EP2659544A1 - Filtre variable par condensateur commute au moyen de composants mems - Google Patents

Filtre variable par condensateur commute au moyen de composants mems

Info

Publication number
EP2659544A1
EP2659544A1 EP11811346.3A EP11811346A EP2659544A1 EP 2659544 A1 EP2659544 A1 EP 2659544A1 EP 11811346 A EP11811346 A EP 11811346A EP 2659544 A1 EP2659544 A1 EP 2659544A1
Authority
EP
European Patent Office
Prior art keywords
filter
mems
resonator
towable
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11811346.3A
Other languages
German (de)
English (en)
Inventor
Michel Giraudo
Marie-Pierre Dussauby
Gilles Neveu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2659544A1 publication Critical patent/EP2659544A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0138Electrical filters or coupling circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0123Frequency selective two-port networks comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H2007/006MEMS
    • H03H2007/008MEMS the MEMS being trimmable
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor

Definitions

  • the object of the present invention relates to a variable filter using capacitors switched by means of components of the microelectromechanical system type better known by the abbreviation "MEMs".
  • tractable filter relates to a filter of the family of bandpass filters made from coupled oscillating circuits (self-capacitance), said filters being reconfigurable and variable.
  • the term scrambler is used to designate signals that disturb the useful signal.
  • the term resonator is used in the present invention to designate the resonant circuit also called oscillating circuit.
  • the term interdigitance is a term known to those skilled in the art.
  • the MEMs technology has made it possible to use the experience gained in microelectronics to produce deformable systems whose mechanical behavior modulates the electrical behavior.
  • the prior art discloses MEMs structures that utilize a movable conductive element and a number of current-carrying fixed contact terminals advantageously allowing greater current flow compared to prior art devices in which the currents are present. flow through moving conductive elements.
  • the field of radio communication and radio navigation uses small power transmission and reception filtering systems for cosite filtering and high linearity. The cosite or proximity operation is particularly evident when a receiver receiving a weak signal is near a transmitter operating at high level. The impact of proximity filters on volume and consumption is very important. Most currently used systems have the following problems:
  • a parasitic amplitude-phase modulation which may appear as a function of a scrambler level for reception. This parasitic amplitude-phase modulation affecting the error measurement better known by the abbreviation "EVM" for error vector magnitude used to quantify the perfomance of a digital radio transmitter or receiver,
  • the technical teaching of the patent application US2005 / 0017824 describes a filter comprising two elements 8, 9 arranged parallel to one another and which are connected via a coupling element 18 which is a capacitor.
  • the first conductor 8 and the second conductor 9 are formed by rectangular patterns and are arranged parallel, and spaced a given distance.
  • An element 10 is a third conductor which is located between the first and the second element 8, 9.
  • the coupling capacitor 18 is connected to the two elements 8 and 9.
  • Patent EP 1 953 914 relates to a multiplexer and a diplexer.
  • the patent application US2002 / 0149448 relates to a device for characterizing losses in ferromagnetic components.
  • the object of the present invention is based in particular on a new approach using MEMs type components to switch different capacitor values within a towable filter. This advantageously makes it possible to carry out variable, reconfigurable or frequency-tunable filtering with a constant bandwidth using variable MEMS RF capabilities.
  • the invention relates to a towable filter comprising at least two resonator circuits arranged between a first adaptation network connected to a first input / output and a second adaptation network connected to a second input / output, the said adaptation networks being constituted an inductance (L 4 , L 5 ) and a capacitance (C 4 , C 5 ) connected in parallel and:
  • a resonator is connected by a first of its ends on one side to the mass M of the filter by metallized holes and by a second end to a network of MEMS,
  • the distance d between the two resonators carries out an inter-resonator inductive coupling circuit
  • An inter-resonator coupling capacitance is produced by 2 etched lines which are respectively connected to the first and second resonators,
  • the MEMS networks are distributed around the ends of the resonators,
  • the networks of MEMs are connected between the first and the second resonator and the ground plane M by means of vias or metallized holes,
  • a plurality of independent Vi electrical control voltages adapted to actuate the MEMs or network of MEMs.
  • the towable filter according to the invention is, for example, made with the micro-ribbon technology more known under the name "Anglo-Saxon" microstrip.
  • the filter having at least one characteristic described above is used in a reception chain, said towable filter being arranged as close to a receiving antenna and just before a low noise amplifier.
  • the towable filter according to the invention is used in a reception chain, said towable filter being disposed downstream of a low noise amplifier and a strong field protection device and a antenna.
  • the towable filter may also be arranged between a driver or power driver and an amplifier.
  • FIG. 1 a basic block diagram of the filter according to the invention
  • FIG. 2 an exemplary topology of the MEM filter, according to the invention
  • FIG. 3 an example of implementation of the filter according to the invention
  • FIG. 4 an example of a 3-bit MEMs switched capacitance network
  • FIG. 5 an example of a network of ohmic MEMs switching capacitors, 8-bit network,
  • FIG. 6 an example of a filter transfer function at the frequency 950 MHz
  • FIG. 7 an example of transfer function of the filter at the frequency 1454 MHz
  • FIG. 8 an example of a transfer function of the filter at the frequency 2300 MHz
  • FIG. 9 an example of architecture of a type 1 receiver
  • FIG. 10 an example of a type 2 receiver
  • Figure 11 an example of a transmitter.
  • the filter studied is a 2-pole filter operating, covering an octave with a constant bandwidth over the entire tuning range.
  • FIG. 1 represents a basic block diagram for a band pass filter according to the invention having inputs / outputs denoted IN / OUT.
  • the principle implemented is the use of coupled oscillating circuits.
  • the heart of the device is materialized by two oscillating circuits 1, 2 inductance inductor L 0 and variable capacitance Co. These two oscillating circuits 1, 2 or resonator circuits or resonators are coupled by a coupling circuit 3 made by the paralleling a L selfup coupling choke and a capacitor C ⁇ up in this embodiment.
  • This assembly consisting of the first coupling circuit 1 and the coupling circuit is connected to the input IN of the filter by an adaptation network 4, which carries out the impedance transformation 50 Ohms to the impedance necessary to establish a filtering. constant bandwidth which is one of the advantages of the device presented.
  • the same adaptation network 5 makes it possible to couple the output of the filter to the second resonant circuit.
  • An adaptation network 4, 5 may consist of a fixed inductor with a capacitance in parallel which couples on the inductance L 0 of the resonant circuit via an intermediate tap according to a model known to those skilled in the art, these elements not shown in the figure for reasons of simplification.
  • the correct 50 Ohms adaptation, the bandwidth constancy at -3 dB, depend on the calculated relationships between the elements of the matching circuit, L 0 , C 0 , L blow and C CO up.
  • FIG. 2 shows an example of filter topology and schematizes an example of an architecture using switched MEMS capacitors placed at the ends of the resonator or resonant circuit, used in the diagram of FIG. figure 1 .
  • the topology chosen in this example is with coupled lines having an inter-resonator inductive coupling 10, coupling between two resonators 14a and 14b, and a capacitive coupling 11 made by an interdigital capacitance placed between the two resonators, this capacitance of low value C ⁇ U p of the coupling circuit 1 1 is made by two lines 1 1 a, 1 1 b, coupled of smaller width and slightly spaced over a distance of a few mm and connected to the resonators 14a and 14b.
  • the combination of these two types of coupling 10, 1 1 makes it possible to make a quasi-constant band filter.
  • Figure 3 shows a physical representation of the MEMS filter in microstrip technology known as the Anglo-Saxon "microstrip".
  • the circuit lines are etched on a substrate S.
  • the other face of the circuit is a ground plane M not shown for reasons of simplification of the figure and known to those skilled in the art.
  • the IN / OUT input / output ports are lines etched on the 50 ⁇ impedance substrate, for example.
  • the matching network 4, 5 is made from an inductance L 4 , L 5 and a discrete capacitance C 4 , C5 welded in parallel.
  • the adaptation network 4, 5 is put in series on the input / output line IN / OUT.
  • a resonator 14a, 14b is connected by a first of its ends respectively 14a-i, 14bi of one side to the ground by metallized or vias holes 16 and a second end respectively 14b 2 , 14b 2 , to a network of MEMS 12.
  • the distance d between the two resonators (14a, 14b) produces the inter-resonator inductive coupling circuit 10. This distance is for example determined by a simulation using methods known to those skilled in the art to obtain the function desired transformation for a given application of the towable filter.
  • the coupling capacity 1 1 resonator is formed by two small engraved lines 1 1 a, 1 1 b which are connected to the resonator 14a, 14b.
  • the width of the lines 1 1 a, 1 1 b are for example determined according to the frequency of the filter and therefore according to the intended application.
  • the MEMS networks 12 are distributed around the ends of the resonators 14a, 14b in this embodiment, the distribution being chosen in order to group the various elements as much as possible.
  • the networks of MEMs 12 are connected between the resonator 14a, 14b and the ground plane M via the vias or metallized holes 16. 8 electrical control voltages Vi to V 8 independent 17 can actuate the MEMs 12. The voltages of Actuation are brought closer to the MEMS by high impedance lines.
  • the embodiment of the filter schematized in FIG. 3 is symmetrical with respect to an axis A.
  • a radio-frequency or RF MEMS 12 network may be formed from a capacitive MEMS bank capable of taking several capacitance values according to FIG. 4 or from ohmic MEMS switching a fixed capacitance network according to FIG.
  • the capacitance values Ci are calculated so as to obtain a constant frequency step.
  • the number of capabilities gives the value of the frequency increment.
  • MEMS components are represented by switches.
  • the capacitors can be placed in parallel and connected to one or more MEMS.
  • the filter is synthesized to maintain a constant bandwidth. This particular structure allows better power handling than the state of the art.
  • the impedance seen by the MEMS is (R1) / 2 when the filter is tuned.
  • the peak voltage across the MEMS is maximum at the maximum frequency with an amplitude equal to V (R1 .P / 2)
  • the MEMS filter thus defined can accept high powers. To further increase the allowable power in the filter, it is possible to put several MEMS in parallel.
  • the actuation control of the MEMS is modeled by the voltages V 1 to V 8 which select the capacitance value to be applied to the filter in order to obtain the desired frequency.
  • the actuation command is modeled by bits Bit1, Bit2, Bit3.
  • the variable capacities C 2 n Cs with Cs the capacity of a basic element that can take 2 values.
  • the total capacity is then the sum of the capacities of the banks in the low state Co and the capacities of the banks in the high state Ci.
  • the actuation command has an 8-bit capacity.
  • the frequency range to be covered is 950 to 2300MHz.
  • the frequency range being 1.35 GHz, with such a step it is possible to change the frequency every 5.3 MHz approximately.
  • This step is compatible with the desired bandwidth.
  • the minimum overlap must be such that the center frequency of the first step corresponds to 2300 MHz - 25 MHz for an optimal crossover in the 0.5 dB band of the filter. This leads to the 8-element weight box for a draw of 20% and to have a latitude in the band covered by the device, ie the following steps:
  • the filter is almost constant band. To have a desired band around 50 MHz on the min and max frequencies, the mid-band filter is wider (64 MHz)
  • the filter covers a frequency band of 861 MHz when all capacities are activated (activation of all MEMS) up to 2300 MHz when all MEMS are deactivated.
  • Figures 6, 7 and 8 show the results obtained for the transfer function dB (S (2.1)) and the adaptation dB (S (1, 1) of the filter at three central frequencies: 950 MHz, 1454 MHz and 2300 MHz.
  • Parameter S21 and S1 1 which are the parameters S, known to those skilled in the art.
  • FIG. 9 represents a first exemplary embodiment in which a towable filter 30 according to the invention is disposed most upstream in a reception chain as close as possible to a reception antenna 31 and just before a low noise amplifier 32, or LNA (Low Noise Amplifier) between the filter and the antenna.
  • the MEMS towable filter has the advantage of having minimum losses which makes it possible to guarantee a low noise factor at the receiver and a power level sufficient to protect the receiver from unwanted high power out-of-band reception signals. Only a part of the strong field strength will remain for voltages greater than 30 volts at the antenna 31, lightning protection device 34 the other part of the field strength will be installed just before the LNA amplifier 32 with a power limiting device 33 to protect the LNA but only in the filter band.
  • FIG. 10 is another example of implementation of the filter 40 according to the invention.
  • this example of architecture where the strong fields a little far away would not be too strong, such an architecture makes it possible to improve the resistance of medium-distance jammers (1 to 5MHz) by a more selective tractable filter and thus a difference of lower frequency when using multiple transceivers at the same site.
  • the towable filter 40 according to the invention will be disposed downstream of an LNA 41 and a strong field protection device 43 and an antenna 42.
  • the towable filter 50 At the level of the transmitter 1 1, the towable filter 50 according to the invention will be inserted into the medium power transmission chain making it possible to improve the broadband noise outside the filter band, placed between the pilot or power driver 51 and the amplifier 52 connected to the antenna 53. Another important point, it will be reasoned in emission use the maximum RF power applicable. This allows for OFDM type non-constant envelope waveforms to be able to pass through these filters without degradation of EVM, because the advantage of the filter is to present a very high linearity. In a transceiver station, the same filter can be used both in transmission and reception.
  • the invention has the particular advantage of having a device having a very wide capacitance variation by capacitor switching which allows to obtain a large band coverage.
  • the voltage applicable to the mems component can be quite high and with a very high inter-modulation performance, therefore a fairly substantial improvement in the resistance to interference and a use of the filter according to the invention at the emission for average powers of the order of 5 to 10 Watts.
  • variable filters using fixed capacitors for the tuning system put into service by PIN diodes have power eligibility performance similar to the device presented, but at the cost of a significant power consumption to control the "passing" mode of the PIN diodes.
  • the energy to switch a MEMS passing is very modest, which is one of the advantages of this device.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filters And Equalizers (AREA)

Abstract

Filtre tractable comportant au moins deux circuits résonateurs (14a, 14b) disposés entre deux réseaux d'adaptation (4, 5) caractérisé en ce que : • un résonateur est connecté par une première de ses extrémités (14a1, 14b1) à la masse M du filtre par des trous métallisés (16) et par une deuxième extrémité (14a2, 14b2) à un réseau de MEMS (12); • la distance d entre les 2 résonateurs réalise un circuit de couplage inductif inter-résonateur (10); • une capacité de couplage (11) inter-résonateur est réalisée par 2 lignes gravées (11a, 11b) connectées au premier et au deuxième résonateur, • les réseaux de MEMS sont répartis autour des extrémités des résonateurs, • les réseaux de MEMs sont connectés entre le premier et le deuxième résonateur et la masse M au moyen de trous métallisés, • le filtre comporte plusieurs tensions de commande électriques Vi indépendantes (17) adaptées à actionner les MEMs.

Description

FILTRE VARIABLE PAR CONDENSATEUR COMMUTE AU MOYEN DE
COMPOSANTS MEMS
L'objet de la présente invention concerne un filtre variable utilisant des condensateurs commutés au moyen de composants de type système micro-électromécanique plus connus sous l'abréviation anglo-saxonne « MEMs ».
Dans la description, l'expression « filtre tractable >> concerne un filtre de la famille des filtres passe bande réalisés à partir de circuits oscillants (self-capacité) couplés, lesdits filtres étant reconfigurables et variables.
De même le terme brouilleur est utilisé pour désigner des signaux venant perturber le signal utile. Le terme résonateur est utilisé dans la présente invention pour désigner le circuit résonant appelé aussi circuit oscillant. Le terme interdigité est un terme connu de l'Homme du métier.
La technologie MEMs a permis de mettre à profit l'expérience acquise en microélectronique pour réaliser des mircosystèmes déformables dont le comportement mécanique module le comportement électrique.
Différents actionneurs et commutateurs sont décrits dans l'art antérieur. Ainsi, l'art antérieur divulgue des structures MEMs qui utilisent un élément conducteur mobile et un certain nombre de terminaux de contacts fixes porteurs de courant permettant avantageusement un plus grand acheminement de courant par rapport aux dispositifs de l'art antérieur dans lesquels les courants s'écoulent à travers des éléments conducteurs mobiles. Le domaine de la radio-communication et de la radio navigation utilisent des systèmes de filtrage en émission de petite puissance et réception pour un filtrage cosite et haute linéarité. Le fonctionnement cosite ou en proximité se manifeste tout particulièrement lorsqu'un récepteur captant un signal faible se trouve à proximité d'un émetteur fonctionnant à niveau élevé. L'impact des filtres de proximité sur le volume et la consommation est très important. La plupart des systèmes actuellement utilisés présentent les problèmes suivants :
• un manque de linéarité du système de filtrage lors de la variation de la puissance des signaux reçus et filtrés,
• une couverture de bande qui peut être insuffisante en fonction des applications,
• une sélectivité insuffisante qui doit être améliorée en augmentant le coefficient de qualité,
· une modulation amplitude-phase parasite qui peut apparaître en fonction d'un niveau de brouilleur pour la réception. Cette modulation amplitude-phase parasite affectant la mesure d'erreur plus connue sous l'abréviation anglo-saxonne « EVM >> pour error vector magnitude utilisée pour quantifier la perfomance d'un émetteur ou d'un récepteur radio numérique,
• un volume et une consommation importante en présence de puissance RF.
Pour résoudre ces différents problèmes, il est connu de réaliser un filtrage en utilisant une diode varicap, toutefois cette diode varicap présente une non linéarité de cette diode varicap et possède une faible tenue au brouilleur. Il est aussi connu d'utiliser des condensateurs commutés par relais ou diode PIN (abréviation anglo-saxonne de Positive Intrinsic Négative diode). Toutefois ce type de commutation conduit à des temps de commutation trop importants. Dans le cas d'utilisation de diodes PIN, la consommation est importante.
Les différentes solutions connues de l'art antérieur ne résolvent pas de manière suffisante les problèmes suivants :
• la présence de signal de brouillage volontaire ou involontaire à une fréquence plus ou moins proche de la fréquence du signal utile, · la linéarité du système de filtrage quelque soit la fréquence utilisée. L'enseignement technique de la demande de brevet US2005/0017824 décrit un filtre comportant deux éléments 8, 9 disposés parallèlement l'un à l'autre et qui sont reliés via un élément de couplage 18 qui est une capacité. Le premier conducteur 8 et le deuxième conducteur 9 sont formés par des patterns rectangulaires et sont disposés parallèlement, et espacés d'une distance donnée. Un élément 10 est un troisième conducteur qui est situé entre le premier et le deuxième élément 8, 9. La capacité de couplage 18 est connectée aux deux éléments 8 et 9.
Le document KR 2001 0094509 dont un résumé est disponible sur la base de brevets espacenet décrit une capacité de type microstrip.
Le document intitulé « adjustable bandwidth filter design based on interdigital capacitors >> IEEE microwave and wireless components letters, pages 16-18, XP01 1 199157 concerne des filtres microstrip.
Le document intitulé « a microstrip bandpass filter with ultra-wide stopband >> IEEE transactions on microwave theory and techniques, pages 1468-1472, XP01 1215082 décrit aussi une technologie bandstrip. La figure 1 représente une structure de filtre qui comporte plusieurs « open stubs >> et des capacités « interdigital ».
Le document intitulé « corrugated microstrip coupled lines for constant absolute bandwith tunabe filters >> IEEE transactions on microwave theory and techniques, vol.58, n °4, (2010-04_01 ), pages 956-963, XP01 1305950 représente par exemple en figure 6 un filtre trois pôles. L'idée dans ce papier est de démontrer que les lignes microstrip « corrugated >> peuvent aussi être utilisées pour contrôler le coefficient de couplage et permettent d'obtenir des filtres de largeur de bande constante absolue. La figure 8 représente un modèle de circuit électrique miniaturisé, deux pôles.
Le brevet EP 1 953 914 concerne un multiplexeur et un diplexeur.
La demande de brevet US2002/0149448 concerne un dispositif permettant de caractériser les pertes dans des composants ferromagnétiques. L'objet de la présente invention repose notamment sur une nouvelle approche utilisant des composants de type MEMs pour commuter différentes valeurs de condensateurs au sein d'un filtre tractable. Ceci permet avantageusement de réaliser un filtrage variable, reconfigurable ou filtre accordable en fonction de la fréquence avec une bande passante constante utilisant des capacités variables MEMS RF.
L'invention concerne un filtre tractable comportant au moins deux circuits résonateurs disposés entre un premier réseau d'adaptation connecté à une première entrée/sortie et un deuxième réseau d'adaptation connecté à une deuxième entrée/sortie, lesdits réseaux d'adaptation étant constitués d'une inductance (L4, L5) et d'une capacité (C4, C5) montées en parallèle et :
• un résonateur est connecté par une première de ses extrémités d'un côté à la masse M du filtre par des trous métallisés et par une deuxième extrémité à un réseau de MEMS,
« la distance d entre les 2 résonateurs réalise un circuit de couplage inductif inter-résonateur,
• une capacité de couplage inter-résonateur est réalisée par 2 lignes gravées qui sont connectées respectivement au premier et au deuxième résonateur,
· les réseaux de MEMS sont répartis autour des extrémités des résonateurs,
• les réseaux de MEMs sont connectés entre le premier et le deuxième résonateur et le plan de masse M grâce à des vias ou trous métallisés,
· plusieurs tensions de commande électriques Vi indépendantes adaptées à actionner les MEMs ou réseau de MEMs.
Le filtre tractable selon l'invention est, par exemple, réalisé avec la technologie micro ruban plus connue sous le nom « anglo-saxon >> microstrip.
Le filtre présentant une caractéristique au moins décrite précédemment est utilisé dans une chaîne de réception ledit filtre tractable étant disposé au plus près d'une antenne de réception et juste avant un amplificateur faible bruit.
Selon un autre mode de mise en œuvre, le filtre tractable selon l'invention est utilisé dans une chaîne de réception ledit filtre tractable étant disposé en aval d'un amplificateur faible bruit et d'un dispositif de protection au champ fort et d'une antenne.
Le filtre tractable peut aussi être disposé entre un pilote ou driver de puissance et un amplificateur.
D'autres caractéristiques et avantages du dispositif selon l'invention apparaîtront mieux à la lecture de la description qui suit d'un exemple de réalisation donné à titre illustratif et nullement limitatif annexé des figures qui représentent :
• La figure 1 , un synoptique de base du filtre selon l'invention,
• La figure 2, un exemple de topologie du filtre à MEMs, selon l'invention,
• La figure 3, un exemple de mise en œuvre du filtre selon l'invention,
• La figure 4, un exemple d'un réseau de capacités commutées MEMs 3 bits,
• La figure 5, un exemple d'un réseau de MEMs ohmiques commutant des capacités, réseau de 8 bits,
• La figure 6, un exemple de fonction de transfert du filtre à la fréquence 950 MHz,
• La figure 7, un exemple de fonction de transfert du filtre à la fréquence 1454 MHz,
• La figure 8, un exemple de fonction de transfert du filtre à la fréquence 2300 MHz,
• La figure 9, un exemple d'architecture d'un récepteur de type 1 ,
• La figure 10, un exemple de récepteur de type 2, et
• La figure 1 1 , un exemple d'émetteur. Le filtre étudié dont un exemple est donné pour illustrer l'objet de la présente invention à titre illustratif, est un filtre 2 pôles fonctionnant, couvrant une octave avec une bande passante constante sur toute la plage d'accord.
La figure 1 représente un synoptique de base pour un filtre passe bande selon l'invention présentant des entrées/sorties notées IN/OUT. Le principe mis en œuvre est l'utilisation de circuits oscillants couplés.
Le cœur du dispositif est matérialisé par deux circuits oscillants 1 , 2 de self inductance L0 et de capacité variable Co .Ces deux circuits oscillants 1 , 2 ou circuits résonateurs ou résonateurs sont couplés par un circuit de couplage 3 réalisé par la mise en parallèle d'une self de couplage L∞up et d'une capacité Cup dans cet exemple de réalisation.
Cet ensemble constitué du premier circuit de couplage 1 et du circuit de couplage est raccordé à l'entrée IN du filtre par un réseau d'adaptation 4, qui effectue la transformation d'impédance 50 Ohms vers l'impédance nécessaire pour établir un filtrage à bande passante constante ce qui constitue un des avantages du dispositif présenté.
De manière symétrique, un même réseau d'adaptation 5 permet de coupler la sortie du filtre au deuxième circuit résonnant.
Un réseau d'adaptation 4, 5 peut être constitué d'une self fixe avec une capacité en parallèle qui se couple sur l'inductance L0 du circuit résonnant via une prise intermédiaire selon un modèle connu de l'Homme du métier, ces éléments n'étant pas représentés sur la figure pour des raisons de simplification.
L'adaptation correcte sur 50 Ohms, la constance de la bande passante à -3 dB, dépendent de relations calculées entre les éléments du circuit d'adaptation, L0, C0, Lcoup et CCOup-
La figure 2 montre un exemple de topologie du filtre et schématise un exemple d'architecture utilisant des capacités MEMS commutées placées aux extrémités du résonateur ou circuit résonant, utilisé dans le schéma de la figure 1 . La topologie choisie dans cet exemple est à lignes couplées présentant un couplage inductif inter-résonateur 10, couplage entre deux résonateurs 14a et 14b, et un couplage capacitif 1 1 réalisé par une capacité interdigitée placées entre les deux résonateurs, cette capacité de faible valeur C∞Up du circuit de couplage 1 1 est réalisée par deux lignes 1 1 a, 1 1 b, couplées de largeur plus faible et faiblement espacées sur une distance de quelques mm et connectée aux résonateurs 14a et 14b. Le cumul de ces deux types de couplages 10, 1 1 permet de faire un filtre à bande quasi- constante.
La figure 3 montre une représentation physique du filtre à MEMS en technologie microruban connu sous le terme anglo-saxon « microstrip ». Les lignes du circuit sont gravées sur un substrat S. L'autre face du circuit est un plan de masse M non représenté pour des raisons de simplification de figure et connu de l'Homme du métier. Les accès entrée/sortie IN/OUT sont des lignes gravées sur le substrat d'impédance 50Ω, par exemple. Le réseau d'adaptation 4, 5 est réalisé à partir d'une inductance L4, L5 et d'une capacité discrète C4, C5 soudées en parallèle. Le réseau d'adaptation 4, 5 est mis en série sur la ligne d'entrée/sortie IN/OUT. Ces deux composants (inductance et capacité) réalisent l'adaptation entre les accès entrée/sortie du filtre et le résonateur 14a, 14b. Ces mêmes composants permettent aussi de faire la transformation d'impédance 13 de manière harmonieuse et simple entre les accès 50Ω et l'impédance du résonateur car il y a une forte discontinuité d'impédance à cette intersection de ligne (13, IN/OUT). Un résonateur 14a, 14b est connecté par une première de ses extrémités respectivement 14a-i, 14bi d'un côté à la masse par des trous métallisés ou vias 16 et par une deuxième extrémité respectivement 14b2, 14b2, à un réseau de MEMS 12. La distance d entre les deux résonateurs (14a, 14b) réalise le circuit de couplage inductif inter-résonateur 10. Cette distance est par exemple déterminée par une simulation utilisant des méthodes connues de l'Homme du métier afin d'obtenir la fonction de transformation souhaitée pour une application donnée du filtre tractable. La capacité de couplage 1 1 inter- résonateur est réalisée par deux petites lignes gravées 1 1 a, 1 1 b qui sont connectées au résonateur 14a, 14b. La largeur des lignes 1 1 a, 1 1 b sont par exemple déterminées en fonction de la fréquence du filtre et donc selon l'application visée. Les réseaux de MEMS 12 sont répartis autour des extrémités des résonateurs 14a, 14b dans cet exemple de réalisation, la répartition étant choisie afin de grouper le plus possible les différents éléments. Les réseaux de MEMs 12 sont connectés entre le résonateur 14a, 14b et le plan de masse M via les vias ou trous métallisés 16. 8 tensions de commande électriques Vi à V8 indépendantes 17 permettent d'actionner les MEMs 12. Les tensions d'actuation sont amenées au plus près des MEMS par des lignes en haute impédance. La réalisation du filtre schématisé en figure 3 est symétrique par rapport à un axe A.
Un réseau de MEMS 12 radio-fréquence ou RF peut être constitué à partir d'une banque de MEMS capacitif capables de prendre plusieurs valeurs de capacités selon la figure 4 ou bien à partir de MEMS ohmiques commutant un réseau de capacité fixes selon la figure 5. Les valeurs de capacités Ci sont calculées de manière à obtenir un pas de fréquence constant. Le nombre de capacités donne la valeur de l'incrément de fréquence. Les composants MEMS sont représentés par des commutateurs. Les condensateurs peuvent être placés en parallèle et reliés à un ou plusieurs MEMS. Le filtre est synthétisé pour conserver une bande passante constante. Cette structure particulière permet une tenue en puissance meilleure que l'état de l'art. L'impédance Ri est donnée par le calcul suivant : Ri = V2*Q*L0 *œo, cette impédance n'est pas représentée sur les figures 4 et 5. C'est l'impédance ramenée sur la totalité du circuit oscillant ( L0, Co ). Avec ωο = 2*π*ί0 et Q=f0/Af, fO est la fréquence de travail, Δί est la bande passante du filtre à -3dB.
La puissance traversant le filtre suit la relation aux bornes du circuit oscillant : P=2.Veff2/R1 avec Veff tension efficace.
Tension crête = V (2 .Veff), Vcrête = V (R1 )
L'impédance vue par le MEMS est (R1 )/2 lorsque le filtre est accordé. Pour une puissance P, la tension crête aux bornes du MEMS est maximum à la fréquence maximum avec une amplitude égale à V (R1 .P/2)
Pour maximiser la tenue en puissance du filtre, il faut diminuer la valeur de Ri et donc adapter la synthèse du filtre, la valeur de la capacité du MEMS augmente lorsque Ri diminue. Le filtre à MEMS ainsi défini peut accepter des puissances élevées. Pour augmenter encore la puissance admissible dans le filtre, il est possible de mettre plusieurs MEMS en parallèle.
Sur les figures 3 et 5, la commande d'actuation des MEMS est modélisée par les tensions Vi à V8 qui sélectionnent la valeur de capacité à appliquer au filtre pour obtenir la fréquence désirée.
Sur la figure 4, la commande d'actuation est modélisée par les bits Bit1 , Bit2, Bit3. Les capacités variables C=2nCs avec Cs la capacité d'un élément de base pouvant prendre 2 valeurs. La capacité totale est alors la somme des capacités des banques à l'état bas Co et des capacités des banques à l'état haut C-i. Dans le cas d'une capacité 3 bits, la capacité correspondant à la valeur binaire « 101 >> est égale à C=4Co+2Ci+C0.
Sur la figure 5, la commande d'actuation a une capacité de 8 bits. Le réseau de MEMS ohmique permet de sélectionner les capacités Ci à Cs qui prennent 8 valeurs discrètes. Dans ce cas le nombre d'incrément de fréquence du filtre est de 28=256.
Exemple chiffré pour un dispositif selon l'invention
Pour une bande passante du filtre à réaliser de 50MHZ, la plage de fréquences à couvrir est de950 à 2300MHz.
Atténuation à F0 +/-100MHz >20 dB
Atténuation à FO +/-200MHz >35 dB
Avec un commutateur MEMS à 8 positions, il est ainsi possible d'obtenir
28=256Pas
La plage de fréquence étant de 1 ,35 GHz, avec un tel pas il est possible de changer de fréquence tous les 5,3MHz environ. Ce pas est compatible de la bande passante recherchée. Le recoupement minimal doit être tel que la fréquence centrale du premier pas corresponde à 2300MHz -25 MHz pour un recoupement optimal dans la bande à 0.5 dB du filtre. On aboutit ainsi à la boite de poids à 8 éléments pour un tirage majoré de 20 % et avoir une latitude dans la bande couverte par le dispositif soit les pas suivants :
Le filtre est à bande quasi constante. Pour avoir une bande désirée voisine de 50 MHz sur les fréquences min et max, le filtre en milieu de bande est plus large (64 MHz)
Le filtre couvre une bande de fréquence allant de 861 MHz lorsque toutes les capacités sont activées (activation de tous les MEMS) jusqu'à 2300MHz lorsque tous les MEMS sont désactivés.
Les figures 6, 7 et 8 montrent les résultats obtenus pour la fonction de transfert dB(S(2,1 )) et l'adaptation dB(S(1 ,1 ) du filtre à trois fréquences centrales : 950MHz, 1454MHz et 2300MHz. (paramètre S21 et S1 1 qui sont les paramètres S, connus de l'homme du métier. Ces figures montrent que les performances sont obtenues sur une très large bande de fréquence.
La figure 9, représente un premier exemple de réalisation dans lequel un filtre tractable 30 selon l'invention est disposé le plus en amont dans une chaîne de réception au plus près d'une antenne de réception 31 et juste avant un amplificateur faible bruit 32, ou LNA (Low Noise Amplificateur) entre le filtre et l'antenne. Le filtre tractable à MEMS présente l'avantage d'avoir des pertes minimum ce qui permet de garantir un faible facteur de bruit au récepteur et un niveau de puissance suffisant pour protéger le récepteur des signaux brouilleurs de forte puissance hors bande de réception. Il ne restera qu'une partie de la tenue au champ fort pour des tensions supérieures à 30 Volts au niveau de l'antenne 31 , dispositif de protection contre la foudre 34 l'autre partie de la tenue au champ sera installée juste avant l'amplificateur LNA 32 avec un dispositif de limitation de la puissance 33 pour protéger le LNA mais uniquement dans la bande du filtre.
La figure 10, est un autre exemple d'implémentation du filtre 40 selon l'invention. Dans cet exemple d'architecture, où les champs forts un peu lointain ne seraient pas trop fort, une telle architecture permet d'améliorer la tenue des brouilleurs à moyenne distance (1 à 5MHz) par un filtre tractable plus sélectif et donc un écart de fréquence plus faible dans le cas d'utilisation de plusieurs émetteurs-récepteurs sur le même site. Le filtre tractable 40 selon l'invention sera disposé en aval d'un LNA 41 et d'un dispositif de protection au champ fort 43 et d'une antenne 42.
Au niveau de l'émetteur figure 1 1 , le filtre tractable 50 selon l'invention sera inséré dans la chaîne d'émission à moyenne puissance permettant d'améliorer le bruit large bande en dehors de la bande du filtre, placé entre le pilote ou driver de puissance 51 et l'amplificateur 52 relié à l'antenne 53. Autre point important, il faudra raisonner en utilisation émission la puissance RF maximum applicable. Ceci permet pour des formes d'ondes à enveloppe non constante de type OFDM de pouvoir passer par ces filtres sans dégradation d'EVM, car l'avantage du filtre est de présenter une très grande linéarité. Dans un poste émetteur/récepteur, le même filtre peut être utilisé à la fois en émission et en réception. L'invention présente notamment comme avantage de disposer d'un dispositif comportant une très large variation de capacité par la commutation de condensateur qui permet donc d'obtenir une grande couverture de bande.
Elle offre aussi des dispositifs présentant les trois améliorations suivantes :
· une perte du filtre plus faible,
• une sélectivité du filtre amélioré,
• une couverture de bande importante,
• un temps de changement de fréquence très rapide (agilité),
• une bande passante quasi-constante,
· une linéarité meilleure que l'état de l'art,
• une consommation de courant négligeable,
• une admissibilité en puissance bien plus importante que les filtres à varicap qui sont limités en tension par la valeur de la tension de commande qui pour des raisons de large variation en fréquence du dispositif peut prendre des valeurs basses de 1 à 2 Volts.
La tension applicable sur le composant mems peut être assez élevée et avec une performance en inter-modulation très élevée donc une amélioration assez conséquente sur la tenue aux brouilleurs ainsi qu'une utilisation du filtre selon l'invention à l'émission pour des puissances moyennes de l'ordre de 5 à 10 Watts.
Dans ce domaine de puissance, les filtres variables utilisant pour le système d'accord des capacités fixes mises en services par des diodes PIN ont des performances d'admissibilité en puissance similaires au dispositif présenté, mais au prix d'une consommation électrique importante pour commander le mode « passant >> des diodes PIN. Dans le dispositif présenté, l'énergie pour faire basculer un MEMS en passant est très modeste, ce qui constitue un des avantages de ce dispositif.

Claims

Revendications
1 - Filtre tractable comportant au moins deux circuits résonateurs (14a, 14b) disposés entre un premier réseau d'adaptation (4) connecté à une première entrée/sortie et un deuxième réseau d'adaptation (5) connecté à une deuxième entrée/sortie, caractérisé en ce que lesdits réseaux d'adaptation (4, 5) sont constitués d'une inductance (L4, L5) et d'une capacité (C4, C5) montées en parallèle et en ce que :
• un résonateur (14a, 14b) est connecté par une première de ses extrémités (14a-i, 14bi) d'un côté à la masse M du filtre par des trous métallisés (16) et par une deuxième extrémité (14a2, 14b2) à un réseau de MEMS (12),
• la distance d entre les 2 résonateurs (14a, 14b) réalise un circuit de couplage inductif inter-résonateur (10)
• une capacité de couplage (1 1 ) inter-résonateur est réalisée par 2 lignes gravées (1 1 a, 1 1 b) qui sont connectées respectivement au premier et au deuxième résonateur (14a, 14b),
• les réseaux de MEMS (12) sont répartis autour des extrémités des résonateurs (14a, 14b),
• les réseaux de MEMs (12) sont connectés entre le premier et le deuxième résonateur (14a, 14b) et le plan de masse M grâce à des vias ou trous métallisés (16),
• le filtre comporte plusieurs tensions de commande électriques Vi indépendantes (17) adaptées à actionner les MEMs (12).
2 - Filtre tractable selon la revendication 1 caractérisé en ce que l'on utilise une technologie microruban. 3 - Utilisation d'un filtre tractable selon la revendication 1 à 2, dans une chaîne de réception ledit filtre tractable étant disposé au plus près d'une antenne de réception (31 ) et juste avant un amplificateur faible bruit (32). 4 - Utilisation d'un filtre tractable (40) selon la revendication 1 ou 2 dans une chaîne de réception ledit filtre tractable étant disposé en aval d'un amplificateur faible bruit (41 ) et d'un dispositif de protection au champ fort et d'une antenne (42). 5 - Utilisation d'un filtre tractable (50) selon la revendication 1 ou 2 ledit filtre tractable étant disposé entre un pilote ou driver de puissance (51 ) et un amplificateur (52).
EP11811346.3A 2010-12-30 2011-12-22 Filtre variable par condensateur commute au moyen de composants mems Withdrawn EP2659544A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1005182A FR2970129B1 (fr) 2010-12-30 2010-12-30 Filtre variable par condensateur commute au moyen de composants mems
PCT/EP2011/073813 WO2012089619A1 (fr) 2010-12-30 2011-12-22 Filtre variable par condensateur commute au moyen de composants mems

Publications (1)

Publication Number Publication Date
EP2659544A1 true EP2659544A1 (fr) 2013-11-06

Family

ID=45524489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11811346.3A Withdrawn EP2659544A1 (fr) 2010-12-30 2011-12-22 Filtre variable par condensateur commute au moyen de composants mems

Country Status (4)

Country Link
US (1) US9300269B2 (fr)
EP (1) EP2659544A1 (fr)
FR (1) FR2970129B1 (fr)
WO (1) WO2012089619A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762466B (zh) * 2016-04-08 2019-01-18 华南理工大学 一种具有两个可电调通带的三频带通滤波器
WO2018132314A1 (fr) * 2017-01-10 2018-07-19 Wispry, Inc. Systèmes, dispositifs et procédés de filtre accordable
US11862835B2 (en) * 2020-08-13 2024-01-02 Cyntec Co., Ltd. Dielectric filter with multilayer resonator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010094509A (ko) * 2000-03-31 2001-11-01 김남영 인터디지탈 측면 커플링을 갖는 마이크로스트립 링대역통과 여파기 및 그 제조방법
US20050017824A1 (en) * 2001-12-12 2005-01-27 Takayuki Hirabayashi Filter circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485131A (en) * 1994-10-13 1996-01-16 Motorola, Inc. Transmission line filter for MIC and MMIC applications
US6690251B2 (en) * 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
US7236068B2 (en) * 2002-01-17 2007-06-26 Paratek Microwave, Inc. Electronically tunable combine filter with asymmetric response
US7385465B2 (en) * 2005-12-19 2008-06-10 Industrial Technology Research Institute Switchable dual-band filter
JP2008182340A (ja) * 2007-01-23 2008-08-07 Ngk Spark Plug Co Ltd ダイプレクサ及びそれを用いたマルチプレクサ
EP2255443B1 (fr) * 2008-02-28 2012-11-28 Peregrine Semiconductor Corporation Procédé et appareil destinés au réglage numérique d un condensateur dans un dispositif à circuit intégré
US8849213B2 (en) * 2009-01-21 2014-09-30 Bandspeed, Inc. Integrated circuit for signal analysis
US8363380B2 (en) * 2009-05-28 2013-01-29 Qualcomm Incorporated MEMS varactors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010094509A (ko) * 2000-03-31 2001-11-01 김남영 인터디지탈 측면 커플링을 갖는 마이크로스트립 링대역통과 여파기 및 그 제조방법
US20050017824A1 (en) * 2001-12-12 2005-01-27 Takayuki Hirabayashi Filter circuit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHING-WEN TANG ET AL: "A Microstrip Bandpass Filter With Ultra-Wide Stopband", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, PLENUM, USA, vol. 56, no. 6, 1 June 2008 (2008-06-01), pages 1468 - 1472, XP011215082, ISSN: 0018-9480 *
LI ZHU ET AL: "Adjustable Bandwidth Filter Design Based on Interdigital Capacitors", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 18, no. 1, 1 January 2008 (2008-01-01), pages 16 - 18, XP011199157, ISSN: 1531-1309, DOI: 10.1109/LMWC.2007.911975 *
MOHAMMED A EL-TANANI ET AL: "Corrugated Microstrip Coupled Lines for Constant Absolute Bandwidth Tunable Filters", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, PLENUM, USA, vol. 58, no. 4, 1 April 2010 (2010-04-01), pages 956 - 963, XP011305950, ISSN: 0018-9480 *
See also references of WO2012089619A1 *

Also Published As

Publication number Publication date
FR2970129B1 (fr) 2013-01-18
FR2970129A1 (fr) 2012-07-06
WO2012089619A1 (fr) 2012-07-05
US9300269B2 (en) 2016-03-29
US20140176263A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US20070262834A1 (en) Bandpass filter, electronic device including said bandpass filter, and method of producing a bandpass filter
EP2184803B1 (fr) Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne
FR2916108A1 (fr) Amplificateur de puissance a haute frequence
FR2905207A1 (fr) Filtre commutable a resonateurs.
EP2022129B1 (fr) Circulateur radiofrequence ou hyperfrequence
FR2984603A1 (fr) Circuit integre comprenant un transformateur integre de type "balun" a plusieurs voies d'entree et de sortie.
EP2204877A1 (fr) Réglage d'un transformateur à changement de mode (balun)
EP2178152A1 (fr) Dispositif de commutation électronique pour signaux a haute fréquence
EP1699108B1 (fr) Antenne du type à surface(s) rayonnante(s) plane(s) commutable(s) et terminal de communication comportant cette antenne
WO2012089619A1 (fr) Filtre variable par condensateur commute au moyen de composants mems
WO2005125034A1 (fr) Dispositif rayonnant comprenant au moins un filtre rejecteur adaptatif et antenne comprenant ce dispositif
WO2012079777A1 (fr) Filtre stop bande actif
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
Kawai et al. Tunable ring resonator filter for duplexer
EP2462701B1 (fr) Circuit de commutation pour des signaux large bande
WO2023079065A1 (fr) Dispositif de filtrage reconfigurable et système d'acquisition de signaux radiofréquences intégrant un tel dispositif de filtrage
EP3182602B1 (fr) Dispositif de commutation rf large bande a multiple sorties et poste rf utilisant un tel commutateur
EP1715597B1 (fr) Antenne à surfaces rayonnantes planes à circuit commutable
FR3044494B1 (fr) Circuit de commutation, etage et appareil d'amplification et/ou de division associes
WO2005124922A1 (fr) Dispositif de symetrisation de l’acces a une antenne
Chieh et al. Development of a Comb Limiter Combiner with Sub-band known Interference Cancellation
FR3061996A1 (fr) Antenne large bande pour dispositif mobile de communication
FR3061995A1 (fr) Antenne pour dispositif mobile de communication
FR2822612A1 (fr) Dispositif de mulitplexage radiofrequence a commande croisee pour telephone mobile bi-bande
EP3384598A1 (fr) Ligne d'adaptation, étage et appareil d'amplification et/ou de division associés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603