FR2958787A1 - Dispositif de protection contre les surtensions a deconnecteurs thermiques dedoubles - Google Patents

Dispositif de protection contre les surtensions a deconnecteurs thermiques dedoubles Download PDF

Info

Publication number
FR2958787A1
FR2958787A1 FR1052734A FR1052734A FR2958787A1 FR 2958787 A1 FR2958787 A1 FR 2958787A1 FR 1052734 A FR1052734 A FR 1052734A FR 1052734 A FR1052734 A FR 1052734A FR 2958787 A1 FR2958787 A1 FR 2958787A1
Authority
FR
France
Prior art keywords
varistor
protection
thermal
blade
movable contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1052734A
Other languages
English (en)
Other versions
FR2958787B1 (fr
Inventor
Michael Duval
Alain Lagnoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB France SAS
Original Assignee
ABB France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB France SAS filed Critical ABB France SAS
Priority to FR1052734A priority Critical patent/FR2958787B1/fr
Priority to US13/082,807 priority patent/US9007163B2/en
Priority to EP11161603.3A priority patent/EP2375424B1/fr
Priority to CN201110092418.6A priority patent/CN102237163B/zh
Publication of FR2958787A1 publication Critical patent/FR2958787A1/fr
Application granted granted Critical
Publication of FR2958787B1 publication Critical patent/FR2958787B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • H01C7/126Means for protecting against excessive pressure or for disconnecting in case of failure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Fuses (AREA)
  • Thermally Actuated Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

L'invention se rapporte à un dispositif de protection d'une installation électrique contre les surtensions transitoires, comprenant un composant de protection (30) contre les surtensions ; deux déconnecteurs thermiques, comprenant chacun : un contact mobile respectif (44, 64) susceptible de passer d'une position fermée à une position ouverte pour déconnecter le composant de protection de l'installation électrique, et un élément thermosensible respectif pour faire passer le contact mobile de la position fermée à la position ouverte lorsque la température du composant de protection dépasse un seuil prédéterminé. L'invention se rapporte en outre à une cartouche comprenant un dispositif de protection contre les surtensions. L'invention permet d'augmenter le pouvoir de coupure en cas de déconnexion thermique dans les dispositifs de protection contre les surtensions.

Description

DISPOSITIF DE PROTECTION CONTRE LES SURTENSIONS A DECONNECTEURS THERMIQUES DEDOUBLES
La présente invention se rapporte au domaine technique général des dispositifs de protection d'équipements ou d'installations électriques contre les surtensions, notamment contre les surtensions transitoires, dues par exemple à un impact de foudre. La présente invention concerne plus particulièrement un dispositif de protection d'une installation électrique contre les surtensions transitoires, tel qu'un parafoudre à varistances, pour des installations électriques basse tension.
Il est connu d'assurer la protection d'une installation électrique contre les surtensions à l'aide de dispositifs incluant au moins un composant de protection contre les surtensions, en particulier une ou plusieurs varistances et/ou un ou plusieurs éclateurs. Pour les installations monophasées, il est habituel de recourir à une varistance branchée entre la phase et le neutre alors qu'un éclateur est connecté entre le neutre et la terre. Pour les installations triphasées, il est habituel de disposer des varistances entre les différentes phases et/ou entre chaque phase et le neutre et un éclateur entre le neutre et la terre. Pour des installations électriques fonctionnant sous courant continu, par exemple pour des installations de générateurs photovoltaïques, il est aussi recouru à des varistances et éventuellement des éclateurs.
En cas de défaillance du composant de protection, ces dispositifs comprennent un système de déconnexion servant à isoler le composant de protection de l'installation électrique par mesure de sécurité. En particulier, dans le cas des varistances, il est classique de prévoir une protection thermique. La protection thermique ou déconnecteur thermique sert à déconnecter la varistance de l'installation électrique à protéger en cas d'échauffement excessif de la varistance, par exemple au-delà de 140°C. Cet échauffement excessif de la varistance est dû à l'augmentation du courant de fuite ù généralement quelques dizaines de milliampères ù au travers de celle-ci en raison de son vieillissement. Dans ce cas, on parle d'emballement thermique de la varistance.
Le déconnecteur thermique consiste souvent en une soudure basse température maintenant en place un élément conducteur formant contact mobile par le biais duquel est connecté la varistance à l'installation électrique, cet élément conducteur étant contraint élastiquement vers l'ouverture. La fusion de la soudure a pour conséquence le déplacement du contact mobile sous l'effet de la contrainte élastique, ce qui provoque la déconnexion de la varistance. Des déconnecteurs thermiques de ce type sont décrits notamment dans EP-A-O 716 493, EP-A-O 905 839 et EP-A-0 987 803. R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 1/29 Ces dispositifs de protection contre les surtensions, et notamment de leur déconnecteur thermique, peuvent être confrontés à différentes situations contraignantes au cours de leur utilisation, et qui sont dépendantes notamment du type de réseau électrique auquel ils sont branchés.
D'abord, leur déconnecteur thermique doit présenter un pouvoir de coupure suffisant pour déconnecter efficacement le composant de protection en cas d'emballement thermique de celui-ci. Cette contrainte est plus délicate dans le cas des installations fonctionnant sous courant continu, étant donné qu'il n'y a pas de passage périodique au zéro volt de tension, comme c'est le cas en courant alternatif, contribuant à l'extension de l'arc électrique généré à l'ouverture du contact mobile. Le circuit électrique des dispositifs de protection doit aussi pouvoir supporter les contraintes résultants des chocs électriques tels que les courants de foudre pour lesquels ils sont prévus. Ces chocs électriques sont des surtensions transitoires d'amplitude importante (plusieurs milliers de volts) et de courte durée (de la microseconde à la milliseconde). Ces surtensions induisent notamment des efforts électrodynamiques et des montées en température qui sollicitent mécaniquement les différentes pièces conductrices composant le dispositif de protection. Malgré ces sollicitations mécaniques, le circuit électrique assurant la connexion du composant de protection à l'installation électrique doit resté fermé. En particulier, les sollicitations mécaniques ne doivent pas provoquer l'ouverture du déconnecteur thermique par arrachement de la brasure thermofusible. L'aptitude du dispositif à satisfaire à cette contrainte est vérifiée par les normes applicables, en particulier pour les installations alimentées en courant alternatif basse tension, au paragraphe 7.6 (essais de fonctionnement en charge) de la norme IEC 61643-1, 21ème éd., 2005-03 (noté ci- après IEC paragraphe 7.6) ou encore au paragraphe 37 (Surge testing) de la norme UL 1449, 3ième éd., 29.09.2006 (noté ci-après UL paragraphe 37). Pour les installations de courant continu telles que les installations de générateurs photovoltaïques, on peut citer à titre d'exemple le paragraphe 6.6 (Essais de fonctionnement en charge) du guide photovoltaïque UTE C 61-740-51 de juin 2009 (noté ci-après UTE paragraphe 6.6). Par ailleurs, le circuit électrique du dispositif de protection reliant le composant de protection à l'installation électrique peut être soumis à des courants très élevés sous la tension nominale de l'installation électrique, surtout dans le cas d'installations alimentées par le réseau de tension alternative. Cela est le cas lorsque la varistance du dispositif de protection connaît une défaillance par court-circuit. Dans ce cas, la déconnexion de la varistance défaillante est provoquée par une protection spécifique contre les courts-circuits tels qu'un fusible ou un disjoncteur. Compte tenu du temps de réaction de cette protection spécifique, le circuit électrique R:131200A31286 ABBB131286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 2/29 du dispositif de protection, incluant le déconnecteur thermique, ne doit pas provoquer de départ de feu dans ce laps de temps, compte tenu de l'importance des courants de court-circuit fournis par le réseau électrique d'alimentation. L'aptitude du dispositif à satisfaire à cette contrainte est vérifiée pour les installations alimentées en courant alternatif basse tension, par exemple au paragraphe 7.7.3 (Tenue aux courts-circuits) de la norme IEC 61643-1, 21ème éd., 2005-03 (noté ci-après IEC paragraphe 7.7.3). Le dispositif de protection contre les surtensions est encore susceptible d'être alimentée par une surtension temporaire liée à une anomalie de la tension du réseau d'alimentation de l'installation électrique ou encore en cas de défaillance par court- circuit d'une varistance s'il y en a au moins deux branchées en série entre les lignes du réseau d'alimentation. Dans un tel cas, la varistance devient passante et susceptible d'être traversée par un courant très élevée compte tenu de son indépendance faible, courant qui est peu ou prou le courant de court-circuit que peut fournir le réseau d'alimentation de l'installation électrique. Face à une telle situation, le dispositif de protection ne devrait pas provoquer de départ de feu. L'aptitude du dispositif de protection à satisfaire à cette contrainte est vérifiée pour les installations alimentées en courant alternatif basse tension, par exemple au paragraphe 39 (Current testing) de la norme UL 1449, 31eme éd., 29.09.2006 (noté ci-après UL paragraphe 39), ou pour les installations de générateurs photovoltaïques, par exemple au paragraphe 6.7.4 (Essais de fin de vie) du guide photovoltaïque UTE C 61-740-51 de juin 2009 (noté ci-après UTE paragraphe 6.7.4). Ces dispositifs de protection doivent donc selon le cas satisfaire à de nombreuses contraintes. L'une des principales contraintes pour leur déconnecteur thermique est d'être capable de couper fiablement les courants électriques les traversant dans les circonstances provoquant leur ouverture et notamment de pouvoir couper l'arc électrique créé entre son contact mobile et le ou les contacts fixes dont il se sépare. De ce point de vue, il convient d'avoir un pouvoir de coupure suffisamment important malgré l'encombrement souvent réduit de ces dispositifs de protection. Cette exigence est plus sévère dans les installations à courant continu compte tenu du fait que l'extinction des arcs électriques n'est pas faciliter par le passage par le zéro volt de tension comme c'est le cas pour le courant alternatif. Le but de la présente invention est de proposer une solution permettant d'augmenter le pouvoir de coupure en cas de déconnexion thermique dans les dispositifs de protection contre les surtensions.
Pour cela l'invention propose un dispositif de protection d'une installation électrique contre les surtensions transitoires, comprenant : - un composant de protection contre les surtensions ; - deux déconnecteurs thermiques, comprenant chacun : R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 3/29 o un contact mobile respectif susceptible de passer d'une position fermée à une position ouverte pour déconnecter le composant de protection de l'installation électrique, et o un élément thermosensible respectif pour faire passer le contact mobile de la position fermée à la position ouverte lorsque la température du composant de protection dépasse un seuil prédéterminé. Selon une variante, le composant de protection contre les surtensions est une varistance.
Selon une variante, le dispositif comporte pour l'un des déconnecteurs ou pour chacun des deux, un organe de réduction ou de suppression d'arc électrique se formant lors du déplacement du contact mobile vers la position ouverte, l'organe de réduction ou de suppression est choisi parmi le groupe d'organes de réduction ou de suppression d'arc comprenant des moyens électriques, des moyens électroniques, des moyens électromécaniques et des moyens mécaniques. Selon une variante, pour l'un des deux déconnecteurs thermiques ou pour chacun des deux, le contact mobile est sollicité élastiquement vers la position ouverte, l'élément thermosensible maintenant le contact mobile en position fermée jusqu'à la température de seuil et libérant le contact mobile lorsque la température du composant de protection dépasse le seuil prédéterminé. Selon une variante, pour ce déconnecteur thermique ou pour chacun des deux, l'élément thermosensible est une brasure thermofusible par laquelle le contact mobile est soudé à un pôle respectif du composant de protection. Selon une variante, ledit pôle respectif est disposé sur une face principale 25 respective du composant de protection et s'étend selon cette face principale du composant de protection. Selon une variante, pour ce déconnecteur thermique ou pour chacun des deux, le contact mobile comprend une lame s'étendant principalement dans un plan parallèle à l'une respective des faces principales du composant de protection et 30 principalement en regard de cette face principale, le mouvement de la lame entre la position fermée et la position ouverte s'effectuant dans ce plan. Selon une variante, pour l'un des déconnecteurs thermiques ou pour chacun des deux, la distance d'isolation du contact mobile en position ouverte est supérieure ou égale à 5 mm, de préférence supérieure ou égale à 10 mm. 35 L'invention propose en outre une cartouche comprenant : - un boîtier, - le dispositif de protection contre les surtensions précédent, et R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 4/29 - des broches pour connecter le dispositif de protection à une installation électrique à protéger, dans lequel le dispositif de protection est logé dans le boîtier et les broches font saillie hors du boîtier.
Selon une variante, le boîtier définit un volume parallélépipédique intérieur dans lequel est logé le dispositif de protection, le volume intérieur ayant pour dimensions maximales 15x42x43 mm. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit des modes de réalisation de l'invention, donnés à titre 10 d'exemple uniquement et en références aux dessins qui montrent : - figure 1, une vue en perspective d'une cartouche de protection d'une installation électrique basse tension, embrochée sur une embase montée sur un rail DIN ; - figure 2, des vues de face et de profil avec cotes dimensionnelles de la 15 cartouche de la figure 1, embrochée sur l'embase ; - figure 3, un schéma de principe du volume intérieur défini par le boîtier de la cartouche de la figure 2 avec vues de profil et de face et munis de cotes dimensionnelles ; - figure 4 , un schéma de principe illustrant à l'intérieur de la cartouche le 20 contact mobile du dispositif de protection en position fermée ; - figures 5 et 6, un schéma de principe de l'intérieur de la cartouche avec le boîtier de la cartouche ouvert illustrant le contact mobile du dispositif de protection en position ouverte et un schéma de la partie du boîtier enlevée ; - figure 7, une vue de face de la varistance susceptible d'être logée avec le reste 25 du dispositif de protection dans la cartouche de la figure 1 ; - figures 8A, 8B ett 8C, une vue en perspective de différents modes de réalisation de l'électrode de la varistance ; - figure 8D, une vue de profil de l'électrode de la varistance de la figure 8C ; - figures 9 et 10, une vue de profil et en perspective de la pièce de contact 30 électrique de la figure 6A ; - figures 1lA et 11B, une vue en coupe d'un mode de réalisation du dispositif de protection et son schéma équivalent électrique ; - figures 12A et 12B, une vue en coupe d'un mode de réalisation du dispositif de protection avec déconnecteurs thermiques dédoublés et son schéma équivalent 35 électrique ; - figures 13A et 13B, une vue de face et de profil d'un composant de protection destiné à être logé dans le volume intérieur de la cartouche en figure 1 ; R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 5/29 - figures 14A, 14B, 14C, 15A, 15B et 16A, des vues de différents modes de réalisation du dispositif de protection avec deux composants de protection - figure 16B, le schéma équivalent électrique du mode de réalisation de la figure 16A ; - figure 17A et 17B, une application d'un mode de réalisation du dispositif de protection avec un composant de protection comprenant deux blocs non linéaires pour une installation photovoltaïque et une vue en coupe de ce mode de réalisation. L'invention se rapporte à un dispositif de protection d'une installation électrique contre les surtensions. Le dispositif de protection comprend un composant de protection contre les surtensions et deux déconnecteurs thermiques. Ce composant de protection peut notamment être une varistance. L'on comprendra qu'il peut s'agir d'un bloc de plusieurs varistances reliées en série et/ou en parallèle entre elles. Chacun des deux déconnecteurs thermiques comprend un contact mobile respectif et un élément thermosensible respectif. Le contact mobile est susceptible de passer d'une position fermée à une position ouverte pour déconnecter l'au moins un composant de protection de l'installation électrique. L'élément thermosensible fait passer le contact mobile du même déconnecteur thermique de la position fermée à la position ouverte lorsque la température du composant de protection dépasse un seuil prédéterminé. Ce seuil est choisi comme étant représentatif d'une situation d'emballement thermique du composant de protection. L'élément thermosensible peut être en contact thermique direct avec le composant de protection. Le recours à deux déconnecteurs thermiques pour un même composant de protection permet d'assurer une déconnexion supplémentaire à une première déconnexion du composant de protection. Lors de l'emballement thermique du composant de protection, l'augmentation de température de ce dernier va provoquer l'ouverture d'un des deux déconnecteurs thermiques du fait du dépassement du seuil de température. Si l'ouverture de ce premier déconnecteur thermique n'offre pas un pouvoir de coupure suffisant pour couper l'arc électrique créé entre son contact mobile est son ou ses contacts fixes, cet arc électrique va se maintenir. Le courant électrique continue alors à circuler à travers le dispositif de protection et en particulier à travers le composant de protection. L'échauffement du composant de protection se poursuit jusqu'à ce que le deuxième déconnecteur thermique s'ouvre dans des conditions similaires à l'ouverture du premier déconnecteur. Les deux déconnecteurs s'ouvrent ainsi successivement. Même dans le cas où les deux déconnecteurs thermiques sont conçus de façon identiques, la déconnexion d'un des déconnecteurs précède toujours en pratique la déconnexion du deuxième R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 6/29 déconnecteur. Mais en tout état de cause, le dispositif de protection contre les surtensions bénéficie ainsi d'un pouvoir de coupure supplémentaire. La figure 1 représente en perspective une cartouche de protection 20 d'une installation électrique basse tension. La cartouche de protection 20 comprend le dispositif de protection précédemment décrit. Cette cartouche de protection 20 est embrochée sur une embase 82 prévue pour être montée sur un rail DIN de tableau électrique standardisé. L'embrochage de la cartouche 20 sur une embase 82 facilite le raccordement du dispositif de protection à l'installation électrique basse tension à protéger. De façon standard, on entend par installation électrique basse tension des équipements de tension assignée efficace jusqu'à 1 000 V en courant alternatif ou jusqu'à 1 500 V en courant continu. La fixation sur un rail DIN est standard pour de telles installations électriques. Le dispositif de protection contre les surtensions décrit est également adapté à la protection des installations de générateurs photovoltaïques. L'utilisation courante de cartouches et d'embases pour rail DIN, dans le domaine de la basse tension, impose une contrainte de conception compacte des dispositifs de protection contre les surtensions. Les figures 2A et 2B illustrent respectivement une des faces principales de la cartouche 20 et la tranche de la cartouche 20. La cartouche 20 destinée à loger le dispositif de protection, possède des dimensions extérieures AxBxC inférieures ou égales à 57 x 50,5 x 17,6 mm.
Les figures 3A et 3B illustrent schématiquement le volume intérieur 21 défini par le boîtier de la cartouche 20 logeant le dispositif de protection. La figure 3A montre une coupe du boîtier selon une des faces principales du boîtier. La figure 3B montre une coupe du boîtier selon la tranche du boîtier. La cartouche 20 destinée à loger le dispositif de protection, possède ainsi un volume parallélépipédique intérieur 21 ayant des dimensions C'xA'xB' inférieures ou égales à 15 x 42 x 43 mm. Dans la suite sont décrites différentes caractéristiques du dispositif de protection permettant d'obtenir un dispositif de protection compact susceptible d'être logé dans le volume intérieur 21 défini précédemment. Selon la figure 4, la cartouche 20 loge le dispositif de protection comportant une varistance 30 en tant que composant de protection et une lame conductrice 44 formant contact mobile d'un déconnecteur thermique. Alternativement le contact mobile peut être formé par une tresse ou un fil, pour assurer la connexion du composant de protection à l'installation électrique. Le dispositif de protection 30 comporte deux bornes 38 et 48 de connexion du dispositif à l'installation électrique.
La varistance 30 présente deux pôles reliés chacun à l'une respective des bornes 38 et 48. La figure 4 représente le dispositif de protection avec la lame 44 en position fermée, la lame 44 étant connectée électriquement au pôle 34 (visible sur la figure 5) de la varistance 30. Le pôle 34 constitue ainsi un contact fixe du déconnecteur R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 7/29 thermique. Le pôle 34 est relié à la borne 48 par le biais de la lame 44. Par ailleurs, la lame 44 est sollicitée élastiquement par un ressort de torsion 50. La connexion des bornes 38 et 48 à l'installation électrique à protéger est réalisée, dans cet exemple, par l'intermédiaire de l'embase 82 précédemment décrite en référence à la figure 1.
Les bornes 38 et 48 peuvent prendre la forme de bornes mâles comme des broches. La figure 5 représente le même dispositif de protection avec la lame 44 en position ouverte. La lame 44 est alors débranchée du pôle 34 de la varistance 30. Dans cette position, le pôle 34 de la varistance 30 n'est plus reliée à la borne 48. Les figures 5 et 6 illustrent la cartouche 20 de la figure 1 avec le boîtier 20 de la cartouche ouvert. Le boîtier est composé d'un flasque supérieur 23 représenté en figure 6 et d'un flasque inférieur 24 représenté en figure 5. La compacité du dispositif de protection permet de former avec le flasque inférieur 24 un "berceau équipé". La figure 5 représente la lame 44 à l'état déconnectée. L'élément thermosensible du déconnecteur thermique est une brasure thermofusible 70 par laquelle la lame 44 est au pôle 34 de la varistance 30. Cette brasure est encore visible sur le pôle 34 de la varistance 30 sur la figure 5. La brasure 70 assure la liaison électrique entre la lame 44 en position fermée et la borne 34 jusqu'à ce que le composant de protection 30 atteigne la température de seuil (par exemple 140°C) qui est indicative d'une défaillance de la varistance 30. Lorsque la varistance 30 atteint la température de seuil, la brasure 70 fond et l'extrémité de la lame 44 qui était reliée au pôle 34 de la varistance 30, s'éloigne de ce dernier sous l'action du ressort 50. Par conséquent, la liaison électrique entre la lame 44 et le pôle 34 est rompue.
Il est souhaitable de prévoir que le dispositif de protection puisse faire face à des situations de surtensions temporaires sans risque d'explosion ou de départ d'incendie, du moins si le dispositif de protection est susceptible d'être soumis à de telles conditions de surtensions temporaires. En particulier, il peut être conçu pour satisfaire aux essais prévus par la norme UL paragraphe 39 ou par le guide UTE paragraphe 6.7.4. Pour cela, la demanderesse préconise une approche visant à assurer une déconnexion thermique très rapide de la varistance 30. En effet, dans ces situations de surtensions temporaires, le courant traversant la varistance augmente progressivement jusqu'à ce que la varistance passe en court-circuit franc. Le temps de passage de la varistance 30 en court-circuit dépend notamment du ratio entre la surtension temporaire et la tension maximale de service admissible par la varistance et du comportement électrique de la varistance (variation de la résistivité de la varistance en fonction de la tension qui lui est appliquée). D'une part lorsque le ratio entre la surtension temporaire et la tension maximale admissible de la R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 8/29 varistance 30 est élevé, le temps de passage de la varistance 30 en court-circuit est faible. D'autre part lorsque le comportement de la varistance est très fortement non linéaire (la résistivité de la varistance varie très brutalement avec l'augmentation de la tension qui lui est appliquée), le temps de passage de la varistance 30 en court- circuit est faible. On peut alors choisir la varistance en fonction de ces différentes caractéristiques pour augmenter le temps de passage en court-circuit franc dans les conditions d'utilisation de la varistance. La phase transitoire d'augmentation de courant s'accompagne d'une augmentation de température de la varistance 30, durant le temps de passage de la varistance en court-circuit. Le déconnecteur thermique est conçu pour assurer la déconnexion dans la phase transitoire du comportement de la varistance avant que le courant la traversant ne devienne trop élevé pour pouvoir être coupé par le déconnecteur thermique. Cela implique une détection rapide de l'augmentation de la température de la varistance. Différentes caractéristiques techniques contribuent à l'obtention de cette déconnexion rapide. Ainsi, le pôle 34 est de préférence disposé sur une des faces principales du composant de protection 30. Une telle face principale du composant de protection est représentée par la zone hachurée 32 sur les figures 4 et 5. La figure 7 montre la varistance 30 vue perpendiculairement au plan de sa face principale 32. Le pôle 34 est avantageusement disposé à l'intérieur d'une zone centrale sur la face principale 32. Cette zone centrale est représentée fictivement par un cercle 86 en pointillées sur la figure 7. La zone centrale peut ainsi être située à l'intérieur d'un cercle imaginaire 86 centré sur ladite face principale 82 du bloc 80 et ayant un diamètre égal à 75 % du diamètre du cercle inscrit de la face principale 82 du bloc 80. La disposition du pôle 34 sur la face principale 32 dans la zone centrale assure un captage rapide par la brasure thermofusible 70 de l'augmentation de la température de la varistance 30 lors de la phase transitoire où le courant la traversant augmente. En effet, l'emballement de la varistance 30 entraîne une augmentation de la température d'abord dans les zones détériorées de la varistance 30. Ces zones détériorées correspondent à des zones de la varistance 30 présentant des défauts de conception non maîtrisés. La localisation de ces zones n'est a priori pas connue, de sorte que l'emballement thermique de la varistance commence dans une zone indéterminée. La disposition du pôle 34 dans la zone centrale assure ainsi que le pôle 34 est statistiquement le plus proche de la zone où l'emballement thermique de la varistance commence.
Ensuite, le pôle 34 de la varistance 30 peut avantageusement s'étendre selon la face principale 32, et non pas en saillie perpendiculairement à celle-ci. Ainsi la brasure 70 est réalisée sur le pôle 34 au niveau d'une surface de brasage qui est parallèle à la face principale 32 de la varistance 30. La brasure 70 présente alors son R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 9/29 épaisseur selon la direction perpendiculaire à la face principale du composant de protection. Par conséquent, l'ensemble de la brasure 70 est au plus près de la varistance 30 et lui assure une communication sans délai de la température de la varistance 30. Cette mesure est avantageuse par rapport aux solutions classiques dans lesquelles le pôle du composant de protection formant contact fixe de la déconnexion thermique s'étend dans un plan perpendiculaire à la face principale du composant de protection. La brasure est alors réalisée selon ce plan perpendiculaire et une partie de la brasure est maintenue à distance du composant de protection. Lors de la défaillance du composant de protection, la brasure est d'abord sollicitée thermiquement dans sa partie proche du composant de protection, l'augmentation de température de la varistance parvenant avec un retard à la partie de la brasure la plus éloignée du composant de protection 30, ce qui a pour inconvénient de ralentir la déconnexion thermique. Par ailleurs, la rapidité de la déconnexion thermique peut encore être améliorée par la conception de la varistance 30, plus précisément par la conception de son électrode formant le pôle de la varistance qui sert à transmettre la chaleur dégagée par la varistance à l'élément thermosensible du déconnecteur thermique. De ce point de vue, il est avantageux que l'électrode de la varistance soitformée par une plaque conductrice 84, représentée en figure 7. La varistance 30 comporte alors en outre un bloc 80, dont la figure 7 ne montre que la face principale 82. Le bloc 80 présente une résistance électrique dont la valeur varie en fonction de la tension appliquée au bloc 80. Ce bloc 80 constitue la partie active de la varistance 30 et permet de limiter les surtensions en présentant une résistance faible pour des surtensions de fortes amplitudes telles que celles survenant lors de coups de foudre.
La plaque conductrice 84 est agencée sur une face principale 82 du bloc 80. Les faces principales du bloc 80 correspondent aux faces principales de la varistance 30. La plaque 84 présente une partie en saillie formant un des pôles 34 de connexion de la varistance. De manière analogue un deuxième pôle 36 de la varistance 30 peut être constituée par une partie en saillie d'une plaque conductrice agencée sur une autre face principale du bloc 80 la varistance 30. Dans la suite du document, seule la constitution du pôle 34 par la partie en saillie de la plaque 84 est décrite. La varistance 30 comporte ensuite un revêtement d'isolation électrique appliqué sur l'ensemble formé par la face principale 82 du bloc 80 et de la plaque 84. L'ensemble formé par la face principale 82 du bloc 80 et la plaque 84 est ainsi isolé électriquement de son milieu environnant, dont le contact mobile du dispositif de protection. De préférence l'ensemble formé du bloc 80 et de la plaque 84 sont entièrement enrobé par le revêtement d'isolation électrique à travers lequel émerge aussi les différents pôles de connexion de la varistance pour permettre de réaliser une R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 10/29 connexion électrique avec le reste du dispositif de protection, particulièrement avec la lame 44. La partie en saillie formant le pôle 34 peut émerger hors du revêtement d'isolation électrique de manière à permettre une amélioration du pouvoir de coupure tel que décrit plus en détail dans la suite de ce document. La partie en saillie formant le pôle 34 peut être reliée au reste de la plaque 84 sur au moins la moitié de son périmètre de manière à améliorer la rapidité de la déconnexion. En effet lors de la détérioration de la varistance 30 soumise à des surtensions temporaires, le courant de fuite de la varistance 30 augmente jusqu'à ce que la varistance 30 passe en court-circuit franc. Cette phase transitoire d'augmentation de courant de fuite s'accompagne d'une augmentation de température de la varistance 30. Cette augmentation de température est progressive. La température augmente d'abord au coeur du bloc 80 de la varistance 30 dans des zones présentant des défauts d'homogénéité. L'augmentation de température se propage ensuite par conduction dans tout le bloc 80 de la varistance jusqu'aux faces extérieures du bloc et notamment jusqu'à la face principale 82 du bloc 80. L'agencement de la plaque 84 conductrice sur la face principale 82 du bloc 80 permet un temps de propagation minimum de l'augmentation de température depuis les zones défectueuses du bloc 80 jusqu'à la plaque 84 formant électrode de la varistance 30. D'une part la plaque 84 est conductrice électriquement permettant à la plaque de former une électrode. D'autre part la plaque 84 est conductrice thermiquement pour assurer une propagation rapide de la montée de la température jusqu'au pôle 34 de la varistance 30 après que l'augmentation de température a atteint la plaque 34. La plaque conductrice est de façon avantageuse réalisée en cuivre. Le lien de la partie en saillie formant le pôle 34 au reste de la plaque 84 sur au moins la moitié du périmètre du pôle 34 assure une conduction thermique efficace depuis la plaque 84 vers le pôle 34, et ce quelque soit la localisation des zones du bloc 80 présentant des défauts par rapport au pôle 34. En définitive la varistance précédemment décrit permet une diminution du temps de réaction de la varistance, qui est le temps s'écoulant entre les premières détériorations de zones du bloc 80 de la varistance et l'augmentation de température du pôle 34 de la varistance 30. La figure 8A illustre un mode de réalisation possible de la partie formant pôle 34. Cette partie formant pôle 34 est reliée au reste de la plaque 84 sur ses côtés de dimensions D. Les côtés de dimensions E de la partie formant pôle 34 ont été découpé de la plaque 84 et participe alors pas à la conduction thermique. La figure 8B, illustre un autre mode de réalisation possible de la partie formant pôle 34. Dans ce mode de réalisation, la partie formant pôle 34 est disposé sur le bord de la plaque 84. R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 11/29 Tous ces modes de réalisation de la partie formant pôle 34 présente un lien avec le reste de la plaque sur au moins la moitié du périmètre du pôle 34. De manière avantageuse la partie de la plaque formant pôle de connexion est reliée au reste de la plaque 84 sur au moins 80 % de son périmètre pour assurer une meilleure conduction thermique. De manière encore plus préférée la partie formant pôle 34 peut être reliée au reste de la plaque 84 sur tout son périmètre, tel qu'illustré par la figure 8C. La chaleur, due à l'augmentation de température du bloc 80 et captée par la plaque 84, est alors conduite thermiquement au pôle 34 par la totalité de son périmètre. Le transfert thermique et la rapidité de la déconnexion sont améliorés. Tous ces modes de réalisation de la partie formant pôle 34 ont été obtenus par emboutissage de la plaque 84. L'emboutissage est une technique de fabrication permettant d'obtenir, à partir d'une feuille de tôle plane et mince, un objet dont la forme n'est pas développable. Dans le mode de réalisation de la figure 8A, la plaque 84 a été préalablement découpé de manière à faciliter la déformation de la plaque 84. La constitution d'un des pôles de la varistance par emboutissage de plaque 84 permet d'assurer une continuité de matière entre la partie de la plaque agencée sur la face principale 82 du bloc 80 et la partie emboutie. La partie de la plaque 84 formant pôle 34 de la plaque 84 peut être aussi être disposée au niveau de la zone centrale du bloc 80 qui correspond à la zone centrale délimité par le cercle 86 représenté en figure 7, permettant une rapidité de déconnexion tel que précédemment démontrée. Dans un but analogue, la plaque conductrice 84 peut être centrée sur ladite face principale 82 du bloc 80. Le reste de la plaque conductrice 84 autour de la partie en saillie formant pôle 34 peut être pleine. Le reste de la plaque 84 ne présente alors aucun évidement de matière ou trou à l'intérieur de la surface délimité par son périmètre extérieur. En étant exempt de trou, la plaque 84 possède une importante surface de captage de l'augmentation de température du bloc 80 permettant l'amélioration de la rapidité de la déconnexion thermique. Dans le même but, on peut aussi prévoir que la surface de la plaque 84 agencée en contact avec la face principale 82 du bloc 80 présente une aire qui est au moins la moitié de l'aire de la face principale 82 du bloc 80. La plaque 84 présente de préférence une épaisseur inférieure ou égale à 0,7 mm de manière à limiter la quantité de matière à échauffer avant que l'augmentation de température n'atteigne le pôle 34. La plaque 84 présente de préférence une épaisseur supérieure ou égale à 0,3 mm de manière à permettre à la plaque de résister aux contraintes mécaniques évoquées dans la suite de ce document. R:131200A31286 ABBB131286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 12/29 Une autre mesure consiste à choisir pour la brasure thermofusible 70 un alliage à faible température de fusion pour assurer la déconnexion rapide de la lame 44. Une faible température de fusion de la brasure 70 permet d'obtenir rapidement une ouverture du déconnecteur thermique. L'alliage étain/indium In52Sn48 est particulièrement préféré car il présente une température de liquidus à 118°C alors que les alliages classiquement utilisées ont une température de liquidus généralement supérieure à 130°C. De plus, cet alliage respecte la directive européenne 2002/95/CE dite RoHS (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment).
Encore une autre mesure consiste à optimiser la forme de la lame 44. Les figures 9 et 10 illustrent, respectivement vue de profil et en perspective, une forme préférée de réalisation de la lame 44 de la figure 5. La lame 44 présente une partie 42 destinée à être soudée au pôle 34 par la brasure 70. La partie 42 est reliée au reste de la lame 44 par une restriction locale 58 de la section de la lame 44. Cette restriction 58 de la lame 44 permet de concentrer la chaleur dégagée par le composant de protection 30 au niveau de la partie 42 - et donc au niveau de la brasure 70 - car la diffusion de la chaleur depuis la partie 42 vers le reste de la lame 44 est limitée par la restriction locale 58. De ce fait, la montée en température de la brasure 70 est plus rapide lors de l'augmentation de température de la varistance 30. La rapidité de l'ouverture du déconnecteur thermique s'en trouve augmentée. La surface de la partie 42 correspond avantageusement à la section de la brasure 70. La section de la brasure 70 est choisie en fonction des considérations mécaniques évoquées plus loin. La partie 42, ainsi que la brasure 70 présentent de préférence une forme de disque pour permettre une meilleure homogénéité de l'échauffement de la brasure 70. La partie 42 peut ainsi être caractérisé par un diamètre moyen de ce disque. Il est préférable que la restriction locale 58 ait une longueur inférieure à 80% au diamètre moyen de la partie 42 pour assurer un effet sensible de concentration sur la brasure 70 de la chaleur émise par la varistance 30. Il est plus avantageux encore que la restriction locale ait une longueur inférieure à 70% du diamètre moyen de la partie 42. La longueur de la restriction locale 58 précitée s'entend de la distance la plus petite séparant deux bords opposés d'une face principale de la lame 44 : cette longueur est référencée `L' sur la figure 9. La restriction locale 58 est disposée à proximité de la brasure 70 de manière à limiter les pertes d'énergie thermique entre la restriction locale 58 et la brasure 70. La distance de la restriction locale 58 à la brasure 70 peut être estimée par le rapport entre la surface de la brasure 70 (c'est-à-dire la section de la brasure précédemment décrite) et la surface de la partie 42 (représenté par des hachures et à droite de la R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 13/29 restriction 58 sur la figure 9). Ce rapport est de préférence supérieur à 70%, et plus avantageusement supérieur à 80%. Les caractéristiques précédemment décrites contribuent chacune à augmenter la rapidité de la déconnexion thermique. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon la rapidité de déconnexion souhaitée. Ces mesures permettent notamment de satisfaire aux exigences de la norme UL paragraphe 39 et/ou du guide UTE paragraphe 6.7.4. Le fait de combiner toutes ces mesures est particulièrement avantageux dans le cas où le dispositif de protection est prévu pour satisfaire aux exigences particulièrement sévères de la norme UL paragraphe 39.
Le dispositif de protection est aussi conçu avantageusement pour présenter un pouvoir de coupure amélioré. Un tel pouvoir de coupure amélioré peut être utile aussi bien dans le cas d'une déconnexion thermique sous la tension nominale d'utilisation que dans le cas d'une surtension temporaire tel que dans les essais de la norme UL paragraphe 39 et/ou du guide UTE paragraphe 6.7.4. Différentes caractéristiques techniques contribuent à l'obtention d'un pouvoir de coupure amélioré. Ainsi, le dispositif de protection peut comprendre un organe de réduction ou de suppression d'arc se formant lors du déplacement de lame 44 vers la position ouverte. Un tel organe de réduction ou de suppression d'arc est particulièrement utile pour les installations électriques alimentées sous courant continu. De tels organes sont par exemple constitués par des moyens électriques (comme un condensateur 22), des moyens électroniques, des moyens électromécaniques (comme une chambre d'extinction d'arc), ou encore des moyens mécaniques (comme un volet isolant venant s'interposer entre le contact mobile et le contact fixe, par sollicitation élastique ou par gravité). Lorsqu'on utilise le condensateur 22, il est disposé en parallèle du déconnecteur thermique pour réduire la tension de l'arc électrique se formant lors du déplacement de la lame 44 vers la position ouverte. Dans ce sens, la figure 1 lB représente le schéma électrique correspondant au dispositif de protection de la figure 1 lA qui le représente schématiquement en coupe transversale. Ensuite, pour les installations alimentées en courant continu ou celles alimentées en courant alternatif, le dispositif de protection peut comporter un deuxième déconnecteur thermique comme l'illustre les figure 12A et 12B. Le deuxième déconnecteur est formé d'un contact mobile 64 et d'un contact fixe 36 sur la même varistance 30. Le contact fixe 36 correspond sur la figure 12A au deuxième pôle de la varistance 30. Le contact mobile 64 peut être réalisé par une lame de façon similaire à la lame 44 du premier déconnecteur thermique. La présence du deuxième R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 14/29 déconnecteur thermique sur la même varistance permet d'augmenter le pouvoir de coupure du dispositif de protection proposé, étant donné que les distances d'isolation entre contact mobile et contact(s) fixe(s) des deux déconnecteurs thermiques viennent s'additionner. Comme l'illustre la figure 12B qui représente le schéma électrique équivalent du dispositif de protection de la figure 12A, on peut en plus disposer des condensateurs 22 en parallèle de chacun des déconnecteurs thermiques pour améliorer encore le pouvoir de coupure. Par ailleurs, comme illustré sur la figure 5, le dispositif de protection peut comporter un ressort de torsion 50 pour solliciter élastiquement la lame 44 de la position fermée à la position ouverte. Dans un tel mode de réalisation, lorsque la varistance 30 atteint la température de seuil, la brasure 70 fond et libère la lame 44 qui est entraînée vers la position ouverte du fait de la sollicitation élastique par le ressort 50. L'utilisation d'un ressort 50 distinct de la lame 44 permet une calibration de la vitesse d'ouverture de la lame 44 et une orientation précise de l'effort de sollicitation de la lame 44. Dans des systèmes classiques, les lames formant contact mobile d'un déconnecteur thermique sont sollicitées élastiquement du fait de l'élasticité intrinsèque des lames. L'élasticité étant liée intrinsèquement à la lame, il est alors difficile de prévoir une vitesse d'ouverture importante de la lame sans modifier la géométrie de la lame. Dans le dispositif de protection proposé avec le ressort 50, le ressort 50 peut être dimensionné pour entraîner la lame 44 vers la position ouverte avec une vitesse d'ouverture importante sans modifier la géométrie de lame 44 qui peut alors être définie uniquement en fonction d'autres considérations. Par ailleurs, le choix d'une vitesse d'ouverture élevée du déconnecteur thermique permet d'augmenter le pouvoir de coupure du déconnecteur.
Comme illustré dans les figures 9 et 10, la lame 44 comprend un appui 56 pour le ressort 50, permettant de transmettre la sollicitation du ressort 50 à la lame 44. Comme illustré dans les figures 4 et 5, la lame 44 s'étend dans un premier plan parallèle à la face principale 32 de la varistance 30 avec un mouvement de la lame 44 entre la position fermée et la position ouverte s'effectuant principalement dans ce premier plan. En référence à la figure 5, on peut ainsi obtenir une distance d'isolation D importante entre le contact mobile - c'est-à-dire la lame 44 - et le contact fixe - c'est-à-dire le pôle 34 - du déconnecteur thermique. Ainsi la distance d'isolation pour un déconnecteur thermique peut être sensiblement supérieur à 5 mm et atteindre au moins 10 mm.
De plus, un tel mouvement de la lame 44 dans un plan parallèle à la face principale 32 permet aussi d'obtenir un dispositif de protection compact pouvant être logé dans la cartouche 20. Dans des solutions classiques de déconnecteurs thermiques constitués d'une lame de déconnexion, le mouvement de la lame vers la R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 15/29 position ouverte est un mouvement s'effectuant perpendiculairement à la face principale du composant de protection. Dans de tels dispositifs, l'augmentation de la distance de déconnexion passe par l'augmentation de l'épaisseur du dispositif (c'est-à-dire la dimension du dispositif dans la direction perpendiculaire à une face principale du composant de protection), ce qui nuit à sa compacité. Le mouvement de la lame 44 parallèlement à la face principale 32 de la varistance 30 est confiné dans un volume ayant pour base la face principale 32 de la varistance et présentant une faible épaisseur relativement aux dimensions de la varistance. Un tel mouvement de la lame 44 selon la face principale 32de la varistance 30, et donc présentant les plus grandes dimensions de la varistance 30, entraîne la possibilité d'obtention d'une importante distance de coupure à l'intérieur du volume confinant le mouvement de la lame 44. L'épaisseur de ce volume étant faible, la compacité du dispositif de protection est proche de la compacité de la varistance 30. Ce mode de réalisation de la lame 44 est particulièrement avantageux quand le dispositif de protection comprend un deuxième déconnecteur thermique sur la même varistance comme précédemment décrit. On obtient alors une conception compacte conformément à la figure 12A. En référence à la figure 8D et tel que précédemment décrit, l'électrode 84 de la varistance 30 peut avantageusement présenter la partie en saillie formant pôle 34.
Cette partie formant pôle 34 émerge hors du revêtement d'isolation électrique tel que la surface de brasage pour le raccordement électrique du pôle et emboutie s'étend au-dessus du niveau du revêtement d'isolation électrique, tel que représenté par la figure 12A. La disposition de la partie de la plaque 84 formant pôle 34 en saillie et émergeant du revêtement d'isolation électrique assure que la lame 44, formant contact mobile, effectue un mouvement vers la position ouverte, de façon parallèle à la face principale 32 de la varistance 30 tout en restant à distance du revêtement isolant. Le mouvement vers la position ouverte est ainsi effectué sans frottement de la lame 44 sur le revêtement isolant. L'absence de frottement de la lame 44 sur le revêtement isolant permet d'obtenir une bonne vitesse de déconnexion sans traîner de résidu liquéfié de la brasure 70 sur la face principale 32 de la varistance 30. D'une part une bonne vitesse de déconnexion du déconnecteur thermique contribue à l'amélioration du pouvoir de coupure du déconnecteur. D'autre part l'empêchement de la formation d'une traînée de brasure 70 liquéfié permet d'assurer que la distance d'isolation procurée par le déconnecteur thermique à l'état ouvert, est effectivement égale à la distance séparant la lame 44 et le pole 34, améliorant ainsi le pouvoir de coupure. R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 16/29 La disposition de la partie de la plaque 84 en saillie pour former le pôle 34 permet en outre d'isoler électriquement la lame 44 du revêtement d'isolation électrique sans utiliser une cloison séparatrice supplémentaire. Le dispositif de protection peut ainsi être réalisé de sorte que seule une lame d'air sépare la face principale 32 de la lame 44 lors de son mouvement de la position fermée vers la position ouverte. L'absence de cloison séparatrice supplémentaire entre la lame 44 et la face principale 32 de la varistance 30 permet de réduire encore l'encombrement du dispositif de protection. Dans le même but d'amélioration du pouvoir de coupure, la partie formant pôle 34 présente sa surface de brasage au moins 0,1 mm au-dessus du niveau du revêtement d'isolation électrique. De façon encore plus préférée la surface de brasage est située à au moins 0,3 mm du niveau du revêtement d'isolation électrique. Le revêtement d'isolation électrique possède de préférence une épaisseur comprise entre 0,1 mm et 1 mm. De façon encore plus préférée, l'épaisseur est supérieure ou égale à 0,6 mm pour permettre une isolation électrique améliorée de la varistance 30 par rapport au reste du dispositif de protection. Les caractéristiques précédemment décrites contribuent chacune à augmenter le pouvoir de coupure. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon le pouvoir de coupure souhaité
Le dispositif de protection est encore conçu avantageusement pour résister fiablement aux courants de choc, notamment pour satisfaire aux essais des normes IEC paragraphe 7.6 ou UL paragraphe 37, ou encore au guide UTE paragraphe 6.6 selon le cas. La réalisation de la brasure 70 dans le plan de la face principale 32 de la varistance 30 déjà décrite permet de résister efficacement aux efforts électrodynamiques dus au choc foudre. La résistance de la brasure 70 à l'arrachement mécanique des efforts électrodynamiques peut être adaptée en augmentant la section de la brasure 70, plus particulièrement en augmentant la surface de la brasure 70 soudée au pôle 34 û c'est-à-dire en augmentant la surface de brasage de la partie formant pôle 34 û . Dans des solutions classiques, la section de la brasure s'étend dans un plan perpendiculaire à la face principale du composant de protection. Le dimensionnement de la section de la brasure par rapport aux efforts électrodynamiques entraîne une augmentation de l'épaisseur de l'ensemble du dispositif de protection (c'est-à-dire dans la direction perpendiculaire à la face principale du composant de protection). Dans le dispositif de protection proposé avec la brasure 70 réalisée dans le plan de la face 32 au niveau du pôle 34 disposé sur la R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 17/29 face 32, l'augmentation de la section de la brasure 70 se fait selon le plan de la face 32. L'augmentation de la section de la brasure 70 pour la tenue aux efforts électrodynamique n'est alors par limitée par l'exigence de compacité du dispositif de protection. On peut ainsi choisir obtenir une section de la brasure 70 supérieure ou égale à 50 mm2, voire supérieure ou égale à 100mm2 sans impacter la compacité du dispositif de protection à loger dans la cartouche 20 telle que précédemment définie. Même pour des surfaces de section de soudure aussi importante, la rapidité de la déconnexion est satisfaisante avec les différentes caractéristiques déjà décrites. En référence à la figure 9, la lame 44 peut être solidaire d'une partie flexible 46. Cette partie flexible 46 forme un coude 46 (ou une lyre) autour d'un axe perpendiculaire au plan de la figure 9. Ce coude 46 autorise le mouvement de la lame 44 entre la position ouverte et la position fermée. En cas de courants de choc écoulés par le dispositif de protection, les efforts électrodynamiques sollicitent en ouverture le coude flexible 46. Une telle sollicitation en ouverture du coude 46 entraîne une sollicitation de la lame 44 vers la position ouverte. Autrement dit, les efforts électrodynamiques sollicitent en cisaillement la brasure 70. Or comme il a été décrit précédemment, la brasure 70 peut être dimensionnée pour résister à des sollicitations comme le cisaillement sans détériorer la compacité du dispositif. Le coude flexible 46 contribue donc à la fois à la compacité du dispositif de protection et à sa tenue au courants de choc. La sollicitation en cisaillement de la brasure 70 permet de plus de s'affranchir de problèmes rencontrés lors d'une sollicitation en traction de la brasure. En effet dans une situation de traction de la brasure, les contraintes dans la brasure peuvent ne pas être réparties uniformément. La partie de la brasure avec les plus fortes contraintes commence alors à se détériorer localement créant une entame de la brasure qui diminue la section efficace de la brasure face à la traction. On est alors dans une situation de clivage où la partie la plus sollicitée de la brasure entraîne progressivement l'arrachement de l'ensemble de la brasure. La sollicitation en cisaillement de la brasure proposée permet une répartition plus uniforme des contraintes dans la brasure 70 évitant une situation équivalente au clivage en traction. Le matériau du coude 46 présente de préférence une résistance élastique basse (Re). Une faible résistance élastique permet au coude 46 d'absorber une partie de l'énergie en s'ouvrant de façon plastique. L'absorption d'une partie de l'énergie due aux effets électrodynamique permet de limiter la sollicitation de la brasure 70. La résistance élastique est classiquement approché par la contrainte de déformation plastique à 0,2% (notée Rp0,2). Lorsque le matériau utilisé pour le coude est du cuivre Cu-al comme discuté plus en détail plus loin, ce dernier présente un Rp0,2 avantageusement faible, à savoir de 250 MPa (N.mm 2). R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 18/29 L'utilisation de l'alliage étain/indium In52Sn48 pour la brasure 70 permet d'obtenir une résistance au cisaillement de l'ordre de 11,2 MPa (N.mm-2), ce qui constitue une bonne résistance en comparaison aux alliages classiquement utilisés pour la brasure. Ainsi un alliage classique tel que le Bi58Sn42 présente une résistance au cisaillement de l'ordre de 3,4 MPa seulement. En conséquence, on peut limiter l'apport en matériau pour la réalisation de la brasure 70 en diminuant la section de la brasure 70 par exemple jusqu'à une surface de 25mm2 tout en ayant une tenue mécanique au cisaillement satisfaisante. Comme illustré sur les figures 9 et 10, la lame 44 peut comprendre une zone de raidissement 52 de la pièce 40. L'inertie en flexion de la lame 44 est ainsi augmentée pour que la sollicitation en déconnexion de la lame 44 par le ressort 50 ou par les efforts électrodynamiques soit quasi-exclusivement un cisaillement pur. Le dimensionnement de la brasure 70 pour la tenue aux courants de choc est ainsi facilitée. Cependant, il peut être prévu une inertie en flexion faible entre la partie 42 de la lame 44 qui est soudée au pôle 34 et la restriction 58. Ceci permet de compenser les jeux dimensionnels lors de l'assemblage des différentes pièces du dispositif de protection sans avoir à déformer la lame 44 pour la souder au pôle 34. La partie 42 de la lame 44, destinée à être soudée au pôle 34 par la brasure 70, est de préférence étamée. L'étamage de la partie 42 permet une amélioration de la qualité de la brasure entraînant une meilleure tenue mécanique de celle-ci, notamment aux courants de choc. Les caractéristiques précédemment décrites contribuent chacune à augmenter la tenue mécanique aux courants de choc tout en autorisant une mise en oeuvre compact du dispositif de protection. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon la tenue mécanique souhaitée. Du fait de la compacité, une varistance 30 avec des dimensions plus importantes peut être logée au sein de cartouches aux dimensions mentionnées en relation avec les figures 2A, 2B 3A et 3B. En particulier, la varistance 30 peut avoir une épaisseur plus importante, ce qui permet une tension de service de la varistance plus élevée. Autrement dit, le dispositif de protection peut être adaptée pour une installation fonctionnant sous une tension plus élevée, par exemple entre 500 et 1000 V dans le cas des installations à générateurs photovoltaïques à comparer avec les 230 V ou 400 V habituel pour les réseaux d'alimentation alternatif en Europe. Les figures 13 A et 13B illustrent respectivement de face et de profil, les dimensions A", B", C" d'une varistance 30 susceptible d'être logée dans la cartouche 20 avec le reste du dispositif de protection compact proposé. Les dimensions A" et B" de la varistance 30 sont classiquement égales à 35mm). La varistance 30 peut avoir une épaisseur C" R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 19/29 jusqu'à 9mm. La varistance 30 avec une épaisseur de 9 mm possède une tension de service de l'ordre de 680 V et ne présentant qu'un courant de fuite de l'ordre de lmA sous une tension de 1100 V en courant continu. La compacité du dispositif de protection permet alors de l'utiliser pour une gamme de tension de 75 V à 680 V.
Elle permet en particulier l'utilisation du dispositif de protection pour la protection d'installations de générateurs photovoltaïques. Selon un mode préféré de réalisation compacte du dispositif de protection à double déconnecteur thermique et en référence à la figure 12A, les deux pôles 34 et 36 de la varistance 30 sont disposés sur des faces principales opposées de la varistance 30. Le premier déconnecteur électrique qui comprend la lame 44 connectée par brasure thermofusible au premier pôle 34 de la varistance 30, est réalisé comme précédemment décrit. Le deuxième déconnecteur thermique comprend une lame 64 formant contact mobile connecté par brasure thermofusible au deuxième pôle 36 de la varistance 30. Ce deuxième déconnecteur présente avantageusement les mêmes caractéristiques que le premier déconnecteur lesquelles ont été précédemment décrits.
Le dispositif de protection est encore conçu avantageusement pour résister en toute sécurité au cas où la varistance 30 passe en court-circuit sous la tension nominale de fonctionnement le temps que des protections spécifiques contre les courts-circuits - tels qu'un fusible ou un disjoncteur externe au dispositif û intervienne. En particulier, il est prévu pour pouvoir satisfaire à la norme IEC paragraphe 7.7.3. La difficulté vient du fait ces protections externes possèdent un certain temps de réaction pendant lequel le dispositif de protection est traversé par des courants élevés. Le dispositif de protection ne doit pas exploser ou déclencher un incendie pendant ce temps. Pour cela, la demanderesse préconise une approche visant à limiter l'échauffement des pièces conductrices du dispositif de protection, en particulier de son déconnecteur thermique. En effet, le courant de court-circuit est tel qu'il provoque un échauffement de ces pièces par effet Joule. Un échauffement non maîtrisé des différentes pièces du dispositif de protection peut alors conduire à la fusion d'une des pièces constituant un éventuel départ de feu avant que les dispositifs externes ne coupent le courant. Différentes caractéristiques contribuent à limiter l'échauffement des pièces du dispositif de protection. Ainsi, comme illustré par les figures 5, 9 et 10, la lame 44 et la borne 48 font parties d'une seule et même pièce pour former la pièce 40. La pièce 40 peut être obtenue par emboutissage, cintrage ou pliage d'une tôle laminée. Du fait que la pièce R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 20/29 40 n'est pas obtenue par assemblage de plusieurs pièces, mais n'en constitue qu'une seule, le courant traversant la pièce 40 de la borne 48 à la lame 44 ne rencontre pas de résistance électrique de contact ou de soudure. Cette absence de résistance de contact ou de soudure limite l'échauffement de la pièce 40 lorsqu'elle est parcourue par des courants de fortes intensités. De plus, la pièce 40 est de préférence réalisée en cuivre avec une pureté suffisante pour présenter une conductivité IACS (international annealed copper standard) supérieure à 70%. La conductivité de IACS d'une pièce correspond au rapport entre une résistivité de 1,7241 µS2.cm et la résistivité de la pièce, la conductivité IACS est sans dimension. De ce fait, la pièce 40 présente une faible résistivité électrique et donc assure le passage du courant électrique tout en limitant son échauffement. De ce point de vue, il est avantageux que la pureté du cuivre soit telle que sa conductivité IACS soit supérieure ou égale à 90%, voire 95 %. Il est encore plus avantageux d'utiliser du cuivre ayant une pureté de 99,9%, autrement dit qui présente une conductivité IACS de 100%, ce qui est le cas du cuivre Cu-al (ou Cu-ETP, encore appelé cuivre électrolytique). La résistivité électrique de la pièce 40 peut ainsi être inférieure ou égale à 1,7241 µQ2.cm et permet de limiter de façon très efficace l'échauffement de la pièce 40 soumis à des courants de courts-circuits. Dans des solutions classiques, il était couramment utilisé des lames avec une élasticité intrinsèque pour former le contact mobile du déconnecteur thermique. Or seuls des alliages de cuivre procurent une élasticité intrinsèque suffisante, mais au détriment de la résistivité qui est sensiblement plus élevée. Dans le dispositif de protection proposé, l'utilisation d'une sollicitation élastique extérieure à la lame 44 (par le ressort 50 dans notre exemple) permet de réaliser la lame 44 avec un cuivre de pureté suffisante pour limiter sensiblement son échauffement lors des essais en courts-circuits. La pièce 40 a de préférence une section minimale prévue pour permettre le passage en continu sans détérioration d'un courant de court-circuit auquel le dispositif de protection peut être exposé. Par ailleurs, la pièce 40 présente de préférence une épaisseur de 0,4 mm à 0,6 mm pour fournir la flexibilité du coude 46 discutée plus haut. L'épaisseur de la tôle utilisée pour l'obtention de la pièce 40 peut être égale à 0,5 mm. Par ailleurs, il est avantageux que la lame 44 présente û en-dehors de la partie 42 - une surface d'échange thermique importante avec l'air ambiant, mais sans préjudicier à la compacité du dispositif. Pour cela, les faces principales de la lame 44 s'étendent parallèlement à la face principale 32 de la varistance 30. La lame 44 assure ainsi une fonction d'ailette de refroidissement, ce qui améliore encore la résistance de la pièce 40 aux courants de courts-circuits. R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 21/29 Plus généralement, la pièce 40 peut comporter des zones de section maximale pour dissiper la chaleur obtenue par effet Joule à épaisseur sensiblement constante, ce qui, permet d'augmenter la surface de contact de la pièce 40 avec l'air ambiant et donc limiter l'échauffement lors du passage du courant de court-circuit. La section maximale de la pièce 40 est de préférence prévue au niveau de la lame 44, entre d'une part le coude 46 et d'autre part la partie 42 ou le cas échéant la constriction 58. Une augmentation de la largeur de la pièce 40 peut aussi être prévue entre le coude 46 et la borne 48. Les figures 9 et 10 illustrent ainsi une ailette de refroidissement 54. Cette ailette de refroidissement 54 permet notamment de limiter l'élévation de température du coude flexible 46 lors de passage du courant de court-circuit. Le coude 46 peut en effet présenter une section minimale de la pièce 40 pour des considérations de mise en forme de la pièce 40, ou encore pour des considérations de flexibilité suffisante du coude 46. Le fait que la lame 44 soit ainsi pourvue de surface d'échange limitant l'échauffement de la pièce 40 permet de diminuer localement la section minimale de la pièce 40 précédemment évoquée, compte tenu du caractère temporaire du court-circuit. On peut ainsi réaliser la restriction 58 avec une longueur inférieure ou égale à 5,5 mm, voire à 5 mm, en restant en-deça à cet endroit de la section minimale de la pièce 40 tel que précédemment définie.
Le matériau de la pièce 40 est de préférence nu au niveau du brochage 48 pour limiter l'effet de soudage avec les accouplements élastiques de l'embase 82 par le biais desquels le dispositif de protection est relié électriquement à l'installation électrique à protéger. Les caractéristiques précédemment décrites contribuent chacune à augmenter la tenue aux courants de court-circuit, notamment tel que vérifié par la norme IEC paragraphe 7.7.3. Elles peuvent être mise en oeuvre indépendamment les une des autres. Il est possible de recourir seulement à certaines d'entre elles ou à toutes selon l'importance des courants de court-circuit susceptible d'être fourni par le réseau d'alimentation de l'installation à protéger.
Suivant un mode de réalisation, il peut être prévu de disposer deux composants de protection dans la même cartouche 20. Les figures 14A et 14B représentent le dispositif de protection comprenant deux varistances 30 avec chacun un déconnecteur thermique respectif comprenant une lame 44a connectée au pôle 34 de la varistance correspondante. La figure 14A représente le dispositif de protection avec les deux déconnecteurs thermique en position fermée. La figure 14B représente le dispositif de protection avec les deux déconnecteurs thermique en position ouverte. La figure 14C représente R:131200A31286 ABBB131286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 22/29 schématiquement en coupe transversale un tel mode de réalisation du dispositif de protection. Les lames 44a sont ainsi chacune soudée à une des varistances 30 au niveau de l'une de leur faces principales. Les autres faces principales des varistances sont connectés entre elles de manière à réaliser un assemblage en série des varistances 30. Les figures 15A et 15B représentent une variante de réalisation du dispositif de protection comprenant deux varistances 30 avec chacun un déconnecteur thermique respectif formé d'une lame 44b connectée au pôle 34 de la varistance correspondante. La figure 15A représente le dispositif de protection avec les deux déconnecteurs thermiques en position fermée. La figure 15B représente le dispositif de protection avec les deux déconnecteurs thermiques en position ouverte. Dans les modes de réalisations des figures 14A, 14B, 14C, 15A et 15B, les varistances 30 sont disposées l'une à côté de l'autre dans un même plan parallèle aux faces principales des varistances. En référence à la figure 14C, l'épaisseur de chaque varistance 30 est ainsi similaire à l'épaisseur de la varistance 30 dans les modes de réalisation du dispositif de protection avec une seule varistance. La tension de service du dispositif de protection reste alors la même. La réalisation de chaque déconnecteur thermique dans ces modes de réalisation avec deux composants de protection peut être conforme à la description précédente.Les lames 44a ou 44b sont réalisée de manière semblable à la description précédente. En référence aux figures 14A à 14C, les lames 44a et la borne 48 font parties de préférence d'une seule et même pièce 40a de manière à procurer une tenue aux courants de courts-circuits tel que précédemment décrit. En référence aux figures 15A et 15B, les lames 44b et la borne 48 font parties de préférence d'une seule et même pièce de manière à procurer une tenue aux courants de courts-circuits tel que précédemment décrit. Dans la variante des figures 14A et 14B, les lames 44 sont contraintes élastiquement par un ressort de torsion unique 50a tandis que dans la variante des figures 15A et 15B, les lames 44 sont contraintes élastiquement chacune par un ressort de torsion respectif réalisé avec un seul fil 50b. Les autres références numériques des figures 14A, 14B, 14C, 15A et 15B sont les mêmes que celles utilisées pour les modes de réalisation précédemment décrit. La figure 16A représente une autre variante de réalisation du dispositif de protection comprenant deux varistances 30 avec chacun un déconnecteur thermique formé d'une lame 44 respective connectée à un pôle 34 de la varistance respective.
Dans cette variante, les varistances 30 sont disposées l'une au-dessus de l'autre dans le sens de l'épaisseur de la cartouche 20. La compacité conférée par les caractéristiques précédemment décrites du déconnecteur thermique permet de R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 23/29 réaliser un tel mode de réalisation avec des tensions de service intéressantes pour les varistances 30. Dans ces variantes à deux composants de protection 30 illustrées aux figures 14A, 14B, 15A, 15B et 16A, le dispositif de protection peut présenter un schéma 5 électrique conformément à celui représenté en figure 16B. Comme illustré sur la figure 16B, un condensateur 22 peut être disposé en parallèle des deux déconnecteurs thermiques pour améliorer le pouvoir de coupure notamment lors d'utilisation en courant continu. La présence de cette varistance supplémentaire dans le même volume interne 10 21 de la cartouche 20 permet d'assurer la continuité de service et de protection lorsqu'une des varistances, arrivée en fin de vie, a été déconnectée. La déconnection d'une des varistances par un déconnecteur thermique peut être signalée à l'utilisateur de l'installation électrique à l'aide d'un élément de visualisation connu en soi. L'utilisateur est averti de l'arrivée en fin de vie d'un des composants de protection de 15 la cartouche 20, avec une fonction de protection contre les surtensions encore assurée par la deuxième varistance le temps pour l'utilisateur de remplacer la cartouche 20. La figure 5 illustre un mode de réalisation possible de l'élément de visualisation 26 de l'état d'un des déconnecteurs thermiques. Grâce à la compacité du déconnecteur thermique précédemment décrit, les 20 dispositifs de protection des figures 14A, 14B, 15A, 15B et 16A, 16B peuvent être dans une cartouche 20 aux dimensions telles que définies plus haut. Suivant un mode de réalisation, il peut être prévu de disposer une pluralité de varistances dans le même composant de protection. Ces varistances peuvent être reliées en série et/ou en parallèle entre elles selon les applications. Les varistances 25 sont alors assemblées en une masse compacte, comprenant au moins deux varistances. La figure 17B illustre ainsi une telle variante de réalisation du composant de protection 30 composé de deux blocs 80 présentant une résistance électrique non linéaire. Ces deux blocs 80 forment deux varistances. Le composant de protection 30 30 comporte en outre une électrode 98 formant pôle commun des varistances pour connecter électriquement les deux varistances entre elles. L'électrode 98 relient ainsi un pôle du premier bloc 30 à un pôle du deuxième bloc 30. Les autres pôles 34 des blocs 80 sont connectés à des contacts mobiles 44 de déconnecteurs thermiques reliés électriquement aux bornes 38 et 48 du dispositif de protection tel que précédemment 35 décrit. L'ensemble de varistances ù c'est dire l'association des deux blocs 80 ù est entièrement enrobé par le revêtement d'isolation électrique 88 à travers lequel émerge les pôles de connexion des varistances dont l'électrode 98. Un tel mode de R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 24/29 réalisation du composant de protection réalise l'association de deux varistances en série avec une prise de potentiel intermédiaire par l'électrode 98. Ce mode de réalisation du composant de protection est particulièrement utile pour la protection d'installation photovoltaïque. La figure 17A illustre une installation photovoltaïque comprenant un panneau photovoltaïque 90. Ce panneau 90 génère une tension électrique entre les fils 95 et 96. Une dérivation des fils 95 et 96 (non représentée) permet alors de récupérer le courant électrique généré par l'installation photovoltaïque. De manière à assure la protection contre les surtensions de cette installation, chacun de ses fils 95 et 96 peut être relié à une des bornes 48 et 38 du dispositif de protection comprenant le composant de protection 30 précédent. L'électrode 98 du composant de protection 30 est elle reliée à la terre 94 par l'intermédiaire d'une éclateur 92. Chacun des fils 95 et 96 est ainsi relié à la terre par l'intermédiaire d'une varistance respective et d'un éclateur 92 commun. D'autre mode de réalisation du composant de protection 30 sont possibles par l'association d'un plus grand nombre de varistances en série ou en parallèle. Un mode de réalisation du composant de protection 30 consiste ainsi en la superposition de plusieurs blocs 80 présentant une résistance électrique non linéaire en reliant les blocs 80 par des électrodes 98 de façon similaire au mode de réalisation illustré par la figure 17B. L'ensemble de ces blocs 80 peuvent être enrobé du revêtement d'isolation électrique 88 précédemment décrit (De tels modes de réalisation ne sont pas représentés). Selon un exemple de ce mode de réalisation, le composant de protection 30 peut être formée par la superposition de trois blocs 80 séparer par des électrodes 98. Ce composant de protection possède alors quatre pôles, dont deux électrodes 98, permettant de réaliser la protection contre les surtensions en mode différentiel d'une installation électrique triphasée. Suivant un mode de réalisation, il peut être prévu que le dispositif de protection possède plus de deux bornes de connexion à l'installation électrique à protéger. Un tel mode de réalisation de l'invention correspond par exemple à l'utilisation du composant de protection 30 avec un nombre de pôles supérieur à deux tel que le mode de réalisation décrit en référence aux figures 17A et 17B. Les caractéristiques décrites plus haut, prises toutes ensemble ou seulement certaines d'entre elles, permettent de réaliser des dispositifs de protection contre les surtensions transitoires qui puissent satisfaire à la fois les normes IEC et UL, ainsi que le guide UTE qui ont été mentionnés plus haut. Chacune de ces caractéristiques peut, indépendamment les unes des autres ou en combinaison, être mise en oeuvre dans le dispositif de protection selon le niveau de performance souhaité. Le dispositif de protection ainsi réalisé bénéficie des avantages associés aux caractéristiques précédemment décrites et qu'il incorpore. R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 25/29 Ces caractéristiques permettent de notamment de réaliser des dispositifs de protection prévus pour une tension nominale d'utilisation jusqu'à 690V en courant alternatif sous 50 Hz ou 60 Hz et jusqu'à 895V en courant continu et présenter une protection contre les chocs foudres de courant nominal (Imax) de 40kA pour une onde de choc 8/20 selon la norme IEC et contre les chocs foudres de courant nominal (In) de 20kA pour une onde de choc 8/20 selon la norme UL. Ces performances peuvent être obtenus avec une varistance unique choisie de façon appropriée. La tension nominale maximale peut facilement être augmentée en assemblant une ou plusieurs de ces varistances en série.
R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 26/29

Claims (10)

  1. REVENDICATIONS1. Dispositif de protection d'une installation électrique contre les surtensions transitoires, comprenant : - un composant de protection (30) contre les surtensions ; - deux déconnecteurs thermiques, comprenant chacun : o un contact mobile respectif (44, 64) susceptible de passer d'une position fermée à une position ouverte pour déconnecter le composant de protection de l'installation électrique, et o un élément thermosensible respectif (70) pour faire passer le contact mobile de la position fermée à la position ouverte lorsque la température du composant de protection dépasse un seuil prédéterminé.
  2. 2. Dispositif de protection selon la revendication 1, dans lequel le composant de protection (30) contre les surtensions est une varistance.
  3. 3. Dispositif de protection selon la revendication 1 ou 2, comportant pour l'un des déconnecteurs ou pour chacun des deux, un organe (22) de réduction ou de suppression d'arc électrique se formant lors du déplacement du contact mobile (40) vers la position ouverte, l'organe (22) de réduction ou de suppression est choisi parmi le groupe d'organes de réduction ou de suppression d'arc comprenant des moyens électriques, des moyens électroniques, des moyens électromécaniques et des moyens mécaniques.
  4. 4. Dispositif de protection selon l'une des revendications 1 à 3, dans lequel pour l'un des deux déconnecteurs thermiques ou pour chacun des deux, le contact mobile (44, 64) est sollicité élastiquement vers la position ouverte, l'élément thermosensible (70) maintenant le contact mobile (44, 64) en position fermée jusqu'à la température de seuil et libérant le contact mobile (44, 64) lorsque la température du composant de protection (30) dépasse le seuil prédéterminé.
  5. 5. Dispositif de protection selon la revendication 4, dans lequel pour ce déconnecteur thermique ou pour chacun des deux, l'élément thermosensible (70) est une brasure thermofusible par laquelle le contact mobile (44, 64) est soudé à un pôle respectif (34) du composant de protection (30). R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 27/29
  6. 6. Dispositif de protection selon la revendication 5, dans lequel ledit pôle respectif (34) est disposé sur une face principale respective du composant de protection (30) et s'étend selon cette face principale (32) du composant de protection (30).
  7. 7. Dispositif de protection selon la revendication 5 ou 6, dans lequel pour ce déconnecteur thermique ou pour chacun des deux, le contact mobile (44, 64) comprend une lame (44) s'étendant principalement dans un plan parallèle à l'une respective des faces principales (32) du composant de protection (30) et principalement en regard de cette face principale, le mouvement de la lame (44) entre la position fermée et la position ouverte s'effectuant dans ce plan.
  8. 8. Dispositif de protection selon l'une quelconque des revendications 1 à 7, dans lequel pour l'un des déconnecteurs thermiques ou pour chacun des deux, la distance d'isolation (D) du contact mobile (44 ; 64) en position ouverte est supérieure ou égale à 5 mm, de préférence supérieure ou égale à 10 mm.
  9. 9. Cartouche comprenant : - un boîtier (23, 24), - dispositif de protection contre les surtensions selon l'une des revendications 1 à 8, et - des broches pour connecter le dispositif de protection à une installation électrique à protéger, dans lequel le dispositif de protection est logé dans le boîtier et les broches font 25 saillie hors du boîtier.
  10. 10. Cartouche selon la revendication 9, dans laquelle le boîtier (23, 24) définit un volume parallélépipédique intérieur (21) dans lequel est logé le dispositif de protection, le volume intérieur ayant pour dimensions maximales 15x42x43 mm. R:131200A31286 ABBB\31286--100409-texte de dépôt.doc - 09/04/10 - 18:04 - 28/29
FR1052734A 2010-04-09 2010-04-09 Dispositif de protection contre les surtensions a deconnecteurs thermiques dedoubles Expired - Fee Related FR2958787B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR1052734A FR2958787B1 (fr) 2010-04-09 2010-04-09 Dispositif de protection contre les surtensions a deconnecteurs thermiques dedoubles
US13/082,807 US9007163B2 (en) 2010-04-09 2011-04-08 Device for protection from overvoltages with split thermal disconnectors
EP11161603.3A EP2375424B1 (fr) 2010-04-09 2011-04-08 Dispositif de protection contre les surtensions à déconnecteurs thermiques dédoublés
CN201110092418.6A CN102237163B (zh) 2010-04-09 2011-04-11 具有双重热断开器的过电压保护装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1052734A FR2958787B1 (fr) 2010-04-09 2010-04-09 Dispositif de protection contre les surtensions a deconnecteurs thermiques dedoubles

Publications (2)

Publication Number Publication Date
FR2958787A1 true FR2958787A1 (fr) 2011-10-14
FR2958787B1 FR2958787B1 (fr) 2012-05-11

Family

ID=43034793

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1052734A Expired - Fee Related FR2958787B1 (fr) 2010-04-09 2010-04-09 Dispositif de protection contre les surtensions a deconnecteurs thermiques dedoubles

Country Status (4)

Country Link
US (1) US9007163B2 (fr)
EP (1) EP2375424B1 (fr)
CN (1) CN102237163B (fr)
FR (1) FR2958787B1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007186B1 (en) 2010-07-03 2015-04-14 Best Energy Reduction Technologies, Llc Method and apparatus for controlling power to a device
US9331524B1 (en) 2010-07-03 2016-05-03 Best Energy Reduction Technologies, Llc Method, system and apparatus for monitoring and measuring power usage
US9760140B1 (en) 2010-07-03 2017-09-12 Best Energy Reduction Technologies, Llc Method, system and apparatus for monitoring and measuring power usage by a device
DE102011015449B4 (de) * 2011-01-25 2014-09-25 Ellenberger & Poensgen Gmbh Schalteinheit zum Schalten von hohen Gleichspannungen
DE102012010483A1 (de) * 2012-05-26 2013-11-28 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Bürstensystem für einen Elektromotor
US8743525B2 (en) 2012-06-19 2014-06-03 Raycap Intellectual Property, Ltd Overvoltage protection devices including wafer of varistor material
DE102013022348B4 (de) * 2013-10-22 2016-01-07 Dehn + Söhne Gmbh + Co. Kg Überspannungsschutzeinrichtung, aufweisend mindestens einen Überspannungsableiter und eine, mit dem Überspannungsableiter in Reihe geschaltete, thermisch auslösbare Schalteinrichtung
US9906017B2 (en) 2014-06-03 2018-02-27 Ripd Research And Ip Development Ltd. Modular overvoltage protection units
US10042342B1 (en) 2015-10-08 2018-08-07 Best Energy Reduction Technologies, Llc Monitoring and measuring power usage and temperature
CN107301909B (zh) * 2016-04-14 2021-05-14 爱普科斯公司 变阻器组件和用于保护变阻器组件的方法
FR3051292B1 (fr) * 2016-05-12 2020-09-11 Citel Dispositif de protection contre les surtensions transitoires
US10319545B2 (en) 2016-11-30 2019-06-11 Iskra Za{hacek over (s)}{hacek over (c)}ite d.o.o. Surge protective device modules and DIN rail device systems including same
TWI611450B (zh) * 2016-12-08 2018-01-11 Wang Yi Xiang 內建突波吸收及雙重斷路結構之開關模組
US10707678B2 (en) 2016-12-23 2020-07-07 Ripd Research And Ip Development Ltd. Overvoltage protection device including multiple varistor wafers
US10447026B2 (en) 2016-12-23 2019-10-15 Ripd Ip Development Ltd Devices for active overvoltage protection
US10340110B2 (en) * 2017-05-12 2019-07-02 Raycap IP Development Ltd Surge protective device modules including integral thermal disconnect mechanisms and methods including same
DE102017208571A1 (de) * 2017-05-19 2018-11-22 Phoenix Contact Gmbh & Co. Kg Abtrenneinheit für einen Varistor
US10388479B2 (en) * 2017-06-27 2019-08-20 Shanghai Chenzhu Instrument Co., Ltd. Surge protector, and release mechanism and base thereof
US10685767B2 (en) 2017-09-14 2020-06-16 Raycap IP Development Ltd Surge protective device modules and systems including same
US11223200B2 (en) 2018-07-26 2022-01-11 Ripd Ip Development Ltd Surge protective devices, circuits, modules and systems including same
DE102018125520A1 (de) * 2018-10-15 2020-04-16 Dehn Se + Co Kg Überspannungsschutzgerät mit mehreren Überspannungsableitern und diesen jeweils zugeordneter, insbesondere thermischer, Abtrennvorrichtung
DE102019114424A1 (de) * 2019-05-29 2020-12-03 Phoenix Contact Gmbh & Co. Kg Überlastschutzanordnung
CN110492463A (zh) * 2019-09-29 2019-11-22 厦门赛尔特电子有限公司 一种具有高分断能力的电涌保护装置
US11862967B2 (en) 2021-09-13 2024-01-02 Raycap, S.A. Surge protective device assembly modules
US11723145B2 (en) 2021-09-20 2023-08-08 Raycap IP Development Ltd PCB-mountable surge protective device modules and SPD circuit systems and methods including same
US11990745B2 (en) 2022-01-12 2024-05-21 Raycap IP Development Ltd Methods and systems for remote monitoring of surge protective devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716493A1 (fr) * 1994-12-05 1996-06-12 Soule Materiel Electrique Dispositif de protection à l'encontre de surtensions transitoires à base de varistances et déconnecteurs thermiques
US20060245125A1 (en) * 2005-04-30 2006-11-02 Aszmus Gregory P Circuit protection device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037316A (en) * 1974-09-23 1977-07-26 General Electric Company Method of assembling temperature responsive resistance member
JPS5949663B2 (ja) * 1977-05-18 1984-12-04 株式会社日立製作所 高電圧直流しや断装置
US4288833A (en) * 1979-12-17 1981-09-08 General Electric Company Lightning arrestor
DE3820272C1 (fr) * 1987-10-20 1989-04-06 Krone Ag, 1000 Berlin, De
JPH08241802A (ja) * 1995-03-03 1996-09-17 Murata Mfg Co Ltd サーミスタ装置及びその製造方法
US5790359A (en) * 1996-03-16 1998-08-04 Joslyn Electronic Systems Corporation Electrical surge protector with thermal disconnect
JP3119183B2 (ja) * 1996-12-09 2000-12-18 株式会社村田製作所 消磁回路用部品
US5781394A (en) * 1997-03-10 1998-07-14 Fiskars Inc. Surge suppressing device
FR2761543B1 (fr) 1997-03-25 1999-06-04 Citel Dispositif de protection d'un circuit electrique basse tension, module pour un tel dispositif de protection, et circuit pour le module
GB2324648A (en) * 1997-03-26 1998-10-28 Jack Wang Burn and explosion-resistant circuit package for a varistor chip
AT406207B (de) 1997-09-30 2000-03-27 Felten & Guilleaume Ag Oester Steckbarer überspannungsableiter
US5901027A (en) * 1998-05-06 1999-05-04 Leviton Manufacturing Co., Inc. Metal oxide varistors having thermal protection
US6430019B1 (en) * 1998-06-08 2002-08-06 Ferraz S.A. Circuit protection device
FR2783365B1 (fr) 1998-09-15 2000-12-01 Soule Materiel Electr Dispositif de protection d'installations electriques contre les perturbations de l'alimentation
US6211770B1 (en) * 1999-04-27 2001-04-03 Mcg Electronics, Inc. Metal oxide varistor module
US6252488B1 (en) * 1999-09-01 2001-06-26 Leviton Manufacturing Co., Inc. Metal oxide varistors having thermal protection
DE10137873C1 (de) * 2001-08-02 2002-10-17 Epcos Ag Elektrokeramisches Bauelement
FR2877156A1 (fr) * 2004-10-25 2006-04-28 Soule Prot Surtensions Sa Dispostif de protection contre les surtensions a capacite de deconnexion amelioree
WO2006120522A1 (fr) * 2005-05-04 2006-11-16 Kiwa Spol. S R.O. Protection contre les surtensions
BRPI0614137A2 (pt) * 2005-08-05 2012-11-20 Kiwa Spol S R O proteÇço de sobrevoltagem com sinalizaÇço de estado
US7483252B2 (en) * 2006-12-05 2009-01-27 Ferraz Shawmut S.A. Circuit protection device
DE102007042991B4 (de) * 2007-06-11 2009-09-17 Dehn + Söhne Gmbh + Co. Kg Überspannungsschutzgerät mit im thermischen Überlastfall aktivierter mechanischer Abtrennvorrichtung
US7741946B2 (en) * 2007-07-25 2010-06-22 Thinking Electronics Industrial Co., Ltd. Metal oxide varistor with heat protection
DE102008048644B4 (de) 2008-08-01 2017-08-24 DEHN + SÖHNE GmbH + Co. KG. Überspannungsschutzgerät mit einem oder mehreren parallel geschalteten, in einer baulichen Einheit befindlichen überspannungsbegrenzenden Elementen
DE102008061323B3 (de) 2008-12-11 2010-06-24 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzelement
JP5248374B2 (ja) * 2009-03-13 2013-07-31 新光電気工業株式会社 3極避雷管
FR2948490A1 (fr) 2009-07-21 2011-01-28 Abb France Dispositif de protection d'une installation electrique contre des surtensions transitoires
FR2958788B1 (fr) * 2010-04-09 2015-01-30 Abb France Varistance comprenant une electrode avec une partie en saillie formant pole et parafoudre comprenant une telle varistance
US8502637B2 (en) * 2010-09-22 2013-08-06 Thomas & Betts International, Inc. Surge protective device with thermal decoupler and arc suppression

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716493A1 (fr) * 1994-12-05 1996-06-12 Soule Materiel Electrique Dispositif de protection à l'encontre de surtensions transitoires à base de varistances et déconnecteurs thermiques
US20060245125A1 (en) * 2005-04-30 2006-11-02 Aszmus Gregory P Circuit protection device

Also Published As

Publication number Publication date
US20120086539A1 (en) 2012-04-12
EP2375424A1 (fr) 2011-10-12
US9007163B2 (en) 2015-04-14
CN102237163A (zh) 2011-11-09
FR2958787B1 (fr) 2012-05-11
CN102237163B (zh) 2016-05-25
EP2375424B1 (fr) 2019-06-05

Similar Documents

Publication Publication Date Title
EP2375424B1 (fr) Dispositif de protection contre les surtensions à déconnecteurs thermiques dédoublés
EP2375426B1 (fr) Varistance comprenant une électrode avec une partie en saillie formant pôle et parafoudre comprenant une telle varistance
EP2375425B1 (fr) Dispositif de protection contre les surtensions transitoires à déconnecteur thermique amélioré
EP1826793B1 (fr) Dispositif de protection contre les surtensions avec déconnecteur thermique à double surface de contact
EP3319194B1 (fr) Dispositif de protection contre les surtensions transitoires
EP1743346B1 (fr) Dispositif de protection contre les surtensions pourvu de moyens de coupure d'arc
FR3023988A3 (fr)
EP2602805B1 (fr) Boîtier pour dispositif de protection contre les surtensions et dispositif de protection contre les surtensions associées
EP3244504B1 (fr) Dispositif de protection contre les surtensions transitoires
FR2848353A1 (fr) Dispositif de protection contre des surtensions
EP1815569B1 (fr) Dispositif de protection contre les surtensions a capacite de deconnexion amelioree
EP3712908B1 (fr) Dispositif de protection contre les surtensions
EP1803137B1 (fr) Dispositif de protection contre les surtensions pourvu de moyens de cisaillement d'arc et procede correspondant
EP2450926A1 (fr) Dispositif de déconnexion electrique et parafoudre comprenant un tel dispositif
EP1842269A2 (fr) Appareil de protection d'une installation electrique a capacite de coupure amelioree
FR2982705A1 (fr) Dispositif de protection d'un circuit electrique alimente par un courant alternatif integrable dans un contacteur.
EP3942577B1 (fr) Dispositif de protection contre les surtensions
EP0845843A1 (fr) Dispositif de protection pour lignes téléphoniques
EP4006944A1 (fr) Système de raccordement électrique disjonctable
FR2917532A1 (fr) Dispositif de coupure fusible contre les surintensites et dispositif de protection contre les surtensions comportant un tel dispositif de coupure
EP1698029B1 (fr) Dispositif de protection contre des surtensions a serrage
FR3146036A1 (fr) Dispositif de protection contre les surtensions
EP2827352A1 (fr) Disjoncteur et procédé de fabrication d'un contact mobile d'un tel disjoncteur

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

ST Notification of lapse

Effective date: 20211205