BOITIER DE SORTIE D'EAU DE MOTEUR A COMBUSTION INTERNE [000l] L'invention concerne le refroidissement d'un moteur à combustion interne, et en particulier la structure d'un boîtier de sortie d'eau d'un tel moteur. [0002] Le document FR 2 903 143 décrit un circuit de refroidissement de moteur de véhicule automobile. Ce circuit comprend un boîtier de sortie d'eau muni d'une sonde de température et d'un thermostat. Le boîtier est réalisé en matériau métallique et comprend une canalisation principale de sortie pour transporter l'eau vers un radiateur dont la fonction est de refroidir ladite eau, l'eau ainsi refroidie étant ensuite acheminée au moyen d'une canalisation vers l'entrée d'une pompe à eau située en amont du moteur. La pompe contribue à faire circuler l'eau refroidie dans le moteur et l'eau ainsi réchauffée est ensuite récupérée dans le boîtier. Le boîtier comporte une première canalisation secondaire de sortie d'eau destinée à alimenter un aérotherme en eau et dont la fonction est de créer du chauffage dans l'habitacle du véhicule automobile. L'eau récupérée à la sortie de l'aérotherme est acheminée vers l'entrée de la pompe pour être réinjectée dans le circuit de refroidissement du moteur. La circulation d'eau dans cette première canalisation secondaire est libre. Le boîtier possède une deuxième canalisation secondaire de sortie qui vient se connecter directement sur la canalisation reliant le radiateur à l'entrée de la pompe, et constituant une portion de dérivation court-circuitant le radiateur. La circulation d'eau dans la deuxième canalisation secondaire est pilotée au moyen d'un clapet by-pass placé entre le boîtier et l'entrée de la pompe. Cette portion de dérivation permet d'envoyer directement de l'eau réchauffée en provenance du moteur vers la partie amont du circuit de refroidissement positionnée avant ledit moteur, en traversant le boîtier. [0003 Par ailleurs, la recirculation des gaz d'échappement du moteur à combustion permet de diminuer le niveau des oxydes d'azote émis dans les gaz d'échappement. The invention relates to the cooling of an internal combustion engine, and in particular the structure of a water outlet housing of such an engine. The document FR 2 903 143 describes a motor vehicle engine cooling circuit. This circuit comprises a water outlet housing provided with a temperature sensor and a thermostat. The housing is made of metallic material and comprises an outlet main pipe for transporting the water to a radiator whose function is to cool said water, the cooled water being then conveyed by means of a pipe towards the inlet of a water pump located upstream of the engine. The pump helps to circulate the cooled water in the engine and the heated water is then recovered in the housing. The housing comprises a first secondary water outlet pipe for supplying a heater with water and whose function is to create heating in the passenger compartment of the motor vehicle. The water recovered at the outlet of the heater is routed to the pump inlet for re-injection into the engine cooling circuit. The circulation of water in this first secondary pipe is free. The housing has a second secondary outlet pipe which connects directly to the pipe connecting the radiator to the inlet of the pump, and constituting a bypass portion bypassing the radiator. The circulation of water in the second secondary pipe is controlled by means of a by-pass valve placed between the housing and the inlet of the pump. This bypass portion is used to directly send the heated water from the engine to the upstream portion of the cooling circuit positioned before said motor, through the housing. Furthermore, the recirculation of the exhaust gas from the combustion engine makes it possible to reduce the level of the nitrogen oxides emitted in the exhaust gas.
La recirculation de gaz d'échappement consiste à introduire de l'air frais et des gaz d'échappement dans la chambre de combustion du moteur. Pour des moteurs diesels, il est courant de voir des taux de recirculation de l'ordre de 50 %, ce qui signifie que la moitié des gaz aspirés par un cylindre d'un moteur à combustion interne sont des gaz d'échappement recirculés. Des normes d'émission de gaz polluants de plus en plus strictes ont conduit à la généralisation de circuits de recirculation de gaz d'échappement EGR pour les moteurs diesel. Cependant, l'utilisation de l'EGR pour les moteurs à allumage commandé est également en plein développement. [0004] De façon générale, l'évolution des réglementations d'émissions polluantes implique l'utilisation de composants additionnels qui limitent le volume libre dans le compartiment moteur. Un certain nombre de composants sont également soumis à des températures plus élevées, il en résulte ainsi une augmentation sensible des températures constatées dans le compartiment moteur. [0005i Des boîtiers de sortie d'eau en polyamide renforcé de fibres de verre ont été diffusés. Pour résister au rayonnement thermique d'une vanne de recyclage de gaz d'échappement placée à proximité, il est notamment connu d'utiliser du polyamide PPA GF30. [0006] En pratique, l'utilisation d'un tel polyamide s'avère relativement coûteuse. De plus, un tel matériau n'est pas forcement adapté aux températures et contraintes croissantes auxquelles un boîtier de sortie d'eau est soumis. Par ailleurs, un tel boîtier de sortie d'eau risque de subir un endommagement par oxydation à haute température ou de subir un fluage à haute température. [0007i L'invention vise à résoudre un ou plusieurs de ces inconvénients. A cet effet, l'invention propose un boîtier de sortie d'eau pour moteur à combustion interne, comprenant une paroi en matériau thermoplastique formant un corps délimitant un volume intérieur destiné à contenir du liquide de refroidissement, la face extérieure de la paroi étant revêtue d'un matériau métallique. [0008] Selon une variante, le boîtier comprend des embranchements hydrauliques débouchant dans le volume intérieur, la face extérieure des embranchements hydrauliques étant revêtue d'un matériau métallique. [0009i Selon encore une variante, la face intérieure de la paroi est revêtue d'un matériau métallique. [ooio] Selon une autre variante, l'intégralité de la surface de la paroi est recouverte d'un matériau métallique. [0011] Selon encore une autre variante, ledit matériau thermoplastique est du polyamide. [0012] Selon une variante, ledit matériau thermoplastique est renforcé par des fibres de verre. [0013] Selon encore une variante, le matériau métallique est chimiquement compatible avec le matériau thermoplastique. [0014] Selon une autre variante, le matériau métallique présente une taille de grain 10 comprise entre 2 et 5000 nm, et une épaisseur comprise entre 25 m et 5 mm. [0015] L'invention porte en outre sur un moteur à combustion interne, comprenant un bloc moteur et un boîtier de sortie d'eau tel que décrit ci-dessus, une canalisation de refroidissement du bloc moteur débouchant dans le volume intérieur du boîtier de sortie d'eau. 15 [0016] Selon une variante, le moteur comprend des canalisations raccordées auxdits embranchements hydrauliques. [0017] Selon encore une variante, le moteur comprend un composant de circuit de recyclage de gaz d'échappement placé à proximité du boîtier de sortie d'eau. [0018] L'invention porte en outre sur un procédé de fabrication d'un boîtier de sortie 20 d'eau, comprenant une étape de revêtir d'un matériau métallique une face extérieure d'une paroi en matériau thermoplastique du boîtier de sortie d'eau, cette paroi formant un corps délimitant un volume intérieur destiné à contenir du liquide de refroidissement. [0019] 25 [0020] D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels : • les figures 1 et 2 sont respectivement des vues de face et en perspective d'un boîtier de sortie d'eau implanté sur un bloc moteur ; • la figure 3 est une vue en coupe d'un exemple de dégradation d'une paroi d'un boîtier de sortie d'eau ; ^ la figure 4 est une vue en coupe transversale d'un boîtier de sortie d'eau selon l'invention ; • la figure 5 est une vue en coupe transversale d'un embranchement hydraulique du boîtier de sortie d'eau. [0021] L'invention propose de revêtir d'un matériau métallique la face extérieure du corps d'un boîtier de sortie d'eau en matériau thermoplastique. [0022] Ainsi, un matériau thermoplastique peu coûteux peut être utilisé pour réaliser le corps du boîtier de sortie d'eau, sans pour autant réduire la résistance au rayonnement thermique et au fluage du boîtier de sortie d'eau. [0023] Les figures 1 et 2 représentent un boîtier de sortie d'eau selon l'invention 1 accolé à un bloc moteur 3. Le boîtier de sortie d'eau 1 comprend un corps 15 formé par une paroi 16. Le corps 15 délimite un volume intérieur destiné à contenir et être traversé par du liquide de refroidissement du moteur. Un circuit de refroidissement du bloc moteur 3 débouche dans le volume intérieur du boîtier 1. Un organe d'un circuit de recyclage de gaz d'échappement 4 est placé à proximité du boîtier de sortie d'eau 1. Cet organe 4 génère une forte température dans son environnement, en particulier dans la zone représentée en traits discontinus et identifiée par la référence 5. La face extérieure de la paroi 16 est revêtue d'un matériau métallique. [0024] La figure 4 est une vue en coupe du corps 15 du boîtier de sortie d'eau 1. La face extérieure de la paroi 16 est revêtue d'un matériau métallique 61. Avantageusement, la face intérieure de la paroi 16 est également revêtue d'un matériau métallique 62. Ainsi, le corps 15 sera moins sujet à un fluage mécanique dû à l'échauffement par du liquide de refroidissement dans le volume interne. Exhaust gas recirculation involves introducing fresh air and exhaust into the combustion chamber of the engine. For diesel engines, it is common to see recirculation rates of the order of 50%, which means that half of the gases sucked by a cylinder of an internal combustion engine are recirculated exhaust gas. Increasingly stringent emission standards for pollutants have led to the generalization of EGR exhaust gas recirculation circuits for diesel engines. However, the use of EGR for spark ignition engines is also growing. In general, the evolution of polluting emissions regulations involves the use of additional components that limit the free volume in the engine compartment. A number of components are also subjected to higher temperatures, resulting in a significant increase in temperatures found in the engine compartment. [0005i Water outlet housings made of glass fiber reinforced polyamide have been diffused. To resist the heat radiation of an exhaust gas recycling valve placed in the vicinity, it is known in particular to use polyamide PPA GF30. In practice, the use of such a polyamide is relatively expensive. In addition, such a material is not necessarily adapted to the increasing temperatures and stresses to which a water outlet housing is subjected. Moreover, such a water outlet housing may be damaged by oxidation at high temperature or undergo creep at high temperature. The invention aims to solve one or more of these disadvantages. For this purpose, the invention provides a water outlet housing for an internal combustion engine, comprising a wall of thermoplastic material forming a body defining an interior volume for containing coolant, the outer face of the wall being coated. of a metallic material. Alternatively, the housing comprises hydraulic branches opening into the interior, the outer face of the hydraulic branches being coated with a metal material. According to another variant, the inner face of the wall is coated with a metallic material. According to another variant, the entire surface of the wall is covered with a metallic material. According to yet another variant, said thermoplastic material is polyamide. According to a variant, said thermoplastic material is reinforced with glass fibers. According to another variant, the metallic material is chemically compatible with the thermoplastic material. According to another variant, the metallic material has a grain size of between 2 and 5000 nm and a thickness of between 25 and 5 mm. The invention further relates to an internal combustion engine comprising an engine block and a water outlet housing as described above, a cooling pipe of the engine block opening into the interior volume of the housing of water outlet. According to a variant, the engine comprises pipes connected to said hydraulic branches. According to another variant, the engine comprises an exhaust gas recirculation circuit component placed near the water outlet housing. The invention furthermore relates to a method of manufacturing a water outlet housing, comprising a step of coating a metal material with an outer face of a thermoplastic material wall of the outlet housing. water, this wall forming a body defining an interior volume for containing coolant. Other characteristics and advantages of the invention will emerge clearly from the description which is given hereinafter, by way of indication and in no way limitative, with reference to the appended drawings, in which: FIGS. and 2 are respectively front and perspective views of a water outlet housing implanted on an engine block; FIG. 3 is a sectional view of an example of degradation of a wall of a water outlet housing; Figure 4 is a cross-sectional view of a water outlet housing according to the invention; Figure 5 is a cross-sectional view of a hydraulic branch of the water outlet housing. The invention proposes to coat with a metallic material the outer face of the body of a water outlet housing made of thermoplastic material. Thus, an inexpensive thermoplastic material can be used to make the body of the water outlet housing, without reducing the resistance to thermal radiation and creep of the water outlet housing. Figures 1 and 2 show a water outlet housing according to the invention 1 attached to a motor unit 3. The water outlet housing 1 comprises a body 15 formed by a wall 16. The body 15 delimits an interior volume for containing and being traversed by engine coolant. A cooling circuit of the engine block 3 opens into the interior volume of the housing 1. A member of an exhaust gas recycling circuit 4 is placed near the water outlet housing 1. This member 4 generates a strong temperature in its environment, particularly in the area shown in broken lines and identified by the reference 5. The outer face of the wall 16 is coated with a metal material. Figure 4 is a sectional view of the body 15 of the water outlet housing 1. The outer face of the wall 16 is coated with a metal material 61. Advantageously, the inner face of the wall 16 is also coated with a metallic material 62. Thus, the body 15 will be less subject to mechanical creep due to heating by coolant in the internal volume.
Avantageusement, l'intégralité de la surface de la paroi 16 est recouverte de matériau métallique, afin de présenter une résistance mécanique accrue face à une température élevée dans son environnement. [0025] Le boîtier de sortie d'eau comprend plusieurs embranchements hydrauliques 11 à 14. Ces embranchements hydrauliques 11 à 14 débouchent dans le volume intérieur du boîtier de sortie d'eau 1. Les embranchements hydrauliques 11 à 14 sont réalisés en matériau thermoplastique. Les embranchements hydrauliques pourront être réalisés monoblocs avec le corps 15, en particulier en utilisant un même matériau thermoplastique que pour la paroi 16. Des canalisations 21 à 24 du moteur sont raccordées respectivement aux embranchements hydrauliques 11 à 14. Les canalisations 21 à 24 sont par exemple fixées par emmanchement sur les embranchements et maintenues en position par des colliers de serrage non illustrés. La canalisation 21 est connectée à l'entrée d'un radiateur de refroidissement, la canalisation 22 est connectée à la sortie d'un radiateur de refroidissement, la canalisation 23 est connectée à une pompe à eau et la canalisation 24 est connectée à un aérotherme. Comme illustré à la figure 5, la face extérieure de ces embranchements hydrauliques 11 à 14 est revêtue d'un matériau métallique 61. Avantageusement, la face intérieure de ces embranchements 11 à 14 est revêtue d'un matériau métallique 62. [0026] Bien que le corps 15 du boîtier de sortie d'eau 1 illustré soit réalisé en deux parties, on peut également envisager de réaliser un corps de boîtier de sortie d'eau de façon monobloc. [0027] La figure 3 représente une paroi 16 en matériau thermoplastique exempte de revêtement métallique et soumise pendant une longue durée à des températures et des rayonnements critiques en présence d'air. On constate sur une telle paroi 16 l'apparition d'une couche de surface dégradée 17, présentant du retrait, des contraintes internes et l'apparition de fissures 18. La pénétration de l'oxygène dans les fissures 18 accélère la dégradation de la paroi 16. La présence de ces fissures 18 diminue également la résistance mécanique de la paroi 16. La dégradation se manifeste également par une perte d'épaisseur des pièces, diminuant d'autant la tenue mécanique de la paroi 16. La tenue à la fatigue en pression pulsée ou en vibratoire diminue alors fortement. [0028] L'homme du métier pourra déterminer un matériau métallique chimiquement compatible avec le matériau thermoplastique utilisé pour les parois du boîtier de sortie d'eau. En l'occurrence, le matériau métallique forme un revêtement métallique adhérant à la face intérieure des parois. Ce revêtement permettra également d'accroître la résistance mécanique des parois. Le revêtement pourra être formé par un dépôt d'un alliage métallique nanocristallin, contenant un alliage de nickel et de fer. Un tel alliage métallique est notamment commercialisé sous le nom commercial Metafuse par la société Dupont. Cet alliage est particulièrement avantageux pour revêtir des matières thermoplastiques renforcées par des fibres de verre. [0029] Le document WO2006/063469 décrit des procédés de formation de revêtements à grain fin par dépôt métallique. Le dépôt est effectué par électrodéposition en courant alternatif ou continu. Ce document fait référence à des techniques déjà connues de dépôt de métaux à grain fin par électrodéposition, par la sélection de formulations et de conditions de bains de plaquage adéquates. Ce document fait également référence à des procédés de dépôt chimiques en phase vapeur ou par pistolage à froid. Ce document préconise de réaliser un revêtement métallique ayant une taille de grain comprise entre 2 et 5000 nm, une épaisseur comprise entre 25pm et 5 mm, et une dureté comprise entre 200 et 3000 VHN. Le revêtement décrit présente une résilience comprise entre 0,25 et 25 MPa et une limite à l'allongement élastique comprise entre 0,25% et 2%. Le document indique des valeurs de rugosité à respecter pour la surface à métalliser. [0030] L'invention permet d'utiliser des matériaux thermoplastiques présentant une température de fusion inférieure ou égale à 300° C, sans pour autant nuire à la fiabilité de l'échangeur. Le matériau thermoplastique utilisé pour les parois du boîtier de sortie d'eau pourra être du polyamide. L'épaisseur des parois comprend avantageusement au moins 50 % de matériaux thermoplastiques. Les parois du boîtier de sortie d'eau sont avantageusement formées d'un matériau thermoplastique renforcé par des fibres, ce qui accroît leur résistance mécanique et leur durée de vie. Les fibres de renforcement pourront par exemple être des fibres de verre. Le matériau thermoplastique pourra notamment être du PA66 GF35 (nylon 6.6 renforcé à 35% par des fibres de verre), du PA66 GF 30 (nylon 6.6 renforcé à 30% par des fibres de verre), ou du PPAGF30 (polyarylamide renforcé à 35% par des fibres de verre). Advantageously, the entire surface of the wall 16 is covered with metallic material, in order to have an increased mechanical resistance to a high temperature in its environment. The water outlet housing comprises several hydraulic branches 11 to 14. These hydraulic branches 11 to 14 open into the interior of the water outlet housing 1. The hydraulic branches 11 to 14 are made of thermoplastic material. The hydraulic branches can be made in one piece with the body 15, in particular using the same thermoplastic material as for the wall 16. Ductings 21 to 24 of the motor are connected respectively to the hydraulic branches 11 to 14. The pipes 21 to 24 are example fixed by fitting on the branches and held in position by clamps not shown. The pipe 21 is connected to the inlet of a cooling radiator, the pipe 22 is connected to the outlet of a cooling radiator, the pipe 23 is connected to a water pump and the pipe 24 is connected to a fan heater . As shown in Figure 5, the outer face of these hydraulic branches 11 to 14 is coated with a metal material 61. Advantageously, the inner face of these branches 11 to 14 is coated with a metal material 62. [0026] Good that the body 15 of the water outlet housing 1 illustrated is made in two parts, it is also possible to provide a water outlet housing body integrally. [0027] Figure 3 shows a wall 16 of thermoplastic material free of metal coating and subjected for a long time to temperatures and critical radiation in the presence of air. On such a wall 16 there is the appearance of a degraded surface layer 17 having shrinkage, internal stresses and the appearance of cracks 18. The penetration of oxygen into the cracks 18 accelerates the degradation of the wall 16. The presence of these cracks 18 also decreases the mechanical strength of the wall 16. The degradation is also manifested by a loss of thickness of the parts, thereby decreasing the mechanical strength of the wall 16. The fatigue resistance in FIG. Pulsed or vibratory pressure then decreases sharply. Those skilled in the art can determine a metal material chemically compatible with the thermoplastic material used for the walls of the water outlet housing. In this case, the metallic material forms a metal coating adhering to the inner face of the walls. This coating will also increase the mechanical strength of the walls. The coating may be formed by a deposit of a nanocrystalline metal alloy containing an alloy of nickel and iron. Such a metal alloy is in particular marketed under the trade name Metafuse by the company Dupont. This alloy is particularly advantageous for coating thermoplastics reinforced with glass fibers. WO2006 / 063469 discloses processes for forming fine-grained coatings by metal deposition. The deposition is carried out by AC or continuous electrodeposition. This document refers to already known techniques for depositing fine-grained metals by electroplating, by selecting suitable formulations and plating bath conditions. This document also refers to methods of chemical vapor deposition or cold spraying. This document recommends producing a metal coating having a grain size of between 2 and 5000 nm, a thickness of between 25 μm and 5 mm, and a hardness of between 200 and 3000 VHN. The coating described has a resilience of between 0.25 and 25 MPa and an elastic limit of elongation of between 0.25% and 2%. The document indicates roughness values to be respected for the surface to be metallized. The invention allows the use of thermoplastic materials having a melting temperature less than or equal to 300 ° C, without impairing the reliability of the exchanger. The thermoplastic material used for the walls of the water outlet housing may be polyamide. The thickness of the walls advantageously comprises at least 50% of thermoplastic materials. The walls of the water outlet housing are advantageously formed of a thermoplastic material reinforced with fibers, which increases their mechanical strength and their service life. The reinforcing fibers may for example be glass fibers. The thermoplastic material may in particular be PA66 GF35 (nylon 6.6 reinforced to 35% with glass fibers), PA66 GF 30 (nylon 6.6 reinforced with 30% glass fibers), or PPAGF30 (35% reinforced polyarylamide) by glass fibers).