FR2927985A1 - Ice formation preventing method for heat pump, involves injecting energy on condenser or evaporator by joule effect/ionization for preventing condenser or evaporator from being frozen, and regulating hydraulic/refrigerated flow's direction - Google Patents

Ice formation preventing method for heat pump, involves injecting energy on condenser or evaporator by joule effect/ionization for preventing condenser or evaporator from being frozen, and regulating hydraulic/refrigerated flow's direction Download PDF

Info

Publication number
FR2927985A1
FR2927985A1 FR0800955A FR0800955A FR2927985A1 FR 2927985 A1 FR2927985 A1 FR 2927985A1 FR 0800955 A FR0800955 A FR 0800955A FR 0800955 A FR0800955 A FR 0800955A FR 2927985 A1 FR2927985 A1 FR 2927985A1
Authority
FR
France
Prior art keywords
evaporator
condenser
heat pump
energy
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0800955A
Other languages
French (fr)
Inventor
Orhan Togrul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR0800955A priority Critical patent/FR2927985A1/en
Publication of FR2927985A1 publication Critical patent/FR2927985A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

The method involves injecting energy on a condenser or evaporator by joule effect or ionization for preventing the condenser or evaporator from being frozen. A hydraulic/refrigerated flow is deviated towards the condenser, when a heat pump is out of service. A direction of the hydraulic/refrigerated flow is regulated. Electromagnetic field is created on a refrigerated gas circuit of the heat pump using magnets. An independent claim is also included for a device for preventing formation of ice on a heat pump.

Description

-1- -1-

La présente invention concerne un procédé technique pour maintenir la pompe a chaleur en fonctionnement et améliorer le cop. L'invention vise également le dispositif pour la mise en oeuvre de ce procédé sans échange calorifique extérieur (Energie géothermique , groupe extérieur aérothermique ...) L'étude concerne aussi la récupération de toutes les énergies (chaud et froid) sur une pompe à chaleur en fonctionnement afin de les utiliser pour maintenir l'appareil en fonctionnement et éviter les arrêts et démarrages intempestifs. Actuellement , les installation de PAC arrivent à se mettre hors service en 0 fonction de la température extérieur (formation de givre) . Lors d'un mauvais échange calorifique du flux hydraulique, d'un échangeur à plaque, le compresseur passe en haute pression ainsi que le flux frigorifique qui diminue le COP . Inversion du résultat demandé sur pompe à chaleur traditionnelle pour remédier à ce problème.(inconvénient majeur) L'invention permet de garder la PAC en fonctionnement permanent sans gêner l'utilisateur en injectant l'énergie sur : Le condenseur-évaporateur pour l'empêcher de givrer et donc de bloquer l'appareil . L'utilisation de l'énergie électrique par effet de joule (résistance) , ionisation (électrolyse) solaire (...) sur l'évaporateur-condenseur pompe à chaleur permet de supprimer le groupe 20 extérieur ( Aérothermique) en gardant un COP supérieur à un . On peut aussi utiliser la puissance calorifique du feux (gaz, bois , granulés ...) ou solaire . Ainsi on réalise une pompe à chaleur hydraulique compacte avec échangeur à plaques (flux hydraulique/flux frigorifique sur évaporateur-condenseur). Pour éviter de mettre le compresseur en haute pression suite à un mauvais échange 2S calorifique (exemple flux frigorifique supérieur à 100°C) , on récupère cette énergie (serpentin au niveau du compresseur) pour faire chuter la température-pression de celui-ci et transférer à l'évaporateur par déviation du flux frigorifique avant de passer dans 1 `évaporateur. La régulation est nécessaire en fonction de la température-pression. .50 Ainsi la température-pression du flux frigorifique condenseur chute. On maîtrise ainsi la pression ûtempérature du flux frigorifique condenseur-évaporateur. En augmentant la température évaporateur par régulation, on peut maîtriser le givre, la puissance et varier le COP. L'utilisation d'aimants puissants qui créent des champs électromagnétiques 3J modifient les molécules du gaz frigorifique, favorise l'échange et modifient le COP. Le COP augmente aussi par l'utilisation de l'énergie par ionisation sur l'évaporateur-condenseur. L'énergie fournie à l'évaporateur peut être récupérée si la pompe à chaleur est hors service (déviation du flux hydraulique vers le condenseur).The present invention relates to a technical method for maintaining the heat pump in operation and improving the cop. The invention also relates to the device for the implementation of this method without external heat exchange (geothermal energy, external aerothermal group ...) The study also relates to the recovery of all energies (hot and cold) on a heat pump. operating heat in order to use them to keep the device running and prevent untimely stops and starts. Currently, PAC installations are able to decommission themselves depending on the outside temperature (frost formation). During a bad heat exchange of the hydraulic flow, of a plate heat exchanger, the compressor passes at high pressure as well as the cooling flow which reduces the COP. Inversion of the result requested on a traditional heat pump to remedy this problem (major drawback) The invention makes it possible to keep the heat pump in permanent operation without hindering the user by injecting energy on: The condenser-evaporator to prevent it to frost and therefore block the device. The use of electric energy by joule effect (resistance), ionization (electrolysis) solar (...) on the evaporator-heat pump condenser allows to remove the group 20 outside (Aerothermal) keeping a higher COP has a . We can also use the heat output of the fires (gas, wood, granules ...) or solar. Thus a compact hydraulic heat pump with plate heat exchanger (hydraulic flow / refrigerant flow on evaporator-condenser) is realized. To avoid putting the compressor under high pressure due to poor heat exchange 2S (example refrigeration flow greater than 100 ° C), it recovers this energy (coil at the compressor) to reduce the temperature-pressure thereof and transfer to the evaporator by diverting the refrigerant flow before passing into the evaporator. The regulation is necessary according to the temperature-pressure. .50 Thus the temperature-pressure of the condenser refrigerant flow drops. This controls the temperature pressure of the condenser-evaporator refrigerant flow. By increasing the evaporator temperature by regulation, it is possible to control the frost, the power and to vary the COP. The use of powerful magnets that create 3J electromagnetic fields modifies the molecules of the refrigerating gas, promotes exchange and modifies the COP. The COP also increases by the use of ionization energy on the evaporator-condenser. The energy supplied to the evaporator can be recovered if the heat pump is out of service (deflection of the hydraulic flow to the condenser).

4 0 On peut aussi refroidir en chauffant ( l'eau chaude sanitaire, piscines, moteurs asynchrones...) ou chauffer en refroidissant (chambre froide...) en maîtrisant la direction du flux frigorifique avec régulation et électrovanne gaz frigorifique 3 ou 4 voies. 4 0 It is also possible to cool with heating (domestic hot water, swimming pools, asynchronous motors, etc.) or to heat up while cooling (cold room ...) by controlling the direction of the refrigerating flow with regulation and refrigerating gas solenoid valve 3 or 4 tract.

Claims (10)

REVENDICATIONS 1) Procédé de prévention de formation de givre sur une pompe à chaleur, caractérisé par le fait qu'on injecte de l'énergie sur le condenseur ou l'évaporateur pour l'empêcher de givrer. 1) A method of preventing frost formation on a heat pump, characterized by the fact that energy is injected into the condenser or evaporator to prevent it from frosting. 2) Dispositif de prévention de formation de givre sur une pompe à chaleur, pour la mise du procédé de la revendication 1, caractérisé par le fait qu'il comporte des moyens d'injection d'énergie sur le condenseur ou l'évaporateur de ladite pompe à chaleur. 2) Device for preventing frost formation on a heat pump, for the implementation of the method of claim 1, characterized in that it comprises energy injection means on the condenser or the evaporator of said heat pump. 3) Dispositif selon la revendication 2, caractérisé par le fait que lesdits moyens d'injection d'énergie consistent en une résistance électrique par effet Joule ou en -10 des moyens d'ionisation. 3) Device according to claim 2, characterized in that said energy injection means consist of an electric resistance by Joule effect or -10 ionization means. 4) Dispositif énergie selon la revendication 2 sont des moyens d'injection d'énergie solaire. 4) Energy device according to claim 2 are solar energy injection means. 5) Dispositif selon l'une des revendications 2 à 4 caractérisé par le fait qu'il comporte des moyens de récupération de l'énergie du flux hydraulique conçu aptes,à 15 transférer le flux frigorifique sur l'évaporateur-condenseur par l'intermédiaire d'un échangeur à plaques flux hydraulique I flux frigorifique. 5) Device according to one of claims 2 to 4 characterized in that it comprises means for recovering the energy of the designed hydraulic flow adapted to transfer the refrigerant flow on the evaporator-condenser via a plate heat exchanger hydraulic flow I refrigerant flow. 6) Dispositif selon l'une des revendications 2 à 5 caractérisé par le fait qu'il comporte des moyens de déviations du flux frigorifique par des moyens de récupération d'énergie au niveau du compresseur de ladite pompe à chaleur, notamment sous la 20 forme d'un serpentin, avant le passage dudit flux frigorifique dans l'évaporateur de ladite pompe à chaleur. 6) Device according to one of claims 2 to 5 characterized in that it comprises means for deviating the refrigerant flow by means of energy recovery at the compressor of said heat pump, particularly in the form of a coil, before the passage of said refrigerant flow in the evaporator of said heat pump. 7) Dispositif selon l'une des revendications 2 à 6 caractérisé par le fait qu'il comporte des aimants créant des champs électromagnétiques sur le circuit du gaz frigorifique. 7) Device according to one of claims 2 to 6 characterized in that it comprises magnets creating electromagnetic fields on the refrigerant gas circuit. 8) Dispositif selon l'une des revendications 2 à 7 caractérisé par le fait qu'il comporte 25 des moyens d'ionisation sur l'évaporateur ou le condenseur. 8) Device according to one of claims 2 to 7 characterized in that it comprises 25 ionization means on the evaporator or the condenser. 9) Dispositif selon l'une des revendications 2 à 8 caractérisé par le fait qu'il comporte des moyens de déviation du flux hydraulique vers le condenseur si ladite pompe à chaleur est hors service. 9) Device according to one of claims 2 to 8 characterized in that it comprises means for deflecting the hydraulic flow to the condenser if said heat pump is out of service. 10) Dispositif selon I'une des revendications 2 à 3 caractérisé par le fait qu'il 3 0 comporte des moyens de régulations de la direction du flux frigorifique. 10) Device according to one of claims 2 to 3 characterized in that it comprises 0 means for regulating the direction of the refrigerant flow.
FR0800955A 2008-02-22 2008-02-22 Ice formation preventing method for heat pump, involves injecting energy on condenser or evaporator by joule effect/ionization for preventing condenser or evaporator from being frozen, and regulating hydraulic/refrigerated flow's direction Withdrawn FR2927985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0800955A FR2927985A1 (en) 2008-02-22 2008-02-22 Ice formation preventing method for heat pump, involves injecting energy on condenser or evaporator by joule effect/ionization for preventing condenser or evaporator from being frozen, and regulating hydraulic/refrigerated flow's direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0800955A FR2927985A1 (en) 2008-02-22 2008-02-22 Ice formation preventing method for heat pump, involves injecting energy on condenser or evaporator by joule effect/ionization for preventing condenser or evaporator from being frozen, and regulating hydraulic/refrigerated flow's direction

Publications (1)

Publication Number Publication Date
FR2927985A1 true FR2927985A1 (en) 2009-08-28

Family

ID=40062978

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0800955A Withdrawn FR2927985A1 (en) 2008-02-22 2008-02-22 Ice formation preventing method for heat pump, involves injecting energy on condenser or evaporator by joule effect/ionization for preventing condenser or evaporator from being frozen, and regulating hydraulic/refrigerated flow's direction

Country Status (1)

Country Link
FR (1) FR2927985A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2284838A1 (en) * 1974-09-13 1976-04-09 Nieto Amour Heat pump operating with the evaporator in air - and fitted with an additional defrosting evaporator
FR2412797A1 (en) * 1977-12-21 1979-07-20 Sogeti Bureau Etudes Tech Heat pump for space heating - has thermostatically controlled preheater to warm inlet air which flows over evaporator
FR2469679A1 (en) * 1979-11-17 1981-05-22 Mueller Arnold AIR CONDITIONING APPARATUS, PARTICULARLY HEAT PUMP
FR2496240A1 (en) * 1980-12-17 1982-06-18 Rottner Sa J Air to water heat pump - has evaporator pre-heater with heat exchanger connected parallel to radiators
WO2003083384A1 (en) * 2002-03-27 2003-10-09 Magnetizer Industrial Technologies, Inc. Magnetic device for refrigerant performance enhancement
DE10306148B3 (en) * 2003-02-14 2004-07-15 Robert Staiger Heat exchanger used as a frost protection device for a heat pump comprises a liquid circulation connected to another liquid circulation on a liquid circulation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2284838A1 (en) * 1974-09-13 1976-04-09 Nieto Amour Heat pump operating with the evaporator in air - and fitted with an additional defrosting evaporator
FR2412797A1 (en) * 1977-12-21 1979-07-20 Sogeti Bureau Etudes Tech Heat pump for space heating - has thermostatically controlled preheater to warm inlet air which flows over evaporator
FR2469679A1 (en) * 1979-11-17 1981-05-22 Mueller Arnold AIR CONDITIONING APPARATUS, PARTICULARLY HEAT PUMP
FR2496240A1 (en) * 1980-12-17 1982-06-18 Rottner Sa J Air to water heat pump - has evaporator pre-heater with heat exchanger connected parallel to radiators
WO2003083384A1 (en) * 2002-03-27 2003-10-09 Magnetizer Industrial Technologies, Inc. Magnetic device for refrigerant performance enhancement
DE10306148B3 (en) * 2003-02-14 2004-07-15 Robert Staiger Heat exchanger used as a frost protection device for a heat pump comprises a liquid circulation connected to another liquid circulation on a liquid circulation system

Similar Documents

Publication Publication Date Title
US10041706B2 (en) Air conditioner and method for controlling an air conditioner
JPS6222054B2 (en)
NZ577589A (en) Heat pump with exhaust gas from combustion heater used to warm inlet air and fluid heated by combustion heater
US20110138829A1 (en) Heat Pump System
KR101533472B1 (en) Vapor compression and expansion air conditioner
JP2013083407A (en) Cooling device
GB2538092A (en) Heat exchanger assisted - refrigeration, cooling and heating
WO2006074572A1 (en) Hot and cold water dispenser and method of controlling same
FR2927985A1 (en) Ice formation preventing method for heat pump, involves injecting energy on condenser or evaporator by joule effect/ionization for preventing condenser or evaporator from being frozen, and regulating hydraulic/refrigerated flow's direction
CN102235746A (en) Quick water heating device for heat pump
US9863668B2 (en) Air conditioner
CN204670927U (en) A kind of thermoelectricity based on solar cell-compressor composite cold hot shot water machine
RU2303710C2 (en) Method of and mobile compressor plant for pumping out gas from disconnected section of gas line
KR20180067094A (en) Hybrid heat pump system
KR100952714B1 (en) Integrated air conditioning system including refrigerating, cooling, heating and supplying warm water using natural coolant
TW200720605A (en) A solid-absorption refrigeration apparatus
FR2508147A1 (en) HEATING DEVICE WITH HOT WATER PRODUCTION OPERATING IN RECOVERY ON A HEAT PUMP CIRCUIT OR COLD GENERATION SYSTEM
KR100926808B1 (en) Heat pump air conditioning system for enabling floor heating and hot-water supply at the same
KR101595203B1 (en) Air conditioner
EP1124097B1 (en) Heating and air conditioning system
CN211476365U (en) Frost-preventing air source heat pump cooling and heating machine
RU2694720C1 (en) Method of energy saving during production of artificial cold for ice arenas
CN201652796U (en) Quick pump heating and water heating device
CN210921952U (en) Refrigerator and drinking water integrated machine
RU2280816C2 (en) Individual building heating system and operational method

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20111102