EP1699108B1 - Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne - Google Patents

Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne Download PDF

Info

Publication number
EP1699108B1
EP1699108B1 EP20060290344 EP06290344A EP1699108B1 EP 1699108 B1 EP1699108 B1 EP 1699108B1 EP 20060290344 EP20060290344 EP 20060290344 EP 06290344 A EP06290344 A EP 06290344A EP 1699108 B1 EP1699108 B1 EP 1699108B1
Authority
EP
European Patent Office
Prior art keywords
zone
slot
space
antenna
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20060290344
Other languages
German (de)
English (en)
Other versions
EP1699108A1 (fr
Inventor
Fernando Romao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vallaroche SAS
Original Assignee
Sagem Mobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0502219A external-priority patent/FR2889361A1/fr
Application filed by Sagem Mobiles SA filed Critical Sagem Mobiles SA
Publication of EP1699108A1 publication Critical patent/EP1699108A1/fr
Application granted granted Critical
Publication of EP1699108B1 publication Critical patent/EP1699108B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • the present invention relates to a switchable plane radiant surface type antenna (s) and a mobile communication terminal comprising this antenna.
  • GSM Global System for Mobile Communication
  • ETSI European Telecommunications Standards Institute
  • GSM1800 or DCS Digital Communication System: mobile communication system
  • GSM 1800 and GSM 900 of this standardized GSM system Two variants of the GSM 1800 and GSM 900 of this standardized GSM system, mainly used on the North American continent, exist respectively, the first under the name of GSM1900 or PCS (Personal Communication System) because it provides for transmission on a frequency band between 1850 and 1990 MHz and the second under the name of GSM 850 or GSM 800 for transmission over a frequency band between 823 and 894 MHz.
  • GSM1900 or PCS Personal Communication System
  • the radio equipment of today's mobile terminals allow to send and receive according to many of these standards.
  • the radio equipment of the so-called dual-band terminals make it possible to send and receive in the frequency bands of the GSM 900 and GSM 1800
  • those of the so-called tri-band terminals make it possible to send in the frequency bands of the GSM 900 , the GSM1800 and GSM1900 and those so-called quad-band terminals in the four frequency bands mentioned above.
  • the terminals that support the UMTS 3 rd generation must include radio equipment that can transmit and receive in both the frequency bands of the GSM mobile telephone system and those of UMTS telephone system.
  • they must include, inter alia, radio frequency equipment capable of transmitting and receiving low frequencies located in the frequency bands of GSM 800 and GSM 900, respectively, of the high frequencies located in the frequency bands of GSM 1800 and GSM, respectively. 1900 as well as very high frequencies in the UMTS frequency band.
  • the antenna is an element whose characteristics are essential to the proper functioning of the rest of the terminal. It is known to use antennas of PIFA type (Planar Inverted Folded Antenna: folded and inverted plane antenna) which offer good far-field radiation performance as well as a decrease in local near-field radiation compared to that of conventional antennas. whip or helicoidal.
  • PIFA type antenna consists of a ground plane and a radiation surface located at a distance from this ground plane. The surface is generally hollowed out in one or more places so as to form slots. Such an antenna resonates according to one or more frequencies whose value or values are determined by the dimensions of the radiating surface, by the position and by the dimensions of the slot or slots, by the positioning of these slots relative to one another. etc.
  • Such an antenna in a known embodiment, has a slot which opens on an edge of its radiating surface and which is short-circuited at a point of its length by a switching element.
  • the effective length of the slot that is to say the length of the slot involved in determining the resonance frequencies of the antenna, can take two distinct values.
  • such a switching element will make it possible to modify, by switching, the high resonant frequencies of the antenna.
  • the prior art US 6,501,427 describes a multi-frequency patch antenna having a plurality of peripheral zones that can be switched to a central power zone.
  • Fig. represents the example of a switchable multiband PIFA antenna as just described.
  • This antenna AE1 comprises a ground plane PLM and a so-called radiation surface S located parallel to and away from the ground plane PLM.
  • This radiation surface S is split by a gap space OP, opening into an edge of the radiation surface S.
  • the radiation surface S is connected to the ground potential of the ground plane PLM via a point PM said ground point and at a PE excitation point to be excited by an RF radio frequency signal.
  • the gap space OP is shunted, at a predetermined distance from the edge opening of the slot OP, by a switching element SW having two operating states: an open state where the impedance at its terminals is high and a closed state where the impedance at its terminals is weak creating a shunt, at its level, of the slot OP.
  • the switching element SW has no effect, so that the equivalent topology of the antenna AE1 is that represented by the Fig. 1b .
  • the antenna AE1 then resonates at a low frequency defined in particular by the surface delimited by the longest path PA1 connecting the excitation point PE to the mass point PM, that is to say by the path delimiting the radiation surface S and the slot space OP of total length L1.
  • the defining elements this topology in particular the length of the slot space and the dimensions of the radiation surface S, are determined so that this low frequency is between 823 and 894 MHz, thus covering the GSM 800 mode.
  • the AE1 antenna also resonates at a high frequency defined mainly by the slot space OP of length L1.
  • the elements defining this topology are determined so that this high frequency is between 1710 and 1880 MHz, thus covering the GSM1800 mode.
  • the switching element SW shunts the slot space OP to the length L2 of the edge of the radiating surface S, so that the equivalent topology of the antenna AE1 is now that represented in FIG. Fig. 1 C .
  • the antenna AE1 then resonates at a low frequency defined in particular by the surface delimited by the longest path PA2 connecting the PE excitation point to the mass point PM shorter than the path PA1, so that this frequency is higher than previously: it is now between 880 and 960 MHz thus covering the GSM 900.
  • the antenna AE1 also resonates at a high frequency defined mainly by the slot space OP of effective length L2 shorter than the length L1 so that the high frequency is now higher, for example between 1850 and 1990 MHz, thus covering the GSM1900 mode.
  • the antenna AE1 as represented in FIG. Fig. 1a resonates in two low frequency bands, for example, around 800 and 900 MHz and two high frequency bands around 1800 and 1900 MHz.
  • TOS Stationary Wave Rate
  • dB decibels
  • the Fig. 1d represents, as a function of frequency, the standing wave ratio (TOS) of a quad-band AE1 antenna such as that shown in FIG. the. It can be noted that this antenna covers the four GSM modes. However, the TOS at the edge of the high and low bands is of the order of -4 dB. This significant loss is the result of the design of the antenna where each mode of operation given by a state of the switching element is such that a low frequency is associated with a high frequency, association requiring a compromise between the definition of the the topology of the antenna and the value of the TOS of this antenna. Indeed, in the example of the antenna given to the Fig.
  • the gap space OP is positioned near the excitation point PE, which favors a proper adjustment of the high frequency values.
  • this arrangement is detrimental to the width of the bandwidths for the low frequencies which would require that this slot space OP be as far as possible away from this excitation point PE.
  • the aim of the invention is to define a switchable multi-band antenna whose structure is such that it makes it possible to decouple the adjustment of its low resonant frequencies from the adjustment of its high resonance frequencies but also of decouple the tunings of the high resonant frequencies between them while maintaining a value of the band edge TOS which is relatively high in absolute value.
  • the present invention relates to an antenna comprising a ground plane intended to be at a ground potential and a radiation surface intended to be subjected to a radiofrequency signal at an excitation point and to be connected to said ground plane. in a mass point. It is characterized in that said radiating surface consists of a first zone including said mass point, a second zone including said excitation point and at least one other additional zone, said zones being isolated from each other.
  • said antenna comprises a first polarization switching element whose a first terminal is connected to said first zone and the second terminal to said second zone and at least one other polarization switching element whose first terminal is connected to said first zone and the second terminal to one of the other zones; said second zone and said further one or more other zones being intended to be respectively subjected to polarization potentials desdi ts switching elements for controlling the switching state of said elements of corresponding switching, each switching element passing through said one or more slot spaces.
  • said switching elements are diodes, the terminals of said switching elements connected to said first zone being the cathode and the other terminals connected to said second zone or to one of said other additional zones being the anode .
  • the arrangement of the zone relative to the said or each additional zone is such that the point of application of the polarization potential of the corresponding switching element is geographically close to the said ground point.
  • the slot space opens at one of its ends on an edge of the radiation surface, said first switching element passes through said slot space at said end, and a second switching element traverses said space away from said end.
  • the slot space opens at both ends on two edges of the radiation surface, said first switching element and a second switching element passing through said space respectively at said ends.
  • At least one of said zones is subdivided into at least two sub-zones separated from each other by a space forming a slot or a slot portion and interconnected by a DC link element.
  • an area other than the first area is subdivided into a first sub-area and a second sub-area separated from each other by a slot space or a slot portion and interconnected. by a DC component, said first area is recessed from another slot space opening into said slot space and said second subarea of said sub-area adjoins said slot, and a switching element passes through said other space forming a slot, its anode being connected to the second sub-area of said subdivided zone and its cathode to said first zone.
  • each of the switching elements is a diode and an impedance element tuned to the parasitic diode impedance is associated in parallel with each of the switching elements.
  • control point of the or each additional zone is connected to the ground potential via a capacitive element.
  • the polarization signal applied to the second zone is superimposed on the radio frequency signal.
  • said zones are coupled to the operating frequency of said antenna by capacitors made by partially overlapping without contact of said zones.
  • the present invention also relates to a mobile communication terminal which is characterized in that it comprises an antenna defined above.
  • the Fig. 2 represents a switchable multiband antenna AE2 according to the invention. It comprises a radiation surface S intended to be subjected to an RF radiofrequency signal at a PE excitation point and a PLM ground plane intended to be connected to a ground potential at a mass point PM and located parallel and at a distance of the radiation surface S.
  • the radiation surface S consists of a first zone Z 1 including the mass point PM, a second zone Z 2 including the excitation point PE and at least one other zone additional (here n-2 zones respectively denoted Z 3 , ..., Z n ).
  • the zones Z 1 , Z 2 , Z 3 ,..., Z n are isolated from each other continuously and coupled to the operating frequency of the antenna AE 2 at the spaces between them E 1 , E 2 , ..., E n-2 and E n-1 , with the exception of at least one space forming at least one slot (here, only a slot space OP).
  • the radiofrequency coupling between two zones Z i and Z j separated from each other by a space E i-1 is achieved by radiofrequency coupling elements C 1 , C 2 , C 3 , C 4 ,..., C p , C q , ... C n-1 , C n , C n + 1 , and C n + 2 , ...
  • capacitors such as capacitors, shunting the spaces E 1 , E 2 , ..., E n-2 and E n-1 .
  • the values of these capacitors are such that, at the operating frequencies of the antenna, the impedance of these capacitors is very low and it can be considered that two zones Z i and Z j separated by a space E k are interconnected at the level of the capacitors shunting the space E k . On the other hand, continuously, the zones Z i and Z j are isolated from one another.
  • FIG. 2a a radiofrequency coupling element C k of two zones Z i and Z j partly overlapping and spaced apart from one another by a space E.
  • the zones Z i and Z j are formed on the same substrate SU.
  • the antenna AE2 also comprises (n-1) polarization switching elements SW 1 ,..., SW n-1 crossing the space OP.
  • Each of these elements of Polarization switching may for example be a PIN diode. It is recalled that when a positive potential difference is applied between the two terminals called anode and cathode of a diode, the diode is said to be forward biased and the diode is then equivalent to a very low resistance of the order of 1 Ohm . In a dual manner, when this potential difference is negative, the diode is said to be reverse biased and is then equivalent to a very low value capacitance, of the order of 0.1 pF, that is to say, a very high impedance for the operating frequencies of the antenna.
  • each of the (n-1) polarization switching elements SW 1 , ..., SW n-1 is connected to the first zone Z 1 while the anode is connected to one of the zones Z 2 , ..., Z n .
  • the zones Z 2, ..., Z n are intended to be respectively subjected to polarization potentials Si 1, ..., n-1 If in the respective points called control points PC 1, ..., PC n -1 of said switching elements for controlling the switching state (closed state or open state) of said switching elements SW 1 , ..., SW n-1 .
  • each of the potentials Si 1 , ..., Si n-1 is applied to the anode of a switching element SW 1 , ..., SW n-1 and the cathode of the latter is at the potential of the mass via zone Z 1 . Therefore, each of the (n-1) polarization switching elements SW i is in a closed state as soon as the bias potential Si i is greater than the ground potential and in an open state as soon as this bias potential is lower than mass potential.
  • each of the (n-1) polarization switching elements SW 1 ,..., SW n-1 is connected to the first zone Z 1 while the cathode is connected to one zones Z 2 , ..., Z n .
  • each of the potentials Si 1 , ..., Si n-1 is applied to the cathode of a switching element SW 1 , ..., SW n-1 and the anode thereof is at the potential of the mass via zone Z 1 . Therefore, each of the (n-1) polarization switch elements SW i is in a closed state as soon as the bias potential Si i is lower than the ground potential and in an open state as soon as this bias potential is greater than mass potential.
  • Embodiments of the present invention are described below in the case where each of the (n-1) polarization switching elements SW i is in a closed state as soon as the bias potential Si i is greater than the ground potential and in an open state as soon as this bias potential is lower than the ground potential.
  • the invention also relates to embodiments in which at least one or each polarization switching element SW i is in a closed state as soon as the bias potential Si i is less than the ground potential and in an open state as soon as this bias potential is greater than the ground potential.
  • bias potentials Si 1 ,..., Si n-1 have extremely low variation frequencies to be compared to the operating frequencies of the antenna so that it is possible to consider that they are continuous.
  • the Fig. 3a represents a switchable multi-band antenna according to a first embodiment of the invention.
  • the antenna AE3 comprises a radiation surface S intended to be subjected to an RF radiofrequency signal at a PE excitation point and a PLM ground plane intended to be connected to a ground potential at a mass point PM and located in parallel. and away from the radiation surface S.
  • the zone Z 1 has a recess, for example of rectangular shape, in which are housed the zones Z 2 and Z 3 , for example substantially of rectangular shape.
  • the zones Z 1 , Z 2 and Z 3 are spaced apart from one another and this results in the formation of a gap OP forming a single slot opening at one of its ends between, on the one hand, a side of the recess of the zone Z 1 and, on the other hand, the two zones Z 2 and Z 3 , the formation of a space E 1 between the zones Z 2 and Z 3 , as well as the formation of a space E 2 between the second side of the recess of the zone Z 1 and the zone Z 3 .
  • the zone Z 1 is intended to be connected to the ground potential at a mass point PM and the zone Z 2 is subjected to an RF radiofrequency signal which is applied at a PE excitation point.
  • the zone Z 3 is radially coupled, on the one hand, to the zone Z 2 by radiofrequency coupling elements C 1 and C 2 , shunting the space E 1 and, on the other hand, at the zone Z 1 by radio frequency coupling elements C 3 and C 4 , shunting the space E 2 .
  • the space OP is crossed by two polarization switching elements SW 1 and SW 2 whose cathodes are connected to the zone Z 1 .
  • the anode of the polarization switching element SW 1 is connected to the zone Z 2 and the anode of the polarization switching element SW 2 is connected to the zone Z 3 .
  • Zone Z 2 is subjected to a bias potential Si 1 at a control point PC 1 , which, in the embodiment shown, is superimposed on the excitation point PE.
  • the zone Z 3 it is subjected to a bias potential Si 2 at a control point PC 2 which is, from a radio frequency point of view, connected to the potential of mass via a capacitor C m 1 and which is geometrically close to the mass point PM.
  • the bias potentials Si 1 and Si 2 of the switching elements SW 1 and SW 2 are distinct, so that four operating modes of the antenna AE 3 can be obtained by combining their respective open / closed states.
  • the first of these four modes of operation corresponds to the case where the two switching elements SW 1 and SW 2 are in an open state, so that the equivalent topology of the antenna AE 3 is that represented in FIG. Fig. 3b .
  • the antenna AE3 then resonates at a high frequency defined mainly by the slot space OP of length L1.
  • the elements defining this topology are determined so that this frequency is between 1710 and 1880 MHz, thus covering the GSM1800 mode.
  • the antenna AE3 also resonates at a low frequency defined in particular by the surface delimited by the longest path PA3 connecting the excitation point PE to the mass point PM, that is to say by the radiation surface S recessed from a slot space OP of length L1.
  • the second of these four modes of operation corresponds to the case where the switching element SW 1 is in a closed state while the switching element SW 2 is in an open state.
  • the equivalent topology of the AE3 antenna is that represented by the Fig. 3c .
  • the antenna AE3 then resonates at a low frequency defined in particular by the surface delimited by the longest path PA4 connecting the excitation point PE to the mass point PM, that is to say by the radiation surface S.
  • the elements defining this topology are determined so that this low frequency is included in the bandwidth of frequencies between 823 and 960 MHz, thus covering the GSM 800 and the GSM 900.
  • the third of these four operating modes corresponds to the case where the two polarization switching elements SW 1 and SW 2 are in a closed state.
  • the equivalent topology of the antenna AE3 is then that which is represented at the Fig. 3c described above, identical to the previous case.
  • the fourth and last mode of operation corresponds to the case where the switching element SW 1 is in the open state and the switching element SW 2 is in a closed state.
  • the equivalent topology of the antenna AE 2 is that represented by the Fig. 3d .
  • the antenna AE3 then resonates at a high frequency defined mainly by the slot space OP of length L2 shorter than the L1 length so that the high frequency is now higher than the high frequency obtained according to the first mode, for example between 1850 and 1990 MHz, thus covering the GSM 1900.
  • the antenna AE3 also resonates at a low frequency defined in particular by the surface delimited by the longest path PA5 connecting the excitation point PE to the mass point PM, that is to say by the radiation surface S recessed from the slot space OP of length L2.
  • the Fig. 3rd represents, as a function of frequency, the TOS of this quad-band antenna AE3 shown in FIG. Fig. 3a . It can be noted that this antenna covers the four GSM modes.
  • the TOS at the edge of low frequency bands is high in absolute value, of the order of -6 dB.
  • the TOS at the edge of the high frequencies is low in absolute value, of the order of -4 dB.
  • an antenna such as the antenna AE3 shown in FIG. Fig. 3a operates in four modes.
  • the first and fourth modes decouple the adjustment of the high frequencies from each other and the second (or third) mode allows decoupling the adjustment of the low frequencies from the adjustment of the high frequencies.
  • the TOS rate bordering low frequency bands is excellent.
  • the Fig. 4a represents a switchable multi-band antenna according to a second embodiment of the invention.
  • the antenna AE4 comprises a radiation surface S intended to be subjected to an RF radiofrequency signal at a PE excitation point and a PLM ground plane intended to be connected to a transmission potential. mass at a mass point PM and situated parallel to and at a distance from the radiation surface S.
  • the zones Z 2 and Z 3 are located respectively on either side of the subzone Z 11 .
  • the zones Z 1 , Z 2 , Z 11 and Z 12 are substantially rectangular in shape and are spaced apart from one another. This results in the formation of a gap OP forming a single opening slot at its two ends between, on the one hand, the sub-zone Z 12 and, on the other hand, the two zones Z 2 and Z 3 and the sub-zone Z 12. -zone Z 11 . This also results in the formation of a space E 1 between the zone Z 2 and the sub-zone Z 11 and a space E 2 between the zone Z 3 and the subfield Z 11 . In addition, another space OP1 forming a slot opening on the OP space is practiced in the sub-area Z 12 .
  • the Z sub-zone 11 is radiofrequency-coupled to the zone Z 2 by radiofrequency coupling elements C 1 and C 2 , shunting the space E 1 and is coupled to the zone Z 3 by radiofrequency coupling elements C 3 and C 4 , shunting the space E 2 . From a continuous point of view, these zones Z 2 , Z 11 and Z 3 are isolated from each other.
  • Zone Z2 is subjected to an RF radiofrequency signal which is applied at a PE excitation point while Z sub-zone 11 is connected to the ground potential at a mass point PM.
  • the space OP is traversed by two polarization switching elements SW 1 and SW 2 at each of its ends.
  • the cathode of each of them is connected to the subzone Z 12 .
  • the anode of the polarization switching element SW 1 is connected to the zone Z 2 and the anode of the polarization switching element SW 2 is connected to the zone Z 3 .
  • the subfield Z 11 is connected to the sub-area Z 12 by a continuous connection element IE 1 passing through the slot OP space, for example of the inductive type, the function of which is to put the two sub-zones Z 11 and Z 12 at the same DC potential (or very low frequency compared to the operating frequency of the antenna), and isolate them from each other in the operating frequencies of the antenna.
  • the cathode of each of the polarization switching elements SW 1 and SW 2 is at a continuous potential whose value is equal to that of the continuous potential of the sub-area Z 12 , ie to the potential of mass to which Subfield Z 11 is subject.
  • Zone Z 2 is subjected to a bias potential Si 1 at a control point PC 1 , which, in the embodiment shown, is superimposed on the excitation point PE.
  • Zone Z 3 is itself subjected to a bias potential Si 2 at a control point PC 2 , which is, from a radio frequency point of view, connected to the ground potential via a capacitor C m 1 and which is geometrically close to the mass point PM.
  • zones Z 2 and Z 3 are on both sides of the zone Z 11 implies that the points PC 1 and PC 2 (PE) are close to the point PM, allowing better impedance matching. of the antenna.
  • the polarization potentials Si1 and Si2 of the switching polarization elements SW 1 and SW 2 are distinct, so that four operating modes of antenna AE4 can be obtained by combining their respective open / closed states.
  • the first of these four modes of operation corresponds to the case where two switching elements SW 1 and SW 2 are in the closed state, so that the equivalent topology AE4 antenna is that which is shown in Fig. 4b .
  • the antenna AE4 then resonates at a low frequency defined in particular by the surface delimited by the longest path PA6 connecting the excitation point PE to the point of mass PM, that is to say by the radiation surface S.
  • the elements defining this topology are determined so that this frequency is between 823 and 960 MHz, thus covering GSM 800 and 900.
  • the second of these four modes of operation corresponds to the case where the switching element SW 1 is in the open state and the switching element SW 2 is in the closed state, so that the equivalent topology of the antenna AE4 is the one represented at Fig. 4c .
  • the antenna AE4 then resonates at a high frequency defined mainly by the slot OP space L1 length and slot OP1 space.
  • the elements defining this topology are determined so that this high frequency is between 1710 and 1910 MHz, thus covering the GSM 1800 and the transmission part of the GSM1900.
  • the antenna AE4 also resonates at a low frequency defined in particular by the surface delimited by the longest path PA7 between the excitation point PE and the mass point PM, that is to say by the radiation surface S recessed of the gap space OP of length L1 and slot space OP1.
  • the third of these four operating modes corresponds to the case where the switching element SW 1 is in the closed state and the switching element SW 2 is in the open state, so that the equivalent topology of the antenna AE 4 is substantially symmetrical to that which is represented at Fig. 4c in that the slot space OP is now shunted at the switching element SW 1 and no longer at the switching element SW 2 .
  • the fourth and last mode of operation corresponds to the case where the two switching elements SW 1 and SW 2 are in the open state, so that the equivalent topology of the antenna AE 4 is that represented by the Fig. 4d .
  • the antenna AE4 then resonates at a high frequency defined in particular by the surface delimited by the longest path PA8 between the excitation point PE and the mass point PM, that is to say by the area constituted by the zones Z 11 , Z 2 and Z 3 .
  • the elements defining this topology are determined so that this frequency is between 1920 and 2170, thus covering the UMTS and the reception part of the GSM 1900.
  • the Fig. 4th represents, as a function of frequency, the Rate of Standing Waves (TOS) of an AE4 antenna such as that represented in FIG. Fig. 4a . It can be noted that this antenna covers the four GSM modes and the UMTS mode.
  • the TOS rate at the edges of high frequency bands is high in absolute value, of the order of -6 dB, and of the order of -5 dB at the edge of the low frequency bands.
  • An antenna such as the antenna AE4 shown in FIG. Fig. 4a operates in four modes.
  • the second (or third) and fourth modes decouple the adjustment of the high frequencies between them and the first mode allows to decouple the adjustment of the low frequencies of the adjustment of the high frequencies.
  • the separation of the zone Z 1 into two sub-zones Z 11 and Z 12 and the introduction of a slot space OP 1 situated close to the edge of the radiation surface S makes it possible to obtain a high TOS in absolute value, of the order of -6 dB for low frequencies and a TOS of moderately high value in absolute value, of the order of -5 dB for high frequencies.
  • the Fig. 5a represents a switchable multiband antenna AE5 according to a third embodiment of the invention.
  • the antenna AE5 comprises a radiation surface S intended to be subjected to an RF radio frequency signal at a PE excitation point and a PLM ground plane intended to be connected to a potential of a weight mass PM and located parallel to and at a distance from the radiation surface S.
  • the radiation surface S is of substantially rectangular shape and consists essentially of a first zone Z 1 subdivided, like the preceding embodiment, in two sub-zones Z 11 and Z 12 , of a second zone Z 2 which, now itself is subdivided into a sub-zone Z 21 and a second sub-zone Z 22 , and of a third zone Z 3 .
  • the Z 21 subzone and the Z 3 zone are located on either side of the Z 11 sub-zone, producing the same advantage as that mentioned above in relation to the zones Z 11 , Z 2 and Z 3 of the previous embodiment.
  • Subzone Z 12 is U-shaped within which subzone Z 22 is located . Areas Z 11, Z 12, Z 21, Z 22 and Z 3 are substantially rectangular and are spaced from each other.
  • a slot OP opening at its two ends between, on the one hand, the sub-area Z 12 and the sub-area Z 22 and, on the other hand, the zone Z 3 and the sub-areas Z 11 and Z 21 , the formation of a space E 1 between the sub-zone Z 11 and the subfield Z 21 , the formation of a space E 2 between the sub-zone zone Z 11 and the zone Z 3 , and the formation of a space E 3 between the sub-area Z 22 and two of the three sides of the U-shape of the sub-area Z 12 .
  • the subzone Z 12 is hollowed out of another gap OP1 forming slot opening on the slot space OP and along the third side of the U-shaped sub-area Z 12 .
  • Subzone Z 11 is radiofrequency coupled to sub-area Z 21 by radio frequency coupling elements C 1 and C 2 , shunting space E 1 , and is coupled to zone Z 3 by radiofrequency coupling elements C 3 and C 4 , shunting the space E 2 .
  • Subfield Z 12 and subfield Z 22 are radiofrequency coupled by radiofrequency coupling elements C 5 , C 6 and C 7 , shunting the space E 3 .
  • Subfield Z 21 is subjected to an RF radiofrequency signal which is applied at a PE excitation point while subfield Z 11 is connected to the ground potential at a mass point PM.
  • Subfield Z 11 is connected to sub-area Z 12 by a continuous connection element IE 1 passing through slot space OP.
  • Subfield Z 21 is connected to sub-area Z 22 by a continuous connecting element IE 2 also passing through slot space OP.
  • the two sub-zones Z 11 and Z 12 are at the same DC potential (or very low frequency compared to the operating frequency of the antenna) and are isolated from each other in the operating frequencies of the antenna. It is the same zones Z 21 and Z 22 .
  • the space OP is crossed at one of its emergent ends by a polarization switching element SW 2 whose anode is connected to the zone Z 3 and the cathode is connected to the subarea Z 12 .
  • the open end of the space OP1 is crossed by another polarization switching element SW 1 whose anode is connected to the Z sub-zone 22 and the cathode is connected to the sub-zone Z 12 .
  • Subfield Z 21 is subjected to a bias potential Si 1 at a control point PC 1 , which, in the embodiment shown, is superimposed on the excitation point PE.
  • This polarization potential is thus applied to the anode of the switching element SW 1 and, through the connecting element IE 2 , the cathode of said switching element SW 1 being at the ground potential, through the sub-zone Z 12 , the connecting element IE 1 and the sub-zone Z 11 as explained previously in FIG. Fig. 4a .
  • zone Z 3 is subject to a potential of polarization Si 2 at a control point PC 2 which is therefore applied to the anode of the switching element SW 2 , the cathode of which is at a ground potential via the sub-area Z 12 , of the link element IE 1 and subfield Z 11 .
  • the point PC 2 is, from a radio frequency point of view, connected to the ground potential via a capacitor C m 1 and is geometrically close to the mass point PM.
  • the polarization potentials Si 1 and Si 2 of the switching polarization elements SW 1 and SW 2 are distinct, so that four operating modes of the antenna AE 5 can be obtained by combining their respective open / closed states.
  • the first of these four operating modes corresponds to the case where the two switching elements SW 1 and SW 2 are in the closed state, so that the equivalent topology of the antenna AE5 is that represented in FIG. Fig. 5b .
  • the antenna then resonates at a low frequency defined in particular by the surface delimited by the longest path PA9 connecting the excitation point PE to the mass point PM, that is to say by the radiation surface S recessed from the OP gap forming slot L1 length.
  • the elements defining this topology are determined so that this frequency is between 823 and 960 MHz, thus covering the GSM 800 and 900.
  • the antenna AE5 also resonates at a high frequency defined mainly by the OP space forming a slot of length L1.
  • the elements defining this topology are determined so that this frequency is between 1850 and 1990 MHz, thus covering the GSM 1900.
  • the second of these four modes of operation corresponds to the case where the switching element SW 1 is in the open state and the switching element SW 2 is in the closed state, so that the equivalent topology of the antenna AE5 is the one represented at Fig. 5c .
  • the antenna AE5 then resonates at a high frequency defined mainly by the slit consisting of the slot OP space and the slot space OP1 L2 length longer than the length L1 of the gap OP space so well. that the high frequency is now lower than the high frequency obtained according to the first mode, for example between 1710 and 1880 MHz, thus covering the GSM 1800.
  • the AE5 antenna also resonates at a low frequency defined in particular by the surface delimited by the longest path PA10 between the excitation point PE and the mass point PM, that is to say by the surface of radiation S recessed from the slot space OP and slot space OP1.
  • the third of these four modes of operation corresponds to the case where the two switching elements SW 1 and SW 2 are in the open state, so that the equivalent topology of the antenna AE5 is that represented in FIG. Fig. 5d .
  • the antenna AE5 then resonates at a high frequency defined by the area delimited by the longest path PA11 between the excitation point PE and the mass point PM, that is to say by the surface constituted by the sub- zones Z 21 and Z 11 and zone Z3.
  • the elements defining this topology are determined so that this frequency is between 1920 and 2170 MHz, thus covering the UMTS mode.
  • the fourth and last mode of operation corresponds to the case where the polarized switching element SW 1 is in the closed state and the polarization switching element SW 2 is in the open state, so that the equivalent topology of the AE5 antenna is the one equivalent to that represented in Fig. 5d already commented previously.
  • the Fig. 5th represents, as a function of frequency, the Stationary Waveband Rate (TOS) of this AE5 straight-band antenna shown in FIG. Fig. 5a . It can be noted that this antenna covers the four GSM modes and the UMTS. In addition, the fact that the slot-forming space OP is crossed by only one polarization switching element, namely SW 1, the TOS edge of frequency bands is higher in absolute value, of the order -6 dB, whether for low frequencies or for high resonance frequencies.
  • TOS Stationary Waveband Rate
  • an antenna such as the antenna AE5 shown in FIG. Fig. 5a operates in four modes.
  • the first, second and third (or fourth) modes are used to decouple the adjustment of the high frequencies from one another and the first mode makes it possible to decouple the adjustment of the low frequencies from the adjustment of certain high frequencies.
  • Zone Z 1 subdivided into two subzones Z 11 and Z 12 constitutes a first mode of application of this principle.
  • zone Z 2 subdivided into two sub-zones Z 21 and Z 22 It will be understood that the subdivision in question could be done in more than two sub-areas.
  • another gap-forming space OP2 is advantageously made in the zone Z 1 according to the first embodiment of the antenna described in connection with FIG. Fig. 3a , where in the subzone Z 12 according to the two other embodiments described in relation to the Figs. 4a and 5a .
  • the slot space OP2 makes it possible to adjust resonant frequencies belonging to frequency bands having a high band edge TOS.
  • the Fig. 6 represents this slot space OP2, in the case of the first embodiment of the antenna AE1 described in connection with the Fig. 3a .
  • each polarization switching element SW 1 or SW 2 is associated with an element, generally inductive, whose impedance is given to the parasitic impedance of the element. polarization switching when the latter is in a closed state.
  • the Fig. 7 represents a polarization switching element SW i associated with a tuned impedance element A consisting of an inductor 1 in series with a capacitive element CA. The impedance of this inductance 1 is given to the impedance of the parasitic capacitance of the switching element SW i when the latter is in its open state.
  • the AC capacitance generally of greater value than that of the switching element, continuously decouples the tuned impedance element A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

  • La présente invention concerne une antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et un terminal de communication mobile comportant cette antenne.
  • En matière de téléphonie mobile, plusieurs standards existent. Le plus diffusé à l'heure actuelle est le système de téléphonie mobile GSM (Global System for Mobile Communication: système global de communication mobile). Il a été établi dans le cadre de l'ETSI (European Telecommunications Standards Institute). En ce qui concerne la présente invention, il prévoit notamment la transmission sur une bande de fréquences comprises ente 880 et 960 MHz (pour le système GSM dit GSM 900) et sur une bande de fréquences comprises entre 1710 et 1880 MHz (pour le système dit GSM1800 ou encore DCS comme Digital Communication System: système de communication mobile). Ce standard est tout particulièrement utilisé en Europe, en Afrique, au Moyen-Orient et en Asie.
  • Deux variantes du GSM 1800 et du GSM 900 de ce système GSM standardisé, essentiellement utilisées sur le continent Nord-américain, existent respectivement, la première, sous le nom de GSM1900 ou PCS (Personal Communication System: système de communication personnelle) du fait qu'il prévoit la transmission sur une bande de fréquences comprises entre 1850 et 1990 MHz et, la seconde, sous le nom de GSM 850 ou GSM 800 pour la transmission sur une bande de fréquences comprises entre 823 et 894 MHz.
  • Il existe également un standard dit de 3ième génération et appelé UMTS (Universal Mobile Telecommunications System: système universel de communication mobile). Sa bande de fréquences de transmission est supérieure à celles du standard GSM.
  • De par la multiplicité de ces standards et devant la demande très forte des usagers de pouvoir communiquer à partir de leur terminal mobile quel que soit l'endroit où ils se trouvent sur la planète, les équipements radio des terminaux mobiles d'aujourd'hui permettent d'envoyer et de recevoir selon plusieurs de ces standards. Ainsi, les équipements radio des terminaux dits bi-bande permettent d'envoyer et de recevoir dans les bandes de fréquences du GSM 900 et du GSM 1800, ceux des terminaux dits tri-bande permettent d'envoyer dans les bandes de fréquences du GSM 900, du GSM1800 et du GSM1900 et ceux des terminaux dits quadri-bande dans les quatre bandes de fréquence mentionnées ci-dessus.
  • Pour les mêmes raisons que celles évoquées ci-dessus, les terminaux qui supportent le système UMTS de 3ième génération doivent comporter des équipements radio qui puissent émettre et recevoir à la fois dans les bandes de fréquence du système de téléphonie mobile GSM et dans celles du système de téléphonie UMTS. Ainsi, ils doivent comporter, entre autres, des équipements radiofréquence pouvant émettre et recevoir des fréquences basses situées dans les bandes de fréquences respectivement du GSM 800 et du GSM 900, des fréquences hautes situées dans les bandes de fréquences respectivement du GSM 1800 et du GSM 1900 ainsi que des fréquences très hautes situées dans la bande de fréquences du système UMTS.
  • Parmi les équipements radiofréquence utilisés dans les terminaux mobiles, l'antenne est un élément dont les caractéristiques sont primordiales au bon fonctionnement du reste du terminal. Il est connu d'utiliser des antennes de type PIFA (Planar Inverted Folded Antenna : Antenne plane repliée et inversée) qui offrent de bonnes performances de rayonnement en champ lointain ainsi qu'une diminution du rayonnement local en champ proche comparé à celui des classiques antennes fouet ou hélicoïdales. De manière générale, une antenne de type PIFA est constituée d'un plan de masse et d'une surface de rayonnement située à distance de ce plan de masse. La surface est généralement évidée en un ou plusieurs endroits de manière à former des fentes. Une telle antenne résonne selon une ou plusieurs fréquences dont la ou les valeurs sont déterminées par les dimensions de la surface de rayonnement, par la position et par les dimensions de la ou desdites fentes, par le positionnement de ces fentes les unes par rapport aux autres, etc.
  • Pour qu'une antenne du type PIFA soit performante sur plusieurs bandes de fréquences, il est connu de faire recours à des éléments de commutation qui permettent d'adapter sa topologie selon qu'elle fonctionne dans une bande de ' fréquences, par exemple basses, ou dans une autre, par exemple hautes. Une telle antenne, dans un mode de réalisation connu, comporte une fente qui débouche sur un bord de sa surface rayonnante et qui est court-circuitée en un point de sa longueur par un élément de commutation. Il en résulte que, selon l'état ouvert ou fermé de cet élément de commutation, la longueur effective de la fente, c'est-à-dire la longueur de la fente intervenant dans la détermination des fréquences de résonance de l'antenne, peut prendre deux valeurs distinctes. Par exemple, un tel élément de commutation va permettre de modifier, par commutation, les fréquences de résonance hautes de l'antenne.
  • L'art antérieur US 6,501,427 décrit une antenne patch multi fréquences ayant plusieurs zones périfériques pouvant êtres commutées à une zone centrale d'alimentation.
  • La Fig. la représente l'exemple d'une antenne PIFA multibande commutable tel qu'elle vient d'être décrite. Cette antenne AE1 comporte un plan de masse PLM et une surface dite de rayonnement S située parallèlement et à distance du plan de masse PLM. Cette surface de rayonnement S est fendue par un espace formant fente OP, débouchant en un bord de la surface de rayonnement S. La surface de rayonnement S est reliée au potentiel de masse du plan de masse PLM par l'intermédiaire d'un point PM dit point de masse et en un point d'excitation PE pour y être excitée par un signal radio-fréquence RF. L'espace formant fente OP est shunté, à une distance prédéterminée du bord débouchant de la fente OP, par un élément de commutation SW présentant deux états de fonctionnement : un état ouvert où l'impédance à ses bornes est élevée et un état fermé où l'impédance à ses bornes est faible créant un shunt, à son niveau, de la fente OP.
  • A l'état ouvert, l'élément de commutation SW est sans effet, si bien que la topologie équivalente de l'antenne AE1 est celle qui est représentée par la Fig. 1b. L'antenne AE1 résonne alors selon une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA1 reliant le point d'excitation PE au point de masse PM, c'est-à-dire par le chemin délimitant la surface de rayonnement S et l'espace formant fente OP de longueur totale L1. Par exemple, les éléments définissant cette topologie, en particulier la longueur de l'espace formant fente et les dimensions de la surface de rayonnement S, sont déterminés de sorte que cette fréquence basse soit comprise entre 823 et 894 MHz, couvrant ainsi le mode GSM 800. L'antenne AE1 résonne également à une fréquence haute définie principalement par l'espace formant fente OP de longueur L1. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence haute soit comprise entre 1710 et 1880 MHz, couvrant ainsi le mode GSM1800.
  • A l'état fermé, l'élément de commutation SW shunte l'espace formant fente OP à la longueur L2 du bord de la surface rayonnante S si bien que la topologie équivalente de l'antenne AE1 est maintenant celle qui est représentée à la Fig. 1c. Dans ce cas, l'antenne AE1 résonne alors selon une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA2 reliant le point d'excitation PE au point de masse PM plus court que le chemin PA1, si bien que cette fréquence est plus haute que précédemment : elle est maintenant comprise entre 880 et 960 MHz couvrant ainsi le GSM 900. L'antenne AE1 résonne également à une fréquence haute définie principalement par l'espace formant fente OP de longueur effective L2 plus courte que la longueur L1 si bien que la fréquence haute est maintenant plus haute, par exemple comprise entre 1850 et 1990 MHz, couvrant ainsi le mode GSM1900.
  • Ainsi, l'antenne AE1 telle que représentée à la Fig. 1a résonne dans deux bandes de fréquences basses situées, par exemple, autour de 800 et 900 MHz et deux bandes de fréquences hautes autour de 1800 et 1900 MHz.
  • Par ailleurs, pour évaluer les performances d'une antenne, il est courant de mesurer le Taux d'Ondes Stationnaires (TOS), c'est-à-dire le rapport de l'amplitude d'une onde émise par cette antenne à une fréquence donnée par l'amplitude de cette même onde réfléchie sur un corps extérieur. La mesure du TOS permet de connaître les pertes par désadaptation en puissance de l'antenne. Par exemple, un TOS de - 4 décibels (dB) en bordure de bandes correspond à une perte de 40% de la puissance de l'antenne. Dans ce cas, le fonctionnement de l'antenne est fortement perturbé par l'environnement proche, tel que le rapprochement d'un doigt de l'antenne. Un TOS est considéré comme convenable à une fréquence donnée dès lors qu'il est inférieur en valeur absolue à la valeur de - 5 dB (30% de perte).
  • La Fig. 1d représente en fonction de la fréquence le taux d'ondes stationnaires (TOS) d'une l'antenne AE1 quadri-bande telle que celle qui est représentée à la Fig. la. On peut remarquer que cette antenne couvre les quatre modes GSM. Cependant, le TOS en bordure des bandes hautes et basses est de l'ordre de -4 dB. Cette perte importante est le résultat de la conception de l'antenne où chaque mode de fonctionnement donné par un état de l'élément de commutation est tel qu'une fréquence basse est associée à une fréquence haute, association nécessitant un compromis entre la définition de la topologie de l'antenne et la valeur du TOS de cette antenne. En effet, dans l'exemple de l'antenne donnée à la Fig. 1a, l'espace formant fente OP est positionné à proximité du point d'excitation PE, ce qui privilégie un ' ajustement convenable des valeurs des fréquences hautes. Par contre, cette disposition est préjudiciable à la largeur des bandes passantes pour les fréquences basses qui nécessiteraient, elles, que cet espace formant fente OP soit éloigné le plus possible de ce point d'excitation PE.
  • Ainsi, le but de l'invention est de définir une antenne multi-bande commutable dont la structure est telle qu'elle permet de découpler l'ajustement de ses fréquences basses de résonance de l'ajustement de ses fréquences hautes de résonance mais aussi de découpler les ajustements des fréquences hautes de résonance entre elles tout en conservant une valeur du TOS en bordure de bandes qui soit relativement élevé en valeur absolue.
  • Pour ce faire, la présente invention concerne une antenne comportant un plan de masse destiné à être à un potentiel de masse et une surface de rayonnement destinée à être soumise à un signal radiofréquence en un point d'excitation et à être reliée audit plan de masse en un point de masse. Elle est caractérisée en ce que ladite surface de rayonnement est constituée d'une première zone incluant ledit point de masse, d'une seconde zone incluant ledit point d'excitation et d'au moins une autre zone supplémentaire, lesdites zones étant isolées les unes des autres en continu et couplées à la fréquence de fonctionnement de ladite antenne au niveau d'espaces formés entre elles à l'exception d'au moins un espace formant fente, et en ce que ladite antenne comprend un premier élément de commutation par polarisation dont une première borne est reliée à ladite première zone et la seconde borne à ladite deuxième zone et d'au moins un autre élément de commutation par polarisation dont une première borne est reliée à ladite première zone et la seconde borne à l'une des autres zones supplémentaires, ladite seconde zone et ladite ou lesdites autres zones supplémentaires étant destinées à être respectivement soumises à des potentiels de polarisation desdits éléments de commutation pour commander l'état de commutation desdits éléments de commutation correspondants, chaque élément de commutation traversant ledit ou un desdits espaces formant fente.
  • Selon un mode de réalisation, lesdits éléments de commutation sont des diodes, les bornes desdits éléments de commutation reliées à ladite première zone étant la cathode et les autres bornes reliées à ladite deuxième zone ou à l'une desdites autres zones supplémentaires étant l'anode.
  • Avantageusement, l'agencement de la zone relativement à ladite ou à chaque zone supplémentaire est telle que le point d'application du potentiel de polarisation de l'élément de commutation correspondant est proche géographiquement dudit point de masse.
  • Selon un premier mode de réalisation de la présente invention, l'espace formant fente débouche par une de ses extrémités sur un bord de la surface de rayonnement, ledit premier élément de commutation traverse ledit espace formant fente au niveau de ladite extrémité, et un second élément de commutation traverse ledit espace à distance de ladite extrémité.
  • Selon un deuxième mode de réalisation de la présente invention, l'espace formant fente débouche par ses deux extrémités sur deux bords de la surface de rayonnement, ledit premier élément de commutation et un second élément de commutation traversent ledit espace respectivement au niveau desdites extrémités.
  • Avantageusement, au moins une desdites zones est subdivisée en au moins deux sous-zones séparées entre elles par un espace formant une fente ou une partie de fente et reliées entre elles par un élément de liaison de composante continue.
  • Selon un troisième mode de réalisation de la présente invention, une zone autre que la première zone est subdivisée en une première sous-zone et une seconde sous-zone séparées entre elles par un espace formant une fente ou une partie de fente et reliées entre elles par un élément de liaison de composante continue, ladite première zone est évidée d'un autre espace formant fente débouchant sur ledit espace formant fente et ladite seconde sous-zone de ladite zone subdivisée jouxte ladite fente, et un élément de commutation traverse ledit autre espace formant fente, son anode étant reliée à la seconde sous-zone de ladite zone subdivisée et sa cathode à ladite première zone.
  • Selon une variante de l'un des modes de réalisation de la présente invention, chacun des éléments de commutation est une diode et un élément d'impédance accordée à l'impédance parasite de diode est associée en parallèle à chacun des éléments de commutation.
  • Selon une autre variante de l'un des modes de réalisation de la présente invention, le point de commande de la ou chaque zone supplémentaire est relié au potentiel de masse par l'intermédiaire d'un élément capacitif.
  • Selon une autre variante de l'un des modes de réalisation de la présente invention, le signal de polarisation appliqué à la deuxième zone est superposé au signal radio fréquence.
  • Selon une réalisation de l'invention, lesdites zones sont couplées à la fréquence de fonctionnement de ladite antenne par des condensateurs réalisés par chevauchement partiel sans contact desdites zones.
  • La présente invention concerne également un terminal de communication mobile qui est caractérisé en ce qu'il comporte une antenne définie ci-dessus.
  • Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels:
    • La Fig. 1a représente une antenne quadri-bandes de l'état de la technique.
    • Les Fig. 1b-c représentent les deux modes de fonctionnement d'une antenne quadri-bandes de l'état de la technique.
    • La Fig. 1d représente le TOS d'une antenne quadri-bande de d'état de la technique.
    • La Fig. 2 représente une antenne multi-bande commutable selon l'invention.
    • La Fig. 2a représente une réalisation d'un élément de couplage radiofréquence entre deux zones.
    • La Fig. 3a représente une antenne multi-bande commutable selon un premier mode de réalisation de l'invention.
    • Les Fig. 3b-d représentent les quatre modes de fonctionnement de l'antenne représentée à la Fig. 3a.
    • La Fig. 3e représente le TOS de l'antenne multi-bande représentée à la Fig 3a.
    • La Fig. 4a représente une antenne multi-bande commutable selon un deuxième mode de réalisation de l'invention.
    • Les Fig. 4b-d représentent les quatre modes de fonctionnement de l'antenne représentée à la Fig. 4a.
    • La Fig. 4e représente le TOS de l'antenne multi-bande représentée à la Fig 4a.
    • La Fig. 5a représente une antenne multi-bande commutable selon un troisième mode de réalisation de l'invention.
    • Les Fig. 5b-d représentent quatre modes de fonctionnement de l'antenne représentée à la Fig. 5a.
    • La Fig. 5e représente le TOS de l'antenne multi-bande représentée à la Fig 5a.
    • La Fig. 6 représente une variante de l'un des modes de réalisation de la présente invention.
    • La Fig. 7 représente un élément de commutation associé à un élément d'impédance accordée.
  • La Fig. 2 représente une antenne multi-bande commutable AE2 selon l'invention. Elle comporte une surface de rayonnement S destinée à être soumise à un signal radiofréquence RF en un point d'excitation PE et un plan de masse PLM destiné à être relié à un potentiel de masse en un point de masse PM et situé parallèlement et à distance de la surface de rayonnement S. La surface de rayonnement S est constituée d'une première zone Z1 incluant le point de masse PM, d'une seconde zone Z2 incluant le point d'excitation PE et d'au moins une autre zone supplémentaire (ici n-2 zones respectivement notées Z3,...,Zn). Les zones Z1, Z2, Z3,...,Zn sont isolées les unes des autres en continu et couplées à la fréquence de fonctionnement de l'antenne AE2 au niveau d'espaces entre elles E1, E2,..., En-2 et En-1, à l'exception d'au moins un espace formant au moins une fente (ici, seul un espace formant fente OP). Le couplage radiofréquence entre deux zones Zi et Zj séparées entre elles par un espace Ei-1 est réalisé par des éléments de couplage radiofréquence C1, C2, C3, C4,...,Cp,Cq,...Cn-1, Cn, Cn+1, et Cn+2,... tels que des condensateurs, shuntant les espaces E1, E2,..., En-2 et En-1. Les valeurs de ces condensateurs sont telles qu'aux fréquences de fonctionnement de l'antenne, l'impédance de ces condensateurs est très faible et que l'on peut considérer que deux zones Zi et Zj séparées par un espace Ek, sont reliées entre elles au niveau des condensateurs shuntant l'espace Ek. Par contre, en continu, les zones Zi et Zj sont isolées l'une de l'autre.
  • On a représenté à la Fig. 2a un élément de couplage radiofréquence Ck de deux zones Zi et Zj se chevauchant partiellement et espacées l'une de l'autre par un espace E. Les zones Zi et Zj sont formées sur un même substrat SU.
  • L'antenne AE2 comprend également (n-1) éléments de commutation par polarisation SW1,...,SWn-1 traversant l'espace OP. Chacun de ces éléments de commutation par polarisation peut par exemple être une diode PIN. On rappelle que lorsqu'une différence de potentiel positive est appliquée entre les deux bornes appelées anode et cathode d'une diode, la diode est dite polarisée en direct et la diode est alors équivalente à une résistance très faible de l'ordre de 1 Ohm. De manière duale, lorsque cette différence de potentiel est négative, la diode est dite polarisée en inverse et est alors équivalente à une capacité de valeur très faible, de l'ordre de 0,1 pF, c'est-à-dire à une impédance très élevée pour les fréquences de fonctionnement de l'antenne.
  • La cathode de chacun des (n-1) éléments de commutation par polarisation SW1,...,SWn-1 est reliée à la première zone Z1 alors que l'anode est reliée à l'une des zones Z2,...,Zn. Les zones Z2,...,Zn sont destinées à être respectivement soumises à des potentiels de polarisation Si1,...,Sin-1 en des points respectifs appelés points de commande PC1,...,PCn-1 desdits éléments de commutation pour commander l'état de commutation (état fermé ou état ouvert) desdits éléments de commutation SW1,...,SWn-1. Ainsi, chacun des potentiels Si1,..., Sin-1 est appliqué à l'anode d'un élément de commutation SW1,...,SWn-1 et la cathode de ce dernier est au potentiel de la masse via la zone Z1. Par conséquent, chacun des (n-1) éléments de commutation par polarisation SWi est dans un état fermé dès que le potentiel de polarisation Sii est supérieur au potentiel de masse et dans un état ouvert dès que ce potentiel de polarisation est inférieur au potentiel de masse.
  • Selon un mode alternatif, l'anode de chacun des (n-1) éléments de commutation par polarisation SW1,...,SWn-1 est reliée à la première zone Z1 alors que la cathode est reliée à l'une des zones Z2,...,Zn. Ainsi, chacun des potentiels Si1,..., Sin-1 est appliqué à la cathode d'un élément de commutation SW1,...,SWn-1 et l'anode de ce dernier est au potentiel de la masse via la zone Z1. Par conséquent, chacun des (n-1) éléments de commutation par polarisation SWi est dans un état fermé dès que le potentiel de polarisation Sii est inférieur au potentiel de masse et dans un état ouvert dès que ce potentiel de polarisation est supérieur au potentiel de masse.
  • Les modes de réalisation de la présente invention sont décrits ci-dessous dans le cas où chacun des (n-1) éléments de commutation par polarisation SWi est dans un état fermé dès que le potentiel de polarisation Sii est supérieur au potentiel de masse et dans un état ouvert dès que ce potentiel de polarisation est inférieur au potentiel de masse. Cependant, on comprendra que l'invention porte également sur des modes de réalisation dans lesquels au moins un ou chaque élément de commutation par polarisation SWi est dans un état fermé dès que le potentiel de polarisation Sii est inférieur au potentiel de masse et dans un état ouvert dès que ce potentiel de polarisation est supérieur au potentiel de masse.
  • On notera que les potentiels de polarisation Si1,..., Sin-1 ont des fréquences de variation extrêmement basses à comparer aux fréquences de fonctionnement de l'antenne si bien qu'il est possible de considérer qu'ils sont continus.
  • La Fig. 3a représente une antenne multi-bande commutable selon un premier mode de réalisation de l'invention. L'antenne AE3 comporte une surface de rayonnement S destinée à être soumise à un signal radiofréquence RF en un point d'excitation PE et un plan de masse PLM destiné à être relié à un potentiel de masse en un point de masse PM et situé parallèlement et à distance de la surface de rayonnement S. La surface de rayonnement S est de forme sensiblement rectangulaire et est essentiellement constituée de trois zones Z1 Z2 et Z3 (n=3). La zone Z1 présente un évidement, par exemple de forme rectangulaire, dans lequel sont logées les zones Z2 et Z3, par exemple sensiblement de forme rectangulaire. Les zones Z1, Z2 et Z3 sont à distance les unes des autres et il en résulte la formation d'un espace OP formant une seule fente débouchante en une de ses extrémités entre, d'une part, un côté de l'évidement de la zone Z1 et, d'autre part, les deux zones Z2 et Z3, la formation d'un espace E1 entre les zones Z2 et Z3, ainsi que la formation d'un espace E2 entre le second côté de l'évidement de la zone Z1 et la zone Z3. La zone Z1 est destinée à être reliée au potentiel de masse en un point de masse PM et la zone Z2 est soumise à un signal radiofréquence RF qui est appliqué en un point d'excitation PE.
  • La zone Z3 est couplée, d'un point de vue radiofréquence, d'une part, à la zone Z2 par des éléments de couplage radiofréquence C1 et C2, shuntant l'espace E1 et, d'autre part, à la zone Z1 par des éléments de couplage radio fréquence C3 et C4, shuntant l'espace E2.
  • L'espace OP est traversé par deux éléments de commutation par polarisation SW1 et SW2 dont les cathodes sont reliées à la zone Z1. L'anode de l'élément de commutation par polarisation SW1 est reliée à la zone Z2 et l'anode de l'élément de commutation par polarisation SW2 est reliée à la zone Z3.
  • La zone Z2 est soumise à un potentiel de polarisation Si1 en un point de commande PC1, qui, dans le mode de réalisation représenté, est superposé au point d'excitation PE. Quant à la zone Z3, elle est soumise à un potentiel de polarisation Si2 en un point de commande PC2 qui est, d'un point de vue radiofréquence, relié au potentiel de masse par l'intermédiaire d'un condensateur Cm 1 et qui est géométriquement proche du point de masse PM.
  • Les potentiels de polarisation Si1 et Si2 des éléments de commutation SW1 et SW2 sont distincts si bien que quatre modes de fonctionnement de l'antenne AE3 peuvent être obtenus en combinant leurs états respectifs ouvert/fermé.
  • Le premier de ces quatre modes de fonctionnement correspond au cas où les deux éléments de commutation SW1 et SW2 sont dans un état ouvert, si bien que la topologie équivalente de l'antenne AE3 est celle qui est représentée à la Fig. 3b. L'antenne AE3 résonne alors selon une fréquence haute définie principalement par l'espace formant fente OP de longueur L1. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence soit comprise entre 1710 et 1880 MHz, couvrant ainsi le mode GSM1800. L'antenne AE3 résonne également selon une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA3 reliant le point d'excitation PE au point de masse PM, c'est-à-dire par la surface de rayonnement S évidée d'un espace formant fente OP de longueur L1.
  • Le deuxième de ces quatre modes de fonctionnement correspond au cas où l'élément de commutation SW1 est dans un état fermé alors que l'élément de commutation SW2 est dans un état ouvert. La topologie équivalente de l'antenne AE3 est celle qui est représentée par la Fig. 3c. L'antenne AE3 résonne alors selon une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA4 reliant le point d'excitation PE au point de masse PM, c'est-à-dire par la surface de rayonnement S. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence basse soit comprise dans la bande passante de fréquences comprises entre 823 et 960 MHz, couvrant ainsi le GSM 800 et le GSM 900.
  • Le troisième de ces quatre modes de fonctionnement correspond au cas où les deux éléments de commutation par polarisation SW1 et SW2 sont dans un état fermé. La topologie équivalente de l'antenne AE3 est alors celle qui est représentée à la Fig. 3c décrite ci-dessus, identique au cas précédent.
  • Le quatrième et dernier mode de fonctionnement correspond au cas où l'élément de commutation SW1 est dans l'état ouvert et l'élément de commutation SW2 est dans un état fermé. La topologie équivalente de l'antenne AE2 est celle qui est représentée par la Fig. 3d. L'antenne AE3 résonne alors selon une fréquence haute définie principalement par l'espace formant fente OP de longueur L2 plus courte que la longueur L1 si bien que la fréquence haute est maintenant plus haute que la fréquence haute obtenue selon le premier mode, par exemple comprise entre 1850 et 1990 MHz, couvrant ainsi le GSM 1900. L'antenne AE3 résonne également à une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA5 reliant le point d'excitation PE au point de masse PM, c'est-à-dire par la surface de rayonnement S évidée de l'espace formant fente OP de longueur L2.
  • La Fig. 3e représente en fonction de la fréquence le TOS de cette antenne quadri-bande AE3 représentée à la Fig. 3a. On peut remarquer que cette antenne couvre les quatre modes GSM. Le TOS en bordure de bandes de fréquences basses est élevé en valeur absolue, de l'ordre de -6 dB. Par contre, le TOS en bordure des fréquences hautes est faible en valeur absolue, de l'ordre de -4 dB.
  • Comme on vient de le voir, une antenne telle que l'antenne AE3 représentée à la Fig. 3a fonctionne selon quatre modes. Les premier et quatrième modes permettent de découpler l'ajustement des fréquences hautes entre elles et le deuxième (ou troisième) mode permet de découpler l'ajustement des fréquences basses de l'ajustement des fréquences hautes. De plus, de par la proximité géographique du point de commande PC1 et du point de masse PM, de la mise au potentiel de masse du point PC1, et de l'agencement des zones Z1, Z2 et Z3, le taux TOS en bordure de bandes de fréquences basses est excellent.
  • La Fig. 4a représente une antenne multi-bande commutable selon un deuxième mode de réalisation de l'invention. A l'instar de l'antenne précédente, l'antenne AE4 comporte une surface de rayonnement S destinée à être soumise à un signal radiofréquence RF en un point d'excitation PE et un plan de masse PLM destiné à être relié à un potentiel de masse en un point de masse PM et situé parallèlement et à distance de la surface de rayonnement S. La surface de rayonnement S est de forme sensiblement rectangulaire et est elle aussi constituée de trois zones Z1, Z2 et Z3 (n=3). La zone Z1 est maintenant subdivisée en une première sous-zone Z11 et en une deuxième sous-zone Z12. Les zones Z2 et Z3 sont respectivement situées de part et d'autre de la sous-zone Z11. Les zones Z1, Z2, Z11 et Z12 sont de forme sensiblement rectangulaires et sont à distance l'une d'une autre. Il en résulte la formation d'un espace OP formant une seule fente débouchante en ses deux extrémités entre, d'une part, la sous-zone Z12 et, d'autre part, les deux zones Z2 et Z3 et la sous-zone Z11. Il en résulte également la formation d'un espace E1 entre la zone Z2 et la sous-zone Z11 et d'un espace E2 entre la zone Z3 et la sous-zone Z11. De plus, un autre espace OP1 formant fente débouchante sur l'espace OP est pratiqué dans la sous-zone Z12.
  • Par ailleurs, la sous-zone Z11 est couplée, d'un point de vue radiofréquence, à la zone Z2 par des éléments de couplage radiofréquence C1 et C2, shuntant l'espace E1 et est couplée à la zone Z3 par des éléments de couplage radiofréquence C3 et C4, shuntant l'espace E2. D'un point de vue continu, ces zones Z2, Z11 et Z3 sont isolées les unes des autres.
  • La zone Z2 est soumise à un signal radiofréquence RF qui est appliqué en un point d'excitation PE alors que la sous-zone Z11 est reliée au potentiel de masse en un point de masse PM.
  • L'espace OP est traversé par deux éléments de commutation par polarisation SW1 et SW2 en chacune de ses extrémités. La cathode de chacun d'entre eux est reliée à la sous-zone Z12. L'anode de l'élément de commutation par polarisation SW1 est reliée à la zone Z2 et l'anode de l'élément de commutation par polarisation SW2 est reliée à la zone Z3.
  • La sous-zone Z11 est reliée à la sous-zone Z12 par un élément de liaison en continu IE1 traversant l'espace OP formant fente, par exemple du type inductif, dont la fonction est de mettre les deux sous-zones Z11 et Z12 à un même potentiel continu (ou de fréquence très basse comparée à la fréquence de fonctionnement de l'antenne), et de les isoler l'une de l'autre dans les fréquences de fonctionnement de l'antenne. Ainsi, la cathode de chacun des éléments de commutation par polarisation SW1 et SW2 est à un potentiel continu dont la valeur est égale à celle du potentiel continu de la sous-zone Z12, c'est-à-dire au potentiel de masse auquel est soumis la sous-zone Z11.
  • La zone Z2 est soumise à un potentiel de polarisation Si1 en un point de commande PC1, qui, dans le mode de réalisation représenté, est superposé au point d'excitation PE. La zone Z3 est, elle, soumise à un potentiel de polarisation Si2 en un point de commande PC2, qui est, d'un point de vue radiofréquence, relié au potentiel de masse par l'intermédiaire d'un condensateur Cm 1et qui est géométriquement proche du point de masse PM.
  • On notera que le fait que les zones Z2 et Z3 soient de part et d'autre de la zone Z11 implique que les points PC1 et PC2 (PE) soient proches du point PM, permettant une meilleure adaptation d'impédance de l'antenne.
  • Les potentiels de polarisation Si1 et Si2 des éléments de polarisation par commutation SW1 et SW2 sont distincts si bien que quatre modes de fonctionnement de l'antenne AE4 peuvent être obtenus en combinant leurs états respectifs ouvert/fermé.
  • Le premier de ces quatre modes de fonctionnement correspond au cas où les deux éléments de commutation SW1 et SW2 sont dans l'état fermé, si bien que la topologie équivalente de l'antenne AE4 est celle qui est représentée à la Fig. 4b. L'antenne AE4 résonne alors selon une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA6 reliant le point d'excitation PE au point ' de masse PM, c'est-à-dire par la surface de rayonnement S. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence soit comprise entre 823 et 960 MHz, couvrant ainsi le GSM 800 et 900.
  • Le deuxième de ces quatre modes de fonctionnement correspond au cas où l'élément de commutation SW1 est dans l'état ouvert et l'élément de commutation SW2 est dans l'état fermé, si bien que la topologie équivalente de l'antenne AE4 est celle qui est représentée à la Fig. 4c. L'antenne AE4 résonne alors selon une fréquence haute définie principalement par l'espace OP formant fente de longueur L1 et par l'espace OP1 formant fente. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence haute est comprise ente 1710 et 1910 MHz, couvrant ainsi le GSM 1800 et la partie émission du GSM1900. L'antenne AE4 résonne également à une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA7 entre le point d'excitation PE et le point de masse PM, c'est-à-dire par la surface de rayonnement S évidée de l'espace OP formant fente de longueur L1 et de l'espace formant fente OP1.
  • Le troisième de ces quatre modes de fonctionnement correspond au cas où l'élément de commutation SW1 est dans l'état fermé et l'élément de commutation SW2 est dans l'état ouvert, si bien que la topologie équivalente de l'antenne AE4 est sensiblement symétrique à celle qui est représentée à la Fig. 4c en ce sens que l'espace formant fente OP est maintenant shunté au niveau de l'élément de commutation SW1 et non plus au niveau de l'élément de commutation SW2.
  • Le quatrième et dernier mode de fonctionnement correspond au cas où les deux éléments de commutation SW1 et SW2 sont dans l'état ouvert, si bien que la topologie équivalente de l'antenne AE4 est celle qui est représentée par la Fig. 4d. L'antenne AE4 résonne alors selon une fréquence haute définie notamment par la surface délimitée par le plus long chemin PA8 entre le point d'excitation PE et le point de masse PM, c'est-à-dire par la surface constituée par les zones Z11, Z2 et Z3. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence soit comprise entre 1920 et 2170, couvrant ainsi l'UMTS et la partie réception du GSM 1900.
  • La Fig. 4e représente en fonction de la fréquence le Taux d'Ondes Stationnaires (TOS) d'une antenne AE4 telle que celle qui est représentée à la Fig. 4a. On peut remarquer que cette antenne couvre les quatre modes GSM et le mode UMTS. Le taux TOS en bordure de bandes de fréquences hautes est élevé en valeur absolue, de l'ordre de -6dB, et de l'ordre de -5dB en bordure des bandes de fréquences basses.
  • Une antenne telle que l'antenne AE4 représentée à la Fig. 4a fonctionne selon quatre modes. Les deuxième (ou troisième) et quatrième modes permettent de découpler l'ajustement des fréquences hautes entre elles et le premier mode permet de découpler l'ajustement des fréquences basses de l'ajustement des fréquences hautes. De plus, la séparation de la zone Z1 en deux sous-zones Z11 et Z12 et l'introduction d'un espace formant fente OP 1 situé proche du bord de la surface de rayonnement S permet d'obtenir un TOS élevé en valeur absolue, de l'ordre de -6 dB pour les fréquences basses et un TOS de valeur moyennement élevé en valeur absolue, de l'ordre de -5dB pour les fréquences hautes.
  • La Fig. 5a représente une antenne multi bande commutable AE5 selon un troisième mode de réalisation de l'invention. De la même manière que les modes de réalisation précédents, l'antenne AE5 comporte une surface de rayonnement S destinée à être soumise à un signal radiofréquence RF en un point d'excitation PE et un plan de masse PLM destiné à être relié à un potentiel de masse en un point de masse PM et situé parallèlement et à distance de la surface de rayonnement S. La surface de rayonnement S est de forme sensiblement rectangulaire et est essentiellement constituée d'une première zone Z1 subdivisée, à l'instar du mode de réalisation précédent, en deux sous-zones Z11 et Z12, d'une deuxième zone Z2 qui, maintenant est elle-même subdivisée en une sous-zone Z21 et en une deuxième sous-zone Z22, et d'une troisième zone Z3. La sous-zone Z21 et la zone Z3 sont situées de part et d'autre de la sous-zone Z11, produisant le même avantage que celui qui a été évoqué ci-dessus en relation avec les zones Z11, Z2 et Z3 du mode de réalisation précédent. La sous-zone Z12 est en forme de U à l'intérieur duquel est logée la sous-zone Z22. Les zones Z11, Z12, Z21, Z22 et Z3 sont de forme sensiblement rectangulaire et sont à distance les unes des autres. Il en résulte la formation d'un espace OP formant fente débouchante en ses deux extrémités entre, d'une part, la sous-zone Z12 et la sous-zone Z22 et, d'autre part, la zone Z3 et les sous-zones Z11 et Z21, la formation d'un espace E1 entre la sous-zone Z11 et la sous-zone Z21, la formation d'un espace E2 entre la sous-zone Z11 et la zone Z3, et la formation d'un espace E3 entre la sous-zone Z22 et deux des trois côtés de la forme en U de la sous-zone Z12. De plus, la sous-zone Z12 est évidée d'un autre espace OP1 formant fente débouchante sur l'espace formant fente OP et longeant le troisième côté de la forme en U de la sous-zone Z12.
  • La sous-zone Z11 est couplée, d'un point de vue radiofréquence, à la sous-zone Z21 par des éléments de couplage radio fréquence C1 et C2, shuntant l'espace E1, et est couplée à la zone Z3 par des éléments de couplage radiofréquence C3 et C4, shuntant l'espace E2. La sous-zone Z12 et la sous-zone Z22 sont couplées d'un point de vue radiofréquence par des éléments de couplage radiofréquence C5, C6 et C7, shuntant l'espace E3.
  • La sous-zone Z21 est soumise à un signal radiofréquence RF qui est appliqué en un point d'excitation PE alors que la sous-zone Z11 est reliée au potentiel de masse en un point de masse PM.
  • La sous-zone Z11 est reliée à la sous-zone Z12 par un élément de liaison en continu IE1 traversant l'espace formant fente OP. La sous-zone Z21 est reliée à la sous-zone Z22 par un élément de liaison en continu IE2 traversant également l'espace formant fente OP. Ainsi, les deux sous-zones Z11 et Z12 sont à un même potentiel continu (ou à fréquence très basse comparée à la fréquence de fonctionnement de l'antenne) et sont isolées l'une de l'autre dans les fréquences de fonctionnement de l'antenne. Il en est de même des zones Z21 et Z22.
  • L'espace OP est traversé en une de ses extrémités débouchante par un élément de commutation par polarisation SW2 dont l'anode est reliée à la zone Z3 et la cathode est reliée à la sous-zone Z12. L'extrémité débouchante de l'espace OP1 est traversée quant à elle par un autre élément de commutation par polarisation SW1 dont l'anode est reliée à la sous-zone Z22 et la cathode est reliée à la sous-zone Z12.
  • La sous-zone Z21 est soumise à un potentiel de polarisation Si1 en un point de commande PC1, qui, dans le mode de réalisation représenté, est superposé au point d'excitation PE. Ce potentiel de polarisation est ainsi appliqué à l'anode de l'élément de commutation SW1 et, ce, par l'intermédiaire de l'élément de liaison IE2, la cathode dudit élément de commutation SW1 étant au potentiel de masse, par l'intermédiairede la sous-zone Z12, de l'élément de liaison IE1 et de la sous-zone Z11 comme expliqué précédemment à la Fig. 4a. De même, la zone Z3 est soumise à un potentiel de polarisation Si2 en un point de commande PC2 qui est donc appliqué à l'anode de l'élément de commutation SW2 dont la cathode est à un potentiel de masse par l'intermédiaire de la sous-zone Z12, de l'élément de liaison IE1 et de la sous-zone Z11. Le point PC2 est, d'un point de vue radiofréquence, relié au potentiel de masse par l'intermédiaire d'un condensateur Cm 1 et est géométriquement proche du point de masse PM.
  • Les potentiels de polarisation Si1 et Si2 des éléments de polarisation par commutation SW1 et SW2 sont distincts si bien que quatre modes de fonctionnement de l'antenne AE5 peuvent être obtenus en combinant leurs états respectifs ouvert/fermé.
  • Le premier de ces quatre modes de fonctionnement correspond au cas où les deux éléments de commutation SW1 et SW2 sont dans l'état fermé, si bien que la topologie équivalente de l'antenne AE5 est celle qui est représentée à la Fig. 5b. L'antenne résonne alors selon une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA9 reliant le point d'excitation PE au point de masse PM, c'est-à-dire par la surface de rayonnement S évidée de l'espace OP formant fente de longueur L1. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence soit comprise entre 823 et 960 MHz, couvrant ainsi le GSM 800 et 900. L'antenne AE5 résonne également selon une fréquence haute définie principalement par l'espace OP formant fente de longueur L1. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence soit comprise entre 1850 et 1990 MHz, couvrant ainsi le GSM 1900.
  • Le deuxième de ces quatre modes de fonctionnement correspond au cas où l'élément de commutation SW1 est dans l'état ouvert et l'élément de commutation SW2 est dans l'état fermé, si bien que la topologie équivalente de l'antenne AE5 est celle qui est représentée à la Fig. 5c. L'antenne AE5 résonne alors selon une fréquence haute définie principalement par la fente constituée de l'espace OP formant fente et de l'espace OP1 formant fente de longueur L2 plus longue que la longueur L1 de la fente de l'espace OP si bien que la fréquence haute est maintenant plus basse que la fréquence haute obtenue selon le premier mode, par exemple comprise entre 1710 et 1880 MHz, couvrant ainsi le GSM 1800. L'antenne AE5 résonne également selon une fréquence basse définie notamment par la surface délimitée par le plus long chemin PA10 entre le point d'excitation PE et le point de masse PM, c'est-à-dire par la surface de rayonnement S évidée de l'espace formant fente OP et de l'espace formant fente OP1.
  • Le troisième de ces quatre modes de fonctionnement correspond au cas où les deux éléments de commutation SW1 et SW2 sont dans l'état ouvert, si bien que la topologie équivalente de l'antenne AE5 est celle qui est représentée à la Fig. 5d. L'antenne AE5 résonne alors selon une fréquence haute définie par la surface délimitée par le plus long chemin PA11 entre le point d'excitation PE et le point de masse PM, c'est-à-dire par la surface constituée par les sous-zones Z21 et Z11 et la zone Z3. Par exemple, les éléments définissant cette topologie sont déterminés de sorte que cette fréquence est comprise entre 1920 et 2170 MHz, couvrant ainsi le mode UMTS.
  • Le quatrième et dernier mode de fonctionnement correspond au cas où l'élément de commutation par polarisation SW1 est dans l'état fermé et l'élément de commutation par polarisation SW2 est dans l'état ouvert, si bien que la topologie équivalente de l'antenne AE5 est celle équivalente à celle qui est représentée à la Fig. 5d déjà commentée précédemment.
  • La Fig. 5e représente en fonction de la fréquence le Taux d'Ondes Stationnaire (TOS) de cette antenne quinte-bandes AE5 représentée à la Fig. 5a. On peut remarquer que cette antenne couvre les quatre modes GSM et l'UMTS. De plus, du fait que l'espace formant fente OP ne soit traversé que par un seul élément de commutation par polarisation, en l'occurrence SW1, le TOS en bordure de bandes de fréquences est élevé en valeur absolue, de l'ordre de -6dB, que ce soit pour les fréquences basses ou pour les fréquences de résonance hautes.
  • Comme on vient de le voir, une antenne telle que l'antenne AE5 représentée à la Fig. 5a fonctionne selon quatre modes. Les premier, deuxième et troisième (ou quatrième) modes permettent de découpler l'ajustement des fréquences hautes entre elles et le premier mode permet de découpler l'ajustement des fréquences basses de l'ajustement de certaines fréquences hautes.
  • Comme on peut le constater à l'aulne des modes de réalisation précédents, il est du principe de l'invention de subdiviser une zone en deux sous-zones de manière à former entre elles un espace qui peut alors former une fente ou une partie d'une fente, lesdites deux sous-zones étant reliées l'une à l'autre par un élément de liaison en continu, tel qu'une inductance, pour qu'elles soient à un même potentiel continu. La zone Z1 subdivisée en deux sous-zones Z11 et Z12 constitue un premier mode d'application de ce principe. Il en est de même de la zone Z2 subdivisée en deux sous-zones Z21 et Z22. On comprendra que la subdivision en question pourrait se faire en plus de deux sous-zones.
  • Selon une variante de l'un des modes de réalisation de l'antenne décrits précédemment, un autre espace OP2 formant une fente est pratiqué avantageusement dans la zone Z1 selon le premier mode de réalisation de l'antenne décrit en relation avec la Fig. 3a, où dans la sous-zone Z12 selon les deux autres modes de réalisation décrits en relation avec les Figs. 4a et 5a. L'espace formant fente OP2 permet d'ajuster des fréquences de résonance appartenant à des bandes de fréquences ayant un TOS en bordure de bandes élevé. La Fig. 6 représente cet espace formant fente OP2, dans le cas du premier mode de réalisation de l'antenne AE1 décrit en relation avec la Fig. 3a.
  • Selon une autre variante de l'un des modes de réalisation décrits précédemment, chaque élément de commutation par polarisation SW1 ou SW2 est associé à un élément, généralement inductif, dont l'impédance est accordée à l'impédance parasite de l'élément de commutation par polarisation lorsque celui-ci est dans un état fermé. La Fig. 7 représente un élément de commutation par polarisation SWi associé à un élément d'impédance accordée A constitué d'une inductance 1 en série avec un élément capacitif CA. L'impédance de cette inductance 1 est accordée à l'impédance de la capacité parasite de l'élément de commutation SWi lorsque celui-ci est donc dans son état ouvert. La capacité CA, généralement de valeur plus importante que celle de l'élément de commutation, découple en continu l'élément d'impédance accordée A.

Claims (12)

  1. Antenne comportant un plan de masse (PLM) destiné à être à un potentiel de masse et une surface de rayonnement (S) destinée à être soumise à un signal radiofréquence en un point d'excitation (PE) et à être reliée audit plan de masse (PLM) en un point de masse (PM), ladite surface de rayonnement (S) est constituée d'une première zone (Z1) incluant ledit point de masse (PM), d'une seconde zone (Z2) incluant ledit point d'excitation (PE) et d'au moins une autre zone supplémentaire (Z3, Zn), lesdites zones (Z1, Z2, Z3, Zn) étant isolées les unes des autres en continu et couplées à la fréquence de fonctionnement de ladite antenne au niveau d'espaces formés entre elles, ladite antenne comprenant un premier élément de commutation par polarisation (SW1) dont une première borne est reliée à ladite première zone (Z1) et la seconde borne à ladite deuxième zone (Z2) et d'au moins un autre élément de commutation par polarisation (SW2, SWn-1) dont une première borne est reliée à ladite première zone (Z1) et la seconde borne à l'une des autres zones supplémentaires (Z3, Zn), ladite seconde zone (Z2) et ladite ou lesdites autres zones supplémentaires (Z3, Zn) étant destinées à être respectivement soumises à des potentiels de polarisation desdits éléments de commutation pour commander l'état de commutation desdits éléments de commutation (SW1, SW2, SWn-1) correspondants, caractérisée en ce que la première zone (Z1) présente un évidemment où sont logés ladite seconde zone (Z2) et ladite au moins une autre zone supplémentaire (Z3, Zn) et en ce qu'au moins un espace formant fente débouchante sans couplage à la fréquence de fonctionnement est délimité par au moins un bord de ladite première zone et au moins un bord de chaque zone supplémentaire et en ce que chaque élément de commutation (SW1, SW2, SWn-1) traverse ledit ou un desdits espaces formant fente.
  2. Antenne selon la revendication 1, caractérisée en ce que lesdits éléments de commutation sont des diodes, les bornes desdits éléments de commutation reliées à ladite première zone (Z1) étant la cathode et les autres bornes reliées à ladite deuxième zone (Z2) ou à l'une desdites autres zones supplémentaires (Z3, Zn) étant l'anode.
  3. Antenne selon la revendication 1 ou 2, caractérisée en ce que l'agencement de la zone (Z1) relativement à ladite ou à chaque zone supplémentaires (Z3, Zn-1) est telle que le point d'application du potentiel de polarisation de l'élément de commutation (SW) correspondant est proche géographiquement dudit point de masse (PM).
  4. Antenne selon l'une des revendications précédentes, caractérisée en ce que l'espace formant fente (OP) débouche par une de ses extrémités sur un bord de la surface de rayonnement (S), et en ce que ledit premier élément de commutation (SW1) traverse ledit espace formant fente (OP) au niveau de ladite extrémité, et un second élément de commutation (SW2) traverse ledit espace (OP) à distance de ladite extrémité.
  5. Antenne selon l'une des revendications 1 à 3, caractérisée en ce que l'espace formant fente (OP) débouche par ses deux extrémités sur deux bords de la surface de rayonnement (S), et en ce que ledit premier élément de commutation (SW1) et un second élément de commutation (SW2) traversent ledit espace (OP) respectivement au niveau desdites extrémités.
  6. Antenne selon une des revendications précédentes, caractérisée en ce qu'au moins une desdites zones (Z1, Z2, Z3, Zn) est subdivisée en au moins deux sous-zones (Z11, Z12, Z21, Z22) séparées entre elles par un espace formant une fente ou une partie de fente et reliées entre elles par un élément de liaison de composante continue.
  7. Antenne selon une des revendications précédentes, caractérisée en ce qu'une zone (Z2, Z3, Zn) autre que la première zone (Z1) est subdivisée en une première sous-zone (Z21) et une seconde sous-zone (Z22) séparées entre elles par un espace formant une fente ou une partie de fente et reliées entre elles par un élément de liaison de composante continue, en ce que ladite première zone (Z1) est évidée d'un autre espace formant fente (OP1) débouchant sur ledit espace formant fente (OP) et ladite seconde sous-zone de ladite zone subdivisée jouxtant ladite fente (OP1), et en ce qu'un élément de commutation traverse ledit autre espace formant fente (OP1), son anode étant reliée à la seconde sous-zone (Z22) de ladite zone subdivisée et sa cathode à ladite première zone (Z1).
  8. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que chacun des éléments de commutation est une diode et en ce qu'un élément d'impédance accordée à l'impédance parasite de diode est associé en parallèle à chacun des éléments de commutation.
  9. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que le point de commande (PC) de la ou chaque zone supplémentaire (Z3, Zn) est reliée au potentiel de masse par l'intermédiaire d'un élément capacitif.
  10. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que le potentiel de polarisation appliqué à la deuxième zone (Z2) est superposé au signal radio fréquence.
  11. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que, pour être couplées à la fréquence de fonctionnement de ladite antenne, deux zones (Z1, Z2, Z3, Zn) se chevauchent partiellement tout en étant espacées l'une de l'autre par un espace.
  12. Terminal de communication mobile, caractérisé en ce qu'il comporte une antenne selon l'une des revendications précédentes.
EP20060290344 2005-03-04 2006-02-28 Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne Active EP1699108B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0502219A FR2889361A1 (fr) 2005-03-04 2005-03-04 Antenne du type a surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication mobile comportant cette antenne
FR0503453A FR2889360B1 (fr) 2005-03-04 2005-04-07 Antenne du type a surface(s) rayonnantes(s) plane(s) communtable(s) et terminal de communication mobile comportant cette antenne

Publications (2)

Publication Number Publication Date
EP1699108A1 EP1699108A1 (fr) 2006-09-06
EP1699108B1 true EP1699108B1 (fr) 2010-04-07

Family

ID=36481396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060290344 Active EP1699108B1 (fr) 2005-03-04 2006-02-28 Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne

Country Status (4)

Country Link
EP (1) EP1699108B1 (fr)
DE (1) DE602006013370D1 (fr)
ES (1) ES2343690T3 (fr)
FR (1) FR2889360B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083284A1 (fr) * 2009-01-14 2010-07-22 Molex Incorporated Réseau d'antennes adaptatives
US9774072B2 (en) 2009-10-09 2017-09-26 Htc Corporation Housing, handheld device, and manufacturing method of housing
US8780007B2 (en) * 2011-05-13 2014-07-15 Htc Corporation Handheld device and planar antenna thereof
US9240627B2 (en) * 2011-10-20 2016-01-19 Htc Corporation Handheld device and planar antenna thereof
US9716307B2 (en) 2012-11-08 2017-07-25 Htc Corporation Mobile device and antenna structure
US9655261B2 (en) 2013-03-21 2017-05-16 Htc Corporation Casing of electronic device and method of manufacturing the same
CN104218330A (zh) * 2013-06-05 2014-12-17 中兴通讯股份有限公司 一种天线
EP2996191B1 (fr) 2014-09-11 2021-05-12 Neopost Technologies Antenne plane de lecteur RFID et assistant numérique personnel (PDA) RFID incorporant celle-ci

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2335798B (en) * 1998-03-26 2003-01-29 Nec Technologies Enhanced bandwidth antennas
US6198438B1 (en) * 1999-10-04 2001-03-06 The United States Of America As Represented By The Secretary Of The Air Force Reconfigurable microstrip antenna array geometry which utilizes micro-electro-mechanical system (MEMS) switches
US6501427B1 (en) * 2001-07-31 2002-12-31 E-Tenna Corporation Tunable patch antenna

Also Published As

Publication number Publication date
FR2889360A1 (fr) 2007-02-02
DE602006013370D1 (de) 2010-05-20
EP1699108A1 (fr) 2006-09-06
FR2889360B1 (fr) 2007-09-14
ES2343690T3 (es) 2010-08-06

Similar Documents

Publication Publication Date Title
EP1699108B1 (fr) Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne
EP1374340B1 (fr) Antenne commutee
EP0604338B1 (fr) Antenne large bande à encombrement réduit, et dispositf d'émission/réception correspondant
EP1569297B1 (fr) Antenne à très large bande V-UHF
WO2002007261A1 (fr) Antenne planaire multibandes
FR3070224A1 (fr) Antenne plaquee presentant deux modes de rayonnement differents a deux frequences de travail distinctes, dispositif utilisant une telle antenne
FR2905207A1 (fr) Filtre commutable a resonateurs.
FR2597266A1 (fr) Antenne a large bande
EP3352301A1 (fr) Antenne pour dispositif mobile de communication
EP1540768B1 (fr) Antenne helicoidale a large bande
EP1701406B1 (fr) Antenne planaire dont les dimensions du plan de masse sont modifiables
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
FR2889361A1 (fr) Antenne du type a surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication mobile comportant cette antenne
WO2012089619A1 (fr) Filtre variable par condensateur commute au moyen de composants mems
EP0991135B1 (fr) Antenne sélective à commutation en fréquence
EP3644437A1 (fr) Antenne pour dispositif mobile de communication
FR2828624A1 (fr) Systeme d'emission/reception pour telephone mobile multibande et multimode
FR2967537A1 (fr) Antenne compacte adaptable en impedance
EP1548877B1 (fr) Antenne à surface(s) rayonnante(s) plane(s) multibande et téléphone portable comportant une telle antenne
EP1956682B1 (fr) Antenne monopôle à commutation
EP1283600A1 (fr) Système d'émission/réception pour téléphone mobile multibande et multimode
EP1249889B1 (fr) Filtre hyperfréquence à résonateur diélectrique
WO2002037606A1 (fr) Antenne multibande
EP1715597B1 (fr) Antenne à surfaces rayonnantes planes à circuit commutable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061109

17Q First examination report despatched

Effective date: 20061207

AKX Designation fees paid

Designated state(s): DE ES GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGEM MOBILES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006013370

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2343690

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006013370

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWAELTE BARDEHLE PAGENBERG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006013370

Country of ref document: DE

Representative=s name: BARDEHLE PAGENBERG PARTNERSCHAFT MBB PATENTANW, DE

Effective date: 20111026

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006013370

Country of ref document: DE

Owner name: APPLE INC., CUPERTINO, US

Free format text: FORMER OWNER: SAGEM MOBILES, PARIS, FR

Effective date: 20111026

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006013370

Country of ref document: DE

Owner name: APPLE INC., US

Free format text: FORMER OWNER: SAGEM MOBILES, PARIS, FR

Effective date: 20111026

REG Reference to a national code

Ref country code: GB

Ref legal event code: S117

Free format text: REQUEST FILED; REQUEST FOR CORRECTION UNDER SECTION 117 FILED ON 27 OCTOBER 2011

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120614 AND 20120620

REG Reference to a national code

Ref country code: GB

Ref legal event code: S117

Free format text: CORRECTIONS ALLOWED; REQUEST FOR CORRECTION UNDER SECTION 117 FILED ON 27 OCTOBER 2011 ALLOWED ON 28 APRIL 2012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230314

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230110

Year of fee payment: 18

Ref country code: GB

Payment date: 20230105

Year of fee payment: 18

Ref country code: DE

Payment date: 20221230

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525