FR2970129A1 - Filtre variable par condensateur commute au moyen de composants mems - Google Patents

Filtre variable par condensateur commute au moyen de composants mems Download PDF

Info

Publication number
FR2970129A1
FR2970129A1 FR1005182A FR1005182A FR2970129A1 FR 2970129 A1 FR2970129 A1 FR 2970129A1 FR 1005182 A FR1005182 A FR 1005182A FR 1005182 A FR1005182 A FR 1005182A FR 2970129 A1 FR2970129 A1 FR 2970129A1
Authority
FR
France
Prior art keywords
filter
mems
resonator
resonators
towable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1005182A
Other languages
English (en)
Other versions
FR2970129B1 (fr
Inventor
Michel Giraudo
Marie Pierre Dussauby
Gilles Neveu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to FR1005182A priority Critical patent/FR2970129B1/fr
Priority to PCT/EP2011/073813 priority patent/WO2012089619A1/fr
Priority to EP11811346.3A priority patent/EP2659544A1/fr
Priority to US13/977,492 priority patent/US9300269B2/en
Publication of FR2970129A1 publication Critical patent/FR2970129A1/fr
Application granted granted Critical
Publication of FR2970129B1 publication Critical patent/FR2970129B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0138Electrical filters or coupling circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0123Frequency selective two-port networks comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H2007/006MEMS
    • H03H2007/008MEMS the MEMS being trimmable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filters And Equalizers (AREA)

Abstract

Filtre tractable comportant au moins deux circuits résonateurs (14a, 14b) disposés entre deux réseaux d'adaptation (4, 5) caractérisé en ce que : • Un résonateur est connecté par une première de ses extrémités (14a , 14b ) à la masse M du filtre par des trous métallisés (16) et par une deuxième extrémité (14a , 14b ) à un réseau de MEMS (12), • la distance d entre les 2 résonateurs réalise un circuit de couplage inductif inter-résonateur (10) • une capacité de couplage (11) inter-résonateur est réalisée par 2 lignes gravées (11a, 11b) connectées au premier et au deuxième résonateur, • les réseaux de MEMS sont répartis autour des extrémités des résonateurs, • les réseaux de MEMs sont connectés entre le premier et le deuxième résonateur et la masse M au moyen de trous métallisés, • le filtre comporte plusieurs tensions de commande électriques Vi indépendantes (17) adaptées à actionner les MEMs.

Description

FILTRE VARIABLE PAR CONDENSATEUR COMMUTE AU MOYEN DE COMPOSANTS MEMS
L'objet de la présente invention concerne un filtre variable utilisant des condensateurs commutés au moyen de composants de type système micro-électromécanique plus connus sous l'abréviation anglo-saxonne « MEMs ».
Dans la description, l'expression « filtre tractable » concerne un filtre de la famille des filtres passe bande réalisés à partir de circuits oscillants (self-capacité) couplés. De même le terme brouilleur est utilisé pour désigner des signaux venant perturber le signal utile. Le terme résonateur est utilisé dans la présente invention pour désigner le circuit résonant appelé aussi circuit oscillant. Le terme interdigité est un terme connu de l'Homme du métier.
La technologie MEMs a permis de mettre à profit l'expérience acquise en microélectronique pour réaliser des mircosystèmes déformables dont le comportement mécanique module le comportement électrique. Différents actionneurs et commutateurs sont décrits dans l'art antérieur. Ainsi, l'art antérieur divulgue des structures MEMs qui utilisent un élément conducteur mobile et un certain nombre de terminaux de contacts fixes porteurs de courant permettant avantageusement un plus grand acheminement de courant par rapport aux dispositifs de l'art antérieur dans lesquels les courants s'écoulent à travers des éléments conducteurs mobiles. Le domaine de la radio-communication et de la radio navigation utilisent des systèmes de filtrage en émission de petite puissance et réception pour un filtrage cosite et haute linéarité. Le fonctionnement cosite ou en proximité se manifeste tout particulièrement lorsqu'un récepteur captant un signal faible se trouve à proximité d'un émetteur fonctionnant à niveau élevé.
L'impact des filtres de proximité sur le volume et la consommation est très important. La plupart des systèmes actuellement utilisés présentent les problèmes suivants : - un manque de linéarité du système de filtrage lors de la variation de la puissance des signaux reçus et filtrés, - une couverture de bande qui peut être insuffisante en fonction des applications, - une sélectivité insuffisante qui doit être améliorée en augmentant le coefficient de qualité, - une modulation amplitude-phase parasite qui peut apparaître en fonction d'un niveau de brouilleur pour la réception. Cette modulation amplitude-phase parasite affectant la mesure d'erreur plus connue sous l'abréviation anglo-saxonne « EVM » pour error vector magnitude utilisée pour quantifier la perfomance d'un émetteur ou d'un récepteur radio numérique, - Un volume et une consommation importante en présence de puissance RF. Pour résoudre ces différents problèmes, il est connu de réaliser un filtrage en utilisant une diode varicap, toutefois cette diode varicap présente une non linéarité de cette diode varicap et possède une faible tenue au brouilleur. II est aussi connu d'utiliser des condensateurs commutés par relais ou diode PIN (abréviation anglo-saxonne de Positive Intrinsic Negative diode). Toutefois ce type de commutation conduit à des temps de commutation trop importants. Dans le cas d'utilisation de diodes PIN, la consommation est importante. Les différentes solutions connues de l'art antérieur ne résolvent pas de manière suffisante les problèmes suivants : - la présence de signal de brouillage volontaire ou involontaire à une fréquence plus ou moins proche de la fréquence du signal utile, - la linéarité du système de filtrage quelque soit la fréquence utilisée,
L'objet de la présente invention repose notamment sur une nouvelle approche utilisant des composants de type MEMs pour commuter différentes valeurs de condensateurs au sein d'un filtre tractable. Ceci permet avantageusement de réaliser un filtrage variable ou filtre accordable en fonction de la fréquence avec une bande passante constante utilisant des capacités variables MEMS RF. L'invention concerne un filtre tractable comportant au moins deux circuits résonateurs disposés entre un premier réseau d'adaptation en liaison avec une première entrée/sortie et un deuxième réseau d'adaptation en liaison avec une deuxième entrée/sortie, lesdits réseaux d'adaptation étant constitués d'une inductance (L4, L5) et d'une capacité (C4, C5) montées en parallèle et : - un résonateur est connecté par une première de ses extrémités d'un côté à la masse M du filtre par des trous métallisés et par une 15 deuxième extrémité à un réseau de MEMS, - la distance d entre les 2 résonateurs réalise un circuit de couplage inductif inter-résonateur, - une capacité de couplage inter-résonateur est réalisée par 2 lignes gravées qui sont connectées respectivement au premier et au 20 deuxième résonateur, - les réseaux de MEMS sont répartis autour des extrémités des résonateurs, - les réseaux de MEMs sont connectés entre le premier et le deuxième résonateur et le plan de masse M grâce à des vias ou trous 25 métallisés, - plusieurs tensions de commande électriques Vi indépendantes adaptées à actionner les MEMs ou réseau de MEMs. Le filtre tractable selon l'invention est, par exemple, réalisé avec la technologie micro ruban plus connue sous le nom « anglo-saxon » 3o microstrip.
Le filtre présentant une caractéristique au moins décrite précédemment est utilisé dans une chaîne de réception ledit filtre tractable étant disposé au plus près d'une antenne de réception et juste avant un amplificateur faible bruit.
Selon un autre mode de mise en oeuvre, le filtre tractable selon l'invention est utilisé dans une chaîne de réception ledit filtre tractable étant disposé en aval d'un amplificateur faible bruit et d'un dispositif de protection au champ fort et d'une antenne. Le filtre tractable peut aussi être disposé entre un pilote ou driver 10 de puissance et un amplificateur.
D'autres caractéristiques et avantages du dispositif selon l'invention apparaîtront mieux à la lecture de la description qui suit d'un exemple de réalisation donné à titre illustratif et nullement limitatif annexé 15 des figures qui représentent : - La figure 1, un synoptique de base du filtre selon l'invention, - La figure 2, un exemple de topologie du filtre à MEMs, selon l'invention, - La figure 3, un exemple de mise en oeuvre du filtre selon l'invention, 20 - La figure 4, un exemple d'un réseau de capacités commutées MEMs 3 bits, - La figure 5, un exemple d'un réseau de MEMs ohmiques commutant des capacités, réseau de 8 bits, - La figure 6, un exemple de fonction de transfert du filtre à la fréquence 25 950 MHz, - La figure 7, un exemple de fonction de transfert du filtre à la fréquence 1454 MHz, - La figure 8, un exemple de fonction de transfert du filtre à la fréquence 2300 MHz, 30 - La figure 9, un exemple d'architecture d'un récepteur de type 1, - La figure 10, un exemple de récepteur de type 2, et - La figure 11, un exemple d'émetteur.
Le filtre étudié dont un exemple est donné pour illustrer l'objet de la présente invention à titre illustratif, est un filtre 2 pôles fonctionnant, couvrant une octave avec une bande passante constante sur toute la plage d'accord. La figure 1 représente un synoptique de base pour un filtre passe bande selon l'invention présentant des entrées/sorties notées IN/OUT. Le principe mis en oeuvre est l'utilisation de circuits oscillants couplés.
Le coeur du dispositif est matérialisé par deux circuits oscillants 1, 2 de self inductance Lo et de capacité variable Co .Ces deux circuits oscillants 1, 2 ou circuits résonateurs ou résonateurs sont couplés par un circuit de couplage 3 réalisé par la mise en parallèle d'une self de couplage Loup et d'une capacité Coup dans cet exemple de réalisation.
Cet ensemble constitué du premier circuit de couplage 1 et du circuit de couplage est raccordé à l'entrée IN du filtre par un réseau d'adaptation 4, qui effectue la transformation d'impédance 50 Ohms vers l'impédance nécessaire pour établir un filtrage à bande passante constante ce qui constitue un des avantages du dispositif présenté.
De manière symétrique, un même réseau d'adaptation 5 permet de coupler la sortie du filtre au deuxième circuit résonnant. Un réseau d'adaptation 4, 5 peut être constitué d'une self fixe avec une capacité en parallèle qui se couple sur l'inductance Lo du circuit résonnant via une prise intermédiaire selon un modèle connu de l'Homme du métier, ces éléments n'étant pas représentés sur la figure pour des raisons de simplification. L'adaptation correcte sur 50 Ohms, la constance de la bande passante à -3 dB, dépendent de relations calculées entre les éléments du circuit d'adaptation, Lo, Co, L.' p et Ccoup- La figure 2 montre un exemple de topologie du filtre et schématise un exemple d'architecture utilisant des capacités MEMS commutées placées
aux extrémités du résonateur ou circuit résonant, utilisé dans le schéma de la figure 1. La topologie choisie dans cet exemple est à lignes couplées présentant un couplage inductif inter-résonateur 10, couplage entre deux résonateurs 14a et 14b, et un couplage capacitif 11 réalisé par une capacité interdigitée placées entre les deux résonateurs, cette capacité de faible valeur Coeup du circuit de couplage 11 est réalisée par deux lignes 11 a, 11 b, couplées de largeur plus faible et faiblement espacées sur une distance de quelques mm et connectée aux résonateurs 14a et 14b. Le cumul de ces deux types de couplages 10, 11 permet de faire un filtre à bande quasi- constante. La figure 3 montre une représentation physique du filtre à MEMS en technologie microruban connu sous le terme anglo-saxon « microstrip ». Les lignes du circuit sont gravées sur un substrat S. L'autre face du circuit est un plan de masse M non représenté pour des raisons de simplification de figure et connu de l'Homme du métier. Les accès entrée/sortie IN/OUT sont des lignes gravées sur le substrat d'impédance 5052, par exemple. Le réseau d'adaptation 4, 5 est réalisé à partir d'une inductance L4, L5 et d'une capacité discrète C4, C5 soudées en parallèle. Le réseau d'adaptation 4, 5 est mis en série sur la ligne d'entrée/sortie IN/OUT. Ces deux composants (inductance et capacité) réalisent l'adaptation entre les accès entrée/sortie du filtre et le résonateur 14a, 14b. Ces mêmes composants permettent aussi de faire la transformation d'impédance 13 de manière harmonieuse et simple entre les accès 500 et l'impédance du résonateur car il y a une forte discontinuité d'impédance à cette intersection de ligne (13, IN/OUT). Un résonateur 14a, 14b est connecté par une première de ses extrémités respectivement 14a1, 14b1 d'un côté à la masse par des trous métallisés ou vias 16 et par une deuxième extrémité respectivementl4b2, 14b2, à un réseau de MEMS 12. La distance d entre les deux résonateurs (14a, 14b) réalise le circuit de couplage inductif inter-résonateur 10. Cette distance est par exemple déterminée par une simulation utilisant des méthodes connues de l'Homme du métier afin d'obtenir la fonction de transformation souhaitée pour une
application donnée du filtre tractable. La capacité de couplage 11 inter-résonateur est réalisée par deux petites lignes gravées 11 a, Il b qui sont connectées au résonateur 14a, 14b. La largeur des lignes 11 a, 11 b sont par exemple déterminées en fonction de la fréquence du filtre et donc selon l'application visée. Les réseaux de MEMS 12 sont répartis autour des extrémités des résonateurs 14a, 14b dans cet exemple de réalisation, la répartition étant choisie afin de grouper le plus possible les différents éléments. Les réseaux de MEMs 12 sont connectés entre le résonateur 14a, 14b et le plan de masse M via les vias ou trous métallisés 16. 8 tensions de commande électriques VI à V8 indépendantes 17 permettent d'actionner les MEMs 12. Les tensions d'actuation sont amenées au plus près des MEMS par des lignes en haute impédance. La réalisation du filtre schématisé en figure 3 est symétrique par rapport à un axe A. Un réseau de MEMS 12 radio-fréquence ou RF peut être constitué à partir d'une banque de MEMS capacitif capables de prendre plusieurs valeurs de capacités selon la figure 4 ou bien à partir de MEMS ohmiques commutant un réseau de capacité fixes selon la figure 5. Les valeurs de capacités Ci sont calculées de manière à obtenir un pas de fréquence constant. Le nombre de capacités donne la valeur de l'incrément de fréquence. Les composants MEMS sont représentés par des commutateurs. Les condensateurs peuvent être placés en parallèle et reliés à un ou plusieurs MEMS. Le filtre est synthétisé pour conserver une bande passante constante. Cette structure particulière permet une tenue en puissance meilleure que l'état de l'art. L'impédance RI est donnée par le calcul suivant : R1 = \/2*Q*Lo*wo, cette impédance n'est pas représentée sur les figures 4 et 5. C'est l'impédance ramenée sur la totalité du circuit oscillant (Lo, Co ). Avec wo = 2*n*fO et Q=fO/Of, f0 est la fréquence de travail, Af est la bande passante du filtre à -3dB. La puissance traversant le filtre suit la relation aux bornes du 30 circuit oscillant : P=2.Veff2/R1 avec Veff tension efficace. Tension crête = (2 .Veff), Vcrête = I (R1.P)
L'impédance vue par le MEMS est (RI )/2 lorsque le filtre est accordé. Pour une puissance P, la tension crête aux bornes du MEMS est maximum à la fréquence maximum avec une amplitude égale à ' (R1.P/2) Pour maximiser la tenue en puissance du filtre, il faut diminuer la valeur de RI et donc adapter la synthèse du filtre, la valeur de la capacité du MEMS augmente lorsque RI diminue. Le filtre à MEMS ainsi défini peut accepter des puissances élevées. Pour augmenter encore la puissance admissible dans le filtre, il est possible de mettre plusieurs MEMS en parallèle.
Sur les figures 3 et 5, la commande d'actuation des MEMS est modélisée par les tensions VI à vs qui sélectionnent la valeur de capacité à appliquer au filtre pour obtenir la fréquence désirée. Sur la figure 4, la commande d'actuation est modélisée par les bits Bit1, Bit2, Bit3. Les capacités variables C=2"Cs avec Cs la capacité d'un élément de base pouvant prendre 2 valeurs. La capacité totale est alors la somme des capacités des banques à l'état bas Co et des capacités des banques à l'état haut CI. Dans le cas d'une capacité 3 bits, la capacité correspondant à la valeur binaire « 101 » est égale à C=4C0+2C1+Co. Sur la figure 5, la commande d'actuation a une capacité de 8 bits.
Le réseau de MEMS ohmique permet de sélectionner les capacités CI à C8 qui prennent 8 valeurs discrètes. Dans ce cas le nombre d'incrément de fréquence du filtre est de 28=256. Exemple chiffré pour un dispositif selon l'invention Pour une bande passante du filtre à réaliser de 50MHZ, la plage 25 de fréquences à couvrir est de950 à 2300MHz. Atténuation à FO +1-1 00MHz >20 dB Atténuation à FO +/-200MHz >35 dB Avec un commutateur MEMS à 8 positions, il est ainsi possible d'obtenir 28=256Pas
La plage de fréquence étant de 1,35 GHz, avec un tel pas il est possible de changer de fréquence tous les 5,3MHz environ. Ce pas est compatible de la bande passante recherchée. Le recoupement minimal doit être tel que la fréquence centrale du premier pas corresponde à 2300MHz -25 MHz pour un recoupement optimal dans la bande à 0.5 dB du filtre. On aboutit ainsi à la boite de poids à 8 éléments pour un tirage majoré de 20 % et avoir une latitude dans la bande couverte par le dispositif soit les pas suivants : Pas 1 2 3 4 5 6 7 8 Capacité pF 5 2.5 1.25 0.625 0.312 0.156 0.08 0.04 Le filtre est à bande quasi constante. Pour avoir une bande 10 désirée voisine de 50 MHz sur les fréquences min et max, le filtre en milieu de bande est plus large (64 MHz) Combinaison 0 P8 P7 P8+P P6 P5 P4 de pas 7 Fréquence 2300 2273 2248 2223 2202 2115 1967 (MHz) Perte dB 2.843 2.719 2.616 2.518 2.463 2.254 2.064 Bande MHz 47 48 48 51 50 51 60 Combinaison P3 P2 Pl Pl +P2+ ALL de pas P5+P7+P8 ON Fréquence 1743 1454 1144 950 861 (MHz) Perte dB 2.028 2.26 2.81 2.447 2.307 Bande MHz 64 63 57 50 51 Le filtre couvre une bande de fréquence allant de 861 MHz lorsque 15 toutes les capacités sont activées (activation de tous les MEMS) jusqu'à 2300MHz lorsque tous les MEMS sont désactivés. Les figures 6, 7 et 8 montrent les résultats obtenus pour la fonction de transfert dB(S(2,1)) et l'adaptation dB(S(1,1) du filtre à trois
fréquences centrales : 950MHz, 1454MHz et 2300MHz. (paramètre S21 et S11 qui sont les paramètres S, connus de l'homme du métier. Ces figures montrent que les performances sont obtenues sur une très large bande de fréquence.
La figure 9, représente un premier exemple de réalisation dans lequel un filtre tractable 30 selon l'invention est disposé le plus en amont dans une chaîne de réception au plus près d'une antenne de réception 31 et juste avant un amplificateur faible bruit 32, ou LNA (Low Noise Amplificateur) entre le filtre et l'antenne. Le filtre tractable à MEMS présente l'avantage d'avoir des pertes minimum ce qui permet de garantir un faible facteur de bruit au récepteur et un niveau de puissance suffisant pour protéger le récepteur des signaux brouilleurs de forte puissance hors bande de réception. Il ne restera qu'une partie de la tenue au champ fort pour des tensions supérieures à 30 Volts au niveau de l'antenne 31, dispositif de protection contre la foudre 34 l'autre partie de la tenue au champ sera installée juste avant l'amplificateur LNA 32 avec un dispositif de limitation de la puissance 33 pour protéger le LNA mais uniquement dans la bande du filtre. La figure 10, est un autre exemple d'implémentation du filtre 40 selon l'invention. Dans cet exemple d'architecture, où les champs forts un peu lointain ne seraient pas trop fort, une telle architecture permet d'améliorer la tenue des brouilleurs à moyenne distance (1 à 5MHz) par un filtre tractable plus sélectif et donc un écart de fréquence plus faible dans le cas d'utilisation de plusieurs émetteurs-récepteurs sur le même site. Le filtre tractable 40 selon l'invention sera disposé en aval d'un LNA 41 et d'un dispositif de protection au champ fort 43 et d'une antenne 42. Au niveau de l'émetteur figure 11, le filtre tractable 50 selon l'invention sera inséré dans la chaîne d'émission à moyenne puissance permettant d'améliorer le bruit large bande en dehors de la bande du filtre, placé entre le pilote ou driver de puissance 51 et l'amplificateur 52 relié à l'antenne 53. Autre point important, il faudra raisonner en utilisation émission
la puissance RF maximum applicable. Ceci permet pour des formes d'ondes à enveloppe non constante de type OFDM de pouvoir passer par ces filtres sans dégradation d'EVM, car l'avantage du filtre est de présenter une très grande linéarité. Dans un poste émetteur/récepteur, le même filtre peut être utilisé à la fois en émission et en réception.
L'invention présente notamment comme avantage de disposer d'un dispositif comportant une très large variation de capacité par la commutation de condensateur qui permet donc d'obtenir une grande couverture de bande. Elle offre aussi des dispositifs présentant les trois améliorations suivantes : - une perte du filtre plus faible, - une sélectivité du filtre amélioré, - une couverture de bande importante, - un temps de changement de fréquence très rapide (agilité), - une bande passante quasi-constante, - une linéarité meilleure que l'état de l'art, - une consommation de courant négligeable, - une admissibilité en puissance bien plus importante que les filtres à varicap qui sont limités en tension par la valeur de la tension de commande qui pour des raisons de large variation en fréquence du dispositif peut prendre des valeurs basses de 1 à 2 Volts. La tension applicable sur le composant mems peut être assez élevée et avec une performance en inter-modulation très élevée donc une 25 amélioration assez conséquente sur la tenue aux brouilleurs ainsi qu'une utilisation du filtre selon l'invention à l'émission pour des puissances moyennes de l'ordre de 5 à 10 Watts. Dans ce domaine de puissance, les filtres variables utilisant pour le système d'accord des capacités fixes mises en services par des diodes 30 PIN ont des performances d'admissibilité en puissance similaires au dispositif présenté, mais au prix d'une consommation électrique importante pour commander le mode « passant » des diodes PIN. Dans le dispositif présenté, l'énergie pour faire basculer un MEMS en passant est très modeste, ce qui constitue un des avantages de ce 5 dispositif.

Claims (5)

  1. REVENDICATIONS1 - Filtre tractable comportant au moins deux circuits résonateurs (14a, 14b) disposés entre un premier réseau d'adaptation (4) en liaison avec une première entrée/sortie et un deuxième réseau d'adaptation (5) en liaison avec une deuxième entrée/sortie, caractérisé en ce que lesdits réseaux d'adaptation (4, 5) sont constitués d'une inductance (L4, L5) et d'une capacité (C4, C5) montées en parallèle et en ce que : - un résonateur (14a, 14b) est connecté par une première de ses extrémités (14al, 14b1) d'un côté à la masse M du filtre par des trous métallisés (16) et par une deuxième extrémité (14a2, 14b2) à un réseau de MEMS (12), - la distance d entre les 2 résonateurs (14a, 14b) réalise un circuit de 15 couplage inductif inter-résonateur (10) - une capacité de couplage (11) inter-résonateur est réalisée par 2 lignes gravées (11 a, 11 b) qui sont connectées respectivement au premier et au deuxième résonateur (14a, 14b), - les réseaux de MEMS (12) sont répartis autour des extrémités des 20 résonateurs (14a, 14b), - les réseaux de MEMs (12) sont connectés entre le premier et le deuxième résonateur (14a, 14b) et le plan de masse M grâce à des vias ou trous métallisés (16), - le filtre comporte plusieurs tensions de commande électriques Vi 25 indépendantes (17) adaptées à actionner les MEMs (12).
  2. 2 - Filtre tractable selon la revendication 1 caractérisé en ce que l'on utilise une technologie microruban.
  3. 3 - Utilisation d'un filtre tractable selon la revendication 1 à 2, dans une chaîne de réception ledit filtre tractable étant disposé au plus près d'une antenne de réception (31) et juste avant un amplificateur faible bruit (32).
  4. 4 - Utilisation d'un filtre tractable (40) selon la revendication 1 ou 2 dans une chaîne de réception ledit filtre tractable étant disposé en aval d'un amplificateur faible bruit (41) et d'un dispositif de protection au champ fort et d'une antenne (42).
  5. 5 - Utilisation d'un filtre tractable (50) selon la revendication 1 ou 2 ledit filtre tractable étant disposé entre un pilote ou driver de puissance (51) et un amplificateur (52).15
FR1005182A 2010-12-30 2010-12-30 Filtre variable par condensateur commute au moyen de composants mems Active FR2970129B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR1005182A FR2970129B1 (fr) 2010-12-30 2010-12-30 Filtre variable par condensateur commute au moyen de composants mems
PCT/EP2011/073813 WO2012089619A1 (fr) 2010-12-30 2011-12-22 Filtre variable par condensateur commute au moyen de composants mems
EP11811346.3A EP2659544A1 (fr) 2010-12-30 2011-12-22 Filtre variable par condensateur commute au moyen de composants mems
US13/977,492 US9300269B2 (en) 2010-12-30 2011-12-22 Filter that is variable by means of a capacitor that is switched using MEMS components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1005182A FR2970129B1 (fr) 2010-12-30 2010-12-30 Filtre variable par condensateur commute au moyen de composants mems

Publications (2)

Publication Number Publication Date
FR2970129A1 true FR2970129A1 (fr) 2012-07-06
FR2970129B1 FR2970129B1 (fr) 2013-01-18

Family

ID=45524489

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1005182A Active FR2970129B1 (fr) 2010-12-30 2010-12-30 Filtre variable par condensateur commute au moyen de composants mems

Country Status (4)

Country Link
US (1) US9300269B2 (fr)
EP (1) EP2659544A1 (fr)
FR (1) FR2970129B1 (fr)
WO (1) WO2012089619A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762466B (zh) * 2016-04-08 2019-01-18 华南理工大学 一种具有两个可电调通带的三频带通滤波器
CN110495096A (zh) * 2017-01-10 2019-11-22 维斯普瑞公司 可调谐滤波器系统、装置和方法
US11862835B2 (en) * 2020-08-13 2024-01-02 Cyntec Co., Ltd. Dielectric filter with multilayer resonator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010094509A (ko) * 2000-03-31 2001-11-01 김남영 인터디지탈 측면 커플링을 갖는 마이크로스트립 링대역통과 여파기 및 그 제조방법
US20020149448A1 (en) * 2001-04-11 2002-10-17 Toncich Stanley S. Low-loss tunable ferro-electric device and method of characterization
US20050017824A1 (en) * 2001-12-12 2005-01-27 Takayuki Hirabayashi Filter circuit
EP1953914A2 (fr) * 2007-01-23 2008-08-06 Ngk Spark Plug Co., Ltd. Diplexeur et multiplexeur l'utilisant

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485131A (en) 1994-10-13 1996-01-16 Motorola, Inc. Transmission line filter for MIC and MMIC applications
US7236068B2 (en) 2002-01-17 2007-06-26 Paratek Microwave, Inc. Electronically tunable combine filter with asymmetric response
US7385465B2 (en) * 2005-12-19 2008-06-10 Industrial Technology Research Institute Switchable dual-band filter
EP2568608B1 (fr) * 2008-02-28 2014-05-14 Peregrine Semiconductor Corporation Procédé et appareil destinés au réglage numérique d'un condensateur dans un dispositif à circuit intégré
US8849213B2 (en) * 2009-01-21 2014-09-30 Bandspeed, Inc. Integrated circuit for signal analysis
US8363380B2 (en) * 2009-05-28 2013-01-29 Qualcomm Incorporated MEMS varactors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010094509A (ko) * 2000-03-31 2001-11-01 김남영 인터디지탈 측면 커플링을 갖는 마이크로스트립 링대역통과 여파기 및 그 제조방법
US20020149448A1 (en) * 2001-04-11 2002-10-17 Toncich Stanley S. Low-loss tunable ferro-electric device and method of characterization
US20050017824A1 (en) * 2001-12-12 2005-01-27 Takayuki Hirabayashi Filter circuit
EP1953914A2 (fr) * 2007-01-23 2008-08-06 Ngk Spark Plug Co., Ltd. Diplexeur et multiplexeur l'utilisant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHING-WEN TANG ET AL: "A Microstrip Bandpass Filter With Ultra-Wide Stopband", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 56, no. 6, 1 June 2008 (2008-06-01), pages 1468 - 1472, XP011215082, ISSN: 0018-9480 *
LI ZHU ET AL: "Adjustable Bandwidth Filter Design Based on Interdigital Capacitors", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 18, no. 1, 1 January 2008 (2008-01-01), pages 16 - 18, XP011199157, ISSN: 1531-1309, DOI: 10.1109/LMWC.2007.911975 *
MOHAMMED A EL-TANANI ET AL: "Corrugated Microstrip Coupled Lines for Constant Absolute Bandwidth Tunable Filters", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 58, no. 4, 1 April 2010 (2010-04-01), pages 956 - 963, XP011305950, ISSN: 0018-9480 *

Also Published As

Publication number Publication date
US9300269B2 (en) 2016-03-29
FR2970129B1 (fr) 2013-01-18
EP2659544A1 (fr) 2013-11-06
WO2012089619A1 (fr) 2012-07-05
US20140176263A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
FR2916108A1 (fr) Amplificateur de puissance a haute frequence
FR2984603A1 (fr) Circuit integre comprenant un transformateur integre de type "balun" a plusieurs voies d'entree et de sortie.
FR2959077A1 (fr) Amplificateur a faible facteur de bruit, a gain variable et de puissance
EP1699108B1 (fr) Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne
EP2178152A1 (fr) Dispositif de commutation électronique pour signaux a haute fréquence
EP2202838B1 (fr) Condensateur commuté compact mems
FR2970129A1 (fr) Filtre variable par condensateur commute au moyen de composants mems
EP1754315A1 (fr) Dispositif rayonnant comprenant au moins un filtre rejecteur adaptatif et antenne comprenant ce dispositif
EP1291974B1 (fr) Système antennaire à rendement élevé et à forte puissance
FR3002708A1 (fr) Systeme d'amplification de signaux
WO2012079777A1 (fr) Filtre stop bande actif
FR2969428A1 (fr) Commutateur electronique et appareil de communication incluant un tel commutateur
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
EP4107857A1 (fr) Circuit intégré comportant un réseau d'adaptation et de filtrage et procédé d'adaptation et de filtrage correspondant
EP0420106B1 (fr) Atténuateur à transistor à effet de champ bigrille
EP3182602B1 (fr) Dispositif de commutation rf large bande a multiple sorties et poste rf utilisant un tel commutateur
EP2462701B1 (fr) Circuit de commutation pour des signaux large bande
FR3018969A1 (fr) Filtre reconfigurable, commutable et desactivable
EP1715597B1 (fr) Antenne à surfaces rayonnantes planes à circuit commutable
WO2023079065A1 (fr) Dispositif de filtrage reconfigurable et système d'acquisition de signaux radiofréquences intégrant un tel dispositif de filtrage
EP1548877B1 (fr) Antenne à surface(s) rayonnante(s) plane(s) multibande et téléphone portable comportant une telle antenne
FR2822612A1 (fr) Dispositif de mulitplexage radiofrequence a commande croisee pour telephone mobile bi-bande
FR3120758A1 (fr) Circuit de polarisation en bande de base et rf, et circuit amplificateur de puissance rf le comprenant
FR3061996A1 (fr) Antenne large bande pour dispositif mobile de communication
FR2868215A1 (fr) Systeme et procede de commande dynamique de la largeur de la bande passante d'une antenne, telephone associe

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14