors have found an improvement in the corrosion resistance of a solid metal substrate treated with a treatment solution subjected to immersion in a corrosive bath of NaCl at 0, 05 mole / L.
  • the physisorbed boehmite nanoparticles and the doped boehmite nanoparticles have a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger dimension, said larger dimension is less than 200 nm. -In particular less than 100 nm, particularly less than 50 nm, preferably between 5 nm and 20 nm-, and the two smaller dimensions are less than 10 nm, preferably of the order of 3 nm.
  • the treatment solution comprises a charge of hollow boehmite nanoparticles.
  • a heat treatment of the metal substrate adapted to allow the formation of the hybrid matrix and the evaporation of the solvents is carried out.
  • said oxidizable surface of the solid metal substrate is immersed in a so-called conversion solution solution, a liquid formed of at least one corrosion inhibitor in water said corrosion inhibitor being selected from the group consisting of lanthanide cations and said oxidizable surface of the solid metal substrate is held in contact with the conversion solution for a period of time suitable to form a conversion layer formed from said bound lanthanide by at least one covalent bond to the oxidizable surface and extending at the surface of the solid metal substrate.
  • a conversion layer is first formed on the oxidizable surface of a solid metal substrate by contacting said oxidizable surface with the conversion solution.
  • a treatment with such a conversion solution constitutes an anticorrosion treatment in that it allows the formation of a surface conversion layer of the solid metal substrate, instead of a metal oxide layer of the solid metal substrate.
  • said conversion layer exhibiting a resistance to corrosion - in particular measured by electrochemical impedance spectroscopy (EIS) - which is increased with respect to the corrosion resistance of the coating layer. oxide formed naturally on the surface of the solid metal substrate.
  • an anticorrosion treatment according to the invention in which a layer of surface conversion of a solid metal substrate, then a treatment solution comprising at least one alkoxysilane, a cerium cation at a concentration of between 0.005 mol / L and 0.015 mol / L, and, where appropriate, at least one metal alkoxide, makes it possible to increase the resistance to corrosion of the oxidizable surface of a solid metal substrate, even after immersion of the oxidizable surface of the solid metal substrate for a predetermined period of time -particularly a duration greater than 1 hour- in a bath of corrosion, especially an aqueous bath of NaCl 0.05 mol / L.
  • Such a conversion layer is characterized, according to a representation, called "Nyquist" representation, of the electrochemical impedance diagram by a value Z '( ⁇ ) of surface resistance ( ⁇ .cm 2 ) increased compared with the value Z' (co) the surface resistance of a solid metal oxide layer naturally formed on the surface of a solid metal substrate.
  • the impedance measurements Z (co) are carried out in potentiostatic mode around the free potential, with a sinusoidal disturbance.
  • the amplitude of sinusoidal disturbance is set at 10 mV in order to satisfy the linearity conditions.
  • the frequencies scanned during impedance measurements are between 65 kHz and 10 mHz with 10 points per decade.
  • EDS Energy Dispersive Spectroscopy
  • the conversion layer extending at the surface of the solid metal substrate has an average thickness of between 1 nm and 200 nm.
  • the inventors have observed that increasing the immersion time of a solid metal substrate in a conversion solution according to the invention makes it possible to increase the value of the surface area resistance which goes beyond the limit value of the surface resistance of the layer of aluminum oxide formed naturally on the surface of a piece of alloy of aluminum.
  • the treatment of the oxidizable surface of the solid metal substrate by the conversion solution allows the formation of an active protection conversion and healing layer on the surface of the solid metal substrate by formation of a plurality of covalent bonds occurring between the lanthanide element (Ln) corrosion inhibitor and a metal element (M) of the solid metal substrate.
  • Ln lanthanide element
  • M metal element
  • the inventors have shown by chemical analysis of the binding energies - in particular by X-ray photoelectron spectrometry (XPS) - that this covalent bond is of the MO-Ln-O- type in which M represents a metallic element of the solid metal substrate, O is an oxygen atom and Ln represents the corrosion inhibiting element chosen from lanthanides.
  • a treatment solution formed of an organic / inorganic hybrid soil of at least one alkoxysilane is applied to the oxidizable surface of the solid metal substrate, and optionally to the surface of the conversion layer.
  • the inventors have observed that immersing a solid metal substrate in a conversion solution allows not only the formation of such a conversion layer and the active protection of the solid metal substrate against corrosion, but also allows an improvement of the adhesion of a hybrid soil surface of the solid metal substrate and an improvement of passive protection properties of said solid metal substrate against corrosion.
  • each corrosion inhibitor of the conversion solution is selected from the group consisting of lanthanum (La) cations, cerium (Ce) cations, praseodymium (Pr) cations, neodymium cations. (Nd), samarium (Sm) cations, europium (Eu) cations, gadolinium (Gd) cations, terbium (Tb) cations, dysprosium (Dy) cations, holmium cations (Ho), erbium cations (Er), thulium cations (Tm), ytterbium cations (Yb) and lutetium cations (Lu).
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium cations
  • Er er
  • each corrosion inhibitor of the conversion solution is chosen from the group formed by lanthanide chlorides, lanthanide nitrates, lanthanide acetates and lanthanide sulfates.
  • each corrosion inhibitor of the conversion solution in the group consisting of lanthanum chloride (LaCl 3), cerium chloride (CeCl 3), yttrium chloride (YCl 3), cerium sulfate ( Ce 2 (SO 4 ) 3 ), cerium acetate (Ce (CH 3 COO) 3 ), praseodymium chloride (PrCl 3 ), neodymium chloride (NdCl 3 )
  • each corrosion inhibitor of the conversion solution is a cerium cation-notably cerium nitrate (Ce (NO 3 ) 3 ), cerium acetate (Ce (CH 3 COO) 3 ) , cerium sulphate (Ce 2 (SO 4 ) 3 ) and cerium chloride (CeCl 3 ) - in which the cerium element is of valence III (Ce III ).
  • the cerium cation (Ce) of the treatment solution is chosen from the group formed by cerium chlorides and cerium nitrates.
  • the corrosion inhibitor of the conversion solution is cerium nitrate Ce (NO 3 ) 3 .
  • the conversion layer consists of mixed oxides of cerium and the constituent metal of the oxidizable surface of the solid metal substrate.
  • the chemical analysis by energy dispersive spectroscopy (“EDS”) shows L ⁇ and M ⁇ lines characteristic of cerium bound by covalent liaiasons on the surface of the solid metal substrate.
  • an anticorrosion treatment method makes it possible to form an anticorrosion coating formed of a conversion layer comprising at least one corrosion inhibitor and adapted to allow self-healing of the solid metal substrate, said conversion layer being it is protected by the cerium-rich hybrid matrix with an optimal barrier effect.
  • the conversion solution has a concentration of corrosion inhibitor - in particular cerium (Ce) - of between 0.001 mol / l and 0.5 mol / l, in particular between 0.05 mol / l and 0, 3 mol / L, in particular of the order of 0.1 mol / L.
  • Ce cerium
  • the conversion solution has a concentration of corrosion inhibitor - in particular cerium (Ce) - of between 0.01 mole / L and 0.5 mole / L, preferably between 0.1 mole / L and 0.5 mol / L.
  • Ce cerium
  • the oxidizable surface of the solid metal substrate is maintained in contact with the conversion solution for a predetermined period of between 1 s and 30 min, in particular between 1 s and 300 s, preferably between 1 s and 15 s, in particular between 1 s and 10 s, more preferably between 1 s and 3 s.
  • the solid metal substrate is dried at a predetermined temperature of less than 100 ° C., in particular of the order of 50 ° C. in order to form on the surface of the solid metal substrate, a layer, referred to as the conversion layer, of the corrosion inhibitor element Ln (lanthanide) bonded to a metal element M of the solid metal substrate by a bond of the MO-Ln type. O-.
  • the conversion solution has a pH substantially of the order of 4.
  • the pH of the conversion solution is adjusted by addition of a mineral acid - in particular nitric acid - to the conversion solution.
  • the inventors have observed that a method of anticorrosion treatment of a solid metal substrate in two stages according to the invention not only allows an active protection, in particular by healing, of the solid metal substrate with respect to corrosion but also provides passive protection against said corrosion.
  • the liquid aqueous-alcoholic composition is formed of water and at least one alcohol -notamment selected from the group consisting of ethanol, propanol-1 and propanol-2-.
  • doped and / or physisorbed boehmite nanoparticles have a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger one.
  • dimension, said largest dimension is less than 200 nm, especially less than 100 nm, particularly less than 50 nm, preferably between 5 nm and 20 nm, and the two smaller dimensions are less than 10 nm, preferably less than the order of 3 nm.
  • the treatment solution comprises a charge of hollow boehmite nanoparticles.
  • the invention also relates to an anticorrosion coating that can be obtained by a process according to the invention.
  • the invention also extends to an anticorrosion coating of a solid metal substrate formed of a hybrid matrix extending at the surface of the solid metal substrate and obtained by hydrolysis / condensation of at least one alkoxysilane; said hybrid matrix having a molar ratio (Si / Ce) of silicon element of the alkoxysilane (s) with respect to at least one cerium (Ce) cation of between 50 and 500, in particular between 80 and 250.
  • This Ce / Si ratio is determined by methods known in themselves to those skilled in the art, in particular by RBS (Rutherford Backscattering Spectrometry) analysis of the elastic diffusion of the ions of an incident ion beam adapted to be able to measure the amount of a heavy element in a light hybrid matrix.
  • RBS Rutherford Backscattering Spectrometry
  • the anticorrosion coating has a thickness of between 1 micron and 15 microns.
  • the conversion layer of the anticorrosion coating has a thickness of between 1 nm and 200 nm.
  • the invention also extends to a metal surface coated with an anticorrosion coating obtained by a method according to the invention.
  • the invention also relates to a process characterized in combination by all or some of the characteristics mentioned above or below.
  • An anticorrosion coating 1 according to the invention represented in figure 1 is supported on a metal substrate 2 formed of metallic elements M.
  • Such an anticorrosive coating is formed of an optional conversion layer 3 in which corrosion inhibiting elements Ln are linked by MO-Ln- covalent bonds to metallic elements M of the metal substrate 2.
  • conversion layer corrosion inhibitor elements Ln form covalent bonds with Si elements and, where appropriate, metal elements M 'chosen from the group consisting of aluminum (Al), vanadium (V ) titanium (Ti) and zirconium (Zr) and the cerium element (Ce) of the hybrid matrix 4 extending on the surface of the conversion layer 3.
  • the figure 2 represents a scanning electron microscopy (SEM) section of an aluminum substrate 2 treated with an alternative of a method according to the invention and comprising a conversion layer (optional) 3 extending at the interface between the aluminum substrate 2 and the hybrid matrix 4.
  • SEM scanning electron microscopy
  • a preparative surface treatment of a piece of rolled 2024 T3 aluminum alloy is first carried out.
  • Such a preparative treatment aims to eliminate from the surface of the solid metal substrate any trace of oxidation of the alloy or of staining which may hinder the homogeneous application of the conversion solution and the treatment solution on the surface of the substrate during its deposition ("dip-coating", "spray") and the anchoring of the hybrid anti-corrosion matrix obtained at the surface of the substrate.
  • the preparative treatment comprises a first step of degreasing the surface of the solid metal substrate during which the surface of said substrate is placed in contact with a degreasing solvent.
  • This degreasing step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the degreasing solvent or by spraying said surface with the degreasing solvent.
  • the degreasing solvent may be stabilized pure methylene chloride (marketed under the trademark Methoklone) or pure acetone.
  • this degreasing step is carried out at a temperature below 42 ° C. and for a duration of between 5 seconds and 3 minutes. It is possible to subject the solid metal substrate to ultrasonic treatment during this first degreasing step.
  • the preparative treatment of the solid metal substrate comprises a second successive step of degreasing the surface of said substrate in which the surface of the substrate is placed in contact with an alkaline preparation, in particular marketed under the trademark TURCO 4215 (HENKEL, Boulogne-Billancourt, France). ).
  • This alkaline degreasing step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the alkaline preparation or by spraying said surface with said preparation for a period of between 10 minutes and 30 min.
  • this alkaline degreasing step is carried out at a temperature of between 50 ° C. and 70 ° C. It is possible to subject the substrate to an ultrasonic treatment during this second degreasing step with an alkaline solution.
  • the preparative treatment according to the invention comprises a third successive step of pickling the surface of the substrate in which the surface of the substrate is placed in contact with an alkaline preparation, in particular an aqueous solution of sodium hydroxide at a concentration of between 30.degree. g / L at 70 g / L.
  • This alkaline pickling step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the concentrated alkaline preparation or by spraying said surface with said concentrated alkaline preparation for a period of time between 10 sec and 3 min.
  • this alkaline pickling step is carried out at a temperature of between 20 ° C. and 50 ° C. It is possible to subject the solid metal substrate to ultrasonic treatment during this second etching step with a concentrated alkaline solution.
  • the preparative treatment according to the invention comprises a fourth successive stage of dissolution of the oxide layer extending over the surface of the solid metal substrate in which the surface of said substrate is placed in contact with an acid preparation, for example TURCO LIQUID Smut-Go NC (HENKEL, Boulogne-Billancourt, France) or ARDROX 295 GD (Chemetal GmbH, Frankfurt, Germany) .
  • an acid preparation for example TURCO LIQUID Smut-Go NC (HENKEL, Boulogne-Billancourt, France) or ARDROX 295 GD (Chemetal GmbH, Frankfurt, Germany) .
  • This dissolution step is carried out for a period of between 1 min and 10 min at a temperature of between 10 ° C. and 50 ° C. with an aqueous solution comprising between 15% (v / v) and 25% (v / v) of TURCO LIQUID Smut-Go NC.
  • this dissolution step is carried out for a period of between 1 min and 10 min at a temperature of between 10 ° C. and 30 ° C. with an aqueous solution comprising between 15% (v / v) and 30% (v / v).
  • aqueous solution comprising between 15% (v / v) and 30% (v / v).
  • the surface of the solid metal substrate is adapted to be treated according to an anticorrosion treatment according to the invention.
  • a step of forming a surface conversion layer of the solid metal substrate is carried out.
  • a piece of aluminum (Al 2024-T3) is immersed by "dip-coating" in an aqueous conversion solution containing a concentration of between 0.001 mol / l and 0.5 mol / l of Ce (NO 3 ) 3 , the pH is adjusted to a value of 4 by adding nitric acid. After immersion and shrinkage, the aluminum piece is dried for 10 minutes at 50 ° C. At the end of this treatment with the conversion solution, no weight gain of said aluminum piece is measured.
  • An aqueous solution of cerium (III) (Ce (NO 3 ) 3 ) at a concentration of between 0.02 mol / l and 0.5 mol / l is also prepared, and a volume of this aqueous solution of cerium is added to the solution.
  • precursor ASB / GPTMS
  • the epoxy sol obtained is stirred for a period of time necessary for a thermal decline to ambient temperature.
  • the final concentration of cerium in the epoxy sol is 0.01 mol / L.
  • TEOS tetraethoxysilane
  • MAP methacryloxypropyltrimethoxysilane
  • the pH of the sol obtained is 4.5 and its viscosity is 3 mPa.s.
  • Such a colloidal dispersion of surface-functionalized boehmite nanoparticles is produced in two steps, described below, in which a colloidal solution of boehmite nanoparticles is first formed, and then said boehmite nanoparticles are functionalized with an inhibitor of corrosion.
  • Condensation hydrolysis of tri- sec butoxide (ASB, Al (OH) x (OC 4 H 9 ) 3-x ) of aluminum is carried out according to the method described by Yoldas BE ( J. Mater. Sci., (1975), 10, 1856 ), in which an amount of water preheated to a temperature above 80 ° C is added to tri- sec- butoxide of aluminum. The resulting solution is left stirring for 15 minutes.
  • such a solution of aluminum tri ( s- butoxide) at a concentration of 0.475 mol / l ( ⁇ 117 g / l) in water at a temperature of 80 ° C. for one duration of 15 min. Is then carried out step, said step of peptization, at which is added to the dry tri- butoxide hydrolysis solution a volume of between 1.4 ml and 2.8 ml of a nitric acid solution at 68 %.
  • the mixture is placed at 85 ° C. in an oil bath for a period of 24 hours.
  • a colloidal dispersion of oxyhydroxide is obtained aluminum (boehmite) in the water.
  • the concentration of nitric acid in the colloidal dispersion is between 0.033 mole / L and 0.066 mole / L.
  • Other inorganic or organic acids may be used during this peptization step, in particular hydrochloric acid and acetic acid.
  • a transparent and stable colloidal substrate having, by X-ray diffraction, the characteristic lines of boehmite as described in JCPDS sheet 21-1307 is obtained.
  • a nonionic surfactant especially a non-surfactant
  • ionic material chosen from Pluronic® P-123, Pluronic® F 127 (BASF, Mount Olive, New Jersey, USA), Brij 58 and Brij 52 in a final mass proportion of between 1% and 5%.
  • An amount of a corrosion inhibitor in particular cerium (III) nitrate (Ce (NO 3 ) 3 ) or sodium vanadate, is then added to a final concentration of between 0.001 mol / l and 0.5 mol / ml. L.
  • This preparation is stirred at room temperature for a period of 6 hours.
  • Such a preparation is present in infrared spectroscopy by using the Diffuse Reflectance Infra-red Fourier Transform (DRIFT) technique of the 1460 cm -1 and 1345 cm -1 vibration bands characteristic of the coordination of cerium with nitrate ions.
  • Diffuse Reflectance Infra-red Fourier Transform Diffuse Reflectance Infra-red Fourier Transform
  • Such a colloidal dispersion of boehmite nanoparticles doped in two steps described below is carried out in which (C1) is carried out the hydrolysis / condensation of a precursor - in particular an aluminum alkoxide and a corrosion inhibitor.
  • a step (C2) called a step of peptization, acid treatment in order to form doped boehmite nanoparticles.
  • the hydrolysis / condensation of a mixture of aluminum precursor - in particular an aluminum alkoxide, in particular aluminum tri ( s- butoxide) (ASB) - and a corrosion inhibitor - is carried out. in particular cerium (III) nitrate (Ce (NO 3 ) 3 ) - by adding to this mixture a minimum of water heated to the temperature of 85 ° C.
  • ASB aluminum tri
  • Ce (NO 3 ) 3 cerium
  • This hydrolysis / condensation mixture is placed under stirring for 15 minutes.
  • the final concentration of ASB in the hydrolysis / condensation mixture is 0.475 mol / L and the final concentration of corrosion inhibitor in the hydrolysis / condensation mixture is between 0.005 mol / L and 0.015 mol / L.
  • the concentration of nitric acid in the acidified mixture is between 0.033 mol / L and 0.066 mol / L.
  • a transparent and stable colloidal sol having, by X-ray diffraction, the characteristic lines of boehmite as described in JCPDS sheet 21-1307 is obtained.
  • Such hollow aluminum oxyhydroxide nanoparticles containing the corrosion inhibitor are produced by formation of an inverse microemulsion ( Daniel H., et al (2007), Nano Lett., 7; 11, 3489-3492 ) and simultaneous encapsulation of the corrosion inhibitor.
  • An apolar phase is prepared by mixing an alcohol, in particular hexanol, an alkane, especially dodecane, and a surfactant, especially hexadecyltrimethylammonium bromide (CTAB).
  • CTAB hexadecyltrimethylammonium bromide
  • a polar phase comprising water, an alcohol - in particular methanol - and a corrosion inhibitor - in particular cerium nitrate -.
  • the polar phase and the apolar phase are mixed and this mixture is stirred for 30 minutes to form a reverse microemulsion of water in the apolar phase.
  • a solution of an aluminum alkoxide - especially aluminum tri ( t- butoxide) (ASB) in a volume of the alkane - especially dodecane - is prepared.
  • the aluminum alkoxide solution is introduced with stirring into the inverse microemulsion.
  • the mixture is allowed to stand for 12 hours.
  • a pellet containing hollow nanoparticles of aluminum oxyhydroxide is centrifuged off. After washing this pellet with diethylene glycol, a hollow aluminum oxyhydroxide nanoparticle powder containing the corrosion inhibitor is obtained.
  • Such a colloidal anticorrosive treatment dispersion is prepared by mixing an amount of a treatment solution (hybrid sol) as prepared in (A) with an amount of colloidal dispersion of physisorbed boehmite nanoparticles as prepared in B) and / or an amount of a colloidal dispersion of doped boehmite nanoparticles as prepared in (C) and / or an amount of a dispersion of hollow boehmite nanoparticles.
  • the concentration of aluminum and silicon in the colloidal anti-corrosion treatment dispersion is between 1.66 mol / l and 2 mol / l.
  • the aluminum concentration provided by the colloidal dispersion of surface-functionalized boehmite nanoparticles in the hybrid soil is between 0.1 mol / l and 0.13 mol / l.
  • the aluminum concentration provided by the colloidal dispersion of doped boehmite nanoparticles in hybrid soil is between 0.1 mol / l and 0.13 mol / l.
  • the hybrid soil thus obtained is allowed to stand at ambient temperature for a period of 24 hours.
  • an alcoholic solution containing at least one alkoxysilane and at least one aluminum alkoxide is prepared and then an amount of the dispersion is added to the alcoholic solution.
  • colloidal of physisorbed boehmite nanoparticles and / or doped boehmite nanoparticles and / or hollow boehmite nanoparticles is prepared and then an amount of the dispersion is added to the alcoholic solution.
  • the viscosity of the treatment solution (dispersion) which decreases with the addition of the colloidal dispersion of boehmite is controlled in this way.
  • a step is performed for depositing the colloidal anti-corrosion treatment dispersion on a surface of a solid metal substrate, in particular a part of a rolled aluminum alloy 2024 T3 having previously undergone degreasing and pickling.
  • a part of the solvent of the composite hybrid soil evaporates and simultaneously the hydrolysis / condensation of (the) alkoxysilane (s) and (s) alkoxide (s) metal (s) allows the formation of a composite hybrid anti-corrosion matrix on the surface of the solid metal substrate.
  • cerium as a corrosion inhibitor, especially free cerium (Ce III ), in the treatment solution allows the formation during the deposition of said solution of a chemically stable conversion layer in a corrosive medium.
  • a conversion layer is in particular formed from the hydroxyl groups of an element M constituting the solid metal substrate and forming an MO-Ce- bond with cerium.
  • the presence of physisorbed boehmite nanoparticles and doped boehmite nanoparticles in the treatment solution is adapted to allow the formation of corrosion inhibitor reservoirs in the composite hybrid matrix constituting the anticorrosion coating, said reservoirs being adapted to allow controlled release. in time of the corrosion inhibitor.
  • the application of the surface treatment solution of the solid metal substrate is carried out by any means known in itself to those skilled in the art, in particular by soaking / shrinking ("dip coating”), by spraying (“spray-coating”), or by brush, pad or brush application for localized uses as a coating repair of the surface of the solid metal substrate.
  • dip coating soaking / shrinking
  • spraying spraying
  • brush, pad or brush application for localized uses as a coating repair of the surface of the solid metal substrate.
  • the shrinkage rate makes it possible to control the thickness of the deposition of the treatment solution for a viscosity of the given treatment solution.
  • the withdrawal speed varies between 2 and 53 cm / min.
  • the extended residence time may vary between 1 and 300 seconds.
  • the thickness of the deposits is controlled by the viscosity of the treatment solution, the sputtering parameters, including the pressure, the flow rate, the geometric characteristics of the spray nozzles, and the speed of movement. nozzles facing the surface of the solid metal substrate and the number of passage of the nozzles in front of the surface of the solid metal substrate.
  • the application of the treatment solution can be carried out manually or be robotized according to conventional techniques.
  • the thickness of the deposit is controlled by the viscosity of the treatment solution and by the number of successive applications on the surface of the solid metal substrate.
  • the treatment solution applied to the surface of the solid metal substrate is heat-treated so as to evaporatively remove the residual solvent (s) from the treatment solution and allow it to polymerize into a hybrid matrix. composite.
  • a heat treatment comprises two successive steps in which the solid metal substrate coated with the treatment solution is first subjected to a first heating step at a temperature between 50 ° C and 70 ° C for a period of time between 2 h and 24 h, said first heating step being adapted to allow removal of aqueous and / or organic solvents, then to a second heating step at a temperature between 110 ° C and 180 ° C for a period of time between 3 h and 16 h, said second heating step being adapted to perfect the polymerization of the treatment solution and to improve the mechanical properties of the composite hybrid matrix.
  • the figure 3 represents the variation of the surface resistance of a solid metal substrate treated by a method according to the invention as a function of the immersion time of this solid metal substrate in a corrosion bath (NaCl 0.05 mol / L in the water).
  • the curve ( ⁇ ) represents the variation of the surface resistance of a solid metal substrate treated according to a process according to the invention consisting in the successive application of a conversion solution rich in cerium (0.1 mol / L) then a treatment solution comprising cerium (0.01 mol / L). It is observed that the surface resistance of the treated solid metal substrate ( ⁇ ) decreases more slowly than the surface resistance of a solid metal substrate ( ⁇ ) treated with the same treatment solution (0.01 mol / L of Ce) but free of conversion layer.
  • the surface resistance of the untreated substrate ( ⁇ ) reaches a value of the order of 2.12 10 6 ⁇ .cm 2 , while the resistance surface area (•) treated remains of the order of 4.05 10 6 ⁇ .cm 2 .
  • the surface resistance of the untreated substrate ( ⁇ ) reaches a limit value of the order of 1.1 ⁇ 10 6 ⁇ .cm 2 , whereas the surface resistance of the substrate ( ) treated remains of the order of 2.75 10 6 ⁇ .cm 2 .
  • the inventors have also observed, in a completely surprising and unexpected manner, that the anticorrosion treatment of a solid metal substrate according to the invention with a treatment solution comprising a cerium concentration of between 0.005 mol / l and 0.015 mol / l allows not only to obtain a surface resistance of the anticorrosion coating, measured by electrochemical impedance spectroscopy ( figure 4 ), which is optimal for an immersion time of the solid metal substrate in a corrosion bath of 1 day ( ⁇ ), 7 days ( ⁇ ) and 14 days ( ⁇ ) in an aqueous solution of NaCl 0.05 mol / L , but that such a treatment also makes it possible to obtain a nano-hardness ( figure 5 ), a Young's module ( figure 6 ) and resistance to delamination ( ⁇ , figure 7 ), resistance to cracking ( ⁇ , figure 7 ) and a limit value of resistance to plastic deformation ( ⁇ , figure 7 ) also maximum.
  • a treatment solution comprising a cerium concentration of between 0.005 mol / l
  • Electrochemical impedance spectroscopy is used to analyze the corrosion resistance of a solid metal substrate Al 2024-T3 treated or not with a conversion solution and then exposed to a step of corrosion by immersion in an aqueous solution of NaCl 0.05 mole. / L.
  • the results are presented in figure 8 according to the representation of Nyquist.
  • a corrosion solution NaCl 0.05 mol / L
  • the treatment of a piece of raw aluminum 2024-T3 (that is to say, not treated with a conversion solution) by immersion in a corrosion solution gives the latter a surface resistance Z ' of the order of 5.10 3 ⁇ .cm 2 ( ⁇ , figure 8 ).
  • the residual surface resistance Z 'of such a piece of aluminum after 1 hour of immersion in the corrosion solution is of the order of 1.1 ⁇ 10 4 ⁇ .cm 2 for a cerium concentration of 0, 01 mole / L in the conversion solution and a conversion treatment duration of 1 s, of the order of 2.10 4 ⁇ .cm 2 for a cerium concentration of 0.05 mol / L in the conversion solution and a conversion treatment duration of 1 s and of the order of 3.3 ⁇ 10 4 ⁇ .cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment duration of 1 s.
  • the residual surface resistance Z 'of an aluminum piece after 1 h immersion in the corrosion solution is of the order of 1.1 ⁇ 10 4 ⁇ .cm 2 for a cerium concentration of 0.01 mol / L in the solution of conversion and a conversion treatment duration of 1 s, of the order of 2.10 4 ⁇ .cm 2 for a cerium concentration of 0.01 mol / L in the conversion solution and a conversion treatment duration of 60 s and of the order of 3.8 ⁇ 10 4 ⁇ .cm 2 for a cerium concentration of 0.01 mol / L in the conversion solution and a conversion treatment time of 300 s.
  • the residual surface resistance Z 'of an aluminum piece after 1 hour of immersion in the corrosion solution is of the order of 3.2 ⁇ 10 4 ⁇ .cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment time of 1 s, of the order of 4.0 ⁇ 10 4 ⁇ .cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a duration of conversion treatment of 60 s and of the order of 9.0.10 4 ⁇ .cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment time of 300 s.
  • Prolonged immersion in the corrosion bath leads to a decrease in the surface resistance value which reaches the value of the surface resistance of the aluminum oxide in 10 hours.
  • the surface resistance Z 'of a piece of aluminum treated with a conversion solution containing cerium at a concentration of 0.5 mol / l for a period of 1 s, 60 s and 300 s remains greater than 1.10 4 ⁇ . cm 2 after respectively 40 hours, 70 hours and 90 hours of immersion of the aluminum part in the corrosion bath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

L'invention concerne un procédé de traitement anticorrosion d'un substrat métallique solide, notamment d'un substrat en aluminium ou en alliage d'aluminium. L'invention concerne en outre un substrat métallique solide traité contre la corrosion, susceptible d'être obtenu par un tel procédé.The invention relates to a method for anticorrosion treatment of a solid metal substrate, in particular an aluminum or aluminum alloy substrate. The invention further relates to a corrosion-resistant solid metal substrate obtainable by such a method.

Un tel procédé de traitement anticorrosion présente des applications dans le domaine général du traitement de surface de substrats métalliques solides, notamment de pièces métalliques. Un tel procédé trouve ses applications dans le domaine des véhicules de transport, notamment des navires, des véhicules automobiles et des aéronefs dans lequel se pose le problème de la lutte contre la corrosion des pièces métalliques.Such an anticorrosion treatment method has applications in the general field of surface treatment of solid metal substrates, in particular metal parts. Such a method has its applications in the field of transport vehicles, including ships, motor vehicles and aircraft in which the problem of the fight against corrosion of metal parts arises.

On connaît déjà des procédés de traitement de surface d'un substrat métallique solide dans lequel on utilise des réactifs à base de chrome. De tels réactifs sont toxiques pour l'environnement et pour la santé humaine et leur utilisation est règlementée.Methods of surface treatment of a solid metal substrate in which chromium-based reagents are used are already known. Such reagents are toxic to the environment and to human health and their use is regulated.

Pour pallier les inconvénients liés à l'utilisation du chrome, il a été proposé ( Pepe et al., 2004, Journal of Non-Crystalline Solids, 348, 162-171 ) de former un revêtement à base de gel de silice en surface d'un substrat en alliage d'aluminium par un procédé sol/gel. On réalise un tel traitement par trempage et retrait ("dip-coating") du substrat en alliage d'aluminium dans une solution hybride de tetraéthylorthosilicate (TEOS) et de méthyltriéthoxysilane (MTES) contenant du nitrate de cérium. Un tel procédé ne permet pas d'obtenir un revêtement anticorrosion présentant en même temps des propriétés de résistance mécanique - notamment une résistance à l'arrachement- améliorées et aussi des propriétés de cicatrisation et un effet barrière améliorés.To overcome the disadvantages of using chromium, it has been proposed ( Pepe et al., 2004, Journal of Non-Crystalline Solids, 348, 162-171 ) to form a silica gel-based coating on the surface of an aluminum alloy substrate by a sol / gel process. Such treatment is carried out by soaking and shrinking ("dip-coating") of the aluminum alloy substrate in a hybrid solution of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) containing cerium nitrate. Such a method does not make it possible to obtain an anticorrosive coating which, at the same time, has improved mechanical strength properties, in particular improved tear resistance, and also improved healing properties and an improved barrier effect.

L'invention vise à pallier les inconvénients précédemment évoqués en proposant un procédé de traitement anticorrosion d'un substrat métallique solide qui ne nécessite pas l'utilisation de dérivés du chrome -notamment du chrome VI- qui est cancérigène, mutagène et reprotoxique.The invention aims to overcome the disadvantages mentioned above by proposing a method of anticorrosion treatment of a solid metal substrate that does not require the use of chromium derivatives-especially chromium VI- which is carcinogenic, mutagenic and reprotoxic.

On connait aussi de « Zhong et al, (2010), Progress in Organic Coatings, 69, 52-56 » un procédé de traitement d'un alliage d'aluminium dans lequel on prépare une solution hydro-alcoolique de γ-glycidoxypropyltriméthoxysilane (GPTMS) et de vinytriéthoxysilane (VETO), puis on réalise une hydrolyse/condensation de ladite solution hydro-alcoolique de façon à former un gel, puis on ajoute au gel formé une quantité de nitrate de cérium.We also know « Zhong et al, (2010), Progress in Organic Coatings, 69, 52-56 A process for treating an aluminum alloy in which an aqueous-alcoholic solution of γ-glycidoxypropyltrimethoxysilane (GPTMS) and of vinytriethoxysilane (VETO) is prepared, followed by hydrolysis / condensation of said aqueous-alcoholic solution in a manner to form a gel, and then added to the gel formed a quantity of cerium nitrate.

" Palomino et al, (2009), Corrosion Science, 51, 1238-1250 " décrit un traitement anticorrosion d'un alliage d'aluminium." Palomino et al, (2009), Corrosion Science, 51, 1238-1250 "describes an anticorrosion treatment of an aluminum alloy.

L'invention vise à proposer un procédé de traitement anticorrosion adapté pour former un revêtement anticorrosion en surface d'un substrat métallique solide qui est de grande résistance mécanique.The object of the invention is to provide an anticorrosive treatment method adapted to form a corrosion-resistant coating on the surface of a solid metal substrate which is of high mechanical strength.

L'invention vise également à proposer un tel procédé de traitement anticorrosion qui permette l'obtention d'une couche de revêtement anticorrosion d'épaisseur contrôlée -notamment comprise entre 1 µm et 15 µm- et compatible avec les préconisations industrielles, notamment dans le domaine de l'aéronautique.The invention also aims at providing such an anticorrosion treatment method which makes it possible to obtain a layer of anticorrosion coating of controlled thickness, in particular between 1 μm and 15 μm, and compatible with the industrial recommendations, particularly in the field. aeronautics.

Un autre objectif de l'invention est de proposer un procédé de traitement anticorrosion d'un substrat métallique solide -notamment de pièces métalliques pour l'aéronautique- adapté pour permettre la formation d'un revêtement anticorrosion dudit substrat métallique solide qui soit d'épaisseur sensiblement homogène sur la surface du substrat métallique solide, qui soit couvrant et qui soit aussi nivelant. Par nivelant, on entend qu'un tel revêtement présente une surface extérieure libre -c'est-à-dire opposée au substrat- qui soit sensiblement plane indépendamment de la présence de défauts structurels en surface du substrat métallique solide sous-jacent. En particulier, l'invention vise à proposer un tel procédé adapté pour permettre la formation d'un revêtement anticorrosion ne présentant pas de fissuration au niveau desdits défauts structurels.Another objective of the invention is to propose a method for the anticorrosion treatment of a solid metal substrate - particularly metallic parts for aeronautics - adapted to allow the formation of an anticorrosion coating of said solid metal substrate which is of thickness substantially homogeneous on the surface of the solid metal substrate, which is covering and which is also leveling. By leveling, it is meant that such a coating has a free outer surface-that is, opposed to the substrate-which is substantially planar regardless of the presence of structural defects on the surface of the underlying solid metal substrate. In particular, the invention aims to provide such a method adapted to allow the formation of an anticorrosion coating having no cracking at said structural defects.

L'invention vise aussi un tel procédé qui soit adapté pour permettre la formation d'une couche anticorrosion qui soit résistante à la fissuration.The invention also aims at such a method which is adapted to allow the formation of an anticorrosion layer which is resistant to cracking.

L'invention vise en outre un tel procédé adapté pour permettre la formation d'un revêtement anticorrosion de surface d'un substrat métallique solide présentant en même temps des propriétés de protection passive -en particulier, par effet barrière- dudit substrat vis-à-vis d'un environnement extérieur corrosif et des propriétés de protection active de cicatrisation et de limitation de la progression de la corrosion au niveau d'une piqure accidentelle susceptible d'affecter le revêtement anticorrosion.The invention furthermore aims at such a method adapted to allow the formation of a surface anticorrosion coating of a solid metal substrate having at the same time passive protection properties - in particular, by barrier effect of said substrate vis-à- vis of an outside environment corrosive and protective active healing properties and limiting the progression of corrosion at an accidental bite likely to affect the anticorrosive coating.

L'invention vise aussi un tel procédé de traitement anticorrosion adapté pour pouvoir être appliqué sur un substrat métallique solide poli ou sur un substrat métallique solide non poli.The invention also aims at such an anticorrosion treatment method adapted to be applied on a polished solid metal substrate or on an unpolished solid metal substrate.

L'invention vise également à atteindre tous ces objectifs à moindre coût, en proposant un procédé qui soit simple et qui ne nécessite pour sa mise en oeuvre que des étapes de mise en contact d'un substrat métallique solide et de solutions liquides.The invention also aims to achieve all these objectives at lower cost, by proposing a method which is simple and which requires for its implementation that steps of contacting a solid metal substrate and liquid solutions.

L'invention vise également et plus particulièrement à proposer un tel procédé qui soit compatible avec les contraintes de sécurité et de respect de l'environnement.The invention also aims and more particularly to provide such a method that is compatible with the constraints of safety and respect for the environment.

L'invention vise de surcroît à proposer une telle solution qui préserve les habitudes de travail des personnels, soit facile à utiliser, et n'implique pour sa mise en oeuvre que peu de manipulations.The invention further aims to provide such a solution that preserves the work habits of staff, is easy to use, and imply for its implementation that little manipulation.

L'invention vise aussi un tel procédé de traitement anticorrosion utilisant une solution de traitement qui soit simple dans sa composition par rapport aux solutions liquides de traitement de l'état de la technique.The invention also aims at such an anticorrosion treatment method using a treatment solution that is simple in its composition compared to liquid treatment solutions of the state of the art.

L'invention vise donc aussi un revêtement anticorrosion présentant des propriétés protectrices améliorées par rapport aux revêtements anticorrosion de l'état de la technique, notamment des propriétés anticorrosion qui soient améliorées dans le temps.The invention therefore also relates to an anticorrosive coating having improved protective properties compared to anti-corrosion coatings of the state of the art, including anti-corrosion properties which are improved over time.

Pour ce faire, l'invention concerne un procédé de traitement anticorrosion selon la revendication 1.To do this, the invention relates to an anticorrosion treatment method according to claim 1.

Avantageusement et selon l'invention, la solution de traitement présentant un rapport (Si/Ce) molaire d'élément silicium du(des) alcoxysilane(s) par rapport au(x) cation(s) du cérium (Ce) compris entre 50 et 500, notamment entre 80 et 250. Avantageusement et selon l'invention, le(s) cation(s) du cérium (Ce) présente(nt) une concentration comprise entre 0,005 mole/L et 0,015 mole/L -notamment comprise entre 0,005 mole/L et 0,01 mole/L, préférentiellement de l'ordre de 0,010 mole/L- dans la solution de traitement.Advantageously and according to the invention, the treatment solution having a molar ratio (Si / Ce) of silicon element of (the) alkoxysilane (s) relative to the (x) cation (s) of cerium (Ce) between 50 and 500, in particular between 80 and 250. Advantageously and according to the invention, the cation (s) of cerium (Ce) present (s) a concentration of between 0.005 mol / L and 0.015 mol / L -notamment between 0.005 mol / L and 0.01 mol / L, preferably of the order of 0.010 mol / L- in the treatment solution.

Dans un procédé selon l'invention, on mélange au moins un alcoxysilane et au moins un cation du cérium (Ce) dans une solution hydro-alcoolique liquide dans des conditions propres à permettre une hydrolyse/condensation dudit au moins un alcoxysilane et dudit au moins un cation du cérium (Ce), et on applique ladite solution de traitement sur la surface oxydable d'un substrat métallique solide pour pouvoir former en surface du substrat métallique solide, une matrice hybride par hydrolyse/condensation de chaque alcoxysilane(s) et de chaque cation de cérium (Ce).In a process according to the invention, at least one alkoxysilane and at least one cerium (Ce) cation are mixed in a liquid aqueous-alcoholic solution under conditions suitable for allowing hydrolysis / condensation of said at least one alkoxysilane and said at least one a cation of cerium (Ce), and said treatment solution is applied to the oxidizable surface of a solid metal substrate so as to form on the surface of the solid metal substrate, a hybrid matrix by hydrolysis / condensation of each alkoxysilane (s) and each cation of cerium (Ce).

Dans un procédé selon l'invention, l'hydrolyse/condensation de chaque alcoxysilane(s) est réalisée dans la solution de traitement en présence de chaque cation(s) de cérium (Ce), ladite solution de traitement présentant un rapport (Si/Ce) molaire d'élément silicium du(des) alcoxysilane(s) de départ par rapport au(x) cation(s) du cérium (Ce) de départ compris entre 50 et 500, notamment entre 80 et 250.In a process according to the invention, the hydrolysis / condensation of each alkoxysilane (s) is carried out in the treatment solution in the presence of each cation (s) of cerium (Ce), said treatment solution having a ratio (Si / This molar element of silicon of (the) starting alkoxysilane (s) relative to the (x) cation (s) of cerium (Ce) starting between 50 and 500, in particular between 80 and 250.

Les inventeurs ont observé que la sélection d'une valeur de concentration des cations de cérium dans la solution de traitement ne constitue pas une sélection arbitraire de concentration, mais au contraire que cette sélection procure un résultat surprenant, totalement imprévisible, non décrit dans l'état de la technique et selon lequel la concentration sélectionnée du cation de cérium (Ce) dans la solution de traitement anticorrosion d'un substrat métallique solide permet en même temps (1) d'obtenir une adhérence optimale de la solution de traitement en surface du substrat métallique solide, (2) la formation d'une matrice hybride de protection passive dudit substrat métallique solide par effet de barrière adapté pour limiter la formation de produits de corrosion du substrat métallique solide - notamment d'un substrat métallique solide présentant une piqure-, et (3) de former une telle matrice hybride de protection présentant des propriétés de résistance physique aux agressions mécaniques -notamment de résistance à la délamination, de résistance à la fissuration, et des propriétés de déformation plastique- et de résistance vis-à-vis de la corrosion -tant à 1 jour, 7 jours et 14 jours de traitement corrosif par immersion dans une solution corrosive de NaCℓ à 0,05 mole/L dans l'eau- qui sont améliorées.The inventors have observed that the selection of a concentration value of the cerium cations in the treatment solution does not constitute an arbitrary selection of concentration, but on the contrary that this selection provides a surprising result, totally unpredictable, not described in FIG. state of the art and according to which the selected concentration of the cerium (Ce) cation in the solution for the corrosion treatment of a solid metal substrate at the same time allows (1) to obtain optimal adhesion of the surface treatment solution of the solid metal substrate, (2) the formation of a hybrid matrix of passive protection of said solid metal substrate by a barrier effect adapted to limit the formation of corrosion products of the solid metal substrate - in particular of a solid metal substrate having a puncture -, and (3) to form such a hybrid protection matrix having Physical resistance properties to mechanical stresses - including resistance to delamination, crack resistance, and plastic deformation and corrosion resistance - at 1 day, 7 days and 14 days corrosive treatment by immersion in a corrosive solution of NaCℓ at 0.05 mol / L in water which are improved.

De telles propriétés de résistance physique aux agressions mécaniques sont notamment évaluées par des techniques connues en elles-mêmes de l'homme du métier, en particulier par nano-indentation -pour l'évaluation du module d'élasticité de Young et de la dureté (par exemple, nano-dureté de Vickers)-ou par rayage progressif ("nano-scratch") pour l'évaluation de l'adhérence et de la résistance à la délamination du revêtement anticorrosion en surface du substrat métallique solide.Such properties of physical resistance to mechanical attack are evaluated in particular by techniques known in themselves to those skilled in the art, in particular by nanoindentation for the evaluation of Young's modulus of elasticity and hardness ( for example, nano-hardness of Vickers) or by progressive scratching ("nano-scratch") for the evaluation of the adhesion and the resistance to delamination of the anticorrosion coating on the surface of the solid metal substrate.

Avantageusement, le cation de cérium est un cation de cérium unique et la concentration du cation de cérium unique dans la solution de traitement est comprise entre 0,005 mole/L et 0,015 mole/L, notamment comprise entre 0,005 mole/L et 0,01 mole/L, préférentiellement de l'ordre de 0,01 mole/L.Advantageously, the cerium cation is a single cerium cation and the concentration of the single cerium cation in the treatment solution is between 0.005 mol / L and 0.015 mol / L, especially between 0.005 mol / L and 0.01 mol. / L, preferably of the order of 0.01 mol / l.

Avantageusement, le cation de cérium est une composition comprenant une pluralité de cations de cérium distincts et la concentration cumulée de la pluralité de cations de cérium distincts dans la solution de traitement est elle-même comprise entre 0,005 mole/L et 0,015 mole/L, notamment comprise entre 0,005 mole/L et 0,01 mole/L, préférentiellement de l'ordre de 0,01 mole/L.Advantageously, the cerium cation is a composition comprising a plurality of distinct cerium cations and the cumulative concentration of the plurality of distinct cerium cations in the treatment solution is itself between 0.005 mol / L and 0.015 mol / L, in particular between 0.005 mol / L and 0.01 mol / L, preferably of the order of 0.01 mol / L.

Un revêtement anticorrosion selon l'invention, c'est à dire un revêtement obtenu avec une solution de traitement comprenant une concentration en cation de cérium -notamment en CeIII- comprise entre 0,005 mole/L et 0,015 mole/L, présente :

  • une valeur (Hv) critique de déformation plastique mesurée par nano-indentation qui est maximale et de l'ordre de 39 pour une concentration en cérium de 0,01 mole/L dans la solution de traitement ;
  • une valeur de charge critique de délamination FD (mN) du revêtement anticorrosion sur le substrat métallique solide qui est maximale et de l'ordre de 24 mN pour une concentration en cérium de 0,01 mole/L dans la solution de traitement ;
  • une valeur de charge critique de fissuration Ff (mN) du revêtement anticorrosion qui est maximale et de l'ordre de 15 mN pour une concentration en cérium de 0,01 mole/L dans la solution de traitement, et ;
  • une valeur de charge critique de déformation plastique sans fissuration FDP (mN) maximale de l'ordre de 6 mN pour une concentration en cérium de 0,01 mole/L dans la solution de traitement.
An anticorrosion coating according to the invention, that is to say a coating obtained with a treatment solution comprising a concentration of cerium cation - in particular in Ce III - between 0.005 mol / l and 0.015 mol / l, presents:
  • a critical value (Hv) of plastic deformation measured by nano-indentation which is maximum and of the order of 39 for a cerium concentration of 0.01 mol / L in the treatment solution;
  • a delamination critical load value F D (mN) of the anticorrosion coating on the solid metal substrate which is maximum and of the order of 24 mN for a cerium concentration of 0.01 mol / L in the treatment solution;
  • a critical cracking load value F f (mN) of the anticorrosive coating which is maximum and of the order of 15 mN for a cerium concentration of 0.01 mol / L in the treatment solution, and;
  • a critical strain value of plastic deformation without cracking F DP (mN) maximum of the order of 6 mN for a cerium concentration of 0.01 mol / l in the treatment solution.

Les inventeurs ont observé qu'une concentration en cation de cérium dans la solution de traitement comprise entre 0,005 mole/L et 0,015 mole/L selon l'invention confère au revêtement anticorrosion d'un substrat métallique solide une résistance vis-à-vis de la corrosion qui est optimale après dépôt et avant immersion dans une solution corrosive. En revanche, une concentration en cation de cérium dans la solution de traitement supérieure à 0,015 mole/L conduit à une dégradation significative de l'effet barrière de la couche de protection et une résistance vis-à-vis de la corrosion diminuée avant immersion dans une solution corrosive. La résistance surfacique en milieu corrosif d'une telle couche de protection de 6,3 µm d'épaisseur, obtenue par un traitement anticorrosion d'un substrat métallique solide avec une solution de traitement contenant 0,05 mole/L de cation de cérium, et immédiatement après immersion dudit substrat métallique dans le milieu corrosif est de l'ordre de 2,8.106 Ω.cm2. La résistance surfacique en milieu corrosif d'une telle couche de protection de 6,3 µm d'épaisseur, obtenue par un traitement anticorrosion d'un substrat métallique solide avec une solution de traitement contenant 0,1 mole/L de cation de cérium, et immédiatement après immersion dudit substrat métallique dans le milieu corrosif est de l'ordre de 2,0.105 Ω.cm2 telle que mesurée par spectroscopie d'impédance électrochimique (SIE).The inventors have observed that a concentration of cerium cation in the treatment solution of between 0.005 mol / l and 0.015 mol / l according to the invention gives the anticorrosion coating of a solid metal substrate a resistance towards corrosion which is optimal after deposition and before immersion in a corrosive solution. On the other hand, a concentration of cerium cation in the treatment solution of greater than 0.015 mol / L leads to a significant degradation of the barrier effect of the protective layer and a reduced resistance to corrosion before immersion in a corrosive solution. The surface resistance in a corrosive medium of such a protective layer of 6.3 μm thick, obtained by an anticorrosion treatment of a solid metal substrate with a treatment solution containing 0.05 mol / l of cerium cation, and immediately after immersion of said metal substrate in the corrosive medium is of the order of 2.8 × 10 6 Ω.cm 2 . The surface resistance in corrosive medium of such a protective layer of 6.3 μm thick, obtained by an anticorrosion treatment of a solid metal substrate with a treatment solution containing 0.1 mol / l of cerium cation, and immediately after immersion of said metal substrate in the corrosive medium is of the order of 2.0 × 10 5 Ω.cm 2 as measured by electrochemical impedance spectroscopy (EIS).

En outre, une concentration en cation de cérium dans la solution de traitement comprise entre 0,005 mole/L et 0,015 mole/L selon l'invention permet :

  • une diminution de l'angle de contact de la solution de traitement sur le substrat métallique solide traduisant une mouillabilité améliorée de la surface du substrat métallique solide vis-à-vis de la solution de traitement et une application améliorée de ladite solution de traitement sur la surface du substrat métallique solide ;
  • un ancrage amélioré de la matrice hybride obtenue à partir de la solution de traitement sur la surface du substrat métallique solide ;
  • une prise de masse améliorée de la solution de traitement en surface du substrat métallique solide. Une telle prise de masse révèle un effet structurant de la solution de traitement et de la matrice hybride obtenue à partir de la solution de traitement, et ;
  • de privilégier le CeIII aux dépends du CeIV dans la solution de traitement et dans le sol hybride. On mesure la distribution CeIII/CeIV par spectrométrie photo-électronique X (XPS) de surface.
In addition, a concentration of cerium cation in the treatment solution of between 0.005 mol / l and 0.015 mol / l according to the invention allows:
  • a decrease in the contact angle of the treatment solution on the solid metal substrate indicating improved wettability of the surface of the solid metal substrate with respect to the treatment solution and an improved application of said treatment solution to the solid metal substrate surface;
  • improved anchoring of the hybrid matrix obtained from the treatment solution on the surface of the solid metal substrate;
  • an improved grounding of the surface treatment solution of the solid metal substrate. Such a mass gain reveals a structuring effect of the treatment solution and the hybrid matrix obtained from the treatment solution, and;
  • to favor Ce III at the expense of Ce IV in the treatment solution and in hybrid soil. The Ce III / Ce IV distribution is measured by surface X-ray photoelectron spectrometry (XPS).

Les inventeurs ont observé qu'une telle concentration en cations de cérium comprise entre 0,005 mole/L et 0,015 mole/L dans la solution de traitement est adaptée pour pouvoir pour le moins préserver les propriétés mécaniques de la matrice hybride obtenue à partir de la solution de traitement, pour conférer à la solution de traitement des qualités rhéologiques et d'adhérence en surface du substrat métallique solide qui sont améliorées par rapport à une solution de traitement ne présentant pas une telle concentration, tout en conférant à ladite matrice hybride des propriétés de protection passive du substrat métallique solide par effet barrière.The inventors have observed that such a concentration of cerium cations of between 0.005 mole / L and 0.015 mole / L in the treatment solution is adapted to at least preserve the mechanical properties of the hybrid matrix obtained from the solution. process for imparting to the treatment solution rheological and surface adherence properties of the solid metal substrate which are improved over a treatment solution not having such a concentration, while imparting to said hybrid matrix passive protection of the solid metal substrate by barrier effect.

Avantageusement et selon l'invention, on choisit chaque alcoxysilane dans le groupe formé :

  • des tétraalcoxysilanes de formule générale (I) suivante ;

            Si(O-R1)4     (I),

    dans laquelle :
    • ∘ Si est l'élément silicium, O est l'élément oxygène ;
    • ∘ R1 est choisi dans le groupe formé :
      • ▪ d'un groupement hydrocarboné -notamment un méthyle ou un éthyle- de formule [-CnH2n+1], n étant un nombre entier supérieur ou égal à 1,
      • ▪ du groupement 2-hydroxyéthyle (HO-CH2-CH2-), et ;
      • ▪ d'un groupement acyle de formule générale -CO-R'1 dans laquelle R'1 est un groupement hydrocarboné -notamment un méthyle, un éthyle- de formule [-CnH2n+1], n étant un nombre entier supérieur ou égal à 1, et ;
  • des alcoxysilanes de formule générale (II) suivante :

            Si(O-R2)4-a(R3)a     (II) ;

    dans laquelle :
    • ∘ R2 est choisi dans le groupe formé :
      • ▪ d'un groupement hydrocarboné -notamment un méthyle, un éthyle- de formule [-CnH2n+1], n étant un nombre entier supérieur ou égal à 1,
      • ▪ du groupement 2-hydroxyéthyle (HO-CH2-CH2-), et ;
      • ▪ d'un groupement acyle de formule générale -CO-R'1 dans laquelle R'1 est un groupement hydrocarboné -notamment un méthyle, un éthyle- de formule [-CnH2n+1], n étant un nombre entier supérieur ou égal à 1, et ;
    • o R3 est un groupement organique -notamment un groupement organique formé d'atome(s) de carbone, d'atome(s) d'hydrogène et le cas échéant d'atome(s) d'azote, d'atome(s) d'oxygène et éventuellement d'atome(s) de soufre et d'atome(s) de phosphore- lié à l'élément silicium (Si) de l'alcoxysilane par une liaison Si-C ;
    • o a est un nombre entier naturel de l'intervalle ]0 ; 4[, -de préférence égal à 1-.
Advantageously and according to the invention, each alkoxysilane is selected from the group formed:
  • tetraalkoxysilanes of the following general formula (I);

    If (OR 1 ) 4 (I),

    in which :
    • ∘ If is the silicon element, O is the oxygen element;
    • ∘ R 1 is chosen from the group formed:
      • A hydrocarbon group, in particular methyl or ethyl, of formula [-C n H 2n + 1 ], n being an integer greater than or equal to 1,
      • ▪ the 2-hydroxyethyl group (HO-CH 2 -CH 2 -), and;
      • An acyl group of general formula -CO-R ' 1 in which R' 1 is a hydrocarbon group - in particular a methyl, an ethyl of formula [-C n H 2n + 1 ], n being a higher whole number or equal to 1, and;
  • alkoxysilanes of the following general formula (II):

    If (OR 2 ) 4-a (R 3 ) a (II);

    in which :
    • ∘ R 2 is chosen from the group formed:
      • A hydrocarbon group, in particular a methyl, an ethyl of formula [-C n H 2n + 1 ], n being an integer greater than or equal to 1,
      • ▪ the 2-hydroxyethyl group (HO-CH 2 -CH 2 -), and;
      • An acyl group of general formula -CO-R ' 1 in which R' 1 is a hydrocarbon group - in particular a methyl, an ethyl of formula [-C n H 2n + 1 ], n being a higher whole number or equal to 1, and;
    • R 3 is an organic group, in particular an organic group consisting of carbon atom (s), hydrogen atom (s) and, if appropriate, nitrogen atom (s), atom (s), ) oxygen and optionally sulfur atom (s) and phosphorus atom (s) bonded to the silicon (Si) element of the alkoxysilane via an Si-C bond;
    • oa is a natural integer of the interval] 0; 4 [, preferably equal to 1-.

Avantageusement, dans une première variante d'un procédé selon l'invention, on choisit chaque alcoxysilane dans le groupe formé du tétraéthoxysilane (TEOS), du tétraméthoxysilane (TMOS), du tétraacétoxysilane (TAOS) et du tétra-2-hydroxyéthoxysilane (THEOS).Advantageously, in a first variant of a process according to the invention, each alkoxysilane is selected from the group consisting of tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetraacetoxysilane (TAOS) and tetra-2-hydroxyethoxysilane (THEOS). .

Avantageusement, dans une deuxième variante d'un procédé selon l'invention, on choisit le groupement R3 de chaque alcoxysilane dans le groupe formé des méthacrylates, des acrylates, des vinyles, des époxyalkyles et des époxyalcoxyalkyles dans lesquels le(s) groupement(s) alkyle présente(nt) de 1 à 10 atomes de carbone et est(sont) choisi(s) parmi les groupements alkyle linéaires, les groupements alkyle ramifiés et les groupements alkyle cycliques.Advantageously, in a second variant of a process according to the invention, the R 3 group of each alkoxysilane is selected from the group consisting of methacrylates, acrylates, vinyls, epoxyalkyls and epoxyalkoxyalkyls in which the group (s) ( s) alkyl has from 1 to 10 carbon atoms and is (are) selected from linear alkyl groups, branched alkyl groups and cyclic alkyl groups.

Avantageusement, on choisit le groupement R3 de chaque alcoxysilane dans le groupe formé du 3,4-époxycyclohexyléthyle et du glycidoxypropyle.Advantageously, the R 3 group of each alkoxysilane is selected from the group consisting of 3,4-epoxycyclohexylethyl and glycidoxypropyl.

Avantageusement, on choisit chaque alcoxysilane dans le groupe formé du glycidoxypropyltriméthoxysilane (GPTMS), du glycidoxypropylméthyldiméthoxysilane (MDMS), du glycidoxypropylméthyldiéthoxysilane (MDES) du glycidoxypropyltriéthoxysilane (GPTES), du méthyltriéthoxysilane (MTES), du diméthyldiéthoxysilane (DMDES), du métacryloxypropyltriméthoxysilane (MAP), du 3-(triméthoxysilyl)propylamine (APTMS), du 2-(3,4-époxycyclohexyl)éthyl-triéthoxysilane (ECHETES), du 2-(3,4-époxycyclohexyl)éthyl-triméthoxysilane (ECHETMS) et du 5,6-époxyhexyltriéthoxysilane (EHTES).Advantageously, each alkoxysilane is selected from the group consisting of glycidoxypropyltrimethoxysilane (GPTMS), glycidoxypropylmethyldimethoxysilane (MDMS), glycidoxypropylmethyldiethoxysilane (MDES) of glycidoxypropyltriethoxysilane (GPTES), methyltriethoxysilane (MTES), dimethyldiethoxysilane (DMDES), methacryloxypropyltrimethoxysilane (MAP). , 3- (trimethoxysilyl) propylamine (APTMS), 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane (ECHETES), 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (ECHETMS) and 5,6 epoxyhexyltriethoxysilane (EHTES).

Dans cette deuxième variante d'un procédé selon l'invention, on forme, par hydrolyse condensation de chaque alcoxysilane, une matrice hybride organique/inorganique.In this second variant of a process according to the invention, an organic / inorganic hybrid matrix is formed by hydrolyzing the condensation of each alkoxysilane.

Avantageusement et selon l'invention, la solution de traitement comprend un alcoxysilane unique.Advantageously and according to the invention, the treatment solution comprises a single alkoxysilane.

Avantageusement et selon l'invention, la solution de traitement comprend au moins un alcoxyde métallique.Advantageously and according to the invention, the treatment solution comprises at least one metal alkoxide.

Avantageusement et selon l'invention, chaque alcoxyde métallique est de formule générale (VII) suivante :

        M'(O-R9)n"     (VII),

dans laquelle :

  • o M' est un élément métallique choisi dans le groupe formé de l'aluminium (Aℓ), du vanadium (V), du titane (Ti) et du zirconium (Zr),
  • o R9 est un groupement hydrocarboné aliphatique de formule [-CnH2n+1] -notamment choisi dans le groupe formé d'un méthyle, d'un éthyle, d'un propyle, d'un butyle, en particulier d'un butyle secondaire de formule [CH3-CH2-(CH3)CH-]- dans laquelle n est un nombre entier supérieur ou égal à 1, et ;
  • o n" est un nombre entier naturel représentant la valence de l'élément métallique M'.
Advantageously and according to the invention, each metal alkoxide has the following general formula (VII):

M '(OR 9 ) n " (VII),

in which :
  • M 'is a metal element selected from the group consisting of aluminum (Aℓ), vanadium (V), titanium (Ti) and zirconium (Zr),
  • R 9 is an aliphatic hydrocarbon group of formula [-C n H 2n + 1 ] -particularly selected from the group consisting of a methyl, an ethyl, a propyl, a butyl, in particular of a secondary butyl of formula [CH 3 -CH 2 - (CH 3 ) CH -] - in which n is an integer greater than or equal to 1, and;
  • it is a natural integer representing the valence of the metal element M '.

Dans un procédé selon l'invention, on forme par hydrolyse de chaque alcoxysilane et de chaque alcoxyde métallique des espèces réactives réparties de façon homogène dans la solution de traitement et aptes à polymériser et à former une matrice hybride organique/inorganique. On forme ainsi une matrice hybride organique/inorganique par hydrolyse condensation de chaque alcoxysilane et de chaque alcoxyde métallique.In a process according to the invention, each reactive species homogeneously distributed in the treatment solution and able to polymerize and form an organic / inorganic hybrid matrix are formed by hydrolysis of each alkoxysilane and each metal alkoxide. An organic / inorganic hybrid matrix is thus formed by condensation hydrolysis of each alkoxysilane and each metal alkoxide.

Avantageusement, on choisit chaque alcoxyde métallique dans le groupe formé des alcoxydes d'aluminium -notamment du tri(s-butoxyde) d'aluminium, du tri(n-butoxyde) d'aluminium, du tri(éthoxyde) d'aluminium, du tri(éthoxyéthoxyéthoxyde) d'aluminium et du tri(isopropoxyde) d'aluminium-, des alcoxydes de titane -notamment du tétra(n-butoxyde) de titane, du tétra(isobutoxyde) de titane, du tétra(isopropoxyde) de titane, du tétra(méthoxyde) de titane et du tétra(éthoxyde) de titane-, des alcoxydes de vanadium, -notamment du tri(isobutoxyde)oxyde de vanadium et du tri(isopropoxyde)oxyde de vanadium et des alcoxydes de zirconium -notamment du tétra(éthoxyde) de zirconium, du tétra(isopropoxyde) de zirconium, du tétra(n-propoxyde) de zirconium, du tétra(n-butoxyde) de zirconium et du tétra(t-butoxyde) de zirconium.Advantageously, each metal alkoxide is selected from the group consisting of aluminum alkoxides, especially aluminum tri ( s- butoxide), aluminum tri ( n- butoxide), aluminum tri (ethoxide), aluminum, aluminum tri (ethoxyethoxyethoxide) and aluminum tri ( iso- propoxide), titanium alkoxides -including titanium tetra ( n- butoxide), titanium tetra ( iso- butoxide), tetra ( iso- propoxide) of titanium, titanium tetra (methoxide) and titanium tetra (ethoxide), vanadium alkoxides, especially vanadium tri ( iso- butoxide) oxide and vanadium tri ( iso- propoxide) oxide and alkoxides; zirconium-especially tetra (ethoxide) zirconium, tetra (iso-propoxide) zirconium, tetra (n -propoxyde) zirconium, tetra (n-butoxide) and zirconium tetra (t -butoxide) zirconium.

Avantageusement, chaque alcoxyde métallique est un alcoxyde d'aluminium de formule générale (III) suivante :

        Aℓ(OR4)n     (III),

dans laquelle :

  • ∘ Aℓ et O sont respectivement les éléments aluminium et oxygène, et ;
  • o R4 est un groupement hydrocarboné aliphatique présentant de 1 à 10 atomes de carbone -notamment choisi dans le groupe formé d'un méthyle, d'un éthyle, d'un propyle, d'un butyle, en particulier d'un butyle secondaire de formule [CH3-CH2(CH3)-CH-]- ;
  • o n est un nombre entier naturel représentant la valence de l'élément aluminium (Aℓ).
Advantageously, each metal alkoxide is an aluminum alkoxide of the following general formula (III):

Aℓ (OR 4 ) n (III),

in which :
  • ∘ Aℓ and O are respectively the elements aluminum and oxygen, and;
  • R 4 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, in particular selected from the group consisting of a methyl, an ethyl, a propyl, a butyl, in particular a secondary butyl of formula [CH 3 -CH 2 (CH 3 ) -CH -] -;
  • we are a natural integer representing the valency of the aluminum element (Aℓ).

Avantageusement et selon l'invention, la solution de traitement comprend un alcoxyde métallique unique. On forme ainsi une matrice hybride inorganique par hydrolyse condensation de chaque alcoxysilane et de l'alcoxyde métallique unique. Avantageusement, la solution de traitement comprend un alcoxyde métallique unique et un alcoxysilane unique. On forme ainsi une matrice hybride inorganique par hydrolyse condensation de l'alcoxysilane unique et de l'alcoxyde métallique unique.Advantageously and according to the invention, the treatment solution comprises a single metal alkoxide. An inorganic hybrid matrix is thus formed by condensation hydrolysis of each alkoxysilane and the single metal alkoxide. Advantageously, the treatment solution comprises a single metal alkoxide and a single alkoxysilane. An inorganic hybrid matrix is thus formed by condensation hydrolysis of the single alkoxysilane and the single metal alkoxide.

Avantageusement, la solution de traitement comprend, à titre d'alcoxyde métallique unique, un alcoxyde d'aluminium unique.Advantageously, the treatment solution comprises, as a single metal alkoxide, a single aluminum alkoxide.

On forme ainsi une solution de traitement comprenant un alcoxyde métallique -notamment un alcoxyde d'aluminium- unique et un alcoxysilane unique, ladite solution de traitement étant d'une grande simplicité dans sa composition et malgré tout adaptée pour procurer un revêtement anticorrosion hautement performant.A treatment solution is thus formed comprising a metal alkoxide, especially a single aluminum alkoxide and a single alkoxysilane, said treatment solution being of great simplicity in its composition and still suitable for providing a high performance anticorrosive coating.

Avantageusement, l'alcoxyde d'aluminium unique est choisi dans le groupe formé du tri(s-butoxyde) d'aluminium, du tri(n-butoxyde) d'aluminium, du tri(éthoxyde) d'aluminium, du tri(éthoxyéthoxyéthoxyde) d'aluminium et du tri(isopropoxyde) d'aluminium.Advantageously, the single aluminum alkoxide is selected from the group consisting of aluminum tri ( s- butoxide), aluminum tri ( n- butoxide), aluminum tri (ethoxide), tri (ethoxyethoxyethoxide) ) aluminum and tri ( iso propoxide) aluminum.

Avantageusement, le rapport molaire des alcoxysilanes par rapport aux alcoxydes métalliques dans la solution de traitement est compris entre 99/1 et 50/50. Avantageusement, le rapport molaire de l'ensemble des alcoxysilanes par rapport à l'ensemble des alcoxydes métalliques dans la solution de traitement est compris entre 99/1 et 50/50.Advantageously, the molar ratio of the alkoxysilanes with respect to the metal alkoxides in the treatment solution is between 99/1 and 50/50. Advantageously, the molar ratio of all the alkoxysilanes relative to the total of metal alkoxides in the treatment solution is between 99/1 and 50/50.

Avantageusement et selon l'invention, le rapport molaire des alcoxysilanes et des alcoxydes métalliques -notamment de l'alcoxyde d'aluminium-dans la solution de traitement est compris entre 85/15 et 6/4 notamment compris entre 8/2 et 64/36. Avantageusement, le rapport molaire de l'ensemble des alcoxysilanes par rapport à l'ensemble des alcoxydes métalliques dans la solution de traitement est compris entre 8/2 et 6/4.Advantageously and according to the invention, the molar ratio of alkoxysilanes and metal alkoxides-in particular aluminum alkoxide-in the treatment solution is between 85/15 and 6/4 in particular between 8/2 and 64/36. Advantageously, the molar ratio of all the alkoxysilanes relative to the total of metal alkoxides in the treatment solution is between 8/2 and 6/4.

Avantageusement et selon l'invention, le substrat métallique solide est formé d'un matériau choisi dans le groupe formé des matériaux oxydables -notamment de l'aluminium (par exemple l'alliage 2024T3), du titane (par exemple l'alliage TA6V), du magnésium (par exemple, l'alliage AZ30) et de leurs alliages-.Advantageously and according to the invention, the solid metal substrate is formed of a material chosen from the group consisting of oxidizable materials-in particular aluminum (for example alloy 2024T3), titanium (for example alloy TA6V) , magnesium (for example, the AZ30 alloy) and their alloys.

Avantageusement et selon l'invention, on applique la solution de traitement par trempage/retrait du substrat métallique solide dans ladite solution de traitement.Advantageously and according to the invention, the treatment solution is applied by soaking / removal of the solid metal substrate in said treatment solution.

Avantageusement, on réalise le retrait du substrat métallique solide de la solution de traitement avec une vitesse prédéterminée comprise entre 5 cm/min et 10 cm/min.Advantageously, the solid metal substrate is removed from the treatment solution with a predetermined speed of between 5 cm / min and 10 cm / min.

Avantageusement et selon l'invention, on applique la solution de traitement par pulvérisation atmosphérique en surface du substrat métallique solide.Advantageously and according to the invention, the atmospheric spray treatment solution is applied to the surface of the solid metal substrate.

Les inventeurs ont observé qu'il est possible de contrôler l'épaisseur de la matrice hybride par la vitesse du retrait du substrat métallique solide de la solution de traitement. Conformément à la loi de Landau-Levich ( Landau L.D. et Levich B.G., (1942), Acta Physiochim. URSS, 17, 42-54 ) il est possible, pour une solution de traitement de viscosité connue, de faire varier l'épaisseur de la matrice hybride anticorrosion d'une valeur de 1 µm pour une vitesse de retrait de 1 cm/min, jusqu'à une valeur de 14 µm pour une vitesse de retrait de 20 cm/min. En particulier, une vitesse de retrait de 7 cm/min permet l'obtention d'une matrice hybride d'une épaisseur de 5 µm.The inventors have observed that it is possible to control the thickness of the hybrid matrix by the rate of removal of the solid metal substrate from the treatment solution. In accordance with the Landau-Levich Law ( Landau LD and Levich BG, (1942), Acta Physiochim. USSR 17, 42-54 it is possible for a known viscosity treatment solution to vary the thickness of the hybrid anti-corrosion matrix by a value of 1 μm for a withdrawal speed of 1 cm / min, up to a value of 14. μm for a withdrawal speed of 20 cm / min. In particular, a withdrawal rate of 7 cm / min makes it possible to obtain a hybrid matrix with a thickness of 5 μm.

On mesure l'épaisseur de la matrice hybride par des méthodes connues en elles-mêmes de l'homme du métier, notamment par profilométrie interférométrique ou par mesure de courants de Foucault induits.The thickness of the hybrid matrix is measured by methods known in themselves to those skilled in the art, in particular by interferometric profilometry or by measurement of induced eddy currents.

Avantageusement, la solution de traitement comprend en outre un plastifiant choisi dans le groupe formé des PEG.Advantageously, the treatment solution further comprises a plasticizer selected from the group consisting of PEG.

Avantageusement, la solution de traitement liquide comprend un colorant. On choisit un tel colorant dans le groupe formé de la rhodamine B (CAS 81-88-9), du vert de malachite ("brilliant green", CAS 633-03-4) et du xylène cyanole (CAS 2850-17-1). Avantageusement, on utilise la rhodamine B à une concentration dans la solution de traitement liquide comprise entre 5.10-4 mole/L et 10-3 mole/L, le vert de malachite à une concentration dans la solution de traitement liquide comprise entre 5.10-4 mole/L et 10-3 mole/L et le xylène cyanole à une concentration dans la solution de traitement liquide comprise entre 5.10-4 mole/L et 10-3 mole/L.Advantageously, the liquid treatment solution comprises a dye. Such a dye is selected from the group consisting of rhodamine B (CAS 81-88-9), malachite green ("brilliant green", CAS 633-03-4) and xylene cyanole (CAS 2850-17-1). ). Advantageously, rhodamine B is used at a concentration in the liquid treatment solution of between 5.10 -4 mol / l and 10 -3 mol / l, the malachite green at a concentration in the liquid treatment solution of between 5.10 -4. mol / L to 10 -3 mol / L and xylene cyanole at a concentration in the liquid treatment solution between 5.10 -4 mol / L to 10 -3 mol / L.

Avantageusement, dans un procédé de traitement anticorrosion selon l'invention, la solution de traitement comprend une charge de nanoparticules formée d'une dispersion colloïdale de la boehmite dans la solution de traitement, c'est-à-dire des nanoparticules solides de boehmite de formule générale [-AlO(OH)-] formant une dispersion colloïdale de nanoparticules de boehmite dans la solution de traitement.Advantageously, in an anticorrosion treatment process according to the invention, the treatment solution comprises a nanoparticle feedstock formed of a colloidal dispersion of boehmite in the treatment solution, that is to say solid nanoparticles of boehmite of general formula [-AlO (OH) -] forming a colloidal dispersion of boehmite nanoparticles in the treatment solution.

Dans un procédé de traitement anticorrosion selon l'invention, pour préparer une solution de traitement on dissout chaque alcoxysilane, chaque alcoxyde d'aluminium et, le cas échéant, chaque alcoxyde métallique dans un alcool -notamment choisi dans le groupe formé de l'éthanol, du propanol-1 et du propanol-2- puis on ajoute une quantité d'eau ou, le cas échéant, une quantité d'une solution aqueuse contenant au moins un cation de lanthanide et/ou de la boehmite colloïdale de façon à former une solution de traitement anticorrosion.In an anticorrosion treatment process according to the invention, to prepare a treatment solution is dissolved each alkoxysilane, each aluminum alkoxide and, where appropriate, each metal alkoxide in an alcohol - especially chosen from the group formed by ethanol , propanol-1 and propanol-2, and then a quantity of water or, if appropriate, an amount of an aqueous solution containing at least one lanthanide cation and / or colloidal boehmite is added to form an anticorrosion treatment solution.

Avantageusement, à une solution alcoolique on ajoute du(des) alcoxysilane(s) et l'(les) alcoxyde(s) métallique(s) et une quantité d'eau ou, le cas échéant, une quantité d'une solution aqueuse contenant au moins un cation de lanthanide et/ou des nanoparticules de boehmite colloïdale de façon à conserver sensiblement les propriétés rhéologiques et thixotropiques de la solution de traitement.Advantageously, to an alcoholic solution is added alkoxysilane (s) and the (the) alkoxide (s) metal (s) and an amount of water or, if appropriate, an amount of an aqueous solution containing at least one lanthanide cation and / or nanoparticles of colloidal boehmite so as to substantially retain the rheological and thixotropic properties of the treatment solution.

Avantageusement, dans une troisième variante d'un procédé de traitement anticorrosion selon l'invention, on forme une solution de traitement comprenant des nanoparticules de boehmite de formule générale AlO(OH) et présentant une distribution surfacique de cations de lanthanides -notamment des cations de cérium- et/ou de vanadate. On obtient de telles nanoparticules de boehmite, dites nanoparticules de boehmite physisorbées, par un procédé connu en lui-même de l'homme du métier et notamment adapté d'un procédé décrit par Yoldas ( Yoldas B.E. et al., (1975), J. Mater. Sci., 10, 1856 ).Advantageously, in a third variant of an anticorrosion treatment process according to the invention, a treatment solution comprising boehmite nanoparticles of general formula AlO (OH) and having a surface distribution of lanthanide cations -including cerium- and / or vanadate cations. Such boehmite nanoparticles, called physisorbed boehmite nanoparticles, are obtained by a process known in itself to those skilled in the art and in particular adapted from a process described by Yoldas ( Yoldas BE et al., (1975), J. Mater. Sci., 10, 1856 ).

Dans cette troisième variante d'un procédé selon l'invention, les inventeurs ont constaté une amélioration de la résistance à la corrosion d'un substrat métallique solide traité par une solution de traitement soumis à une immersion dans un bain corrosif de NaCℓ à 0,05 mole/L.In this third variant of a method according to the invention, the inventors have found an improvement in the corrosion resistance of a solid metal substrate treated with a treatment solution subjected to immersion in a corrosive bath of NaCℓ at 0, 05 mole / L.

Avantageusement, dans une quatrième variante d'un procédé de traitement anticorrosion selon l'invention, on forme une solution de traitement comprenant des nanoparticules de boehmite, dite boehmite dopée, de formule générale (VIII) suivante :

        Aℓ1-x(X)xO(OH)     (VIII),

dans laquelle :

  • X est un élément, dit élément de dopage, choisi dans le groupe formé des lanthanides trivalent -notamment du cérium trivalent-, et ;
  • x est un nombre relatif compris entre 0,002 et 0,01.
Advantageously, in a fourth variant of an anticorrosion treatment process according to the invention, a treatment solution is formed comprising boehmite nanoparticles, called doped boehmite, of general formula (VIII) below:

Aℓ 1-x (X) x O (OH) (VIII),

in which :
  • X is an element, referred to as a doping element, selected from the group consisting of trivalent lanthanides, especially trivalent cerium, and;
  • x is a relative number between 0.002 and 0.01.

On obtient de telles nanoparticules de boehmite dopée par un procédé dans lequel on mélange une solution d'au moins un précurseur d'aluminium -notamment du Aℓ(OC4H9)3- dans l'eau et une solution d'un cation d'un élément de dopage choisi dans le groupe formé d'un nitrate, d'un sulfate, d'un acétate et d'un chlorure de l'élément de dopage.Such doped boehmite nanoparticles are obtained by a process in which a solution of at least one aluminum precursor - notably Aℓ (OC 4 H 9 ) 3 - in water and a solution of a cation of a doping element selected from the group consisting of a nitrate, a sulfate, an acetate and a chloride of the doping element.

Dans cette quatrième variante d'un procédé selon l'invention, les inventeurs ont constaté une amélioration de la résistance à la corrosion d'un substrat métallique solide traité par une solution de traitement soumis à une immersion dans un bain corrosif de NaCℓ à 0,05 mole/L.In this fourth variant of a method according to the invention, the inventors have found an improvement in the corrosion resistance of a solid metal substrate treated with a treatment solution subjected to immersion in a corrosive bath of NaCℓ at 0, 05 mole / L.

Avantageusement, les nanoparticules de boehmite physisorbée et les nanoparticules de boehmite dopée présentent une plus grande dimension et deux plus petites dimensions, perpendiculaires entre elles et perpendiculaires à ladite plus grande dimension, ladite plus grande dimension est inférieure à 200 nm -notamment inférieure à 100 nm, particulièrement inférieure à 50 nm, de préférence comprise entre 5 nm et 20 nm-, et les deux plus petites dimensions sont inférieures à 10 nm, de préférence de l'ordre de 3 nm.Advantageously, the physisorbed boehmite nanoparticles and the doped boehmite nanoparticles have a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger dimension, said larger dimension is less than 200 nm. -In particular less than 100 nm, particularly less than 50 nm, preferably between 5 nm and 20 nm-, and the two smaller dimensions are less than 10 nm, preferably of the order of 3 nm.

Avantageusement et selon l'invention, la solution de traitement comprend une charge de nanoparticules de boehmite creuses.Advantageously and according to the invention, the treatment solution comprises a charge of hollow boehmite nanoparticles.

Avantageusement et selon l'invention, après l'application de la solution de traitement, on réalise un traitement thermique du substrat métallique adapté pour permettre la formation de la matrice hybride et l'évaporation des solvants.Advantageously and according to the invention, after the application of the treatment solution, a heat treatment of the metal substrate adapted to allow the formation of the hybrid matrix and the evaporation of the solvents is carried out.

Avantageusement dans un procédé selon l'invention, avant d'appliquer la solution de traitement, on plonge ladite surface oxydable du substrat métallique solide dans une solution, dite solution de conversion, liquide formée d'au moins un inhibiteur de corrosion dans l'eau, ledit inhibiteur de corrosion étant choisi dans le groupe formé des cations de lanthanide et on maintient en contact ladite surface oxydable du substrat métallique solide avec la solution de conversion pendant une durée adaptée pour former une couche de conversion formée dudit lanthanide lié par au moins une liaison covalente à la surface oxydable et s'étendant en surface du substrat métallique solide.Advantageously in a process according to the invention, before applying the treatment solution, said oxidizable surface of the solid metal substrate is immersed in a so-called conversion solution solution, a liquid formed of at least one corrosion inhibitor in water said corrosion inhibitor being selected from the group consisting of lanthanide cations and said oxidizable surface of the solid metal substrate is held in contact with the conversion solution for a period of time suitable to form a conversion layer formed from said bound lanthanide by at least one covalent bond to the oxidizable surface and extending at the surface of the solid metal substrate.

Dans une cinquième variante d'un procédé de traitement anticorrosion selon l'invention, on forme d'abord une couche de conversion sur la surface oxydable d'un substrat métallique solide par mise en contact de ladite surface oxydable avec la solution de conversion. Un traitement par une telle solution de conversion constitue un traitement anticorrosion en cela qu'il permet la formation d'une couche de conversion en surface du substrat métallique solide, en lieu et place d'une couche d'oxyde du métal du substrat métallique solide, ladite couche de conversion présentant une résistance vis-à-vis de la corrosion -notamment mesurée par spectroscopie d'impédance électrochimique (SIE)- qui est accrue par rapport à la résistance vis-à-vis de la corrosion de la couche d'oxyde formée naturellement en surface du substrat métallique solide.In a fifth variant of an anticorrosion treatment process according to the invention, a conversion layer is first formed on the oxidizable surface of a solid metal substrate by contacting said oxidizable surface with the conversion solution. A treatment with such a conversion solution constitutes an anticorrosion treatment in that it allows the formation of a surface conversion layer of the solid metal substrate, instead of a metal oxide layer of the solid metal substrate. , said conversion layer exhibiting a resistance to corrosion - in particular measured by electrochemical impedance spectroscopy (EIS) - which is increased with respect to the corrosion resistance of the coating layer. oxide formed naturally on the surface of the solid metal substrate.

En fait, les inventeurs ont observé qu'un traitement anticorrosion selon l'invention dans lequel on forme d'abord une couche de conversion en surface d'un substrat métallique solide, puis on applique une solution de traitement comprenant au moins un alcoxysilane, un cation de cérium à une concentration comprise entre 0,005 mole/L et 0,015 mole/L, et le cas échéant, au moins un alcoxyde métallique, permet d'augmenter la résistance vis-à-vis de la corrosion de la surface oxydable d'un substrat métallique solide, même après immersion de la surface oxydable du substrat métallique solide pendant une durée prédéterminée -notamment une durée supérieure à 1 heure- dans un bain de corrosion, notamment un bain aqueux de NaCℓ 0,05 mole/L.In fact, the inventors have observed that an anticorrosion treatment according to the invention in which a layer of surface conversion of a solid metal substrate, then a treatment solution comprising at least one alkoxysilane, a cerium cation at a concentration of between 0.005 mol / L and 0.015 mol / L, and, where appropriate, at least one metal alkoxide, makes it possible to increase the resistance to corrosion of the oxidizable surface of a solid metal substrate, even after immersion of the oxidizable surface of the solid metal substrate for a predetermined period of time -particularly a duration greater than 1 hour- in a bath of corrosion, especially an aqueous bath of NaCℓ 0.05 mol / L.

Les inventeurs supposent que le traitement de la surface oxydable du substrat métallique solide par la solution de conversion conduit à la formation d'une couche de conversion de résistance vis-à-vis de la corrosion augmentée par rapport à la couche d'oxyde métallique du substrat métallique solide non traité par la solution de conversion. Une telle couche de conversion se caractérise, selon une représentation, dite représentation de "Nyquist", du diagramme d'impédance électrochimique par une valeur Z'(ω) de résistance surfacique (Ω.cm2) augmentée par rapport à la valeur Z'(co) de la résistance surfacique d'une couche d'oxyde métallique solide naturellement formée en surface d'un substrat métallique solide. On réalise les mesures d'impédance Z(co) en mode potentiostatique autour du potentiel libre, avec une perturbation sinusoïdale. L'amplitude de perturbation sinusoïdale est fixée à 10 mV de façon à satisfaire les conditions de linéarité. Les fréquences balayées lors des mesures d'impédance sont comprises entre 65 kHz et 10 mHz avec 10 points par décade.The inventors assume that the treatment of the oxidizable surface of the solid metal substrate by the conversion solution results in the formation of an increased corrosion resistance layer with respect to the metal oxide layer of the solid metal substrate not treated with the conversion solution. Such a conversion layer is characterized, according to a representation, called "Nyquist" representation, of the electrochemical impedance diagram by a value Z '(ω) of surface resistance (Ω.cm 2 ) increased compared with the value Z' (co) the surface resistance of a solid metal oxide layer naturally formed on the surface of a solid metal substrate. The impedance measurements Z (co) are carried out in potentiostatic mode around the free potential, with a sinusoidal disturbance. The amplitude of sinusoidal disturbance is set at 10 mV in order to satisfy the linearity conditions. The frequencies scanned during impedance measurements are between 65 kHz and 10 mHz with 10 points per decade.

Les inventeurs ont montré par spectroscopy de dispersion d'énergie ("EDS, Energy Dispersive Spectroscopy") que cette couche de conversion est constituée d'oxydes mixtes de lanthanide et du métal constitutif de la surface oxydable du substrat métallique solide.The inventors have shown by Energy Dispersive Spectroscopy (EDS) that this conversion layer consists of mixed oxides of lanthanide and the constituent metal of the oxidizable surface of the solid metal substrate.

Avantageusement, la couche de conversion s'étendant en surface du substrat métallique solide présente une épaisseur moyenne comprise entre 1 nm et 200 nm.Advantageously, the conversion layer extending at the surface of the solid metal substrate has an average thickness of between 1 nm and 200 nm.

Les inventeurs ont observé que l'augmentation de la durée d'immersion d'un substrat métallique solide dans une solution de conversion selon l'invention permet une augmentation de la valeur de la résistance surfacique de surface qui va au-delà de la valeur limite de la résistance surfacique de la couche d'oxyde d'aluminium formée naturellement en surface d'une pièce d'alliage d'aluminium.The inventors have observed that increasing the immersion time of a solid metal substrate in a conversion solution according to the invention makes it possible to increase the value of the surface area resistance which goes beyond the limit value of the surface resistance of the layer of aluminum oxide formed naturally on the surface of a piece of alloy of aluminum.

En outre, les inventeurs ont aussi observé qu'un tel traitement de la surface oxydable d'un substrat métallique solide par une solution de conversion ne conduit à aucune augmentation détectable de la masse du substrat. Une telle couche de conversion ne correspond pas à une cristallisation d'oxydes/hydroxydes de lanthanide en surface du substrat métallique solide.In addition, the inventors have also observed that such a treatment of the oxidizable surface of a solid metal substrate by a conversion solution does not lead to any detectable increase in the mass of the substrate. Such a conversion layer does not correspond to a crystallization of lanthanide oxides / hydroxides on the surface of the solid metal substrate.

En particulier, le traitement de la surface oxydable du substrat métallique solide par la solution de conversion permet la formation d'une couche de conversion de protection active et de cicatrisation en surface du substrat métallique solide par formation d'une pluralité de liaison covalente intervenant entre l'élément lanthanide (Ln) inhibiteur de corrosion et un élément métallique (M) du substrat métallique solide. Les inventeurs ont montré par analyse chimique des énergies de liaison -notamment par spectrométrie photo-électronique X (XPS)- que cette liaison covalente est du type M-O-Ln-O- dans laquelle M représente un élément métallique du substrat métallique solide, O est un atome d'oxygène et Ln représente l'élément inhibiteur de corrosion choisi parmi les lanthanides.In particular, the treatment of the oxidizable surface of the solid metal substrate by the conversion solution allows the formation of an active protection conversion and healing layer on the surface of the solid metal substrate by formation of a plurality of covalent bonds occurring between the lanthanide element (Ln) corrosion inhibitor and a metal element (M) of the solid metal substrate. The inventors have shown by chemical analysis of the binding energies - in particular by X-ray photoelectron spectrometry (XPS) - that this covalent bond is of the MO-Ln-O- type in which M represents a metallic element of the solid metal substrate, O is an oxygen atom and Ln represents the corrosion inhibiting element chosen from lanthanides.

Dans un procédé selon l'invention, on applique sur la surface oxydable du substrat métallique solide, et le cas échéant en surface de la couche de conversion, une solution de traitement formée d'un sol hybride organique/inorganique d'au moins un alcoxysilane -notamment d'un alcoxysilane porteur d'un groupement organique-, d'un cation de cérium à une concentration comprise entre 0,005 mole/L et 0,015 mole/L, et le cas échéant d'au moins un alcoxyde métallique, adapté(s) pour former par hydrolyse/condensation du(des) alcoxysilane(s), du(des) alcoxyde(s) métallique(s) et du cation de cérium une matrice hybride organique/inorganique formée d'enchainements atomiques inorganiques (-Si-O-Si-) et d'enchainements hydrocarbonés organiques.In a process according to the invention, a treatment solution formed of an organic / inorganic hybrid soil of at least one alkoxysilane is applied to the oxidizable surface of the solid metal substrate, and optionally to the surface of the conversion layer. in particular an alkoxysilane carrying an organic group, a cerium cation at a concentration of between 0.005 mol / l and 0.015 mol / l, and optionally at least one metal alkoxide, adapted (s). ) to form by hydrolysis / condensation of (the) alkoxysilane (s), metal alkoxide (s) and cerium cation an organic / inorganic hybrid matrix formed of inorganic atomic chains (-Si-O) -Si-) and organic hydrocarbon chains.

Les inventeurs ont observé que l'immersion d'un substrat métallique solide dans une solution de conversion permet non seulement la formation d'une telle couche de conversion et la protection active du substrat métallique solide vis-à-vis de la corrosion, mais permet en outre une amélioration de l'adhérence d'un sol hybride en surface du substrat métallique solide et une amélioration des propriétés de protection passive dudit substrat métallique solide vis-à-vis de la corrosion.The inventors have observed that immersing a solid metal substrate in a conversion solution allows not only the formation of such a conversion layer and the active protection of the solid metal substrate against corrosion, but also allows an improvement of the adhesion of a hybrid soil surface of the solid metal substrate and an improvement of passive protection properties of said solid metal substrate against corrosion.

Avantageusement et selon l'invention, on choisit chaque inhibiteur de corrosion de la solution de conversion dans le groupe formé des cations de lanthane (La), des cations de cérium (Ce), des cations de praséodyme (Pr), des cations de néodyme (Nd), des cations de samarium (Sm), des cations d'europium (Eu), des cations de gadolinium (Gd), des cations de terbium (Tb), des cations de dysprosium (Dy), des cations d'holmium (Ho), des cations d'erbium (Er), des cations de thulium (Tm), des cations d'ytterbium (Yb) et des cations de lutécium (Lu).Advantageously and according to the invention, each corrosion inhibitor of the conversion solution is selected from the group consisting of lanthanum (La) cations, cerium (Ce) cations, praseodymium (Pr) cations, neodymium cations. (Nd), samarium (Sm) cations, europium (Eu) cations, gadolinium (Gd) cations, terbium (Tb) cations, dysprosium (Dy) cations, holmium cations (Ho), erbium cations (Er), thulium cations (Tm), ytterbium cations (Yb) and lutetium cations (Lu).

Avantageusement et selon l'invention, on choisit chaque inhibiteur de corrosion de la solution de conversion dans le groupe formé des chlorures de lanthanide, des nitrates de lanthanide, des acétates de lanthanide et des sulfates de lanthanide.Advantageously and according to the invention, each corrosion inhibitor of the conversion solution is chosen from the group formed by lanthanide chlorides, lanthanide nitrates, lanthanide acetates and lanthanide sulfates.

Avantageusement, on choisit chaque inhibiteur de corrosion de la solution de conversion dans le groupe formé du chlorure de lanthane (LaCℓ3), du chlorure de cérium (CeCℓ3), du chlorure d'yttrium (YCℓ3), du sulfate de cérium (Ce2(SO4)3), de l'acétate de cérium (Ce(CH3COO)3), du chlorure de praséodyme (PrCℓ3), du chlorure de néodyme (NdCℓ3)Advantageously chosen each corrosion inhibitor of the conversion solution in the group consisting of lanthanum chloride (LaCℓ 3), cerium chloride (CeCℓ 3), yttrium chloride (YCℓ 3), cerium sulfate ( Ce 2 (SO 4 ) 3 ), cerium acetate (Ce (CH 3 COO) 3 ), praseodymium chloride (PrCℓ 3 ), neodymium chloride (NdCℓ 3 )

Avantageusement et selon l'invention, chaque inhibiteur de corrosion de la solution de conversion est un cation de cérium -notamment le nitrate de cérium (Ce(NO3)3), l'acétate de cérium (Ce(CH3COO)3), le sulfate de cérium (Ce2(SO4)3) et le chlorure de cérium (CeCℓ3)- dans lequel l'élément cérium est de valence III (CeIII).Advantageously and according to the invention, each corrosion inhibitor of the conversion solution is a cerium cation-notably cerium nitrate (Ce (NO 3 ) 3 ), cerium acetate (Ce (CH 3 COO) 3 ) , cerium sulphate (Ce 2 (SO 4 ) 3 ) and cerium chloride (CeCℓ 3 ) - in which the cerium element is of valence III (Ce III ).

Avantageusement et selon l'invention, le cation de cérium (Ce) de la solution de traitement est choisi dans le groupe formé des chlorures de cérium et des nitrates de cérium. En particulier, l'inhibiteur de corrosion de la solution de conversion est du nitrate de cérium Ce(NO3)3.Advantageously and according to the invention, the cerium cation (Ce) of the treatment solution is chosen from the group formed by cerium chlorides and cerium nitrates. In particular, the corrosion inhibitor of the conversion solution is cerium nitrate Ce (NO 3 ) 3 .

Les inventeurs ont montré que la couche de conversion est constituée d'oxydes mixtes de cérium et du métal constitutif de la surface oxydable du substrat métallique solide. L'analyse chimique par spectroscopie de dispersion d'énergie ("EDS, Energy Dispersive Spectroscopy") présente des raies Lα et Mα caractéristiques du cérium lié par des liaiasons covalentes en surface du substrat métallique solide.The inventors have shown that the conversion layer consists of mixed oxides of cerium and the constituent metal of the oxidizable surface of the solid metal substrate. The chemical analysis by energy dispersive spectroscopy ("EDS") shows Lα and Mα lines characteristic of cerium bound by covalent liaiasons on the surface of the solid metal substrate.

Les inventeurs ont observé qu'un tel procédé de traitement anticorrosion permet de former un revêtement anticorrosion formé d'une couche de conversion comprenant au moins un inhibiteur de corrosion et adaptée pour permettre une auto-cicatrisation du substrat métallique solide, ladite couche de conversion étant elle-même protégée par la matrice hybride riche en cérium présentant un effet barrière optimal.The inventors have observed that such an anticorrosion treatment method makes it possible to form an anticorrosion coating formed of a conversion layer comprising at least one corrosion inhibitor and adapted to allow self-healing of the solid metal substrate, said conversion layer being it is protected by the cerium-rich hybrid matrix with an optimal barrier effect.

Mais les inventeurs ont aussi observé de façon totalement surprenante que la couche de conversion :

  • n'altère pas les propriétés mécaniques de résistance à la délamination et d'adhésion de la matrice hybride sur le substrat métallique solide ;
  • n'altère pas les propriétés barrière de la matrice hybride, telles que mesurées par SIE ;
  • permet de ralentir la perte de résistance à la corrosion du substrat métallique solide durant une immersion prolongée de celui-ci dans un bain de corrosion, et ;
  • retarde l'apparition des produits de corrosion sur les substrats métalliques subissant un point de corrosion.
But the inventors have also observed in a totally surprising way that the conversion layer:
  • does not alter the mechanical properties of resistance to delamination and adhesion of the hybrid matrix to the solid metal substrate;
  • does not alter the barrier properties of the hybrid matrix, as measured by SIE;
  • slows the loss of corrosion resistance of the solid metal substrate during prolonged immersion thereof in a corrosion bath, and
  • delays the appearance of corrosion products on metal substrates undergoing a corrosion point.

La présence d'une couche de conversion riche en inhibiteur de corrosion située à l'interface entre le substrat métallique solide et la matrice hybride permet d'apporter une protection active supplémentaire, qui s'ajoute à l'effet protecteur de la matrice hybride.The presence of a corrosion inhibitor-rich conversion layer at the interface between the solid metal substrate and the hybrid matrix provides additional active protection, which adds to the protective effect of the hybrid matrix.

Avantageusement et selon l'invention, la solution de conversion présente une concentration en inhibiteur de corrosion -notamment en cérium (Ce)- comprise entre 0,001 mole/L et 0,5 mole/L, notamment comprise entre 0.05 mole/L et 0,3 mole/L, en particulier de l'ordre de 0,1 mole/L.Advantageously and according to the invention, the conversion solution has a concentration of corrosion inhibitor - in particular cerium (Ce) - of between 0.001 mol / l and 0.5 mol / l, in particular between 0.05 mol / l and 0, 3 mol / L, in particular of the order of 0.1 mol / L.

Avantageusement, la solution de conversion présente une concentration en inhibiteur de corrosion -notamment en cérium (Ce)- comprise entre 0,01 mole/L et 0,5 mole/L, préférentiellement comprise entre 0,1 mole/L et 0,5 mole/L.Advantageously, the conversion solution has a concentration of corrosion inhibitor - in particular cerium (Ce) - of between 0.01 mole / L and 0.5 mole / L, preferably between 0.1 mole / L and 0.5 mol / L.

Avantageusement, on maintient en contact la surface oxydable du substrat métallique solide et la solution de conversion pendant une durée prédéterminée comprise entre 1 s et 30 min, notamment entre 1 s et 300 s, de préférence entre 1 s et 15 s, en particulier entre 1 s et 10 s, plus préférentiellement entre 1 s et 3 s.Advantageously, the oxidizable surface of the solid metal substrate is maintained in contact with the conversion solution for a predetermined period of between 1 s and 30 min, in particular between 1 s and 300 s, preferably between 1 s and 15 s, in particular between 1 s and 10 s, more preferably between 1 s and 3 s.

Avantageusement, après l'étape de mise en contact de la surface oxydable du substrat métallique solide et de la solution de conversion, on sèche le substrat métallique solide à une température prédéterminée inférieure à 100°C -notamment de l'ordre de 50°C-, de façon à former en surface du substrat métallique solide, une couche, dite couche de conversion, de l'élément Ln (lanthanide) inhibiteur de corrosion lié à un élément M métallique du substrat métallique solide par une liaison du type M-O-Ln-O-.Advantageously, after the step of contacting the oxidizable surface of the solid metal substrate and of the conversion solution, the solid metal substrate is dried at a predetermined temperature of less than 100 ° C., in particular of the order of 50 ° C. in order to form on the surface of the solid metal substrate, a layer, referred to as the conversion layer, of the corrosion inhibitor element Ln (lanthanide) bonded to a metal element M of the solid metal substrate by a bond of the MO-Ln type. O-.

Avantageusement, la solution de conversion présente un pH sensiblement de l'ordre de 4. Avantageusement, on ajuste le pH de la solution de conversion par addition d'un acide minéral -notamment d'acide nitrique- à la solution de conversion.Advantageously, the conversion solution has a pH substantially of the order of 4. Advantageously, the pH of the conversion solution is adjusted by addition of a mineral acid - in particular nitric acid - to the conversion solution.

Les inventeurs ont observé qu'un procédé de traitement anticorrosion d'un substrat métallique solide en deux étapes selon l'invention, permet non seulement une protection active, en particulier par cicatrisation, du substrat métallique solide vis-à-vis de la corrosion mais permet en outre de procurer une protection passive vis-à-vis de ladite corrosion.The inventors have observed that a method of anticorrosion treatment of a solid metal substrate in two stages according to the invention not only allows an active protection, in particular by healing, of the solid metal substrate with respect to corrosion but also provides passive protection against said corrosion.

Avantageusement et selon l'invention, la composition hydro-alcoolique liquide est formée d'eau et d'au moins un alcool -notamment choisi dans le groupe formé de l'éthanol, du propanol-1 et du propanol-2-.Advantageously and according to the invention, the liquid aqueous-alcoholic composition is formed of water and at least one alcohol -notamment selected from the group consisting of ethanol, propanol-1 and propanol-2-.

Avantageusement, les nanoparticules de boehmite dopées et/ou physisorbées présentent une plus grande dimension et deux plus petites dimensions, perpendiculaires entre elles et perpendiculaires à ladite plus grande dimension, ladite plus grande dimension est inférieure à 200 nm -notamment inférieure à 100 nm, particulièrement inférieure à 50 nm, de préférence comprise entre 5 nm et 20 nm-, et les deux plus petites dimensions sont inférieures à 10 nm, de préférence de l'ordre de 3 nm.Advantageously, doped and / or physisorbed boehmite nanoparticles have a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger one. dimension, said largest dimension is less than 200 nm, especially less than 100 nm, particularly less than 50 nm, preferably between 5 nm and 20 nm, and the two smaller dimensions are less than 10 nm, preferably less than the order of 3 nm.

Avantageusement et selon l'invention, la solution de traitement comprend une charge de nanoparticules de boehmite creuses.Advantageously and according to the invention, the treatment solution comprises a charge of hollow boehmite nanoparticles.

L'invention vise aussi un revêtement anticorrosion susceptible d'être obtenu par un procédé selon l'invention.The invention also relates to an anticorrosion coating that can be obtained by a process according to the invention.

L'invention s'étend par ailleurs à un revêtement anticorrosion d'un substrat métallique solide formé d'une matrice hybride s'étendant en surface du substrat métallique solide et obtenue par hydrolyse/condensation d'au moins un alcoxysilane ;
ladite matrice hybride présentant un rapport (Si/Ce) molaire d'élément silicium du(des) alcoxysilane(s) par rapport à au moins un cation du cérium (Ce) compris entre 50 et 500, notamment entre 80 et 250.
The invention also extends to an anticorrosion coating of a solid metal substrate formed of a hybrid matrix extending at the surface of the solid metal substrate and obtained by hydrolysis / condensation of at least one alkoxysilane;
said hybrid matrix having a molar ratio (Si / Ce) of silicon element of the alkoxysilane (s) with respect to at least one cerium (Ce) cation of between 50 and 500, in particular between 80 and 250.

On détermine ce rapport Ce/Si par des méthodes connues en elles-mêmes de l'homme du métier, en particulier par analyse RBS (Rutherford Backscattering Spectrometry) de la diffusion élastique des ions d'un faisceau d'ions incident adaptée pour pouvoir mesurer la quantité d'un élément lourd dans une matrice hybride légère.This Ce / Si ratio is determined by methods known in themselves to those skilled in the art, in particular by RBS (Rutherford Backscattering Spectrometry) analysis of the elastic diffusion of the ions of an incident ion beam adapted to be able to measure the amount of a heavy element in a light hybrid matrix.

L'invention s'étend en particulier à un revêtement anticorrosion dans lequel la matrice hybride s'étendant au contact d'un substrat métallique solide est obtenue par hydrolyse/condensation d'au moins un alcoxysilane et, le cas échéant, d'au moins un alcoxyde métallique et comprenant :

  • o au moins un groupement inorganique de formule (IX) générale :

            -A-O-B-     (IX),

    dans laquelle :
    • ▪ O est l'élément oxygène,
    • ▪ A et B sont choisis indépendamment l'un de l'autre dans le groupe formé de Si et de M', et ;
      • o au moins un groupement organique de formule (XI) générale :

                -D-O-R10-O- E-     (XI),

    • ▪ dans laquelle O est l'élément oxygène,
    • ▪ D et E sont choisis indépendamment l'un de l'autre dans le groupe formé de Si, de M' et de Ce, et ;
    • ▪ R10 est un groupement hydrocarboné.
The invention extends in particular to an anticorrosion coating in which the hybrid matrix extending in contact with a solid metal substrate is obtained by hydrolysis / condensation of at least one alkoxysilane and, where appropriate, at least one a metal alkoxide and comprising:
  • at least one inorganic group of general formula (IX):

    -AOB- (IX),

    in which :
    • ▪ O is the oxygen element,
    • ▪ A and B are independently selected from the group consisting of Si and M ', and;
      • at least one organic group of general formula (XI):

        -OR 10 -O- E- (XI),

    • In which O is the oxygen element,
    • D and E are independently selected from the group consisting of Si, M 'and Ce, and;
    • R 10 is a hydrocarbon group.

Avantageusement, le revêtement anticorrosion présente une épaisseur comprise entre 1 µm et 15 µm.Advantageously, the anticorrosion coating has a thickness of between 1 micron and 15 microns.

L'invention s'étend par ailleurs à un revêtement anticorrosion présentant au moins l'une des caractéristiques ci-après :

  • la matrice hybride du revêtement anticorrosion est formée d'un matériau composite comprenant un xérogel hybride -notamment un xérogel hybride organique/inorganique- et une charge de nanoparticules de boehmite physisorbée dispersée dans le xérogel hybride ;
  • la matrice hybride du revêtement anticorrosion est formée d'un matériau composite comprenant un xérogel hybride -notamment un xérogel hybride organique/inorganique- et une charge de nanoparticules de boehmite dopées de formule générale (VIII) :

            Aℓ1-x(X)xO(OH),     (VIII)

    dans laquelle :
    • o X est un élément, dit élément de dopage, choisi dans le groupe formé des lanthanides trivalents -notamment du cérium trivalent-, et ;
    • o x est un nombre relatif compris entre 0,002 et 0,01 ;
    ladite charge étant dispersée dans le xérogel hybride ;
  • la matrice hybride du revêtement anticorrosion est formée d'un matériau composite comprenant un xérogel hybride -notamment un xérogel hybride organique/inorganique- et une charge de nanoparticules de boehmite creuses dispersée dans le xérogel hybride ;
  • les nanoparticules solides de la charge de nanoparticules de boehmite physisorbées et de la charge de nanoparticules de boehmite dopées présentant une plus grande dimension et deux plus petites dimensions, perpendiculaires entre elles et perpendiculaires à ladite plus grande dimension, la plus grande dimension est inférieure à 200 nm -notamment inférieure à 100 nm, particulièrement inférieure à 50 nm, de préférence comprise entre 5 nm et 20 nm-, et les deux plus petites dimensions sont inférieures à 10 nm, de préférence de l'ordre de 3 nm ;
  • les nanoparticules solides de la charge de nanoparticules de boehmite creuses sont de forme sensiblement sphérique et présentent un diamètre moyen de l'ordre de 30 nm.
The invention also extends to an anticorrosive coating having at least one of the following characteristics:
  • the hybrid matrix of the anticorrosion coating is formed of a composite material comprising a hybrid xerogel-in particular an organic / inorganic hybrid xerogel-and a physisorbed boehmite nanoparticle filler dispersed in the hybrid xerogel;
  • the hybrid matrix of the anticorrosive coating is formed of a composite material comprising a hybrid xerogel-in particular an organic / inorganic hybrid xerogel-and a doped boehmite nanoparticle feed of general formula (VIII):

    Aℓ 1-x (X) x O (OH), (VIII)

    in which :
    • o X is an element, called doping element, selected from the group consisting of trivalent lanthanides, especially trivalent cerium, and;
    • ox is a relative number between 0.002 and 0.01;
    said filler being dispersed in the hybrid xerogel;
  • the hybrid matrix of the anticorrosive coating is formed of a composite material comprising a hybrid xerogel-in particular an organic / inorganic hybrid xerogel-and a charge of hollow boehmite nanoparticles dispersed in the hybrid xerogel;
  • the solid nanoparticles of the charge of physisorbed boehmite nanoparticles and the charge of doped boehmite nanoparticles having a larger dimension and two smaller dimensions, perpendicular to each other and perpendicular to said larger dimension, the largest dimension is less than 200; nm -notamment less than 100 nm, particularly less than 50 nm, preferably between 5 nm and 20 nm-, and the two smaller dimensions are less than 10 nm, preferably of the order of 3 nm;
  • the solid nanoparticles of the charge of hollow boehmite nanoparticles are of substantially spherical shape and have a mean diameter of the order of 30 nm.

Avantageusement, la couche de conversion du revêtement anticorrosion présente une épaisseur comprise entre 1 nm et 200 nm.Advantageously, the conversion layer of the anticorrosion coating has a thickness of between 1 nm and 200 nm.

L'invention s'étend par ailleurs à une surface métallique revêtue d'un revêtement anticorrosion obtenu par un procédé selon l'invention.The invention also extends to a metal surface coated with an anticorrosion coating obtained by a method according to the invention.

L'invention concerne également un procédé caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.The invention also relates to a process characterized in combination by all or some of the characteristics mentioned above or below.

D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante qui se réfère aux figures annexées représentant des modes de réalisation préférentiels de l'invention, donnés uniquement à titre d'exemples non limitatifs, et dans lesquelles :

  • la figure 1 est une représentation schématique hors proportion d'une variante d'un revêtement anticorrosion selon l'invention ;
  • la figure 2 en une vue en microscopie électronique à balayage (MEB) d'une coupe transversale d'un revêtement anticorrosion d'un substrat métallique solide obtenu par un procédé selon l'invention ;
  • la figure 3 est une représentation graphique comparative de l'évolution de la résistance surfacique vis-à-vis de la corrosion d'un substrat métallique solide traité selon deux variantes d'un procédé selon l'invention ;
  • la figure 4 est une représentation graphique de la résistance surfacique (Ω.cm2) d'un revêtement anticorrosion en fonction de la concentration en cérium dans la solution de traitement ;
  • la figure 5 est une représentation graphique de la nano-dureté de Vickers d'un revêtement anticorrosion en fonction de la concentration en cérium dans la solution de traitement ;
  • la figure 6 est une représentation graphique de la variation de la valeur du module de Young, en GPa, déterminée par des mesures de nano-indentation ;
  • la figure 7 est une représentation graphique de la valeur de la charge critique (mN) de délamination (○), de fissuration (▲) et de déformation plastique (□), déterminée par nano-nano-scratch, d'un revêtement anticorrosion en fonction de la concentration en cérium dans la solution de traitement ;
  • la figure 8 est une représentation de Nyquist de l'impédance électrochimique d'un substrat métallique solide traité (○) ou non traité (▲) avec une solution de conversion ;
  • la figure 9 est un spectre d'analyse chimique de surface par Spectroscopie de Dispersion Electronique ("Energy Dispersion Spectroscopy (EDS) d'un substrat métallique solide traité avec une solution de conversion selon l'invention.
Other objects, features and advantages of the invention will appear on reading the following description which refers to the appended figures representing preferred embodiments of the invention, given solely by way of non-limiting examples, and in which: :
  • the figure 1 is a schematic representation out of proportion of a variant of an anticorrosion coating according to the invention;
  • the figure 2 in a scanning electron microscope (SEM) view of a cross-section of an anticorrosion coating of a solid metal substrate obtained by a method according to the invention;
  • the figure 3 is a comparative graphical representation of the evolution of the surface resistance with respect to the corrosion of a solid metal substrate treated according to two variants of a process according to the invention;
  • the figure 4 is a graphical representation of the surface resistance (Ω.cm 2 ) of an anticorrosive coating as a function of the cerium concentration in the treatment solution;
  • the figure 5 is a graphical representation of the Vickers nano-hardness of an anticorrosion coating as a function of the cerium concentration in the treatment solution;
  • the figure 6 is a graphical representation of the variation of the Young's modulus value, in GPa, determined by nano-indentation measurements;
  • the figure 7 is a graphical representation of the value of the delamination (○), cracking (▲) and plastic deformation (□) critical load, determined by nano-nano-scratch, of an anticorrosion coating as a function of cerium concentration in the treatment solution;
  • the figure 8 is a Nyquist representation of the electrochemical impedance of a treated (○) or untreated ()) solid metal substrate with a conversion solution;
  • the figure 9 is a spectrum of surface chemical analysis by Spectroscopy of Electronic Dispersion ("Energy Dispersion Spectroscopy" (EDS)) of a solid metal substrate treated with a conversion solution according to the invention.

Un revêtement 1 anticorrosion selon l'invention représenté en figure 1 est supporté sur un substrat 2 métallique formé d'éléments M métalliques. Un tel revêtement anticorrosion est formé d'une couche 3 de conversion optionnelle dans laquelle des éléments Ln inhibiteurs de corrosion sont liés par des liaisons covalentes M-O-Ln- à des éléments M métallique du substrat 2 métallique. En outre, des éléments Ln inhibiteurs de corrosion de la couche de conversion forment des liaisons covalentes avec des éléments Si et, le cas échéant, des éléments métalliques M' choisis dans le groupe formé de l'aluminium (Aℓ), du vanadium (V), du titane (Ti) et du zirconium (Zr) et de l'élément cérium (Ce) de la matrice 4 hybride s'étendant en surface de la couche 3 de conversion.An anticorrosion coating 1 according to the invention represented in figure 1 is supported on a metal substrate 2 formed of metallic elements M. Such an anticorrosive coating is formed of an optional conversion layer 3 in which corrosion inhibiting elements Ln are linked by MO-Ln- covalent bonds to metallic elements M of the metal substrate 2. In addition, conversion layer corrosion inhibitor elements Ln form covalent bonds with Si elements and, where appropriate, metal elements M 'chosen from the group consisting of aluminum (Aℓ), vanadium (V ) titanium (Ti) and zirconium (Zr) and the cerium element (Ce) of the hybrid matrix 4 extending on the surface of the conversion layer 3.

La figure 2 représente une coupe en microscopie électronique à balayage (MEB) d'un substrat 2 d'aluminium traité par une variante d'un procédé selon l'invention et comprenant une couche 3 de conversion (optionnelle) s'étendant à l'interface entre le substrat 2 d'aluminium et la matrice 4 hybride.The figure 2 represents a scanning electron microscopy (SEM) section of an aluminum substrate 2 treated with an alternative of a method according to the invention and comprising a conversion layer (optional) 3 extending at the interface between the aluminum substrate 2 and the hybrid matrix 4.

Dans une variante d'un procédé de traitement anticorrosion d'un substrat métallique solide selon l'invention, on réalise d'abord un traitement préparatif de surface d'une pièce d'alliage d'aluminium 2024 T3 laminé. Un tel traitement préparatif, donné uniquement à titre d'exemple non limitatif, a pour objectif d'éliminer de la surface du substrat métallique solide toute trace d'oxydation de l'alliage ou de salissure susceptible de nuire à l'application homogène de la solution de conversion et de la solution de traitement sur la surface du substrat lors de son dépôt ("dip-coating", "spray") et à l'ancrage de la matrice hybride anticorrosion obtenue en surface du substrat.In a variant of a method for the anticorrosion treatment of a solid metal substrate according to the invention, a preparative surface treatment of a piece of rolled 2024 T3 aluminum alloy is first carried out. Such a preparative treatment, given solely by way of nonlimiting example, aims to eliminate from the surface of the solid metal substrate any trace of oxidation of the alloy or of staining which may hinder the homogeneous application of the conversion solution and the treatment solution on the surface of the substrate during its deposition ("dip-coating", "spray") and the anchoring of the hybrid anti-corrosion matrix obtained at the surface of the substrate.

Dégraissage du substrat métallique solide par un solvant organiqueDegreasing of the solid metal substrate with an organic solvent

Le traitement préparatif comprend une première étape de dégraissage de la surface du substrat métallique solide lors de laquelle on place la surface dudit substrat en contact avec un solvant de dégraissage. On réalise cette étape de dégraissage par des méthodes connues en elles-mêmes de l'homme du métier, notamment par trempage de la surface du substrat dans le solvant de dégraissage ou en aspergeant ladite surface avec le solvant de dégraissage.The preparative treatment comprises a first step of degreasing the surface of the solid metal substrate during which the surface of said substrate is placed in contact with a degreasing solvent. This degreasing step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the degreasing solvent or by spraying said surface with the degreasing solvent.

A titre d'exemples, le solvant de dégraissage peut être du chlorure de méthylène pur stabilisé (commercialisé sous la marque Methoklone) ou de l'acétone pure. Dans ce cas, on réalise cette étape de dégraissage à une température inférieure à 42°C et pendant une durée comprise entre 5 sec et 3 min. Il est possible de soumettre le substrat métallique solide à un traitement par les ultrasons lors de cette première étape de dégraissage.As examples, the degreasing solvent may be stabilized pure methylene chloride (marketed under the trademark Methoklone) or pure acetone. In this case, this degreasing step is carried out at a temperature below 42 ° C. and for a duration of between 5 seconds and 3 minutes. It is possible to subject the solid metal substrate to ultrasonic treatment during this first degreasing step.

Dégraissage du substrat métallique solide par une solution alcalineDegreasing the solid metal substrate with an alkaline solution

Le traitement préparatif du substrat métallique solide comprend une deuxième étape successive de dégraissage de la surface dudit substrat lors de laquelle on place la surface du substrat en contact avec une préparation alcaline, notamment commercialisée sous la marque TURCO 4215 (HENKEL, Boulogne-Billancourt, France). On réalise cette étape de dégraissage alcalin par des méthodes connues en elles-mêmes de l'homme du métier, notamment par trempage de la surface du substrat dans la préparation alcaline ou en aspergeant ladite surface avec ladite préparation pendant une durée comprise entre 10 min et 30 min. De préférence, on réalise cette étape de dégraissage alcalin à une température comprise entre 50°C et 70°C. Il est possible de soumettre le substrat à un traitement par les ultrasons lors de cette deuxième étape de dégraissage par une solution alcaline.The preparative treatment of the solid metal substrate comprises a second successive step of degreasing the surface of said substrate in which the surface of the substrate is placed in contact with an alkaline preparation, in particular marketed under the trademark TURCO 4215 (HENKEL, Boulogne-Billancourt, France). ). This alkaline degreasing step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the alkaline preparation or by spraying said surface with said preparation for a period of between 10 minutes and 30 min. Preferably, this alkaline degreasing step is carried out at a temperature of between 50 ° C. and 70 ° C. It is possible to subject the substrate to an ultrasonic treatment during this second degreasing step with an alkaline solution.

Décapage du substrat métallique solide par une solution alcalineStripping the solid metal substrate with an alkaline solution

Le traitement préparatif selon l'invention comprend une troisième étape successive de décapage de la surface du substrat lors de laquelle on place la surface du substrat en contact avec une préparation alcaline, notamment une solution aqueuse d'hydroxyde de sodium à une concentration comprise entre 30 g/L à 70 g/L. On réalise cette étape de décapage alcalin par des méthodes connues en elles-mêmes de l'homme du métier, notamment par trempage de la surface du substrat dans la préparation alcaline concentrée ou en aspergeant ladite surface avec ladite préparation alcaline concentrée pendant une durée comprise entre 10 sec et 3 min. De préférence, on réalise cette étape de décapage alcalin à une température comprise entre 20°C et 50°C. Il est possible de soumettre le substrat métallique solide à un traitement par les ultrasons lors de cette deuxième étape de décapage par une solution alcaline concentrée.The preparative treatment according to the invention comprises a third successive step of pickling the surface of the substrate in which the surface of the substrate is placed in contact with an alkaline preparation, in particular an aqueous solution of sodium hydroxide at a concentration of between 30.degree. g / L at 70 g / L. This alkaline pickling step is carried out by methods known in themselves to those skilled in the art, in particular by soaking the surface of the substrate in the concentrated alkaline preparation or by spraying said surface with said concentrated alkaline preparation for a period of time between 10 sec and 3 min. Preferably, this alkaline pickling step is carried out at a temperature of between 20 ° C. and 50 ° C. It is possible to subject the solid metal substrate to ultrasonic treatment during this second etching step with a concentrated alkaline solution.

A l'issue de cette troisième étape successive de traitement de la surface du substrat métallique solide, on observe une couche pulvérulente d'oxydes recouvrant la surface du substrat métallique solide.At the end of this third successive step of treating the surface of the solid metal substrate, there is observed a powdery layer of oxides covering the surface of the solid metal substrate.

Décapage du substrat métallique solide par une solution acideStripping the solid metal substrate with an acidic solution

Le traitement préparatif selon l'invention comprend une quatrième étape successive de dissolution de la couche d'oxydes s'étendant sur la surface du substrat métallique solide lors de laquelle on place la surface dudit substrat en contact avec une préparation acide, par exemple TURCO LIQUID Smut-Go NC (HENKEL, Boulogne-Billancourt, France) ou ARDROX 295 GD (Chemetal GmbH, Francfort, Allemagne).The preparative treatment according to the invention comprises a fourth successive stage of dissolution of the oxide layer extending over the surface of the solid metal substrate in which the surface of said substrate is placed in contact with an acid preparation, for example TURCO LIQUID Smut-Go NC (HENKEL, Boulogne-Billancourt, France) or ARDROX 295 GD (Chemetal GmbH, Frankfurt, Germany) .

On réalise cette étape de dissolution pendant une durée comprise entre 1 min et 10 min à une température comprise entre 10°C et 50°C avec une solution aqueuse comprenant entre 15% (v/v) et 25% (v/v) de TURCO LIQUID Smut-Go NC.This dissolution step is carried out for a period of between 1 min and 10 min at a temperature of between 10 ° C. and 50 ° C. with an aqueous solution comprising between 15% (v / v) and 25% (v / v) of TURCO LIQUID Smut-Go NC.

En variante, on réalise cette étape de dissolution pendant une durée comprise entre 1 min et 10 min à une température comprise entre 10°C et 30°C avec une solution aqueuse comprenant entre 15% (v/v) et 30% (v/v) de ARDROX 295 GD.Alternatively, this dissolution step is carried out for a period of between 1 min and 10 min at a temperature of between 10 ° C. and 30 ° C. with an aqueous solution comprising between 15% (v / v) and 30% (v / v). v) ARDROX 295 GD.

A l'issue de cette étape la surface du substrat métallique solide est adaptée pour pouvoir être traitée selon un traitement anticorrosion conforme à l'invention.At the end of this step the surface of the solid metal substrate is adapted to be treated according to an anticorrosion treatment according to the invention.

Dans une variante d'un procédé de traitement anticorrosion d'un substrat métallique solide selon l'invention, on réalise une étape de formation d'une couche de conversion en surface du substrat métallique solide.In a variant of a method of anticorrosion treatment of a solid metal substrate according to the invention, a step of forming a surface conversion layer of the solid metal substrate is carried out.

On immerge une pièce d'aluminium (Aℓ 2024-T3) par "dip-coating" dans une solution de conversion aqueuse contenant une concentration comprise entre 0,001 mole/L et 0,5 mole/L de Ce(NO3)3 dont le pH est ajusté à une valeur de 4 par ajout d'acide nitrique. Après immersion et retrait, la pièce d'aluminium est séchée pendant 10 minutes à 50°C. A l'issue de ce traitement par la solution de conversion, aucune prise de masse de ladite pièce d'aluminium n'est mesurée.A piece of aluminum (Aℓ 2024-T3) is immersed by "dip-coating" in an aqueous conversion solution containing a concentration of between 0.001 mol / l and 0.5 mol / l of Ce (NO 3 ) 3 , the pH is adjusted to a value of 4 by adding nitric acid. After immersion and shrinkage, the aluminum piece is dried for 10 minutes at 50 ° C. At the end of this treatment with the conversion solution, no weight gain of said aluminum piece is measured.

Dans un procédé de traitement anticorrosion d'un substrat métallique solide, on prépare une solution de traitement selon les étapes suivantes :

  • (a) élaboration d'une solution de traitement comme décrit en (A) ci-après ;
  • (b) élaboration d'une dispersion colloïdale de nanoparticules de boehmite physisorbées comme décrit en (B) ci-après ;
  • (c) élaboration d'une dispersion colloïdale de nanoparticules de boehmite dopée comme décrit en (C) ci-après ;
  • (d) élaboration de nanoparticules d'oxyhydroxyde d'aluminium creuse contenant un inhibiteur de corrosion comme décrit en (D) ci-après ;
  • (e) élaboration d'une dispersion colloïdale de traitement anticorrosion à partir des compositions comme décrit en (A), en (B), en (C) et en (D) ci-dessous ;
  • (f) dépôt de la dispersion colloïdale de traitement anticorrosion sur le substrat métallique solide ;
  • (g) traitement thermique.
In a method of anticorrosion treatment of a solid metal substrate, a treatment solution is prepared according to the following steps:
  • (a) developing a treatment solution as described in (A) below;
  • (b) developing a colloidal dispersion of physisorbed boehmite nanoparticles as described in (B) below;
  • (c) developing a colloidal dispersion of doped boehmite nanoparticles as described in (C) below;
  • (d) developing hollow aluminum oxyhydroxide nanoparticles containing a corrosion inhibitor as described in (D) hereinafter;
  • (e) developing a colloidal anticorrosive dispersion from the compositions as described in (A), (B), (C) and (D) below;
  • (f) depositing the colloidal anticorrosion treatment dispersion on the solid metal substrate;
  • (g) heat treatment.

A - Elaboration d'une solution de traitement - sol époxyde A - Elaboration of a treatment solution - epoxy soil A1 - Sol époxyde GPTMS/ASB/Ce(NO 3 ) 3 A1 - GPTMS / ASB / Ce epoxy sol (NO 3 ) 3

Dans un premier mode de réalisation, pour préparer 1 L de sol époxyde on dissout 107,4 g (0,43 moles) de tri(s-butoxyde) d'aluminium (ASB) dans 34,8 mL de propanol-1 par agitation -notamment par agitation magnétique-pendant 10 minutes à température ambiante. On ajoute ensuite 470 mL (2,13 moles) de 3-(glycidoxypropyl)-triméthoxysilane (GPTMS). La proportion molaire de GPTMS et d'ASB est de 83/17. On prépare aussi une solution aqueuse de cérium (III) (Ce(NO3)3) à une concentration comprise entre 0,02 mole/L et 0,5 mole/L et on ajoute un volume cette solution aqueuse de cérium dans la solution de précurseur (ASB/GPTMS) de façon à provoquer une hydrolyse/condensation des précurseurs. On maintient le sol époxyde obtenu sous agitation pendant une durée nécessaire à un déclin thermique jusqu'à température ambiante. La concentration finale en cérium dans le sol époxyde est de 0,01 mol/L.In a first embodiment, to prepare 1 L of epoxide sol is dissolved 107.4 g (0.43 moles) of aluminum tri ( s- butoxide) (ASB) in 34.8 mL of propanol-1 by stirring. especially by magnetic stirring for 10 minutes at room temperature. 470 mL (2.13 moles) of 3- (glycidoxypropyl) trimethoxysilane (GPTMS) are then added. The molar proportion of GPTMS and ASB is 83/17. An aqueous solution of cerium (III) (Ce (NO 3 ) 3 ) at a concentration of between 0.02 mol / l and 0.5 mol / l is also prepared, and a volume of this aqueous solution of cerium is added to the solution. precursor (ASB / GPTMS) to cause hydrolysis / condensation of the precursors. The epoxy sol obtained is stirred for a period of time necessary for a thermal decline to ambient temperature. The final concentration of cerium in the epoxy sol is 0.01 mol / L.

On dépose le sol époxyde sur un substrat d'aluminium Aℓ 2024-T3 prétraité comme décrit ci-dessus par trempage/retrait du substrat dans ledit sol époxyde. La vitesse de retrait est de 20 cm/min. On chauffe le substrat métallique solide revêtu à une température comprise entre 95°C et 180°C

  • en particulier 110°C- pendant une durée comprise entre 1 h et 5 h -en particulier 3 h-. On observe la formation d'une matrice hybride de 6 µm d'épaisseur en surface du substrat métallique solide présentant une durée de tenue au brouillard salin comprise entre 96 et 800 heures.
The epoxy sol is deposited on an Aℓ 2024-T3 aluminum substrate pretreated as described above by dipping / removing the substrate in said epoxy sol. The withdrawal speed is 20 cm / min. The coated solid metal substrate is heated to a temperature between 95 ° C and 180 ° C
  • in particular 110 ° C for a period of between 1 h and 5 h - in particular 3 h-. The formation of a hybrid matrix 6 microns thick at the surface of the solid metal substrate having a salt spray resistance time of between 96 and 800 hours is observed.

A2 - Sol époxyde TEOS/MAP/Ce(NO 3 ) 3 A2 - Epoxy solids TEOS / MAP / Ce (NO 3 ) 3

Dans un deuxième mode de réalisation, pour préparer 1 L de sol hybride on ajoute 230 mL de tétraéthoxysilane (TEOS) dans 600 mL d'éthanol. On ajoute ensuite 30 mL de méthacryloxypropyltriméthoxysilane (MAP), puis une solution aqueuse de cérium (III) (Ce(NO3)3 à une concentration de 4,32 g/L de façon à provoquer une hydrolyse/condensation des précurseurs TEOS et MAP. Le pH du sol obtenu est de 4,5 et sa viscosité est de 3 mPa.s.In a second embodiment, to prepare 1 L of hybrid soil is added 230 mL of tetraethoxysilane (TEOS) in 600 mL of ethanol. 30 ml of methacryloxypropyltrimethoxysilane (MAP) are then added, followed by an aqueous solution of cerium (III) (Ce (NO 3 ) 3 at a concentration of 4.32 g / l so as to cause hydrolysis / condensation of the TEOS and MAP precursors. The pH of the sol obtained is 4.5 and its viscosity is 3 mPa.s.

B - Elaboration de nanoparticules de boehmite colloïdale physisorbées B - Development of physisorbed colloidal boehmite nanoparticles

On réalise une telle dispersion colloïdale de nanoparticules de boehmite fonctionnalisées en surface (dites physisorbées) en deux étapes décrites ci-après dans lesquelles on forme d'abord une solution colloïdale de nanoparticules de boehmite, puis on fonctionnalise lesdites nanoparticules de boehmite par un inhibiteur de corrosion.Such a colloidal dispersion of surface-functionalized boehmite nanoparticles (so-called physisorbed) is produced in two steps, described below, in which a colloidal solution of boehmite nanoparticles is first formed, and then said boehmite nanoparticles are functionalized with an inhibitor of corrosion.

B1 - Boehmite colloïdale B1 - Colloidal Boehmite

On réalise l'hydrolyse condensation du tri-secbutoxyde (ASB, Aℓ(OH)x(OC4H9)3-x) d'aluminium selon la méthode décrite par Yoldas B.E. ( J. Mater. Sci., (1975), 10, 1856 ), dans laquelle on ajoute à du tri-secbutoxyde d'aluminium une quantité d'eau préalablement chauffée à une température supérieure à 80°C. On laisse la solution obtenue sous agitation pendant 15 min.Condensation hydrolysis of tri- sec butoxide (ASB, Al (OH) x (OC 4 H 9 ) 3-x ) of aluminum is carried out according to the method described by Yoldas BE ( J. Mater. Sci., (1975), 10, 1856 ), in which an amount of water preheated to a temperature above 80 ° C is added to tri- sec- butoxide of aluminum. The resulting solution is left stirring for 15 minutes.

A titre d'exemple, on place une telle solution de tri(s-butoxyde) d'aluminium à une concentration de 0,475 mole/L (~ 117 g/L) dans de l'eau à la température de 80°C pendant une durée de 15 min. On réalise ensuite une étape, dite étape de peptisation, lors de laquelle on ajoute à la solution d'hydrolyse du tri-secbutoxyde un volume compris entre 1,4 mL et 2,8 mL d'une solution d'acide nitrique à 68%. On place le mélange à 85°C dans un bain d'huile pendant une durée de 24 h. On obtient une dispersion colloïdale d'oxyhydroxyde d'aluminium (boehmite) dans l'eau. La concentration d'acide nitrique dans la dispersion colloïdale est comprise entre 0,033 mole/L et 0,066 mole/L. En variante, il est possible de concentrer la dispersion colloïdale jusqu'à une concentration en oxyhydroxyde d'aluminium de l'ordre de 1 mole/L. D'autres acides minéraux ou organiques peuvent être utilisés lors de cette étape de peptisation, notamment l'acide chlorhydrique et l'acide acétique. On obtient un sol colloïdal transparent et stable présentant par diffraction des rayons X les raies caractéristiques de la boehmite telles que décrite dans la fiche JCPDS 21-1307.By way of example, such a solution of aluminum tri ( s- butoxide) at a concentration of 0.475 mol / l (~ 117 g / l) in water at a temperature of 80 ° C. for one duration of 15 min. Is then carried out step, said step of peptization, at which is added to the dry tri- butoxide hydrolysis solution a volume of between 1.4 ml and 2.8 ml of a nitric acid solution at 68 %. The mixture is placed at 85 ° C. in an oil bath for a period of 24 hours. A colloidal dispersion of oxyhydroxide is obtained aluminum (boehmite) in the water. The concentration of nitric acid in the colloidal dispersion is between 0.033 mole / L and 0.066 mole / L. Alternatively, it is possible to concentrate the colloidal dispersion to a concentration of aluminum oxyhydroxide of the order of 1 mol / L. Other inorganic or organic acids may be used during this peptization step, in particular hydrochloric acid and acetic acid. A transparent and stable colloidal substrate having, by X-ray diffraction, the characteristic lines of boehmite as described in JCPDS sheet 21-1307 is obtained.

B2 - Fonctionnalisation des nanoparticules de boehmite B2 - Functionalization of boehmite nanoparticles

A une dispersion colloïdale telle qu'obtenue selon l'étape B1 précédente et présentant une concentration en aluminium comprise entre 0.5 mole/L et 0,8 mole/L, on ajoute, le cas échéant, un tensioactif non ionique -notamment un tensioactif non ionique choisi parmi le Pluronic® P-123, le Pluronic® F 127 (BASF, Mount Olive, New Jersey, USA), du Brij 58 et le Brij 52 dans une proportion massique finale comprise entre 1% et 5%. On ajoute ensuite une quantité d'un inhibiteur de corrosion, notamment du nitrate de cérium (III) (Ce(NO3)3) ou du vanadate de sodium, à une concentration finale comprise entre 0,001 mole/L et 0,5 mole/L. On place cette préparation sous agitation à température ambiante pendant une durée de 6 heures. On obtient une dispersion colloïdale de nanoparticules de boehmite fonctionnalisée en surface -dites nanoparticules de boehmite physisorbées-. Une telle préparation présente en spectroscopie infrarouge en utilisant la technique de réflexion diffuse DRIFT ("Diffuse Reflectance Infra-red Fourrier Transform ») des bandes de vibration à 1460 cm-1 et 1345 cm-1 caractéristiques de la coordination du cérium aux ions nitrates.To a colloidal dispersion as obtained according to the preceding step B1 and having an aluminum concentration of between 0.5 mol / l and 0.8 mol / l, a nonionic surfactant, especially a non-surfactant, is added, if appropriate. ionic material chosen from Pluronic® P-123, Pluronic® F 127 (BASF, Mount Olive, New Jersey, USA), Brij 58 and Brij 52 in a final mass proportion of between 1% and 5%. An amount of a corrosion inhibitor, in particular cerium (III) nitrate (Ce (NO 3 ) 3 ) or sodium vanadate, is then added to a final concentration of between 0.001 mol / l and 0.5 mol / ml. L. This preparation is stirred at room temperature for a period of 6 hours. A colloidal dispersion of surface-functionalized boehmite nanoparticles-said physisorbed boehmite nanoparticles-is obtained. Such a preparation is present in infrared spectroscopy by using the Diffuse Reflectance Infra-red Fourier Transform (DRIFT) technique of the 1460 cm -1 and 1345 cm -1 vibration bands characteristic of the coordination of cerium with nitrate ions.

C - Elaboration d'une dispersion colloïdale de nanoparticules de boehmite dopées C - Elaboration of a colloidal dispersion of doped boehmite nanoparticles

On réalise une telle dispersion colloïdale de nanoparticules de boehmite dopées en deux étapes décrites ci-après dans lesquelles on réalise (C1) l'hydrolyse/condensation d'un précurseur -notamment un alcoxyde- d'aluminium et d'un inhibiteur de corrosion. On réalise ensuite une étape (C2), dite étape de peptisation, de traitement en milieu acide de façon à former des nanoparticules de boehmite dopée.Such a colloidal dispersion of boehmite nanoparticles doped in two steps described below is carried out in which (C1) is carried out the hydrolysis / condensation of a precursor - in particular an aluminum alkoxide and a corrosion inhibitor. Next, a step (C2), called a step of peptization, acid treatment in order to form doped boehmite nanoparticles.

C1 - Hydrolyse/condensation de l'ASB et de (Ce(NO 3 ) 3 ) C1 - Hydrolysis / condensation of ASB and (Ce (NO 3 ) 3 )

On réalise l'hydrolyse/condensation d'un mélange de précurseur d'aluminium -notamment d'un alcoxyde d'aluminium, en particulier de tri(s-butoxyde) d'aluminium (ASB)- et d'un inhibiteur de corrosion -notamment du nitrate de cérium (III) (Ce(NO3)3)- par addition à ce mélange d'un minimum d'eau chauffée à la température de 85°C. On place ce mélange d'hydrolyse/condensation sous agitation pendant 15 min. La concentration finale d'ASB dans le mélange d'hydrolyse/condensation est de 0,475 mole/L et la concentration finale en inhibiteur de corrosion dans le mélange d'hydrolyse/condensation est comprise entre 0,005 mole/L et 0,015 mole/L.The hydrolysis / condensation of a mixture of aluminum precursor - in particular an aluminum alkoxide, in particular aluminum tri ( s- butoxide) (ASB) - and a corrosion inhibitor - is carried out. in particular cerium (III) nitrate (Ce (NO 3 ) 3 ) - by adding to this mixture a minimum of water heated to the temperature of 85 ° C. This hydrolysis / condensation mixture is placed under stirring for 15 minutes. The final concentration of ASB in the hydrolysis / condensation mixture is 0.475 mol / L and the final concentration of corrosion inhibitor in the hydrolysis / condensation mixture is between 0.005 mol / L and 0.015 mol / L.

C2 - Peptisation C2 - Peptisation

On ajoute dans le mélange d'hydrolyse/condensation une solution aqueuse acidifiée -notamment 1,4 mL à 2,8 mL d'une solution d'acide nitrique à 68%- et on place le mélange acidifié à la température de 85°C dans un bain d'huile pendant une durée de 24 h. La concentration d'acide nitrique dans le mélange acidifié est comprise entre 0,033 mole/L et 0,066 mole/L. En variante, il est possible de concentrer la dispersion colloïdale jusqu'à une concentration en oxyhydroxyde d'aluminium de l'ordre de 1 mole/L. On obtient un sol colloïdal transparent et stable présentant, par diffraction des rayons X, les raies caractéristiques de la boehmite telles que décrite dans la fiche JCPDS 21-1307.To the hydrolysis / condensation mixture is added an acidified aqueous solution - in particular 1.4 ml to 2.8 ml of a 68% nitric acid solution - and the acidified mixture is placed at a temperature of 85 ° C. in an oil bath for a period of 24 hours. The concentration of nitric acid in the acidified mixture is between 0.033 mol / L and 0.066 mol / L. Alternatively, it is possible to concentrate the colloidal dispersion to a concentration of aluminum oxyhydroxide of the order of 1 mol / L. A transparent and stable colloidal sol having, by X-ray diffraction, the characteristic lines of boehmite as described in JCPDS sheet 21-1307 is obtained.

D - Elaboration de nanoparticules d'oxyhydroxyde d'aluminium (boehmite) creuses contenant l'inhibiteur de corrosion D - Elaboration of hollow aluminum oxyhydroxide (boehmite) nanoparticles containing the corrosion inhibitor

On réalise de telles nanoparticules d'oxyhydroxyde d'aluminium creuses contenant l'inhibiteur de corrosion par formation d'une microémulsion inverse ( Daniel H., et al (2007), Nano Lett., 7 ; 11, 3489-3492 ) et encapsulation simultanée de l'inhibiteur de corrosion.Such hollow aluminum oxyhydroxide nanoparticles containing the corrosion inhibitor are produced by formation of an inverse microemulsion ( Daniel H., et al (2007), Nano Lett., 7; 11, 3489-3492 ) and simultaneous encapsulation of the corrosion inhibitor.

On prépare une phase apolaire par mélange d'un alcool -notamment de l'hexanol-, un alcane -notamment du dodécane- et un surfactant -notamment du bromure d'hexadécyltriméthylammonium (CTAB)-. On prépare aussi une phase polaire comprenant de l'eau, un alcool -notamment du méthanol- et un inhibiteur de corrosion -notamment du nitrate de cérium-. On mélange la phase polaire et la phase apolaire et on place ce mélange sous agitation pendant 30 min de façon à former une microémulsion inverse d'eau dans la phase apolaire. On prépare une solution d'un alcoxyde d'aluminium -notamment de tri(s-butoxyde) d'aluminium (ASB) dans un volume de l'alcane -notamment de dodécane-. On introduit sous agitation la solution d'alcoxyde d'aluminium dans la microémulsion inverse. On laisse le mélange au repos pendant 12 h. On sépare par centrifugation un culot contenant des nanoparticules creuses d'oxyhydroxyde d'aluminium. Après lavage de ce culot avec du diéthylène glycol, on obtient une poudre de nanoparticules creuses d'oxyhydroxyde d'aluminium contenant l'inhibiteur de corrosion.An apolar phase is prepared by mixing an alcohol, in particular hexanol, an alkane, especially dodecane, and a surfactant, especially hexadecyltrimethylammonium bromide (CTAB). We prepare also a polar phase comprising water, an alcohol - in particular methanol - and a corrosion inhibitor - in particular cerium nitrate -. The polar phase and the apolar phase are mixed and this mixture is stirred for 30 minutes to form a reverse microemulsion of water in the apolar phase. A solution of an aluminum alkoxide - especially aluminum tri ( t- butoxide) (ASB) in a volume of the alkane - especially dodecane - is prepared. The aluminum alkoxide solution is introduced with stirring into the inverse microemulsion. The mixture is allowed to stand for 12 hours. A pellet containing hollow nanoparticles of aluminum oxyhydroxide is centrifuged off. After washing this pellet with diethylene glycol, a hollow aluminum oxyhydroxide nanoparticle powder containing the corrosion inhibitor is obtained.

E - Elaboration d'une solution colloïdale de traitement anticorrosion E - Elaboration of a colloidal solution for anticorrosive treatment

On prépare une telle dispersion colloïdale de traitement anticorrosion par mélange d'une quantité d'une solution de traitement (sol hybride) tel que préparé en (A), d'une quantité de dispersion colloïdale de nanoparticules de boehmite physisorbées telle que préparée en (B) et/ou d'une quantité d'une dispersion colloïdale de nanoparticules de boehmite dopées telle que préparée en (C) et/ou d'une quantité d'une dispersion de nanoparticules de boehmite creuses. La concentration en aluminium et silicium dans la dispersion colloïdale de traitement anticorrosion est comprise entre 1,66 mole/L et 2 mole/L. La concentration en aluminium apporté par la dispersion colloïdale de nanoparticules de boehmite fonctionnalisée en surface dans le sol hybride est comprise entre 0,1 mole/L et 0,13 mole/L. La concentration en aluminium apportée par la dispersion colloïdale de nanoparticules de boehmite dopée dans le sol hybride est comprise entre 0,1 mole/L et 0,13 mole/L. On laisse au repos le sol hybride ainsi obtenu à la température ambiante pendant une durée de 24 heures.Such a colloidal anticorrosive treatment dispersion is prepared by mixing an amount of a treatment solution (hybrid sol) as prepared in (A) with an amount of colloidal dispersion of physisorbed boehmite nanoparticles as prepared in B) and / or an amount of a colloidal dispersion of doped boehmite nanoparticles as prepared in (C) and / or an amount of a dispersion of hollow boehmite nanoparticles. The concentration of aluminum and silicon in the colloidal anti-corrosion treatment dispersion is between 1.66 mol / l and 2 mol / l. The aluminum concentration provided by the colloidal dispersion of surface-functionalized boehmite nanoparticles in the hybrid soil is between 0.1 mol / l and 0.13 mol / l. The aluminum concentration provided by the colloidal dispersion of doped boehmite nanoparticles in hybrid soil is between 0.1 mol / l and 0.13 mol / l. The hybrid soil thus obtained is allowed to stand at ambient temperature for a period of 24 hours.

En variante avantageuse selon l'invention, on prépare une solution alcoolique contenant au moins un alcoxysilane et au moins un alcoxyde d'aluminium puis on ajoute à ladite solution alcoolique une quantité de la dispersion colloïdale de nanoparticules de boehmite physisorbées et/ou de nanoparticules de boehmite dopées et/ou de nanoparticules de boehmite creuses.In an advantageous variant according to the invention, an alcoholic solution containing at least one alkoxysilane and at least one aluminum alkoxide is prepared and then an amount of the dispersion is added to the alcoholic solution. colloidal of physisorbed boehmite nanoparticles and / or doped boehmite nanoparticles and / or hollow boehmite nanoparticles.

On maitrise de cette façon la viscosité de la solution (dispersion) de traitement qui diminue avec l'addition de la dispersion colloïdale de boehmite. On maitrise ainsi l'épaisseur du gel hybride déposé en surface du substrat métallique solide en particulier en fonction de la vitesse de retrait du substrat métallique solide à partir de la solution (dispersion) de traitement.In this way, the viscosity of the treatment solution (dispersion) which decreases with the addition of the colloidal dispersion of boehmite is controlled in this way. This controls the thickness of the hybrid gel deposited on the surface of the solid metal substrate, in particular as a function of the rate of removal of the solid metal substrate from the treatment solution (dispersion).

F - Dépôt de la dispersion colloïdale sur le substrat métallique solide F - Colloidal dispersion deposit on the solid metal substrate

On réalise une étape de dépôt de la dispersion colloïdale de traitement anticorrosion sur une surface d'un substrat métallique solide notamment d'une pièce d'un alliage d'aluminium 2024 T3 laminé ayant subit préalablement un dégraissage et un décapage. Lors de cette étape de dépôt, une partie du solvant du sol hybride composite s'évapore et simultanément l'hydrolyse/condensation du(des) alcoxysilane(s) et de(s) alcoxyde(s) métallique(s) permet la formation d'une matrice hybride composite anticorrosion en surface du substrat métallique solide.A step is performed for depositing the colloidal anti-corrosion treatment dispersion on a surface of a solid metal substrate, in particular a part of a rolled aluminum alloy 2024 T3 having previously undergone degreasing and pickling. During this deposition step, a part of the solvent of the composite hybrid soil evaporates and simultaneously the hydrolysis / condensation of (the) alkoxysilane (s) and (s) alkoxide (s) metal (s) allows the formation of a composite hybrid anti-corrosion matrix on the surface of the solid metal substrate.

La présence de cérium à titre d'inhibiteur de corrosion, notamment de cérium (CeIII) libre, dans la solution de traitement permet la formation lors du dépôt de ladite solution d'une couche de conversion chimiquement stable en milieu corrosif. Une telle couche de conversion est en particulier formée à partir des groupements hydroxylés d'un élément M constitutif du substrat métallique solide et formant une liaison M-O-Ce- avec le cérium.The presence of cerium as a corrosion inhibitor, especially free cerium (Ce III ), in the treatment solution allows the formation during the deposition of said solution of a chemically stable conversion layer in a corrosive medium. Such a conversion layer is in particular formed from the hydroxyl groups of an element M constituting the solid metal substrate and forming an MO-Ce- bond with cerium.

La présence de nanoparticules de boehmite physisorbées et de nanoparticules de boehmite dopées dans la solution de traitement est adaptée pour permettre la formation de réservoirs d'inhibiteur de corrosion dans la matrice hybride composite constituant le revêtement anticorrosion, lesdits réservoirs étant adaptés pour permettre une libération contrôlée dans le temps de l'inhibiteur de corrosion.The presence of physisorbed boehmite nanoparticles and doped boehmite nanoparticles in the treatment solution is adapted to allow the formation of corrosion inhibitor reservoirs in the composite hybrid matrix constituting the anticorrosion coating, said reservoirs being adapted to allow controlled release. in time of the corrosion inhibitor.

On réalise l'application de la solution de traitement en surface du substrat métallique solide par tout moyen connu en lui-même de l'homme du métier, notamment par trempage/retrait ("dip coating"), par pulvérisation ("spray-coating"), ou par application au pinceau, au tampon ou à la brosse pour des utilisations localisées à titre de réparation du revêtement de la surface du substrat métallique solide.The application of the surface treatment solution of the solid metal substrate is carried out by any means known in itself to those skilled in the art, in particular by soaking / shrinking ("dip coating"), by spraying ("spray-coating"), or by brush, pad or brush application for localized uses as a coating repair of the surface of the solid metal substrate.

Pour la technique de trempage/retrait, la vitesse de retrait permet de contrôler l'épaisseur du dépôt de la solution de traitement pour une viscosité de la solution de traitement donnée. Typiquement la vitesse de retrait varie entre 2 et 53 cm/min. L'application de plusieurs couches successives par des opérations de trempage/retrait successives, chaque opération de trempage/retrait étant suivie d'une étape de séchage, permet la formation, le cas échéant, d'un revêtement d'épaisseur accrue.For the soaking / shrinking technique, the shrinkage rate makes it possible to control the thickness of the deposition of the treatment solution for a viscosity of the given treatment solution. Typically the withdrawal speed varies between 2 and 53 cm / min. The application of several successive layers by successive dipping / withdrawal operations, each soaking / removal operation being followed by a drying step, allows the formation, if necessary, of a coating of increased thickness.

Il est aussi possible, lors de l'étape de trempage, d'imposer un temps de séjour du substrat métallique solide dans la solution de traitement qui soit prolongé en vue de favoriser les réactions chimiques entre le substrat métallique solide et la solution de traitement. A titre d'exemple, le temps de séjour prolongé peut varier entre 1 et 300 secondes.It is also possible, during the soaking step, to impose a residence time of the solid metal substrate in the treatment solution which is prolonged in order to promote the chemical reactions between the solid metal substrate and the treatment solution. For example, the extended residence time may vary between 1 and 300 seconds.

Pour la technique de pulvérisation, l'épaisseur des dépôts est contrôlée par la viscosité de la solution de traitement, par les paramètres de pulvérisation, notamment la pression, le débit, les caractéristiques géométriques de buses de pulvérisation, ainsi que par la vitesse de déplacement des buses en regard de la surface du substrat métallique solide et le nombre de passage des buses devant la surface du substrat métallique solide. L'application de la solution de traitement peut être réalisée manuellement ou être robotisée suivant des techniques conventionnelles.For the spraying technique, the thickness of the deposits is controlled by the viscosity of the treatment solution, the sputtering parameters, including the pressure, the flow rate, the geometric characteristics of the spray nozzles, and the speed of movement. nozzles facing the surface of the solid metal substrate and the number of passage of the nozzles in front of the surface of the solid metal substrate. The application of the treatment solution can be carried out manually or be robotized according to conventional techniques.

Pour la technique d'application manuelle au pinceau, au tampon ou à la brosse, l'épaisseur du dépôt est contrôlée par la viscosité de la solution de traitement et par le nombre d'applications successives sur la surface du substrat métallique solide.For the technique of manual application by brush, pad or brush, the thickness of the deposit is controlled by the viscosity of the treatment solution and by the number of successive applications on the surface of the solid metal substrate.

Il est possible de réaliser cette étape de dépôt de la solution de traitement sur une surface d'un substrat métallique solide dans une enceinte sous atmosphère et humidité contrôlées, notamment de façon à limiter l'évaporation trop rapide du/des solvant(s) et de façon à limiter la pollution de l'atmosphère.It is possible to carry out this step of depositing the treatment solution on a surface of a solid metal substrate in an enclosure under controlled atmosphere and humidity, in particular so as to limit the too rapid evaporation of the solvent (s) and in order to limit the pollution of the atmosphere.

Dans un procédé selon l'invention, il est aussi possible de réaliser cette étape de dépôt de la solution de traitement à l'air libre, en particulier par pulvérisation à l'air libre.In a process according to the invention, it is also possible to carry out this step of depositing the treatment solution in the open air, in particular by spraying in the open air.

G - Traitement thermique G - Heat treatment

On réalise un traitement thermique de la solution de traitement appliqué sur la surface du substrat métallique solide de façon à éliminer par évaporation le(s) solvant(s) résiduel(s) de la solution de traitement et à permettre sa polymérisation en une matrice hybride composite. En particulier, un tel traitement thermique comprend deux étapes successives dans lesquelles le substrat métallique solide revêtu de la solution de traitement est d'abord soumis à une première étape de chauffage à une température comprise entre 50°C et 70°C pendant une durée comprise entre 2 h et 24 h, ladite première étape de chauffage étant adaptée pour permettre une élimination des solvants aqueux et/ou organiques, puis à une deuxième étape de chauffage à une température comprise entre 110°C et 180°C pendant une durée comprise entre 3 h et 16 h, ladite deuxième étape de chauffage étant adaptée pour parfaire la polymérisation de la solution de traitement et pour améliorer les propriétés mécaniques de la matrice hybride composite.The treatment solution applied to the surface of the solid metal substrate is heat-treated so as to evaporatively remove the residual solvent (s) from the treatment solution and allow it to polymerize into a hybrid matrix. composite. In particular, such a heat treatment comprises two successive steps in which the solid metal substrate coated with the treatment solution is first subjected to a first heating step at a temperature between 50 ° C and 70 ° C for a period of time between 2 h and 24 h, said first heating step being adapted to allow removal of aqueous and / or organic solvents, then to a second heating step at a temperature between 110 ° C and 180 ° C for a period of time between 3 h and 16 h, said second heating step being adapted to perfect the polymerization of the treatment solution and to improve the mechanical properties of the composite hybrid matrix.

La figure 3 représente la variation de la résistance surfacique d'un substrat métallique solide traité par un procédé selon l'invention en fonction de la durée d'immersion de ce substrat métallique solide dans un bain de corrosion (NaCℓ 0,05 mole/L dans l'eau). La courbe (●) représente la variation de la résistance surfacique d'un substrat métallique solide traité selon un procédé selon l'invention consistant en l'application successive d'une solution de conversion riche en cérium (0,1 mole/L) puis d'une solution de traitement comprenant du cérium (0,01 mole/L). On observe que la résistance surfacique du substrat métallique solide traité (●) décroit plus lentement que la résistance surfacique d'un substrat métallique solide (Δ) traité avec la même solution de traitement (0,01 mole/L de Ce) mais exempt de couche de conversion.The figure 3 represents the variation of the surface resistance of a solid metal substrate treated by a method according to the invention as a function of the immersion time of this solid metal substrate in a corrosion bath (NaCℓ 0.05 mol / L in the water). The curve (●) represents the variation of the surface resistance of a solid metal substrate treated according to a process according to the invention consisting in the successive application of a conversion solution rich in cerium (0.1 mol / L) then a treatment solution comprising cerium (0.01 mol / L). It is observed that the surface resistance of the treated solid metal substrate (●) decreases more slowly than the surface resistance of a solid metal substrate (Δ) treated with the same treatment solution (0.01 mol / L of Ce) but free of conversion layer.

Les valeurs numériques sont données en tableau 1 ci-après. Tableau 1 Durée d'immersion, h Résistance surfacique, Ω.cm2 Avec couche de conversion Sans couche de conversion 1 7870000 8080000 5 7710000 7760000 24 5280000 3980000 48 4050000 2120000 72 2750000 1111000 148 1310000 1080000 240 1180000 1030000 336 1190000 1020000 The numerical values are given in Table 1 below. <u> Table 1 </ u> Immersion time, h Surface resistance, Ω.cm 2 With conversion layer Without conversion layer 1 7870000 8080000 5 7710000 7760000 24 5280000 3980000 48 4050000 2120000 72 2750000 1111000 148 1310000 1080000 240 1180000 1030000 336 1190000 1020000

On observe en particulier qu'après 48 h d'immersion dans le bain de corrosion, la résistance surfacique du substrat non traité (Δ) atteint une valeur de l'ordre de 2,12 106 Ω.cm2, alors que la résistance surfacique du substrat (•) traité reste de l'ordre de 4,05 106 Ω.cm2. Après 72 h d'immersion dans le bain de corrosion, la résistance surfacique du substrat non traité (Δ) atteint une valeur limite de l'ordre de 1,1 106 Ω.cm2, alors que la résistance surfacique du substrat (•) traité reste de l'ordre de 2,75 106 Ω.cm2.It is observed in particular that after 48 hours of immersion in the corrosion bath, the surface resistance of the untreated substrate (Δ) reaches a value of the order of 2.12 10 6 Ω.cm 2 , while the resistance surface area (•) treated remains of the order of 4.05 10 6 Ω.cm 2 . After 72 hours of immersion in the corrosion bath, the surface resistance of the untreated substrate (Δ) reaches a limit value of the order of 1.1 × 10 6 Ω.cm 2 , whereas the surface resistance of the substrate ( ) treated remains of the order of 2.75 10 6 Ω.cm 2 .

Les inventeurs ont aussi observé de façon totalement surprenante et inattendue que le traitement anticorrosion d'un substrat métallique solide selon l'invention avec une solution de traitement comprenant une concentration en cérium comprise entre 0,005 mole/L et 0,015 mole/L permet non seulement d'obtenir une résistance surfacique du revêtement anticorrosion, mesurée par spectroscopie d'impédance électrochimique (figure 4), qui est optimale pour une durée d'immersion du substrat métallique solide dans un bain de corrosion de 1 jour (Δ), 7 jours (○) et 14 jours (●) dans une solution aqueuse de NaCℓ 0,05 mole/L, mais qu'un tel traitement permet aussi d'obtenir une nano-dureté (figure 5), un module de Young (figure 6) et une résistance à la délamination (○, figure 7), une résistance à la fissuration (▲, figure 7) et une valeur limite de résistance à la déformation plastique (□, figure 7) elles aussi maximales.The inventors have also observed, in a completely surprising and unexpected manner, that the anticorrosion treatment of a solid metal substrate according to the invention with a treatment solution comprising a cerium concentration of between 0.005 mol / l and 0.015 mol / l allows not only to obtain a surface resistance of the anticorrosion coating, measured by electrochemical impedance spectroscopy ( figure 4 ), which is optimal for an immersion time of the solid metal substrate in a corrosion bath of 1 day (Δ), 7 days (○) and 14 days (●) in an aqueous solution of NaCℓ 0.05 mol / L , but that such a treatment also makes it possible to obtain a nano-hardness ( figure 5 ), a Young's module ( figure 6 ) and resistance to delamination (○, figure 7 ), resistance to cracking (▲, figure 7 ) and a limit value of resistance to plastic deformation (□, figure 7 ) also maximum.

On analyse par spectroscopie d'impédance électrochimique la résistance à la corrosion d'un substrat métallique solide Aℓ 2024-T3 traité ou non par une solution de conversion puis exposé à une étape de corrosion par immersion dans une solution aqueuse de NaCℓ 0,05 mole/L. Les résultats sont présentés en figure 8 selon la représentation de Nyquist.Electrochemical impedance spectroscopy is used to analyze the corrosion resistance of a solid metal substrate Aℓ 2024-T3 treated or not with a conversion solution and then exposed to a step of corrosion by immersion in an aqueous solution of NaCℓ 0.05 mole. / L. The results are presented in figure 8 according to the representation of Nyquist.

Le traitement d'une pièce d'aluminium 2024-T3 traitée avec une solution de conversion par immersion dans une solution de corrosion (NaCℓ 0,05 mole/L) pendant 30 minutes à température ambiante confère à cette dernière une résistance surfacique Z' en représentation de "Nyquist" de l'ordre de 4.104 Ω.cm2 (○, figure 8). A titre de comparaison, le traitement d'une pièce d'aluminium 2024-T3 brut (c'est-à-dire non traitée avec une solution de conversion) par immersion dans une solution de corrosion confère à cette dernière une résistance surfacique Z' de l'ordre de 5.103 Ω.cm2 (▲, figure 8).Treatment of a piece of aluminum 2024-T3 treated with a conversion solution by immersion in a corrosion solution (NaCℓ 0.05 mol / L) for 30 minutes at room temperature gives the latter a surface resistance Z 'in representation of "Nyquist" of the order of 4.10 4 Ω.cm 2 (○, figure 8 ). For comparison, the treatment of a piece of raw aluminum 2024-T3 (that is to say, not treated with a conversion solution) by immersion in a corrosion solution gives the latter a surface resistance Z ' of the order of 5.10 3 Ω.cm 2 (▲, figure 8 ).

Le traitement d'une pièce d'aluminium 2024-T3 ayant subi préalablement une immersion dans une solution de conversion formée d'eau et de cérium (0,01 mole/L) et sans immersion dans un bain de corrosion, confère une résistance surfacique Z' de valeur supérieure à 6.105 Ω.cm2. L'augmentation de la durée d'immersion dans le bain de corrosion jusqu'à 168 heures ramène la résistance surfacique de la pièce d'aluminium à la valeur caractéristique de la couche d'oxyde d'aluminium de l'ordre de 5.103 Ω.cm2.The treatment of a piece of aluminum 2024-T3 previously immersed in a conversion solution formed of water and cerium (0.01 mol / L) and without immersion in a corrosion bath, confers a surface resistance Z 'with a value greater than 6.10 5 Ω.cm 2 . Increasing the immersion time in the corrosion bath up to 168 hours reduces the surface resistance of the aluminum part to the characteristic value of the aluminum oxide layer of the order of 5.10 3 Ω .cm 2 .

L'augmentation de la concentration en cérium dans la solution de conversion et l'augmentation de la durée d'immersion de la pièce métallique d'aluminium dans la solution de conversion conduisent à une augmentation de la résistance surfacique de la pièce métallique d'aluminium.The increase in the concentration of cerium in the conversion solution and the increase in the immersion time of the aluminum metal part in the conversion solution lead to an increase in the surface resistance of the aluminum metal part. .

En particulier, la résistance surfacique résiduelle Z' d'une telle pièce d'aluminium après 1 heure d'immersion dans la solution de corrosion est de l'ordre de 1,1.104 Ω.cm2 pour une concentration en cérium de 0,01 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s, de l'ordre de 2.104 Ω.cm2 pour une concentration en cérium de 0,05 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s et de l'ordre de 3,3.104 Ω.cm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s.In particular, the residual surface resistance Z 'of such a piece of aluminum after 1 hour of immersion in the corrosion solution is of the order of 1.1 × 10 4 Ω.cm 2 for a cerium concentration of 0, 01 mole / L in the conversion solution and a conversion treatment duration of 1 s, of the order of 2.10 4 Ω.cm 2 for a cerium concentration of 0.05 mol / L in the conversion solution and a conversion treatment duration of 1 s and of the order of 3.3 × 10 4 Ω.cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment duration of 1 s.

La résistance surfacique résiduelle Z' d'une pièce d'aluminium après 1 h d'immersion dans la solution de corrosion est de l'ordre de 1,1.104 Ω.cm2 pour une concentration en cérium de 0,01 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s, de l'ordre de 2.104 Ω.cm2 pour une concentration en cérium de 0,01 mole/L dans la solution de conversion et une durée de traitement de conversion de 60 s et de l'ordre de 3,8.104 Ω.cm2 pour une concentration en cérium de 0,01 mole/L dans la solution de conversion et une durée de traitement de conversion de 300 s.The residual surface resistance Z 'of an aluminum piece after 1 h immersion in the corrosion solution is of the order of 1.1 × 10 4 Ω.cm 2 for a cerium concentration of 0.01 mol / L in the solution of conversion and a conversion treatment duration of 1 s, of the order of 2.10 4 Ω.cm 2 for a cerium concentration of 0.01 mol / L in the conversion solution and a conversion treatment duration of 60 s and of the order of 3.8 × 10 4 Ω.cm 2 for a cerium concentration of 0.01 mol / L in the conversion solution and a conversion treatment time of 300 s.

La résistance surfacique résiduelle Z' d'une pièce d'aluminium après 1 heure d'immersion dans la solution de corrosion est de l'ordre de 3,2.104 Ω.cm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée de traitement de conversion de 1 s, de l'ordre de 4,0.104 Ω.cm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée de traitement de conversion de 60 s et de l'ordre de 9,0.104 Ω.cm2 pour une concentration en cérium de 0,1 mole/L dans la solution de conversion et une durée de traitement de conversion de 300 s. Une immersion prolongée dans le bain de corrosion conduit à une diminution de la valeur de résistance surfacique qui atteint la valeur de la résistance surfacique de l'oxyde d'aluminium en 10 heures.The residual surface resistance Z 'of an aluminum piece after 1 hour of immersion in the corrosion solution is of the order of 3.2 × 10 4 Ω.cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment time of 1 s, of the order of 4.0 × 10 4 Ω.cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a duration of conversion treatment of 60 s and of the order of 9.0.10 4 Ω.cm 2 for a cerium concentration of 0.1 mol / L in the conversion solution and a conversion treatment time of 300 s. Prolonged immersion in the corrosion bath leads to a decrease in the surface resistance value which reaches the value of the surface resistance of the aluminum oxide in 10 hours.

La résistance surfacique Z' d'une pièce d'aluminium traitée par une solution de conversion contenant du cérium à une concentration de 0,5 mole/L pendant une durée de 1 s, 60 s et 300 s reste supérieure à 1.104 Ω.cm2 après respectivement 40 heures, 70 heures et 90 heures d'immersion de la pièce d'aluminium dans le bain de corrosion.The surface resistance Z 'of a piece of aluminum treated with a conversion solution containing cerium at a concentration of 0.5 mol / l for a period of 1 s, 60 s and 300 s remains greater than 1.10 4 Ω. cm 2 after respectively 40 hours, 70 hours and 90 hours of immersion of the aluminum part in the corrosion bath.

Des analyses chimiques (figure 9) par EDS permettent de montrer la présence de cérium Ce(III) en surface du substrat métallique solide traité pendant 300 sec avec une solution de conversion contenant du cérium à une concentration de 0,5 mole/L. Le signal majoritaire est caractéristique du substrat d'aluminium.Chemical analyzes ( figure 9 ) by EDS make it possible to show the presence of cerium Ce (III) at the surface of the solid metal substrate treated for 300 sec with a conversion solution containing cerium at a concentration of 0.5 mol / l. The majority signal is characteristic of the aluminum substrate.

Claims (12)

  1. Anticorrosion treatment process in which is prepared a liquid solution, named treatment solution, comprising:
    - at least one alkoxysilane, and
    - at least one cerium (Ce) cation,
    in an alcohol-water liquid composition, then said treatment solution is applied to an oxydizable surface of a solid metal substrate, said treatment solution:
    -- being suitable for forming a hybrid matrix by hydrolysis/condensation of each alkoxysilane in the presence of each cerium (Ce) cation on the surface of the solid metal substrate, and
    -- presenting a molar (Si/Ce) ratio of the silicon element of the alkoxysilane(s) with respect to the cerium (Ce) cation(s) comprised between 50 and 500;
    characterised in that the treatment solution is prepared such that the cerium (Ce) cation(s) have a concentration comprised between 0.005 mole/L and 0.015 mole/L in the treatment solution.
  2. The process according to claim 1, characterised in that each alkoxysilane is chosen from the group formed of:
    - the tetraalkoxysilanes of the general formula (I) below:

            Si(O-R1)4     (I)

    wherein:
    o Si is the element silicon, O is the element oxygen;
    o R1 is chosen from the group formed of:
    ▪ a hydrocarbon group of the formula [-CnH2n+1], n being an integer greater than or equal to 1; and
    ▪ the group 2-hydroxyethyl (HO-CH2-CH2-); and
    ▪ an acyl group of the general formula -CO-R'1 wherein R'1 is a hydrocarbon group of the formula [-CnH2n+1], n being an integer greater than or equal to 1; and
    - the alkoxysilanes of the general formula (II) below:

            Si(O-R2)4-a(R3)a     (II)

    wherein:
    o R2 is chosen from the group formed of:
    ▪ a hydrocarbon group of the formula [-CnH2n+1], n being an integer greater than or equal to 1; and
    ▪ the group 2-hydroxyethyl (HO-CH2-CH2-); and
    ▪ an acyl group of the general formula -CO-R'1 wherein R'1 is a hydrocarbon group of the formula [-CnH2n+1], n being an integer greater than or equal to 1; and
    o R3 is an organic group bonded to the silicon element (Si) of the alkoxysilane by an Si-C bond;
    o a is a natural integer of the interval ]0 ; 4[.
  3. The process according to one of claims 1 or 2, characterised in that the treatment solution comprises at least one metal alkoxide.
  4. The process according to claim 3, characterised in that each metal alkoxide has the general formula (VII) below:

            M'(O-R9)n"     (VII)

    wherein:
    ∘ M' is a metal element chosen from the group formed of aluminium (Al), vanadium (V), titanium (Ti) and zirconium (Zr);
    ∘ R9 is an aliphatic hydrocarbon group of the formula [-CnH2n+1] wherein n is an integer greater than or equal to 1; and
    ∘ n" is a natural integer representing the valence of the metal element M'.
  5. The process according to one of claims 3 or 4, characterised in that each metal alkoxide is an aluminium alkoxide of the general formula (III) below:

            Al(OR4)n     (III)

    wherein:
    ∘ A1 and O are the elements aluminium and oxygen, respectively; and
    ∘ R4 is an aliphatic hydrocarbon group having from 1 to 10 carbon atoms;
    o n is a natural integer representing the valence of the aluminium element (Al).
  6. The process according to any one of claims 1 to 5, characterised in that the solid metal substrate is formed of a material chosen from the group formed of the oxidizable materials.
  7. The process according to any one of claims 1 to 6, characterised in that, before application of the treatment solution, said oxidizable surface of the solid metal substrate is immersed in a liquid solution, named a conversion solution, formed of at least one corrosion inhibitor in water, said corrosion inhibitor being chosen from the group formed of the lanthanide cations, and said oxidizable surface of the solid metal substrate is kept in contact with the conversion solution for a period of time adapted to form a conversion layer formed of said lanthanide bonded by at least one covalent bond to the oxidizable surface and extending over the surface of the solid metal substrate.
  8. The process according to claim 7, characterised in that the conversion solution has a concentration of corrosion inhibitor of between 0.001 mol/l and 0.5 mol/l.
  9. The process according to any one of claims 1 to 8, characterised in that the treatment solution is applied by dip-coating of the solid metal substrate in said treatment solution.
  10. The process according to any one of claims 1 to 8, characterised in that the treatment solution is applied by atmospheric spray-coating of the treatment solution on the surface of the solid metal substrate.
  11. The process according to any one of claims 1 to 10, characterised in that the hydroalcoholic composition is formed of water and at least one alcohol.
  12. The process according to any one of claims 1 to 11, characterised in that the cerium cation of the treatment solution is chosen from the group formed of the cerium chlorides and cerium nitrates.
EP12781391.3A 2011-10-14 2012-10-12 Process for the anticorrosion treatment of a solid metal substrate Active EP2766508B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103137A FR2981366B1 (en) 2011-10-14 2011-10-14 METHOD FOR THE ANTICORROSIVE TREATMENT OF A SOLID METAL SUBSTRATE AND A TREATED SOLID METAL SUBSTRATE WHICH CAN BE OBTAINED BY SUCH A METHOD
PCT/FR2012/052337 WO2013054064A1 (en) 2011-10-14 2012-10-12 Process for the anticorrosion treatment of a solid metal substrate and treated solid metal substrate capable of being obtained by such a process

Publications (2)

Publication Number Publication Date
EP2766508A1 EP2766508A1 (en) 2014-08-20
EP2766508B1 true EP2766508B1 (en) 2016-10-05

Family

ID=47143172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12781391.3A Active EP2766508B1 (en) 2011-10-14 2012-10-12 Process for the anticorrosion treatment of a solid metal substrate

Country Status (9)

Country Link
US (1) US20140255611A1 (en)
EP (1) EP2766508B1 (en)
JP (1) JP2014528520A (en)
BR (1) BR112014008845A2 (en)
CA (1) CA2851499A1 (en)
ES (1) ES2609581T3 (en)
FR (1) FR2981366B1 (en)
MX (1) MX2014004512A (en)
WO (1) WO2013054064A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915903B1 (en) 2014-03-05 2018-02-21 The Boeing Company Chromium-free conversion coating
WO2018189624A1 (en) * 2017-04-14 2018-10-18 Inm Technologies Private Limited Corrosion resistant multilayer coatings
JP7476823B2 (en) 2021-03-03 2024-05-01 株式会社デンソー Metal products
WO2023034488A1 (en) * 2021-09-01 2023-03-09 Raytheon Company Hybrid sol-gel coating formulations doped with corrosion inhibitive pigments

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221371A (en) * 1991-09-03 1993-06-22 Lockheed Corporation Non-toxic corrosion resistant conversion coating for aluminum and aluminum alloys and the process for making the same
US5591380A (en) * 1991-12-20 1997-01-07 United Technologies Corporation Preparation of alumina-silica sol gel compositions
US5356492A (en) * 1993-04-30 1994-10-18 Locheed Corporation Non-toxic corrosion resistant conversion process coating for aluminum and aluminum alloys
JP4707258B2 (en) * 2001-05-07 2011-06-22 日本ペイント株式会社 Acid cleaning agent for chemical film and treatment method
ATE553163T1 (en) * 2003-02-25 2012-04-15 Chemetall Gmbh METHOD FOR COATING METAL SURFACES WITH A MIXTURE CONTAINING AT LEAST TWO SILANES
JP2006328445A (en) * 2005-05-23 2006-12-07 Nippon Parkerizing Co Ltd Water-based surface treating agent for precoat metal material, surface treating method and method for manufacturing precoat metal material
JP5313432B2 (en) * 2005-12-28 2013-10-09 日本ペイント株式会社 Metal surface treatment composition, metal surface treatment method and surface-treated galvanized steel sheet
JP4719662B2 (en) * 2006-11-21 2011-07-06 日本パーカライジング株式会社 Water-based surface treatment agent for environment-friendly precoat metal material, surface treatment metal material, and environment-friendly precoat metal material
WO2009059798A2 (en) * 2007-11-08 2009-05-14 Corus Uk Limited A method for producing a coating on a metal substrate and a coating produced thereby
FR2929622B1 (en) * 2008-04-04 2011-03-04 Eads Europ Aeronautic Defence MESOSTRUCTURE COATINGS COMPRISING A PARTICULAR TEXTURANT AGENT FOR AERONAUTICAL AND AEROSPATIAL APPLICATION
JP5438392B2 (en) * 2009-06-22 2014-03-12 日本パーカライジング株式会社 Metal surface treatment agent, surface treatment metal material, and surface treatment method of metal material
JP5663490B2 (en) * 2009-10-30 2015-02-04 日本パーカライジング株式会社 Surface treatment agent for laminated metal material and method for producing laminated metal material
JP2011153341A (en) * 2010-01-26 2011-08-11 Nippon Paint Co Ltd Rustproof treatment method of heat exchanger

Also Published As

Publication number Publication date
US20140255611A1 (en) 2014-09-11
ES2609581T3 (en) 2017-04-21
FR2981366B1 (en) 2014-10-17
BR112014008845A2 (en) 2017-04-18
EP2766508A1 (en) 2014-08-20
JP2014528520A (en) 2014-10-27
WO2013054064A1 (en) 2013-04-18
CA2851499A1 (en) 2013-04-18
FR2981366A1 (en) 2013-04-19
MX2014004512A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
EP2010612B1 (en) Use of a nanostructured material, as protective coating of metal surfaces
Wang et al. Sol–gel coatings on metals for corrosion protection
EP1629136B1 (en) Composition for coating metals to protect against corrosion
EP2102384B1 (en) Sol-gel coating method and composition
JP5579269B2 (en) Aqueous silane systems for bare and metal corrosion protection
ES2401173T3 (en) Corrosion protection treatment for zinc and zinc alloy surfaces
EP2403978B1 (en) Method for coating metal surfaces in a multi-step method
TWI411702B (en) A non-chromium rust-preventive surface treatment agent for a metal member having a zinc surface, and a metal member having a zinc surface coated with the rust preventive coating
FR2914631A1 (en) PARTICULAR NANOSTRUCTURE MATERIAL, AS PROTECTIVE COATING OF METAL SURFACES.
WO2008040895A2 (en) Mesostructured skins for application in the aeronautics and aerospace industries
EP2766508B1 (en) Process for the anticorrosion treatment of a solid metal substrate
Jothi et al. Facile fabrication of core–shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications
EP1485519B1 (en) Coating composition for a metal substrate
WO2009136044A2 (en) Mesostructured coatings comprising a specific texture agent for application in aeronautics and aerospace
WO2013054066A1 (en) Process for the anticorrosion treatment of a solid metal substrate and metal substrate capable of being obtained by such a process
Pehkonen et al. Inorganic-Organic Hybrid Coatings
FR3040641A1 (en) METHOD FOR APPLYING ANTI-CORROSION COATING TO A METALLIC PART, AQUEOUS COATING COMPOSITION, ANTI-CORROSIVE COATING OF METALLIC PARTS, AND COATED METAL PIECE
Rout The effect of dye molecules in titania‐silica hybrid coatings for corrosion protection
FR2988404A1 (en) METHOD FOR DEPOSITING ANTI-CORROSION COATING
FR2737217A1 (en) PROTECTIVE COATING, ESPECIALLY FOR METALLIC SUBSTRATE, OBTAINING AND APPLICATIONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LENORMAND, PASCAL

Inventor name: ANSART, FLORENCE

Inventor name: BONINO, JEAN-PIERRE

Inventor name: BARES, PIERRE

Inventor name: XUEREB, ELODIE

Inventor name: GRESSIER, MARIE

Inventor name: ESTEBAN, JULIEN

Inventor name: JAUBERT, OLIVIER

Inventor name: BLETA, RUDINA

Inventor name: MENU, MARIE-JOELLE

Inventor name: GAZEAU, CELINE

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARES, PIERRE

Inventor name: ESTEBAN, JULIEN

Inventor name: ANSART, FLORENCE

Inventor name: XUEREB, ELODIE

Inventor name: BONINO, JEAN-PIERRE

Inventor name: GRESSIER, MARIE

Inventor name: BLETA, RUDINA

Inventor name: GAZEAU, CELINE

Inventor name: JAUBERT, OLIVIER

Inventor name: LENORMAND, PASCAL

Inventor name: MENU, MARIE-JOELLE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: XUEREB, ELODIE

Inventor name: GRESSIER, MARIE

Inventor name: ANSART, FLORENCE

Inventor name: ESTEBAN, JULIEN

Inventor name: MENU, MARIE-JOELLE

Inventor name: BONINO, JEAN-PIERRE

Inventor name: LENORMAND, PASCAL

Inventor name: BARES, PIERRE

Inventor name: GAZEAU, CELINE

Inventor name: BLETA, RUDINA

Inventor name: JAUBERT, OLIVIER

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 22/83 20060101ALI20160317BHEP

Ipc: C23C 18/12 20060101ALI20160317BHEP

Ipc: C23C 18/04 20060101ALI20160317BHEP

Ipc: C23C 22/56 20060101AFI20160317BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 834764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012023806

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LEMAN CONSULTING S.A., CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 834764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2609581

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170206

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012023806

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

26N No opposition filed

Effective date: 20170706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: IP PARTNERS J. WENGER, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191021

Year of fee payment: 8

Ref country code: DE

Payment date: 20191021

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191021

Year of fee payment: 8

Ref country code: IT

Payment date: 20191028

Year of fee payment: 8

Ref country code: ES

Payment date: 20191122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191021

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191021

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012023806

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201012

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201012

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231025

Year of fee payment: 12