FR2926805A1 - DEVICE FOR LIFTING AND MOVING AN OBJECT COMPRISING THE IMPLEMENTATION OF AT LEAST ONE TENSION CABLE - Google Patents

DEVICE FOR LIFTING AND MOVING AN OBJECT COMPRISING THE IMPLEMENTATION OF AT LEAST ONE TENSION CABLE Download PDF

Info

Publication number
FR2926805A1
FR2926805A1 FR0850490A FR0850490A FR2926805A1 FR 2926805 A1 FR2926805 A1 FR 2926805A1 FR 0850490 A FR0850490 A FR 0850490A FR 0850490 A FR0850490 A FR 0850490A FR 2926805 A1 FR2926805 A1 FR 2926805A1
Authority
FR
France
Prior art keywords
cable
link
traction
inertial unit
lifting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0850490A
Other languages
French (fr)
Inventor
Pierre Aristagues
Valerie Blanchet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SA
Original Assignee
Saipem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem SA filed Critical Saipem SA
Priority to FR0850490A priority Critical patent/FR2926805A1/en
Priority to AT09706770T priority patent/ATE531665T1/en
Priority to EP09706770A priority patent/EP2231498B1/en
Priority to PCT/FR2009/050076 priority patent/WO2009095579A1/en
Publication of FR2926805A1 publication Critical patent/FR2926805A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)

Abstract

The invention relates to a device for lifting and moving an object (4), that comprises a crane (1), said crane including a boom (1b) equipped with a so-called lifting cable (1a) having at the free end thereof a link (8, 8a-8b-8c) capable of holding at the lower end thereof an object suspended thereto via a gripping device (5,5a-5b), wherein the lifting cable (1a) is coupled to at least one traction cable (9, 9a-9b) having an end connected to at least one traction winch (10, 10a-10b), characterised in that it comprises: a powered bearing (30) connected to a connection ring or hook (1d) at the lower end of said lifting cable, said link being connected at the upper end thereof to a lower mobile portion (30b) of the powered bearing, said powered bearing (30) thus being capable of controlling the powered rotation of said link and of said object in rotation about itself when said lower portion (30b) is actuated in powered rotation; and said powered bearing (30) cooperates with a reaction arm (32) that allows the transfer of the torsion stress generated by said powered bearing upon rotation, at a fixed upper portion (30a) of said powered bearing, connected to said connection ring or hook.

Description

DISPOSITIF DE LEVAGE ET DEPLACEMENT D'UN OBJET COMPRENANT LA MISE EN îUVRE D'AU MOINS UN CABLE DE TRACTION La présente invention concerne la pose de blocs artificiels permettant de constituer des digues de protection de rivage ou des digues contre les effets de la houle. Elle concerne plus particulièrement le contrôle en sous-marin de la position et de l'orientation des blocs au cours de la manutention et plus particulièrement au moment de la dépose finale desdits blocs sur l'ouvrage. The present invention relates to the installation of artificial blocks for constituting shore protection dikes or dikes against the effects of waves. SUMMARY OF THE INVENTION It relates more particularly to the underwater control of the position and orientation of the blocks during handling and more particularly at the time of the final removal of said blocks on the structure.

Les rivages côtiers et les zones portuaires sont en général protégés contre les effets des vagues et de la houle par des ouvrages revêtus d'une carapace capable de résister aux conditions extrêmes de la mer durant des décennies voire des siècles. De nombreux dispositifs ont été développés de manière à assurer un fonctionnement performant sur des durées très longues, sans déstabilisation significatives de l'ouvrage. Les dispositifs sont en général constitués de blocs naturels (enrochements) ou artificiels (blocs en béton), résistant par leur masse et/ou leur forme et/ou imbrication, lesdits blocs étant, soit simplement déposés en vrac lorsqu'il s'agit de blocs bruts de carrière, soit agencés les uns dans les autres selon un plan de pose prédéfini avec des règles à respecter (cas des carapaces monocouche), soit encore agencés de manière pseudo- aléatoire lorsqu'il s'agit de blocs de formes plus massives (cas par exemple des blocs cubiques ou pseudocubiques et de leurs dérivés). Coastal shorelines and port areas are generally protected from the effects of waves and waves by structures with a shell that can withstand the extreme conditions of the sea for decades or even centuries. Numerous devices have been developed in order to ensure efficient operation over very long periods, without significant destabilization of the structure. The devices are generally made of natural blocks (rockfill) or artificial blocks (concrete blocks), resistant by their mass and / or their shape and / or nesting, said blocks being either simply deposited in bulk when it comes to gross quarry blocks, either arranged in one another according to a predefined laying plan with rules to be respected (case of monolayer shells), or else arranged pseudo-randomly when it comes to blocks of more massive shapes (For example cubic or pseudocubic blocks and their derivatives).

La mise en place de blocs moulés nécessite des moyens de préhension et de manutention qui permettent une mise en place précise de chacun des blocs dans l'édifice en cours de construction, de manière à ce que la pose des blocs suivants puisse se poursuivre sans difficultés. Si la zone hors d'eau, réalisée en général à la fin de l'ouvrage ne pose pas vraiment de problème car le grutier a une vision directe de l'état de l'ouvrage déjà installé et une maîtrise du positionnement du bloc en cours d'installation, il n'en va pas de même de la portion de l'ouvrage située sous l'eau. On utilise en général le concours de plongeurs qui assistent alors le grutier durant la phase de dépose du blocs et confirment au grutier le positionnement correct dudit bloc, avant qu'il ne soit déconnecté de son outil de préhension. On s'arrange alors pour travailler en période calme, car, en cas de forte mer ou de houle importante, les plongeurs ne peuvent pas intervenir en toute sécurité, en raison de l'agitation ambiante et en particulier l'absence de visibilité suffisante. Dans certaines régions du monde, les conditions océano-météo n'atteignent quasiment jamais un niveau de calme permettant d'effectuer les opérations de construction dans des conditions acceptables. En effet, dans ces zones une houle persistante de longue période perturbe le rivage dans la zone côtière et ne permet pas l'intervention de plongeurs dans des conditions de sécurité acceptable, et les carapaces sont alors extrêmement délicates à réaliser, et de plus les durées de chantier présentent des risques considérables de prolongation en raison de périodes importantes de "stand-by", c'est-à-dire d'attente de périodes de calme, ce qui engendre des surcoûts considérables pour ces ouvrages. Ainsi, le problème posé est de manutentionner, de manière contrôlée, précise et fiable, des blocs artificiels de toutes formes, et de les positionner avec précision et en conformité avec les plans de pose, sur la carapace d'une digue en cours de construction dans la zone sous-marine depuis le fond de la mer, jusqu'à la zone émergeante dudit ouvrage, voire sur sa partie aérienne. Pour ce faire, la présente invention fournit un dispositif de levage et déplacement d'un objet comprenant une grue, ladite grue comprenant une flèche équipée d'un premier câble, dit câble de levage, comprenant, de préférence, à son extrémité un lien apte à supporter un dit objet qui lui est suspendu par l'intermédiaire d'un dispositif de préhension, caractérisé en ce que ledit câble de levage, suspendu à l'extrémité de ladite flèche, est couplé à au moins un deuxième câble, dit câble de traction, dont une extrémité est reliée à au moins un treuil de traction, de préférence solidaire d'une plate-forme support de ladite flèche, l'autre extrémité du câble de traction étant solidaire du câble de levage en suspension, de préférence au niveau d'un crochet ou anneau de raccordement à l'extrémité inférieure dudit câble de levage, de telle sorte que la réduction de longueur d'au moins un dit câble de traction, par actionnement d'au moins un dit treuil de traction, permette : a-d'incliner ledit câble de levage par rapport à la verticale ZZ et de déplacer en translation ledit objet, dans un plan vertical passant par un dit câble de traction et ledit câble de levage, de préférence, un plan vertical passant par l'axe de ladite flèche XIX'1, et/ou b- de déplacer ledit objet latéralement par rapport à un plan vertical passant par l'axe XIX'l de ladite flèche, dans un plan passant par deux câbles de traction, les deux câbles de traction coopérant avec deux treuils de traction disposés de part et d'autre de ladite flèche. On comprend que l'inclinaison du câble de levage par rapport à la verticale peut être obtenue par la mise en oeuvre d'un unique câble de traction disposé sensiblement dans l'axe de ladite flèche, mais également par la mise en oeuvre de plusieurs câbles de traction, notamment deux câbles de traction disposés symétriquement ou non par rapport à ladite flèche. Et, dans le cas où les deux câbles de traction sont disposés symétriquement, on comprend que le déplacement dans ledit plan vertical passant par l'axe de ladite flèche se fait par une réduction de longueur identique des deux câbles de traction. En revanche, on comprend que, pour obtenir un déplacement latéral, il est nécessaire de mettre en oeuvre au moins deux câbles de traction disposés de part et d'autre de ladite flèche et que l'un au moins des câbles de traction doit connaître une réduction de longueur, par actionnement dudit treuil de traction, pour obtenir ce déplacement latéral ou, si les deux câbles de traction connaissent une réduction de longueur, celle-ci doit être de longueurs différentes si les deux câbles sont disposés symétriquement par rapport à ladite flèche. Ces déplacements latéraux dans un plan incliné par rapport à l'horizontal ou déplacements dans un plan vertical dudit objet, à l'aide de dit(s) câble(s) de traction, permettent surtout de stabiliser ledit objet en cas de balancement en cours d'opération, ou d'éviter l'apparition de tels balancements. La présente invention fournit donc également un procédé de déplacement et de levage d'un objet à l'aide d'un dispositif de levage et déplacement selon l'invention, caractérisé en ce que l'on stabilise et/ou on ajuste le positionnement dudit objet suspendu audit câble de levage, en actionnant au moins un dit treuil de traction, en a- inclinant ledit câble de levage par rapport à la verticale ZZ et déplaçant en translation ledit objet, dans un plan vertical passant par un dit câble de traction et ledit câble de levage, de préférence, un plan vertical passant par l'axe de ladite flèche XIX'1, et/ou b- déplaçant ledit objet latéralement par rapport à un plan vertical passant par l'axe XIX'l de ladite flèche, dans un plan passant par deux câbles de traction, les deux câbles de traction coopérant avec desdits treuils de traction disposés de part et d'autre de ladite flèche. Avantageusement, on met en oeuvre une grue dont l'extrémité inférieure de ladite flèche repose sur un support de flèche, lui-même solidaire d'une tourelle de pilotage, et ladite flèche étant inclinée dans un plan vertical, ladite flèche étant apte à être déplacée en rotation par rapport à un axe vertical solidaire dudit support de flèche. Dans une variante de réalisation avantageuse, le dispositif selon l'invention comporte un unique câble de traction dont ledit treuil de traction est disposé sensiblement dans l'axe XIX'l de ladite flèche, de sorte que la réduction de longueur dudit câble de traction, par actionnement dudit treuil de traction permette d'incliner ledit câble de levage par rapport à la verticale ZZ et de déplacer en translation ledit objet, dans un plan vertical passant par ledit câble de traction et ledit câble de levage, de préférence, un plan vertical passant par l'axe de ladite flèche XIX'1, c'est-à-dire lorsque ledit câble de traction est situé dans le même plan vertical que l'axe de ladite flèche (XIX'1). La mise en oeuvre d'un dit câble de traction permet de déplacer de façon précise ledit anneau ou crochet de raccordement et donc ledit objet en translation dans un plan vertical comprenant l'axe de la flèche, et de rapprocher ledit objet dudit treuil de traction sans avoir à modifier l'inclinaison de la flèche et, bien sur, sans avoir à déplacer la grue, ce qui est proscrit lorsque celle-ci est en cours de levage d'un objet pesant. Pour déplacer de façon précise ledit anneau ou crochet de raccordement et donc ledit objet en translation dans un plan horizontal, c'est-à-dire latéralement par rapport au plan vertical passant par l'axe de la flèche, avantageusement, le dispositif selon l'invention comporte au moins deux câbles de traction reliés, respectivement, à deux treuils de traction, une extrémité de chacun câble de traction étant reliée à un dit treuil de traction, de préférence solidaire d'un support de ladite flèche, l'autre extrémité de chacun des deux câbles de traction étant solidaire dudit câble de levage, de préférence à son extrémité inférieure au niveau du même dit anneau ou crochet de raccordement, les deux treuils de traction étant disposés de part et d'autre de ladite flèche, de préférence symétriquement, de sorte qu'une réduction de longueur de l'un au moins des deux dits câbles de traction permet de déplacer ledit objet latéralement par rapport à un plan vertical passant par l'axe XIX'1 de ladite flèche, dans un plan passant par les deux câbles de traction, de préférence une réduction de longueur différente pour les deux câbles de traction disposés symétriquement par rapport à un plan vertical passant par l'axe de ladite flèche. The establishment of molded blocks requires gripping and handling means that allow precise placement of each of the blocks in the building under construction, so that the installation of the following blocks can continue without difficulty . If the out-of-water zone, usually located at the end of the structure, is not really a problem because the crane operator has a direct view of the condition of the structure already installed and a control of the current block positioning installation, it is not the same for the portion of the work located under water. We generally use the contest of divers who then assist the crane operator during the phase of removal of the block and confirm the crane operator the correct positioning of the block, before it is disconnected from its gripping tool. It is then arranged to work in quiet time, because in case of high seas or swells, divers can not intervene safely, because of the ambient agitation and in particular the lack of sufficient visibility. In some parts of the world, ocean-weather conditions hardly ever reach a level of calm allowing construction operations to be carried out under acceptable conditions. Indeed, in these areas a persistent long-term swell disturbs the shoreline in the coastal zone and does not allow the intervention of divers in conditions of acceptable safety, and the shells are then extremely delicate to realize, and in addition the durations There are considerable risks of extension due to long periods of "stand-by", that is to say, waiting for periods of calm, which generates considerable additional costs for these works. Thus, the problem posed is to handle, in a controlled, precise and reliable manner, artificial blocks of all shapes, and to position them accurately and in accordance with the laying plans, on the shell of a dike being built. in the submarine zone from the bottom of the sea, to the emerging zone of the said structure, or even on its aerial part. To do this, the present invention provides a device for lifting and moving an object comprising a crane, said crane comprising an arrow equipped with a first cable, said lifting cable, preferably comprising at its end a suitable link. supporting a said object suspended from it by means of a gripping device, characterized in that said lifting cable, suspended at the end of said boom, is coupled to at least one second cable, said cable traction, one end of which is connected to at least one traction winch, preferably secured to a support platform of said boom, the other end of the pulling cable being integral with the suspension hoist rope, preferably at the a hook or connecting ring at the lower end of said hoisting cable, such that the reduction in length of at least one said pulling cable, by actuating at least one said tr traction, allows: a-tilting said lifting cable relative to the vertical ZZ and translational displacement said object, in a vertical plane passing through a said traction cable and said hoisting cable, preferably a vertical plane passing through the axis of said arrow XIX'1, and / or b- moving said object laterally relative to a vertical plane passing through the axis XIX'l of said arrow, in a plane passing through two cables of traction, the two traction cables cooperating with two traction winches arranged on either side of said arrow. It is understood that the inclination of the lifting cable relative to the vertical can be obtained by the implementation of a single pulling cable disposed substantially in the axis of said boom, but also by the implementation of several cables traction, including two traction cables arranged symmetrically or otherwise with respect to said arrow. And, in the case where the two traction cables are arranged symmetrically, it is understood that the displacement in said vertical plane passing through the axis of said boom is by a reduction in identical length of the two traction cables. On the other hand, it is understood that, to obtain a lateral displacement, it is necessary to use at least two traction cables arranged on either side of said boom and that at least one of the traction cables must have a reduction of length, by actuation of said traction hoist, to obtain this lateral displacement or, if the two traction cables experience a reduction in length, this length must be of different lengths if the two cables are arranged symmetrically with respect to said boom . These lateral displacements in a plane inclined with respect to the horizontal or displacements in a vertical plane of said object, with the aid of said cable (s) of traction, make it possible especially to stabilize said object in case of swinging in progress of operation, or to avoid the appearance of such swings. The present invention therefore also provides a method of moving and lifting an object using a lifting device and displacement according to the invention, characterized in that one stabilizes and / or adjusts the positioning of said object suspended from said lifting cable, by actuating at least one said traction hoist, by tilting said lifting cable with respect to the vertical ZZ and translating said object in a vertical plane passing through a said pulling cable and said lifting cable, preferably a vertical plane passing through the axis of said arrow XIX'1, and / or b- moving said object laterally with respect to a vertical plane passing through the axis XIX'l of said arrow, in a plane passing through two traction cables, the two traction cables cooperating with said traction hoists disposed on either side of said boom. Advantageously, a crane is used whose lower end of said boom rests on an arrow support, itself secured to a steering turret, and said boom being inclined in a vertical plane, said boom being adapted to be rotated relative to a vertical axis integral with said boom support. In an advantageous embodiment variant, the device according to the invention comprises a single traction cable of which said traction winch is disposed substantially in the axis XIX '1 of said boom, so that the reduction in length of said traction cable, by actuation of said pulling winch makes it possible to incline said lifting cable with respect to the vertical ZZ and to move in translation said object, in a vertical plane passing through said pulling cable and said lifting cable, preferably a vertical plane passing through the axis of said arrow XIX'1, that is to say when said pulling cable is located in the same vertical plane as the axis of said arrow (XIX'1). The implementation of a said traction cable makes it possible to accurately move the said connecting ring or hook and therefore the said object in translation in a vertical plane comprising the axis of the arrow, and to bring the said object closer to the said traction hoist. without having to change the inclination of the boom and, of course, without having to move the crane, which is prohibited when it is being lifted from a heavy object. To move in a precise manner said ring or hook of connection and thus said object in translation in a horizontal plane, that is to say laterally with respect to the vertical plane passing through the axis of the arrow, advantageously, the device according to the invention comprises at least two traction cables connected respectively to two traction hoists, one end of each pulling cable being connected to a said traction hoist, preferably secured to a support of said boom, the other end each of the two traction cables being secured to said lifting cable, preferably at its lower end at the same said connecting ring or hook, the two traction winches being disposed on either side of said boom, preferably symmetrically, so that a reduction in length of at least one of said two traction cables makes it possible to move said object laterally with respect to a plane v ertical passing through the axis XIX'1 of said arrow, in a plane passing through the two traction cables, preferably a different length reduction for the two traction cables arranged symmetrically with respect to a vertical plane passing through the axis of said arrow.

Avantageusement encore, les deux dits treuils de traction sont disposés aux deux extrémités d'une poutre transversale solidaire d'une plate-forme supportant ladite flèche. Ceci permet, en particulier, d'ajuster en fin de pose l'adéquation de la position d'un bloc par rapport au bloc déjà posé d'une digue en cours de réalisation. Dans un autre mode préféré de réalisation, ledit lien est relié à son extrémité supérieur à un palier motorisé, solidaire d'un dit anneau ou crochet de raccordement à l'extrémité inférieure dudit câble de levage, ledit palier motorisé permettant de commander la rotation motorisée dudit lien et dudit objet en rotation sur lui-même lorsque son moteur est actionné, et ledit palier motorisé jouant le rôle de tourillon lorsque son moteur est débrayé. Cette rotation peut être commandée par le grutier et permet d'ajuster la position de l'objet en tant que de besoin lors de sa dépose finale, notamment dans le cas d'un bloc à déposer dans un plan de pose particulier sur un assemblage de blocs d'une digue en cours de réalisation. Advantageously, the two said traction hoists are arranged at both ends of a transverse beam secured to a platform supporting said boom. This makes it possible, in particular, to adjust at the end of the laying the adequacy of the position of a block with respect to the already laid block of a dike in progress. In another preferred embodiment, said link is connected at its upper end to a motorized bearing secured to a said connecting ring or hook at the lower end of said lifting cable, said motorized bearing for controlling the motorized rotation. said link and said object rotating on itself when its engine is actuated, and said motor bearing acting as a pin when its engine is disengaged. This rotation can be controlled by the crane operator and makes it possible to adjust the position of the object as needed during its final removal, in particular in the case of a block to be deposited in a particular laying plane on an assembly of blocks of a dike in progress.

Avantageusement encore, ledit palier motorisé coopère avec un bras rigide, dit bras de réaction, qui permet de reprendre les efforts de torsion générés par ledit palier motorisé en rotation, au niveau de la partie supérieure dudit palier motorisé solidaire dudit anneau ou crochet de raccordement, ledit bras de réaction étant intercalé entre l'extrémité d'un dit câble de traction et la partie supérieure dudit palier motorisé de laquelle il est solidaire. On comprend donc qu'une extrémité du bras de réaction est fixée sur ladite partie supérieure du palier motorisé et l'autre extrémité duit câble de traction étant fixée à un dit treuil de traction. Advantageously, said motorized bearing cooperates with a rigid arm, said reaction arm, which makes it possible to take up the torsional forces generated by said motorized bearing in rotation, at the upper part of said motorized bearing secured to said connecting ring or hook, said reaction arm being interposed between the end of a said traction cable and the upper portion of said motor bearing which it is secured. It is therefore understood that one end of the reaction arm is fixed on said upper part of the motorized bearing and the other end of the traction cable being fixed to a said traction hoist.

La présente invention fournit donc également un procédé dans lequel on met en oeuvre un dispositif de ce type selon l'invention et on actionne en rotation ledit palier motorisé de façon à orienter l'objet, par rotation sur lui-même, en phase finale de dépose. The present invention therefore also provides a method in which a device of this type according to the invention is implemented and said motorized bearing is rotated so as to orient the object, by rotation on itself, in the final phase of the invention. deposit.

Dans un mode de réalisation avantageux, un dispositif de levage et déplacement selon l'invention ledit lien est équipé d'une centrale inertielle, ladite centrale inertielle étant fixée sur ledit lien, de préférence de telle sorte que l'axe dudit lien, lorsqu'il est tendu par un dit objet suspendu soit confondu avec un des axes du repère (Xc, Yc, Zc) lié à la centrale inertielle, ladite centrale inertielle étant reliée à un ordinateur, de préférence situé dans la cabine du grutier, auquel sont transmises les données, enregistrées en temps réel, d'accélérations longitudinales de ladite centrale inertielle dans les trois direction d'un repère mobile (Xc, Yc, Zc) et accélérations en rotation (yl, y2, y3) de ladite centrale inertielle par rapport aux mêmes axes du repère mobile (Xc, Yc, Zc) de ladite centrale inertielle, l'ordinateur étant apte à indiquer position et orientation dudit objet suspendu audit lien dans un repère fixe (X, Y, Z) de l'espace, déduites des position et orientation instantanées de la centrale inertielle, et, de préférence, l'ordinateur étant capable de visualiser sur un écran des mouvements dudit objet dans l'espace. On entend par "repère (Xc, Yc, Zc) lié à la centrale inertielle" que ledit repère est fixe par rapport à la centrale quand il est mobile par rapport au repère fixe (X, Y, Z). In an advantageous embodiment, a lifting device according to the invention said link is equipped with an inertial unit, said inertial unit being fixed on said link, preferably such that the axis of said link, when it is stretched by a said suspended object is confused with one of the axes of the reference (Xc, Yc, Zc) related to the inertial unit, said inertial unit being connected to a computer, preferably located in the cabin of the crane operator, to which are transmitted the data, recorded in real time, of longitudinal accelerations of said inertial unit in the three directions of a moving marker (Xc, Yc, Zc) and rotational accelerations (y1, y2, y3) of said inertial unit with respect to same axes of the mobile reference (Xc, Yc, Zc) of said inertial unit, the computer being able to indicate position and orientation of said object suspended at said link in a fixed reference (X, Y, Z) of the space, deduced s instantaneous position and orientation of the inertial unit, and preferably the computer being able to display on a screen movements of said object in space. The term "reference (Xc, Yc, Zc) related to the inertial unit" means that said marker is fixed relative to the control unit when it is movable relative to the fixed reference (X, Y, Z).

Une centrale inertielle est un dispositif accéléromètre connu de l'homme de l'art, apte à enregistrer en temps réel ses accélérations de déplacement longitudinal dans les trois direction de l'espace d'un repère mobile (Xc, Yc, Zc) et les accélérations de déplacement en rotation (yl, y2, y3) du même repère mobile, par rapport aux trois axes d'un repère fixe (X, Y, Z) de l'espace. On comprend que ledit ordinateur calcule d'abord l'évolution de la position et de la trajectoire de ladite centrale inertielle. Et, connaissant ces position et orientation de la centrale inertielle, ainsi que la distance de ladite centrale inertielle par rapport au centre de gravité dudit objet, cette distance étant constante puisque ledit lien reste tendu par ledit objet qui lui est suspendu, l'ordinateur peut en déduire, par un calcul géométrique simple, une position et orientation en temps réel dudit objet. Il est ainsi possible, en l'absence de toute visibilité directe dudit objet par le grutier, de commander le déplacement dudit objet en fonction des données calculées par ledit ordinateur et de déterminer la trajectoire dudit objet pour être posé à un emplacement déterminé voulu, notamment lorsque les objets en cause sont des objets de forte charge, de plusieurs dizaines de tonnes, tels que des blocs de béton assemblés pour la réalisation d'une digue sous-marine. An inertial unit is an accelerometer device known to those skilled in the art, able to record in real time its accelerations of longitudinal displacement in the three directions of the space of a movable marker (Xc, Yc, Zc) and the rotational displacement accelerations (yl, y2, y3) of the same movable marker, with respect to the three axes of a fixed reference (X, Y, Z) of the space. It is understood that said computer first calculates the evolution of the position and trajectory of said inertial unit. And, knowing these position and orientation of the inertial unit, as well as the distance of said inertial unit from the center of gravity of said object, this distance being constant since said link remains tight by said object which is suspended from it, the computer can deduce, by a simple geometric calculation, a position and orientation in real time of said object. It is thus possible, in the absence of any direct visibility of said object by the crane operator, to control the movement of said object according to the data calculated by said computer and to determine the trajectory of said object to be placed at a desired determined location, in particular when the objects in question are objects of heavy load, several tens of tons, such as concrete blocks assembled for the realization of an underwater dike.

Selon la présente invention, ladite centrale inertielle n'est donc pas fixée directement sur ledit objet, comme il est d'usage dans d'autres domaines d'utilisation de ce type de dispositif, pour les raisons suivantes : 1- ledit objet est susceptible de rentrer en collision avec d'autres objets lors de sa dépose, plus particulièrement lorsque ledit objet est un bloc de béton que l'on dépose au fond de la mer pour réaliser une digue, les chocs avec des blocs précédemment posés étant fréquents. La fixation de la centrale inertielle sur ledit objet risquerait d'entraîner l'endommagement de ladite centrale lors desdits chocs. 2- le fait de déporter le support de la centrale inertielle par rapport audit objet le long dudit lien permet qu'un premier écrêtage ou filtrage de l'amplitude des accélérations liées aux chocs éventuels, se fasse mécaniquement par l'intermédiaire dudit lien, comme explicité plus loin. 3- le fait de déporter vers le haut ladite centrale permet de la maintenir hors de l'eau et d'utiliser des moyens de positionnement dans l'espace de type GPS (Global Positioning System), DGPS (GPS différentiel), de type positionnement laser ou théodolite automatique, comme explicité ci-après. La présente invention fournit donc également un procédé de déplacement et de levage d'un objet à l'aide d'un dispositif selon l'invention comprenant une centrale inertielle, caractérisé en ce que l'on déplace ledit objet en vue de le poser à un emplacement déterminé, en fonction de sa position et de son orientation angulaire par rapport aux trois dimensions de l'espace (X-Y-Z, y1-y2-y3) et, de préférence, en fonction de la visualisation de ses mouvements, tels que calculés par ledit ordinateur. Dans un mode préféré de réalisation, ladite centrale inertielle est couplée à un filtre de Kalman qui permet d'écrêter les amplitudes d'accélérations enregistrées par la centrale inertielle, en cas d'amplitude d'accélération importante de la centrale inertielle causée par un choc sur ledit objet, et permettant de substituer, à ces amplitudes d'accélérations ainsi écrêtées (ci-après accélérations parasites), les valeurs probables d'évolution des paramètres de position de ladite centrale inertielle, et, de préférence, ledit filtre de Kalman permettant en outre d'identifier l'emplacement dudit choc et, de préférence encore, visualiser sur l'écran la position de l'objet lors du choc et/ou d'un autre dit objet déjà posé avec lequel ledit objet en cours de pose est rentré en collision. Ces filtres de Kalman sont connus de l'homme de l'art. Un tel filtre est un estimateur récursif qui est utilisé pour éliminer des mouvements "parasites" calculés de façon aberrante par l'ordinateur compte tenu de leur apparition sous forme de pics, alors que ces mouvements ne sont pas effectués dans la réalité, notamment en cas de chocs sur ledit objet, comme explicité plus loin. De façon originale selon la présente invention, ce filtre de Kalman est utilisé pour, en outre, identifier l'emplacement auquel ledit objet a reçu un choc, par exemple en visualisant ledit objet par une couleur différente à chaque choc, dans la zone dudit choc. On comprend que cette dernière information est très utile pour le grutier, afin d'ajuster la position du bloc en phase finale de dépose dudit objet, notamment d'un bloc sur une digue, et plus particulièrement en l'absence de toute visibilité dudit bloc par le grutier ou par un plongeur d'assistance chargé de superviser ladite phase finale. Dans un mode préféré de réalisation, ladite centrale inertielle est combinée à un dispositif de mesure directe de la position de ladite centrale inertielle dans ledit repère fixe (yl, y2, y3), ladite mesure comprenant l'étude du trajet d'une onde émise par ledit dispositif de mesure, tel qu'un dispositif de visée laser, un théodolite automatique ou, de préférence, un GPS différentiel. Ce mode de réalisation permet de mettre en oeuvre un procédé dans lequel, avantageusement, seules, les données d'accélération angulaire (yl, y2, y3) enregistrées à l'aide de ladite centrale inertielle sont traitées au sein de l'ordinateur, celui-ci étant couplé à un filtre de Kalman, et la position longitudinale dans l'espace dudit objet par rapport audit repère fixe (X, Y, Z) étant fournie par l'intermédiaire d'un dispositif additionnel de détermination directe de la position de ladite centrale inertielle au moyen d'émission d'ondes, tel qu'un dispositif de type système de visée laser, théodolite ou, de préférence, un dispositif de type GPS différentiel. Avantageusement encore, dans un procédé selon l'invention, la réalisation par le filtre de Kalman de l'écrêtage des amplitudes d'accélération causées par des chocs sur ledit objet, est exploitée pour identifier et, de préférence, visualiser sur un écran, l'occurrence d'un choc sur ledit objet. Ceci permet, en particulier, d'ajuster en fin de pose l'adéquation de la position d'un bloc par rapport au bloc déjà posé d'une digue en cours de réalisation. Dans une variante de réalisation, ledit lien est constitué par la partie inférieure du câble de levage. Toutefois, dans une variante préférée, ledit lien est indépendant du câble de levage et présente une rigidité à la torsion supérieure à celle dudit câble de levage, ledit lien étant de préférence constitué d'une chaîne métallique ou d'un tube ou profilé en acier ou matériau composite, ledit tube ou profilé présentant une rigidité à la torsion et de la souplesse en flexion par rapport à sa direction longitudinale. On entend ici par "flexion par rapport à la direction longitudinale", une flexion par laquelle l'axe rectiligne dudit lien au repos adopte une forme courbe par rapport audit axe rectiligne, lorsqu'il est sollicité en flexion. Cette rigidité en torsion alliée à une souplesse en flexion par rapport à la direction longitudinale du lien, permet de réaliser un premier filtrage mécanique plus important des accélérations parasites enregistrées au niveau de la centrale inertielle dues à des chocs éventuels sur un dit objet. En outre, et surtout, cette rigidité à la torsion dudit lien permet que les position et orientation dudit objet et mouvements dudit objet visualisés suite aux calculs dudit ordinateur soient plus fidèles par rapport aux mouvements réels dudit objet, c'est-à-dire soient mieux synchronisés avec les mouvements de ladite centrale inertielle. De préférence encore, ledit lien est relié à l'extrémité inférieure dudit câble de levage par un anneau ou crochet de raccordement, l'extrémité supérieure dudit lien coopérant avec ledit crochet ou anneau de raccordement par l'intermédiaire d'un tourillon. On entend ici par "tourillon", un dispositif à roulement à billes, à rouleaux, ou encore de type palier lisse, autorisant les rotations dudit lien sur lui-même, sans torsion au niveau de son raccordement audit anneau ou crochet de raccordement. Ces caractéristiques permettent que les mouvements de la centrale inertielle reflètent, plus fidèlement encore, les mouvements de l'objet. De préférence, le dispositif de préhension est solidaire de l'extrémité inférieure du lien et apte à coopérer avec un dit objet, de telle sorte que : - le centre de gravité dudit objet reste dans l'alignement dudit lien en cours de levage et déplacement, et - les mouvements dudit objet et dudit lien en rotation par rapport à l'axe dudit lien (Zc) sont répercutés l'un à l'autre. According to the present invention, said inertial unit is thus not fixed directly on said object, as is customary in other areas of use of this type of device, for the following reasons: 1- said object is susceptible to collide with other objects during its removal, especially when said object is a concrete block that is deposited at the bottom of the sea to make a dike, shocks with previously laid blocks being frequent. Fixing the inertial unit on said object could cause damage to said plant during said shocks. 2- the fact of deporting the support of the inertial unit with respect to said object along said link allows a first clipping or filtering of the amplitude of the accelerations related to the possible shocks, is done mechanically via said link, as explained further. 3 - the fact of moving upwards said central allows to maintain it out of the water and use positioning means in the space type GPS (Global Positioning System), DGPS (GPS differential), positioning type laser or automatic theodolite, as explained below. The present invention therefore also provides a method of moving and lifting an object with the aid of a device according to the invention comprising an inertial unit, characterized in that said object is moved in order to place it at a given location, according to its position and its angular orientation with respect to the three dimensions of the space (XYZ, y1-y2-y3) and, preferably, according to the visualization of its movements, as calculated by said computer. In a preferred embodiment, said inertial unit is coupled to a Kalman filter which makes it possible to clip the acceleration amplitudes recorded by the inertial unit, in the event of a large acceleration amplitude of the inertial unit caused by an impact. on said object, and making it possible to substitute, at these amplitudes of accelerations thus clipped (hereinafter parasitic accelerations), the probable values of evolution of the position parameters of said inertial unit, and, preferably, said Kalman filter allowing in addition, to identify the location of said shock and, more preferably, to visualize on the screen the position of the object during the impact and / or of another said object already laid with which said object being applied is collided. These Kalman filters are known to those skilled in the art. Such a filter is a recursive estimator which is used to eliminate "parasitic" movements calculated aberrantly by the computer in view of their appearance in the form of peaks, whereas these movements are not carried out in reality, in particular in case shock on said object, as explained below. In an original way according to the present invention, this Kalman filter is used to further identify the location at which said object has received an impact, for example by visualizing said object by a different color at each shock, in the zone of said shock. . It is understood that the latter information is very useful for the crane operator, in order to adjust the position of the block in the final phase of removal of said object, including a block on a dike, and more particularly in the absence of any visibility of said block by the crane operator or a service diver to supervise the final phase. In a preferred embodiment, said inertial unit is combined with a device for directly measuring the position of said inertial unit in said fixed frame (y1, y2, y3), said measurement comprising the study of the path of an emitted wave. by said measuring device, such as a laser sighting device, an automatic theodolite or, preferably, a differential GPS. This embodiment makes it possible to implement a method in which, advantageously, only the angular acceleration data (y1, y2, y3) recorded with the aid of said inertial unit are processed within the computer. it being coupled to a Kalman filter, and the longitudinal position in the space of said object with respect to said fixed reference (X, Y, Z) being provided by means of an additional device for direct determination of the position of said inertial unit by means of wave emission, such as a laser aiming system type device, theodolite or, preferably, a differential GPS type device. Advantageously, in a method according to the invention, the realization by the Kalman filter of the clipping of the acceleration amplitudes caused by shocks on said object, is used to identify and, preferably, to display on a screen, the occurrence of a shock on said object. This makes it possible, in particular, to adjust at the end of the laying the adequacy of the position of a block with respect to the already laid block of a dike in progress. In an alternative embodiment, said link is constituted by the lower part of the hoisting cable. However, in a preferred variant, said link is independent of the lifting cable and has a greater torsional stiffness than said lifting cable, said link being preferably constituted by a metal chain or a steel tube or profile. or composite material, said tube or profile having torsional rigidity and flexural flexibility with respect to its longitudinal direction. The term "flexion with respect to the longitudinal direction" is used here to mean a bending by which the straight axis of said link at rest adopts a curved shape with respect to said rectilinear axis, when it is stressed in bending. This torsional stiffness combined with flexibility in bending with respect to the longitudinal direction of the link makes it possible to perform a first greater mechanical filtering of the parasitic accelerations recorded at the level of the inertial unit due to possible shocks on a said object. Furthermore, and above all, this torsional stiffness of said link allows the position and orientation of said object and movements of said object visualized following the calculations of said computer to be more faithful with respect to the real movements of said object, that is to say are better synchronized with the movements of said inertial unit. More preferably, said link is connected to the lower end of said lifting cable by a ring or hook connection, the upper end of said link cooperating with said hook or connecting ring via a pin. Here is meant by "pin", a ball bearing device, roller, or even smooth bearing type, allowing rotations of said link on itself, without torsion at its connection to said ring or hook connection. These characteristics allow the movements of the inertial unit to reflect, even more accurately, the movements of the object. Preferably, the gripping device is integral with the lower end of the link and adapted to cooperate with a said object, so that: the center of gravity of said object remains in alignment with said link being lifted and displaced and the movements of said object and said link in rotation with respect to the axis of said link (Zc) are passed on to each other.

Selon une autre caractéristique avantageuse, ladite centrale inertielle est solidaire dudit lien à proximité dudit anneau ou crochet de raccordement entre lesdits câbles de levage et ledit lien, le cas échéant dessous un dit tourillon relié à l'extrémité dudit lien et coopérant avec un dit crochet ou anneau de raccordement. According to another advantageous characteristic, said inertial unit is integral with said link in the vicinity of said connecting ring or hook between said lifting cables and said link, where appropriate under a said pin connected to the end of said link and cooperating with a said hook. or connecting ring.

Dans un mode de réalisation particulier, le dispositif de préhension à l'extrémité inférieure dudit lien est constitué par une pluralité d'élingues disposées en patte d'oie, reliée à une pluralité d'anneaux de levage, solidaires dudit objet et répartis autour dudit objet de telle sorte que le centre de gravité dudit objet reste dans l'alignement dudit lien en cours de levage et déplacement. Dans un autre mode de réalisation, ledit dispositif de préhension est constitué par un dispositif entièrement rigide, de type pince à sucre. Ces dispositifs de préhension, de type pince à sucre ou en patte d'oie, sont particulièrement avantageux pour que toute rotation dudit objet sur lui-même soit répercutée par une rotation dudit lien et donc de ladite centrale inertielle, de façon à ce que les mouvements de rotation dudit objet sur lui-même soient plus fidèlement retranscrits par les calculs opérés sur la base des données enregistrées à partir des mouvements de la centrale inertielle. In a particular embodiment, the gripping device at the lower end of said link is constituted by a plurality of slings arranged in a crow's foot, connected to a plurality of lifting rings, integral with said object and distributed around said object such that the center of gravity of said object remains in alignment with said link being lifted and moved. In another embodiment, said gripping device is constituted by an entirely rigid device, of the type of sugar tongs. These gripping devices, such as sugar tongs or crow's feet, are particularly advantageous so that any rotation of said object on itself is reflected by a rotation of said link and therefore of said inertial unit, so that the rotational movements of said object on itself are more accurately transcribed by the calculations performed on the basis of data recorded from the movements of the inertial unit.

Plus particulièrement, dans le procédé selon l'invention, ledit objet est un bloc de béton et on réalise, par levage, déplacement et pose de blocs, un assemblage de blocs dans une position voulue pour la réalisation d'une digue de protection de rivage ou digue portuaire reposant sur le fond de la mer. More particularly, in the method according to the invention, said object is a concrete block and is made, by lifting, moving and laying of blocks, an assembly of blocks in a desired position for the realization of a shore protection dyke or harbor dyke resting on the bottom of the sea.

Avantageusement, ladite centrale inertielle est fixée sur ledit lien à une distance dudit bloc telle que ladite centrale inertielle reste toujours maintenue hors d'eau. D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels : - la figure 1 représente en coupe et en vue de côté l'installation de blocs artificiels de forme cubique, pour réaliser la carapace d'une digue à talus selon l'art antérieur, - les figures 2A-2B représentent respectivement en vue de dessus et en vue de côté, un bloc de forme cubique, - les figures 3A-3B représentent en vue de côté un dispositif de préhension de blocs de type "pince à sucre" permettant d'ajuster l'angle d'orientation dudit bloc par rapport à la verticale, - la figure 4 représente en vue de côté la pose de blocs artificiels de forme cubique à l'aide du dispositif de levage selon l'invention, - la figure 4A représente le repère orthogonal cartésien lié à la centrale inertielle par rapport au repère cartésien fixe de référence XYZ, - la figure 4B représente le repère orthogonal cartésien Xc-Yc-Zc relatif à la position oblique de la centrale inertielle en référence à la figure 4, - la figure 5 est une vue relative à la figure 4 représentée en vue de dessus, dans laquelle le positionnement du crochet est assuré par deux câbles de traction reliés à deux treuils de traction, ces derniers étant soit solidaires de la structure de la grue, soit installés sur des supports fixes par rapport au sol, - la figure 5A représente en vue de dessus les déplacements latéral et longitudinal du crochet de raccordement en agissant sur la longueur des câbles de traction reliés aux treuils de traction, - la figure 5B représente une centrale inertielle 6 montée sur un lien rigide 8a, constitué d'un tube profilé en acier ou matériau rigide, et reliée à l'extrémité inférieure du câble de levage la et d'un câble de traction 9a-9b par l'intermédiaire d'un tourillon 29, - les figures 6A-6B illustrent le mode opératoire d'un filtre de Kalman, - la figure 7 est le diagramme logique du fonctionnement d'un filtre de Kalman dans le cas particulier de la pose des blocs selon l'invention, Les figures 8A et 8C sont des vues de coté d'un lien rigide constitué d'un tube ou profilé en acier ou matériau rigide 8a (figure 8A) ou par une chaîne en acier 8b (figure 8C), coopérant avec le point de raccordement des extrémités des câble de traction 9 et câble de levage la par l'intermédiaire d'un palier motorisé 30 coopérant avec une barre de réaction 32, - la figure 8B est une vue de dessus des figures 8A et 8C. Dans la figure 1, on a représenté la pose de blocs artificiels selon l'art antérieur. Une grue 1 installée sur le remblais 2a au plus près de la mer 3 manutentionne un bloc 4 suspendu par une pince 5 au câble principal la de ladite grue, dit câble de levage, pour réaliser la carapace d'un remblais 2c selon un profil prédéterminé correspondant sensiblement à la courbe 2d. La grue comporte une plate-forme support 14 qui supporte une cabine de pilotage 13 et une flèche lb qui repose sur la plate-forme 14 par son extrémité inférieure. La flèche lb est en position inclinée par rapport à la verticale, cette inclinaison étant variable et pouvant être réglée, notamment à l'aide d'un câble support de flèche 1c relié à un treuil de levage 18 supportée par ladite plate-forme 14. La plate-forme support 14 est apte à être déplacée en rotation autour d'un axe vertical ZZ par rapport à ses moyens de déplacement sur lesquels elle repose, tels que des chenilles 19, entraînant ainsi en rotation la flèche et la cabine de la grue autour d'un axe vertical. En jouant sur la longueur des câbles 1c, l'orientation de la flèche lb dans le plan vertical peut être ajustée de manière à ce que le bloc 4 puisse être positionné à la verticale de sa destination, puis descendu par dévirage du câble la pour être déposé à l'emplacement voulu sur l'ouvrage déjà assemblé. Ce mode opératoire fonctionne correctement lorsque la mer est calme et que le travail peut être contrôlé par plongeurs. Par contre, lorsqu'un clapot important ou une houle du large 3a est établie sur une longue durée, le travail doit être interrompu car, sous l'effet de ladite houle, le bloc en suspension est sollicité et se met à osciller sur plusieurs mètres en tous sens, et ce de manière plus ou moins aléatoire. De plus, dans la zone du remblais non encore protégée, la houle déferle ou crée une agitation importante mettant en suspension des particules de sable ou de granulats, ou encore créant des micro bulles d'air et de l'écume, qui rendent la visibilité quasi nulle, empêchant alors toute intervention des plongeurs. Sur les figures 2A-2B, on a représenté respectivement en vue de dessus et en vue de côté un bloc artificiel 4 de forme connue, sensiblement cubique présentant sur ses faces latérales des renfoncements médians, sous forme de rainures sensiblement cylindriques à section demi-circulaire. Ces renfoncements ou rainures 4a présentent l'intérêt de faciliter la préhension, d'augmenter les réactions interblocs ainsi que la "porosité" d'un assemblage de blocs. Ainsi, lorsqu'un assemblage de blocs est percuté par la vague incidente, lors de fortes houles ou de tempêtes, l'énergie dissipée est considérablement augmentée par cette porosité et l'effet d'atténuation s'en trouve ainsi renforcée. Contrairement au stockage des blocs lors de la fabrication et de l'approvisionnement, lequel nécessite un arrangement très ordonné de manière à occuper le moins de place possible, tel que représenté sur la figure 5, lors de la mise en place des blocs pour une digue, on vise à optimiser la porosité d'ensemble, c'est-à-dire que l'on cherche à installer les blocs de guingois les uns par rapport aux autres tout en leur assurant un contact stable avec les blocs adjacents latéraux et les blocs inférieurs, la couche suivante venant verrouiller définitivement la position de la couche précédente inférieure, assurant ainsi la stabilité de l'ensemble pendant toute la durée de vie de l'ouvrage qui dépasse plusieurs décennies, voire le siècle. Ce mode opératoire est connu de l'homme de l'art et fait l'objet de préparatifs spéciaux conduisant à des plans de pose précis qu'il convient de respecter pour que l'ouvrage d'art puisse remplir correctement son office. De nombreuses formes particulières très différentes ont été développées dans le monde (on se référera par exemple aux recommandations internationales qui les décrivent abondamment), et certaines d'entre elles présentent l'avantage de s'imbriquer naturellement les unes dans les autres. Sur les figures 3A-3B, on a représenté en vue de face un dispositif de préhension 5a connu de type "pince à sucre" en forme de demi cercle, ce qui permet de saisir le bloc soit verticalement (figure 3A), soit avec un angle oc par rapport à la verticale (figure 3B). Sur la figure 4, de façon préférée, le dispositif de préhension est constitué par une patte d'oie en élingues 5b comportant au moins trois brins fixés sur des anneaux de levage 5c incorporés en des positions précises du bloc avant coulage du béton. Ce dispositif de préhension 5b permet de maintenir le centre de gravité du bloc dans l'axe d'alignement du lien 8, d'une part, et, d'autre part, favorise la synchronisation des rotations dudit bloc et dudit lien par rapport à l'axe Zc (axe dudit lien 8). Sur la figure 4, on a représenté en vue de côté le dispositif selon l'invention constitué d'un anneau ou crochet de raccordement Id situé à l'extrémité du câble de levage la. Le crochet de raccordement Id est relié à l'extrémité supérieure d'un lien constitué d'une élingue 8, par l'intermédiaire, de préférence, d'un tourillon, son extrémité inférieure étant reliée à une patte d'oie 5b reliée à des anneaux de levage 5c solidaires du bloc 4. Sur l'élingue 8, de préférence hors de l'eau, de préférence en partie haute à proximité du crochet de raccordement Id, on installe une centrale inertielle 6 dont la fonction est d'enregistrer en temps réel les accélérations de déplacement longitudinal selon les axes Xc-Yc-Zc, ainsi que les accélérations de rotation cp, rpz rp3 autour des mêmes axes. Le repère cartésien correspondant auxdits axes est un repère relatif au support proprement dit de la centrale d'inertie, comme représenté sur la figure 4A, l'axe Zc correspondant à l'axe longitudinal du lien 8. Ainsi, lorsque le lien 8 est vertical comme indiqué en pointillé sur la figure 4, ledit axe Zc correspond alors avec l'axe Z du repère fixe, les axes Xc-Yc présentant un décalage angulaire 0 par rapport aux axes X-Y du repère fixe. Advantageously, said inertial unit is fixed on said link at a distance from said block such that said inertial unit is always kept out of water. Other features and advantages of the present invention will emerge more clearly from a reading of the description which follows, given in an illustrative and nonlimiting manner, with reference to the appended drawings, in which: FIG. 1 is a cross-section and a side view the installation of artificial blocks of cubic shape, to make the shell of a embankment embankment according to the prior art, - Figures 2A-2B respectively show in top view and in side view, a block of cubic shape, FIGS. 3A-3B show a side view of a "gripper" type gripping device making it possible to adjust the orientation angle of said block with respect to the vertical, FIG. on the side of placing artificial blocks of cubic shape with the aid of the lifting device according to the invention; FIG. 4A represents the Cartesian orthogonal coordinate system linked to the inertial unit with respect to the fixed Cartesian reference frame; FIG. 4B shows the Cartesian orthogonal coordinate system Xc-Yc-Zc relating to the oblique position of the inertial unit with reference to FIG. 4; FIG. 5 is a view relating to FIG. , in which the positioning of the hook is provided by two traction cables connected to two traction winches, the latter being either integral with the structure of the crane, or installed on fixed supports relative to the ground, - Figure 5A shows in FIG. view from above of the lateral and longitudinal movements of the connecting hook by acting on the length of the traction cables connected to the traction hoists, - Figure 5B shows an inertial unit 6 mounted on a rigid link 8a, consisting of a profiled tube. steel or rigid material, and connected to the lower end of the hoist cable and a traction cable 9a-9b via a pin 29, - Figures 6A-6B i FIG. 7 is the logic diagram of the operation of a Kalman filter in the particular case of the laying of the blocks according to the invention. FIGS. 8A and 8C are views of a Kalman filter, FIG. side of a rigid link consisting of a tube or section steel or rigid material 8a (Figure 8A) or a steel chain 8b (Figure 8C), cooperating with the connection point of the ends of the traction cable 9 and cable by means of a motorized bearing 30 cooperating with a reaction bar 32, - Figure 8B is a top view of Figures 8A and 8C. In Figure 1, there is shown the laying of artificial blocks according to the prior art. A crane 1 installed on the embankment 2a closer to the sea 3 handles a block 4 suspended by a clamp 5 to the main cable of said crane, said lifting cable, to make the shell of a fill 2c according to a predetermined profile corresponding substantially to the curve 2d. The crane comprises a support platform 14 which supports a cockpit 13 and an arrow lb which rests on the platform 14 by its lower end. The arrow lb is in an inclined position relative to the vertical, this inclination being variable and adjustable, in particular by means of an arrow support cable 1c connected to a hoisting winch 18 supported by said platform 14. The support platform 14 is able to be displaced in rotation around a vertical axis ZZ with respect to its displacement means on which it rests, such as tracks 19, thereby rotating the boom and the cabin of the crane. around a vertical axis. By adjusting the length of the cables 1c, the orientation of the arrow lb in the vertical plane can be adjusted so that the block 4 can be positioned vertically to its destination, then down by unscrewing the cable la to be deposited at the desired location on the already assembled work. This procedure works properly when the sea is calm and the work can be controlled by divers. On the other hand, when a large chop or an offshore swell 3a is established over a long period, the work must be interrupted because, under the effect of said swell, the suspended block is urged and oscillates for several meters. in all directions, and more or less randomly. In addition, in the area of the not yet protected embankment, the swell breaks or creates a major agitation suspending particles of sand or aggregates, or creating micro-bubbles and foam, which make the visibility almost zero, thus preventing any intervention by the divers. FIGS. 2A-2B show respectively in plan view and in side view an artificial block 4 of known shape, substantially cubic having on its lateral faces median recesses in the form of substantially cylindrical grooves with semi-circular section . These recesses or grooves 4a have the advantage of facilitating gripping, increase interblock reactions and the "porosity" of a block assembly. Thus, when a block assembly is struck by the incident wave, during heavy swells or storms, the dissipated energy is considerably increased by this porosity and the attenuation effect is thereby enhanced. Unlike the storage of blocks during manufacture and supply, which requires a very orderly arrangement so as to occupy as little space as possible, as shown in Figure 5, when setting up the blocks for a dike , we aim at optimizing the overall porosity, that is to say that we try to install the blocks of crooked with respect to each other while ensuring a stable contact with the adjacent blocks and blocks lower, the next layer to permanently lock the position of the lower previous layer, thus ensuring the stability of the whole throughout the lifetime of the work that exceeds several decades or even the century. This procedure is known to those skilled in the art and is the subject of special preparations leading to specific laying plans that must be respected for the work of art can properly perform its office. Many very different specific forms have been developed in the world (for example, reference is made to the international recommendations which describe them extensively), and some of them have the advantage of naturally interlocking with each other. In FIGS. 3A-3B, a front view is shown of a known gripping device 5a of the "sugar tong" type in the form of a half circle, which makes it possible to grasp the block either vertically (FIG. 3A) or with a angle α to the vertical (Figure 3B). In Figure 4, preferably, the gripping device is constituted by a crowbar slings 5b having at least three strands attached to the lifting rings 5c incorporated in precise positions of the block before pouring concrete. This gripping device 5b makes it possible to maintain the center of gravity of the block in the axis of alignment of the link 8, on the one hand, and, on the other hand, favors the synchronization of the rotations of said block and said link with respect to the Zc axis (axis of the link 8). In Figure 4, there is shown in side view the device according to the invention consists of a ring or connection hook Id located at the end of the hoist cable la. The connection hook Id is connected to the upper end of a link consisting of a sling 8, preferably via a trunnion, its lower end being connected to a crowbar 5b connected to 5c lifting rings integral with the block 4. On the sling 8, preferably out of the water, preferably in the upper part near the connection hook Id, an inertial unit 6 is installed whose function is to record in real time the longitudinal displacement acceleration along the Xc-Yc-Zc axes, as well as the rotational accelerations cp, rpz rp3 about the same axes. The Cartesian coordinate system corresponding to said axes is a relative reference to the actual support of the inertial unit, as shown in FIG. 4A, the Zc axis corresponding to the longitudinal axis of the link 8. Thus, when the link 8 is vertical as shown in dashed lines in FIG. 4, said axis Zc then corresponds with the Z axis of the fixed marker, the Xc-Yc axes having an angular offset 0 with respect to the XY axes of the fixed marker.

Lorsque l'ensemble constitué du câble la, de la centrale inertielle 6, du lien 8, du moyen de préhension 5 et du bloc artificiel 4 se déplace, les accélérations longitudinales selon Xc-Yc-Zc et angulaires selon cp, rpz rp3 sont enregistrées en temps réel au sein de la centrale inertielle et transmises à un ordinateur, situé de préférence dans la cabine du grutier. When the assembly consisting of the cable 1a, the inertial unit 6, the link 8, the gripping means 5 and the artificial block 4 moves, the longitudinal accelerations along Xc-Yc-Zc and angular according to cp, rpz rp3 are recorded in real time within the inertial unit and transmitted to a computer, preferably located in the crane operator's cabin.

Ceci permet, par une double intégration par rapport au temps, de calculer la trajectoire exacte de ladite centrale inertielle, ainsi que son orientation, donc la direction du lien 8, puisque l'orientation du lien 8 est constante par rapport à l'orientation de la centrale inertielle. Connaissant cette direction, ainsi que la distance de la centrale inertielle jusqu'au centre de gravité du bloc, on en déduit par un calcul géométrique simple la position en temps réel du centre de gravité du bloc, donc la position en temps réel du bloc, et ce en l'absence de toute visibilité directe du bloc par le grutier. Ainsi, un mode opératoire préféré est le suivant : - on saisit le bloc 40 sur l'aire de stockage de la figure 5, ledit bloc étant dans la position connue X0-Y0-Z0, puis - on tend le lien 8 en agissant sur le câble de levage la, ledit lien est alors vertical et les repères cartésiens relatifs à la centrale inertielle et le repère absolu ont l'axe Z en commun comme détaillé sur la figure 4A, puis, - dès que le bloc quitte le sol 2a, on déclenche la centrale inertielle qui enregistre alors tous les déplacements de ladite centrale, puis - on positionne l'extrémité supérieure de la flèche de façon à ce que ledit objet soit sensiblement à l'aplomb de l'emplacement voulu dans la zone de dépose comme illustré sur la figure 4, puis - connaissant la position absolue de la centrale inertielle, la position du bloc est calculée en temps réel, et l'approche finale par le grutier, avant dépose, est effectuée, même en l'absence de visibilité ou en l'absence de tout contrôle par plongeurs, grâce à ladite position X-Y-Z calculée du bloc, les mouvements du bloc ainsi que l'état de l'ouvrage déjà réalisé étant visualisés sur un écran dans la cabine du grutier, et - après dépose, le dispositif de préhension est déconnecté, de préférence de manière automatique par un dispositif de largage, non représenté, commandé depuis la cabine du grutier ; - la grue est alors libre pour aller saisir le bloc suivant sur l'aire de stockage. Sur la figure 4, on a représenté un câble de traction 9 relié à son extrémité droite à l'anneau Id et à son extrémité gauche à un treuil de traction 10 solidaire de la tourelle 13 de la grue. Lors de la manutention du bloc par la grue, on réduit la longueur O dudit câble de traction, pour ramener l'anneau ou crochet de raccordement Id vers la verticale du point de dépose, ce qui a pour effets avantageux de limiter radicalement les oscillations du bloc dans le plan XoZ. De plus, cette manoeuvre est beaucoup plus rapide que de redresser la flèche lb de la grue en agissant sur les câbles 1c, pour venir positionner son extrémité à la verticale dudit point de dépose. Dans une version préférée de l'invention représentée sur la vue en plan de la figure 5, on dispose deux câbles de traction 9a-9b reliés à deux treuils de traction 10a-10b, les deux treuils de traction étant avantageusement solidaires d'une poutre 17, elle-même solidaire de la structure porteuse de la flèche lb, donc de la tourelle de la grue. En agissant sur les longueurs respectives e, û @ des câbles de traction 9a-9b, on positionne avec précision, de manière bipolaire, l'anneau ou crochet de raccordement Id dans le plan formé par les deux droites que constituent lesdits câbles 9a-9b, lesdites droites se coupant au point Or C au niveau de l'anneau Id. Ainsi, lorsque l'anneau ou crochet de raccordement Id se trouve ramené vers la tourelle de la grue par réduction de la longueur desdits câbles, comme détaillé sur la figure 4, les deux câbles 9a-9b sont fortement tendus et, si les longueurs O, =@2 , l'anneau ou crochet de raccordement se trouve exactement dans l'axe de la flèche de grue. Le triangle ABC formé par l'extrémité du câble sortant du treuil 10a (A), l'extrémité du câble sortant du treuil 10b (B) et le point C constituant l'anneau ou crochet de raccordement Id est alors isocèle et ledit anneau est alors stabilisé dans sa position évitant ainsi tout balancement latéral par rapport à l'axe de la grue, dans la direction de l'axe Y. Cet effet stabilisateur étant d'autant plus important que l'inclinaison R du câble de grue la par rapport à la verticale est importante, car la décomposition des forces au niveau de l'anneau ou crochet de raccordement Id (point Or C) crée une tension horizontale dans les câbles de traction 9a-9b, proportionnelle à ladite inclinaison p3. En réduisant la longueur de l'un des câbles de traction par rapport à l'autre, tel que représenté sur la figure 5A, par exemple le câble de traction 9a, le point C du triangle, donc l'anneau ou crochet de raccordement Id, se déplace vers le haut de la figure en décrivant un arc de cercle 12 centré en A. Ainsi, en jouant sur les longueurs des câbles 9a-9b, on positionne avantageusement avec précision l'anneau ou crochet de raccordement en n'importe quel point de la surface 11, tout en empêchant les mouvements de balancement dudit anneau dans les deux directions XX-YY. This allows, by a double integration with respect to time, to calculate the exact trajectory of said inertial unit, as well as its orientation, therefore the direction of the link 8, since the orientation of the link 8 is constant with respect to the orientation of the link. the inertial unit. Knowing this direction, as well as the distance from the inertial unit to the center of gravity of the block, it is deduced by a simple geometric calculation the real time position of the center of gravity of the block, therefore the real time position of the block, and this in the absence of any direct visibility of the block by the crane operator. Thus, a preferred procedure is as follows: block 40 is seized on the storage area of FIG. 5, said block being in the known position X0-Y0-Z0, and then the link 8 is drawn by acting on the lifting cable 1a, the said link is then vertical and the Cartesian references relating to the inertial unit and the absolute reference point have the Z axis in common as detailed in FIG. 4A, then, as soon as the block leaves the ground 2a, the inertial unit is triggered, which then records all the movements of said central unit, and then the upper end of the arrow is positioned so that said object is substantially in line with the desired location in the drop zone, such as illustrated in FIG. 4, then - knowing the absolute position of the inertial unit, the position of the block is calculated in real time, and the final approach by the crane operator, before removal, is carried out, even in the absence of visibility or in the absence of any control by the plungers, thanks to said calculated XYZ position of the block, the movements of the block as well as the state of the work already made being visualized on a screen in the cabin of the crane operator, and - after removal, the gripping device is disconnected , preferably automatically by a release device, not shown, controlled from the crane operator's cabin; - The crane is then free to go to grab the next block on the storage area. In Figure 4, there is shown a traction cable 9 connected at its right end to the ring Id and at its left end to a traction winch 10 secured to the turret 13 of the crane. During the handling of the block by the crane, the length O of said traction cable is reduced, in order to bring the connecting ring or hook Id towards the vertical of the point of deposit, which has the advantageous effects of drastically limiting the oscillations of the block in the XoZ plane. In addition, this maneuver is much faster than straightening the jib lb of the crane by acting on the cables 1c, to come to position its end vertically said removal point. In a preferred version of the invention shown in the plan view of FIG. 5, there are two traction cables 9a-9b connected to two traction winches 10a-10b, the two traction winches being advantageously secured to a beam 17, itself secured to the bearing structure of the arrow lb, so the turret of the crane. By acting on the respective lengths e, û @ of the traction cables 9a-9b, the ring or connection hook Id is accurately positioned, in a bipolar manner, in the plane formed by the two straight lines constituted by said cables 9a-9b. , said straight lines intersecting at the point Or C at the ring Id. Thus, when the ring or connecting hook Id is brought back to the turret of the crane by reducing the length of said cables, as detailed in FIG. 4, the two cables 9a-9b are strongly tensioned and, if the lengths O, = @ 2, the ring or hook connection is exactly in the axis of the crane boom. The triangle ABC formed by the end of the cable coming out of the winch 10a (A), the end of the cable coming out of the winch 10b (B) and the point C constituting the connecting ring or hook Id is then isosceles and said ring is then stabilized in its position thus avoiding any lateral swing relative to the crane axis, in the direction of the Y axis. This stabilizing effect being all the more important as the inclination R of the crane cable relative to vertically is important because the decomposition of forces at the ring or connection hook Id (Gold point C) creates a horizontal tension in the traction cables 9a-9b, proportional to said inclination p3. By reducing the length of one of the traction cables relative to the other, as shown in FIG. 5A, for example the traction cable 9a, the point C of the triangle, and therefore the connecting ring or hook Id moves towards the top of the figure by describing a circular arc 12 centered at A. Thus, by playing on the lengths of the cables 9a-9b, the ring or connecting hook is advantageously positioned in any desired manner. point of the surface 11, while preventing the rocking movements of said ring in both directions XX-YY.

Ainsi, en n'utilisant qu'un seul câble de traction 9 comme expliqué en référence à la figure 4, on supprime la quasi intégralité du balancement de l'anneau ou crochet de raccordement Id dans le plan XoZ uniquement, l'anneau ou crochet de raccordement 1d restant libre de se balancer dans le plan perpendiculaire YoZ, alors qu'avec deux câbles de traction 9a-9b comme expliqué en référence à la figure 5, on supprime la quasi intégralité du balancement dans les plans XoZ et YoZ, l'anneau restant alors stable. Thus, by using only one pulling cable 9 as explained with reference to FIG. 4, it removes the quasi-totality of the swinging of the ring or connection hook Id in the plane XoZ only, the ring or hook connection 1d remaining free to swing in the perpendicular plane YoZ, while with two traction cables 9a-9b as explained with reference to Figure 5, it removes almost the entire swing in the planes XoZ and YoZ, the ring remaining stable.

Et, en jouant sur les différences de longueurs O,-@2 desdits câbles de traction 9a-9b, on déplace avec précision ledit anneau ou crochet de raccordement 1d sur une surface II de plusieurs m2, en toutes directions autour de la position initiale, permettant ainsi un positionnement extrêmement précis et stable dudit blocs dans l'espace. And, by playing on the differences in length O, - @ 2 of said pulling cables 9a-9b, it moves with precision said ring or connecting hook 1d on a surface II of several m2, in all directions around the initial position, thus allowing extremely precise and stable positioning of said blocks in space.

Des dispositifs compacts sont disponibles dans le commerce, comprenant une centrale inertielle munie de gyroscope et d'accéléromètre pour la mesure de mouvements, de l'orientation et de la position d'un objet auquel il est solidarisé,. On pourra notamment utiliser un dispositif commercialisé par la société XSens Technologies B.V. (the Netherlands). Compact devices are commercially available, including an inertial unit equipped with a gyroscope and accelerometer for measuring movements, orientation and position of an object to which it is attached. It will be possible to use a device marketed by XSens Technologies BV (the Netherlands).

Ces dispositifs comportent en général un support métallique sur lequel est fixée la centrale inertielle proprement dite. C'est ce support qui sera fixé audit lien. Le fonctionnement d'une centrale inertielle est connu de l'homme de l'art, mais son fonctionnement dans le cadre de l'invention est très particulier. En effet, dans la phase finale de l'approche, juste avant la dépose du bloc sur l'ouvrage, le bloc vient heurter en général les blocs adjacents avant de se mettre ensuite dans sa position définitive. Ces chocs induisent des variations brutales de vitesse, donc des accélérations importantes, qui perturbent la centrale inertielle, laquelle n'est alors plus capable de fournir un positionnement calculé précis et fiable, ce qui crée un décalage inacceptable le la position calculée du bloc par rapport à sa position réelle. Pour palier cet inconvénient, un filtre de Kalman, connu de l'homme de l'art, est utilisé de manière particulière pour éliminer ces perturbations. These devices generally comprise a metal support on which is fixed the inertial unit itself. This support will be attached to the link. The operation of an inertial unit is known to those skilled in the art, but its operation in the context of the invention is very particular. Indeed, in the final phase of the approach, just before the removal of the block on the structure, the block comes in contact with the adjacent blocks in general before moving into its final position. These shocks induce sudden variations in speed, and therefore significant accelerations, which disturb the inertial unit, which is then no longer able to provide a precise and reliable calculated positioning, which creates an unacceptable shift in the calculated position of the block relative to one another. at its real position. To overcome this drawback, a Kalman filter, known to those skilled in the art, is used in a particular way to eliminate these disturbances.

Le filtre de Kalman est un estimateur récursif. Cela signifie que pour estimer l'état courant d'un système, seuls l'état précédent et les mesures actuelles sont nécessaires pour estimer la position future avec une précision optimale. Ainsi, en cas de choc latéral comme expliqué sur la figure 6A, l'accélération, angulaire ou longitudinale, présente une série de pics 15 durant un laps de temps 8t. Pendant cette durée 8t, le bloc n'a quasiment pas bougé, mais le calcul mathématique consistant à la double intégration des accélérations sur chacun des axes sur cette période 8t, conduit en général à des mouvements calculés aberrants, car non effectués dans la réalité. A cet effet, le filtre de Kalman, détecte ces accélérations parasites par simple analyse en temps réel de l'étape précédente du mouvement, le filtre les isole en écrêtant 16a-16b lesdites accélérations, et ainsi ne les prend pas en compte dans le calcul mathématique de la position instantanée. Dans certaines configurations, le filtre de Kalman est capable, en analysant les étapes antérieures, de prédire les mouvements durant cette courte période 8t et de substituer ainsi à ces accélérations parasites, l'évolution probable du système, comme représenté sur la figure 6B, conduisant ainsi à une meilleure fiabilité dans le calcul de la position instantanée. Dans une version préférée de l'invention, seules les accélérations angulaires sont utilisées dans le calcul de la position exacte du bloc, les pics d'accélérations longitudinales sont observés pour signaler au grutier les chocs des blocs avec les blocs adjacents ou ceux de la couche inférieure, mais les accélérations elles-mêmes ne sont pas directement prises en compte dans le calcul de la position. Ainsi, pour déterminer la position du bloc en temps réel, on mesure, par exemple à l'aide d'un théodolite automatique représenté sur la figure 4 sous la même forme 7a-7b que le dispositif de transmission de données, la position X-Y-Z en temps réel de la centrale inertielle 6, puis connaissant l'évolution en temps réel des accélérations angulaires cp, rpz rp3 de ladite centrale, on en déduit la direction du lien 8, et connaissant la distance du centre de gravité du bloc à ladite centrale inertielle qui est une longueur constante L, on calcule la position exacte du centre de gravité du bloc. The Kalman filter is a recursive estimator. This means that to estimate the current state of a system, only the previous state and the current measurements are needed to estimate the future position with optimal accuracy. Thus, in the event of a side impact as explained in FIG. 6A, the acceleration, angular or longitudinal, has a series of peaks 15 during a lapse of time 8t. During this period 8t, the block has hardly moved, but the mathematical calculation consisting of the double integration of accelerations on each of the axes over this period 8t, generally leads to aberrant calculated movements, because not performed in reality. For this purpose, the Kalman filter detects these parasitic accelerations by simple real-time analysis of the previous step of the movement, the filter isolates them by clipping 16a-16b said accelerations, and thus does not take them into account in the calculation. mathematical of the instantaneous position. In certain configurations, the Kalman filter is able, by analyzing the previous steps, to predict the movements during this short period 8t and thus to substitute for these parasitic accelerations, the probable evolution of the system, as shown in FIG. 6B, leading thus to a better reliability in the calculation of the instantaneous position. In a preferred version of the invention, only the angular accelerations are used in the calculation of the exact position of the block, the longitudinal acceleration peaks are observed to indicate to the crane operator the shocks of the blocks with the adjacent blocks or those of the layer lower, but the accelerations themselves are not directly taken into account in the calculation of the position. Thus, in order to determine the position of the block in real time, for example, using an automatic theodolite shown in FIG. 4 in the same form 7a-7b as the data transmission device, the position XYZ in real time of the inertial unit 6, then knowing the evolution in real time of the angular accelerations cp, rpz rp3 of said plant, we deduce the direction of the link 8, and knowing the distance from the center of gravity of the block to said inertial unit which is a constant length L, the exact position of the center of gravity of the block is calculated.

Dans une version préférée de l'invention, la centrale inertielle est munie d'un système de positionnement par satellite de type DGPS. Ce système, connu de l'homme de l'art, est un système différentiel, c'est-à-dire qu'une balise est installée sur la centrale inertielle et une seconde balise est installée à terre en un point fixe. Ainsi, en combinant de manière synchrone les signaux des deux récepteurs, le positionnement du mobile est réalisé, non pas dans l'absolu par rapport au satellite, mais en relatif par rapport au récepteur fixe, améliorant ainsi radicalement la précision du positionnement. In a preferred version of the invention, the inertial unit is provided with a DGPS satellite positioning system. This system, known to those skilled in the art, is a differential system, that is to say, a beacon is installed on the inertial unit and a second beacon is installed on the ground at a fixed point. Thus, by synchronously combining the signals of the two receivers, the positioning of the mobile is realized, not in absolute terms with respect to the satellite, but in relative relation to the fixed receiver, thus radically improving the positioning accuracy.

Sur la figure 7, on a représenté un premier mode de fonctionnement global du système de positionnement, dans lequel les 6 paramètres principaux à l'état brut (accélérations longitudinales Xc-Yc-Zc et accélérations angulaires y1-y2-y3) sont transmises depuis la centrale inertielle 6 vers l'ordinateur, situé de préférence dans la cabine 13 du grutier. Les données sont alors traitées au sein de l'ordinateur 20 par le filtre de Kalman 20a et la position 21 du bloc 4 est établie sur la base de tout ou partie de ces 6 paramètres filtrés. L'exploitation des données relatives aux accélérations aberrantes, correspondant aux chocs du bloc avec les blocs adjacents est réalisée en 20b et est affiché en 22, de préférence directement dans la cabine du grutier, avantageusement sous la forme 22a : choc vertical d'amplitude "3", sous la forme 22b : choc latéral droit (amplitude "0") et, sous la forme 22b : choc latéral gauche (amplitude "0"). Ainsi, le grutier connaissant le type de choc ainsi que son amplitude, est capable de juger le type de contact entre le bloc en cours d'installation et l'ouvrage déjà réalisé, et ainsi de déterminer en l'absence de tout contact visuel, ou de toute information en provenance de plongeurs, de l'adéquation de la position du bloc par rapport au plan de pose, donc de son installation correcte. Sur la même figure 7, on a représenté un second mode préféré de fonctionnement global du système de positionnement, dans lequel les 6 paramètres principaux à l'état brut (accélérations longitudinales Xc-Yc-Zc et accélérations angulaires y1-y2-y3) sont transmises depuis la centrale inertielle 6 vers l'ordinateur situé de préférence dans la cabine du grutier. Seules les données d'accélérations angulaires y1-y2-y3 alors traitées au sein de l'ordinateur 20 par le filtre de Kalman 20a, la position dans l'espace de ladite centrale inertielle 6 étant fournie par un moyen de mesure à distance 7a-7b, tel un théodolite automatique, un système de visée laser ou un positionnement satellite de type DGPS, ce qui permet de calculer de manière très précise la position 21 du bloc 4 en ne considérant pas les valeurs des accélérations longitudinales Xc-Yc-Zc. L'exploitation des données relatives aux accélérations aberrantes est réalisée de la même manière qu'expliqué précédemment, ce qui permet au grutier de disposer en temps réel d'informations précises sur les divers chocs entre le bloc en cours d'installation et l'ouvrage déjà réalisé, juste avant la dépose finale. Dans une version préférée de l'invention représentée sur les figures 8A-8B, le lien 8a est constitué d'une barre, de préférence rectiligne, résistant à la torsion, et rigidement solidaire de l'outil de préhension, de telle manière que l'orientation de la centrale inertielle solidaire du lien 8a ait la même orientation selon l'axe Zc que le bloc 4. Ledit lien 8a est relié à l'anneau de raccordement Id par l'intermédiaire d'un palier motorisé 30, électrique, hydraulique ou pneumatique, alimenté en énergie par des moyens non représentés, jouant le rôle de tourillon lorsque le moteur est débrayé. Un bras rigide faisant fonction de bras de réaction 32, solidaire de la partie supérieure 30a de la motorisation, est relié à un câble de traction 9b sous tension. La partie inférieure 30b de la motorisation est relié rigidement audit lien 8a. Ainsi, en actionnant la motorisation dans un sens ou dans l'autre, la partie inférieure 30b de la motorisation entraîne la centrale inertielle 6 ainsi que le bloc 4, les déplacements angulaires étant sensiblement identiques en raison de la rigidité de torsion selon l'axe ZZ dudit lien 8a. Le bras de réaction contrebalance les effets de la torsion au niveau de la partie supérieure 30a de la motorisation. En effet, comme représenté sur la figure 8B, un couple de torsion M appliqué sur la partie supérieure 30a de la motorisation, induit une rotation 32a du bras de réaction 32. Et, du fait que le bras de réaction et le câble de traction 9b sont sous une tension importante en raison de l'angle Ç3 du câble de levage la avec la verticale, une force de rappel F ramène ledit bras 32 dans l'alignement du câble de traction 9b. Ainsi, peu avant de déposer le bloc 4 en position finale, la position instantanée dudit bloc étant connue grâce à la centrale inertielle, le grutier peut ajuster avec précision son orientation de quelques degrés de rotation selon l'axe Zc, en agissant simplement sur la motorisation 30, dans un sens ou dans l'autre. Le mouvement angulaire étant enregistré par la centrale inertielle, est alors immédiatement disponible pour aider le grutier dans cette phase finale de l'installation. FIG. 7 shows a first global mode of operation of the positioning system, in which the 6 main parameters in the raw state (longitudinal accelerations Xc-Yc-Zc and angular accelerations y1-y2-y3) are transmitted from the inertial unit 6 to the computer, preferably located in the cabin 13 of the crane operator. The data is then processed within the computer 20 by the Kalman filter 20a and the position 21 of the block 4 is established based on all or part of these 6 filtered parameters. The exploitation of the data relating to the aberrant accelerations, corresponding to the shocks of the block with the adjacent blocks, is carried out at 20b and is displayed at 22, preferably directly in the cabin of the crane operator, advantageously in the form 22a: vertical shock amplitude " 3 ", in the form 22b: right lateral shock (amplitude" 0 ") and, in the form 22b: left side impact (amplitude" 0 "). Thus, the crane operator knowing the type of shock and its amplitude, is able to judge the type of contact between the block being installed and the work already done, and thus determine in the absence of any visual contact, or any information from divers, the adequacy of the position of the block relative to the laying plan, so its correct installation. In the same FIG. 7, there is shown a second preferred overall mode of operation of the positioning system, in which the 6 main parameters in the raw state (longitudinal accelerations Xc-Yc-Zc and angular accelerations y1-y2-y3) are transmitted from the inertial unit 6 to the computer preferably located in the cabin of the crane operator. Only the angular accelerating data y1-y2-y3 then processed within the computer 20 by the Kalman filter 20a, the position in the space of said inertial unit 6 being provided by a remote measuring means 7a. 7b, such as an automatic theodolite, a laser sighting system or DGPS-type satellite positioning, which makes it possible to very precisely calculate the position 21 of the block 4 by not considering the values of the longitudinal accelerations Xc-Yc-Zc. The exploitation of the data relating to the outgoing accelerations is carried out in the same way as explained above, which allows the crane operator to have in real time precise information on the various shocks between the block being installed and the structure already done, just before the final deposit. In a preferred version of the invention shown in Figures 8A-8B, the link 8a consists of a bar, preferably rectilinear, resistant to torsion, and rigidly secured to the gripping tool, so that the the orientation of the integral inertial unit of the link 8a has the same orientation along the Zc axis as the block 4. Said link 8a is connected to the connection ring Id via a motorized bearing 30, electrical, hydraulic or pneumatic, supplied with energy by means not shown, acting as a trunnion when the engine is disengaged. A rigid arm acting as a reaction arm 32, integral with the upper part 30a of the engine, is connected to a traction cable 9b under tension. The lower part 30b of the engine is rigidly connected to said link 8a. Thus, by actuating the actuator in one direction or the other, the lower part 30b of the actuator drives the inertial unit 6 and the block 4, the angular displacements being substantially identical because of the torsional rigidity along the axis ZZ of said link 8a. The reaction arm counterbalances the effects of torsion at the upper part 30a of the engine. Indeed, as shown in FIG. 8B, a torsion torque M applied to the upper part 30a of the motorization induces a rotation 32a of the reaction arm 32. And because the reaction arm and the traction cable 9b are under significant tension due to the angle 3 of the hoist cable 1a with the vertical, a restoring force F returns said arm 32 in alignment with the pulling cable 9b. Thus, shortly before depositing the block 4 in final position, the instantaneous position of said block being known thanks to the inertial unit, the crane operator can accurately adjust its orientation a few degrees of rotation along the axis Zc, by simply acting on the motor 30, in one direction or the other. The angular movement being recorded by the inertial unit, is then immediately available to help the crane operator in this final phase of the installation.

Sur les figures 8A-8B, on a représenté le dispositif selon l'invention avec deux câbles de traction 9a-9b, seul le câble de traction 9b est connecté au bras de réaction, le câble 9a étant connecté directement, soit à l'anneau ou crochet Id, soit au niveau de la partie supérieure 30a de la motorisation, à proximité immédiate de son axe de rotation. Dans le cas de l'utilisation d'un seul câble de traction 9, comme représenté sur la figure 4, le bras de réaction 32 est connecté directement à ce dit câble. Dans une version simplifiée de l'invention, non représentée, la motorisation est supprimée, et le lien 8a présentant une rigidité en torsion selon l'axe Zc, est d'une part suspendu à l'anneau ou crochet Id, et d'autre part relié rigidement au bras de réaction 32. Il convient alors dans ce cas, lors du saisissage du bloc sur son aire de stockage, comme décrit précédemment en référence à la figure 5, que la position de l'outil de préhension soit pré-ajustée de telle manière qu'une fois la grue en position dans la zone de dépose, le bloc ait la bonne orientation, car le grutier n'a alors plus les moyens de faire varier ce positionnement angulaire selon l'axe vertical Zc. Sur la figure 8C, on a représenté un mode de réalisation avantageux du lien 8 présentant une rigidité de torsion, lequel se présente sous la forme d'une chaîne 8b. En effet, en l'absence de tension dans la chaîne, il est possible de faire tourner celle-ci sur son axe ZZ avec peu d'efforts, mais dès que l'on applique une tension importante, chacun des maillons étant relié perpendiculairement au suivant et le diamètre du fil de chacun des anneaux étant légèrement inférieur au diamètre interne libre de l'anneau adjacent, la chaîne aura naturellement tendance à se repositionner en configuration de torsion nulle, donc perpendiculairement au maillon adjacent, comme détaillé sur la figure 8C. Le lien 8, 8a-8b à rigidité de torsion selon l'axe ZZ peut être obtenu à partir d'un simple tube en acier, ou encore d'un profilé en matériau composite, qui présente une bonne rigidité de torsion, tout en gardant une grande souplesse en flexion dans les plans XoZ et YoZ, ce qui permet avantageusement de réaliser un premier filtrage mécanique des chocs sur les blocs, évitant ainsi de répercuter directement à la centrale inertielle la totalité des accélérations parasites dues aux chocs. On reste dans l'esprit de l'invention si le câble de levage est continu jusqu'au dispositif de préhension 5, le crochet ou l'anneau étant alors remplacé par un serre-câble mécanique venant enserrer ledit câble de levage en un point fixe sur lequel est connecté l'extrémité du ou des câbles de traction, la partie au dessus du serre-câble jouant alors le rôle de câble de levage la et la partie située en dessous dudit serre-câble jouant le rôle du lien 8.20 In FIGS. 8A-8B, the device according to the invention is represented with two traction cables 9a-9b, only the traction cable 9b is connected to the reaction arm, the cable 9a being connected directly or to the ring or Id hook, or at the upper part 30a of the engine, in the immediate vicinity of its axis of rotation. In the case of the use of a single traction cable 9, as shown in Figure 4, the reaction arm 32 is connected directly to said cable. In a simplified version of the invention, not shown, the motorization is removed, and the link 8a having a torsional stiffness along the axis Zc, is on the one hand suspended from the ring or hook Id, and other part is rigidly connected to the reaction arm 32. In this case, when the block is tapped on its storage area, as described previously with reference to FIG. 5, the position of the gripping tool is pre-adjusted. so that once the crane in position in the removal zone, the block has the right orientation, because the crane then no longer has the means to vary this angular positioning along the vertical axis Zc. FIG. 8C shows an advantageous embodiment of the link 8 having torsional rigidity, which is in the form of a chain 8b. Indeed, in the absence of tension in the chain, it is possible to turn it on its axis ZZ with little effort, but when we apply a significant tension, each link being connected perpendicular to the following and the diameter of the wire of each of the rings being slightly less than the free internal diameter of the adjacent ring, the chain will naturally tend to reposition in zero torsion configuration, so perpendicular to the adjacent link, as detailed in Figure 8C. The link 8, 8a-8b with torsional stiffness along the axis ZZ can be obtained from a simple steel tube, or else from a profile made of composite material, which has good torsional stiffness, while keeping a great flexural flexibility in the XoZ and YoZ planes, which advantageously makes it possible to perform a first mechanical filtering of the shocks on the blocks, thus avoiding directly passing on to the inertial unit all the parasitic accelerations due to shocks. It remains in the spirit of the invention if the hoisting rope is continuous up to the gripping device 5, the hook or the ring then being replaced by a mechanical cable clamp from gripping said hoisting rope at a fixed point on which is connected the end of the traction cable or cables, the portion above the cable tie then acting as the hoisting cable and the part below said cable tie acting as the link 8.20

Claims (20)

REVENDICATIONS 1. Dispositif de levage et déplacement d'un objet (4) comprenant une grue (1), ladite grue comprenant une flèche (1b) équipée d'un premier câble, dit câble de levage (1a), comprenant, de préférence, à son extrémité un lien (8, 8a-8b) apte à supporter un dit objet qui lui est suspendu par l'intermédiaire d'un dispositif de préhension (5b), caractérisé en ce que ledit câble de levage (1a), suspendu à l'extrémité de ladite flèche (1b), est couplé à au moins un deuxième câble, dit câble de traction (9, 9a-9b)), dont une extrémité est reliée à au moins un treuil de traction (10, 10a-10b), de préférence solidaire d'une plate-forme support (14) de ladite flèche, l'autre extrémité du câble de traction (9) étant solidaire du câble de levage en suspension, de préférence au niveau d'un crochet ou anneau de raccordement (Id) à l'extrémité inférieure dudit câble de levage, de telle sorte que la réduction de longueur d'au moins un dit câble de traction, par actionnement d'au moins un dit treuil de traction, permette a- d'incliner (33) ledit câble de levage (1a) par rapport à la verticale (ZZ) et de déplacer en translation ledit objet (4), dans un plan vertical passant par un dit câble de traction et ledit câble de levage, de préférence, un plan vertical passant par l'axe de ladite flèche (X1X'1), et/ou b- de déplacer ledit objet latéralement par rapport à un plan vertical passant par l'axe (X1X'1) de ladite flèche, dans un plan passant par deux câbles de traction (9a, 9b), les deux câbles de traction coopérant avec deux treuils de traction (10a-10b) disposés de part et d'autre de ladite flèche. 1. Device for lifting and moving an object (4) comprising a crane (1), said crane comprising an arrow (1b) equipped with a first cable, said lifting cable (1a), preferably comprising its end a link (8, 8a-8b) adapted to support a said object suspended from it by means of a gripping device (5b), characterized in that said hoisting cable (1a), suspended from the end of said boom (1b), is coupled to at least one second cable, said traction cable (9, 9a-9b)), one end of which is connected to at least one traction winch (10, 10a-10b) , preferably secured to a support platform (14) of said boom, the other end of the pulling cable (9) being integral with the suspension hoisting rope, preferably at a hook or connecting ring (Id) at the lower end of said hoisting cable, such that the reduction in length of at least one said pulling cable, by actuating at least one said traction hoist, it is possible to incline (33) said lifting cable (1a) with respect to the vertical (ZZ) and to translate said object (4) in translation in a plane vertical passing through a said traction cable and said hoisting cable, preferably a vertical plane passing through the axis of said arrow (X1X'1), and / or b- moving said object laterally with respect to a vertical plane passing through the axis (X1X'1) of said boom, in a plane passing through two traction cables (9a, 9b), the two traction cables cooperating with two traction winches (10a-10b) arranged on both sides other of said arrow. 2. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte un unique câble de traction (9) dont ledit treuil de traction (10) est disposé sensiblement dans l'axe (X1X'1) de ladite flèche, de sorte que la réduction de longueur dudit câble de traction, par actionnement dudit treuil de traction permette d'incliner ledit câble de levage par rapport à la verticale ZZ et de déplacer en translation ledit objet, dans un plan vertical passant par ledit câble de traction et ledit câble de levage, de préférence,un plan vertical passant par l'axe de ladite flèche (XIX'1), c'est-à-dire lorsque ledit câble de traction est situé dans le même plan vertical que l'axe de ladite flèche (XIX'1). 2. Device according to claim 1, characterized in that it comprises a single traction cable (9), said traction winch (10) is disposed substantially in the axis (X1X'1) of said arrow, so that the reduction in the length of said traction cable, by actuation of said traction hoist, makes it possible to incline said lifting cable with respect to the vertical ZZ and to translate said object in translation in a vertical plane passing through said pulling cable and said cable for lifting, preferably a vertical plane passing through the axis of said boom (XIX'1), that is to say when said pulling cable is situated in the same vertical plane as the axis of said boom ( XIX'1). 3. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte au moins deux câbles de traction (9a, 9b) reliés, respectivement, à deux treuils de traction (10a, 10b), une extrémité de chacun câble de traction étant reliée à un dit treuil de traction (10a, 10b), de préférence solidaire d'un support (14) de ladite flèche, l'autre extrémité de chacun des deux câbles de traction étant solidaire dudit câble de levage (la), de préférence à son extrémité inférieure au niveau du même dit anneau ou crochet de raccordement (Id), les deux treuils de traction étant disposés de part et d'autre de ladite flèche, de préférence symétriquement, de sorte qu'une réduction de longueur (O1, e2) de l'un au moins des deux dits câbles de traction (9a, 9b) permet de déplacer ledit objet latéralement par rapport à un plan vertical passant par l'axe (XIX'1) de ladite flèche, dans un plan passant par les deux câbles de traction (9a, 9b), de préférence une réduction de longueur différente pour les deux câbles de traction disposés symétriquement par rapport à un plan vertical passant par l'axe de ladite flèche. 3. Device according to claim 1, characterized in that it comprises at least two traction cables (9a, 9b) respectively connected to two traction winches (10a, 10b), one end of each pull cable being connected. to a said traction hoist (10a, 10b), preferably secured to a support (14) of said boom, the other end of each of the two traction cables being integral with said hoisting rope (1a), preferably its lower end at the same said ring or hook connection (Id), the two traction winches being arranged on either side of said arrow, preferably symmetrically, so that a reduction in length (O1, e2 ) of at least one of said two traction cables (9a, 9b) is used to move said object laterally relative to a vertical plane passing through the axis (XIX'1) of said arrow, in a plane passing through the two traction cables (9a, 9b), preferably a reduction different length for the two traction cables arranged symmetrically with respect to a vertical plane passing through the axis of said arrow. 4. Dispositif selon la revendication 3, caractérisé en ce que les deux dits treuils de traction (10a, 10b) sont disposés aux deux extrémités d'une poutre transversale (17) solidaire d'une plate-forme (14) supportant ladite flèche. 4. Device according to claim 3, characterized in that said two traction winches (10a, 10b) are arranged at both ends of a transverse beam (17) integral with a platform (14) supporting said boom. 5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend un dit lien relié à son extrémité supérieur à un palier motorisé (30), solidaire d'un dit anneau ou crochet de raccordement (Id) à l'extrémité inférieure dudit câble de levage, ledit palier motorisé (30) permettant de commander la rotation motorisée dudit lien et dudit objet en rotation sur lui-même lorsque son moteur (30b) est actionné, et ledit palier motorisé (30) jouant le rôle de tourillon lorsque son moteur (30b) est débrayé. 28 5. Device according to one of claims 1 to 4, characterized in that it comprises a said link connected at its upper end to a motor bearing (30) integral with a said ring or hook connection (Id) to the lower end of said hoisting cable, said motorized bearing (30) for controlling the motorized rotation of said link and said object in rotation on itself when its motor (30b) is actuated, and said motorized bearing (30) playing the role of trunnion when its motor (30b) is disengaged. 28 6. Dispositif selon la revendication 5 et l'une des revendications 3 ou 4, caractérisé en ce que ledit palier motorisé (30) coopère avec un bras rigide, dit bras de réaction (32), qui permet de reprendre les efforts de torsion générés par ledit palier motorisé en rotation, au niveau de la partie supérieure (30a) dudit palier motorisé solidaire dudit anneau ou crochet de raccordement, ledit bras de réaction (32) étant intercalé entre l'extrémité d'un dit câble de traction (9a, 9b) et la partie supérieure (30a) dudit palier motorisé de laquelle il est solidaire. 6. Device according to claim 5 and one of claims 3 or 4, characterized in that said motor bearing (30) cooperates with a rigid arm, said reaction arm (32), which allows to take the torsional forces generated by said rotationally motorized bearing, at the upper part (30a) of said motorized bearing integral with said connecting ring or hook, said reaction arm (32) being interposed between the end of a said pulling cable (9a, 9b) and the upper part (30a) of said motorized bearing which it is secured. 7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend un dit lien (8, 8a-8b) est équipé d'une centrale inertielle (6), ladite centrale inertielle étant fixée sur ledit lien (8, 8a-8b), de préférence de telle sorte que l'axe dudit lien, lorsqu'il est tendu par un dit objet suspendu, soit confondu avec un des axes (7c) du repère (Xc, Yc, Zc) lié à la centrale inertielle, ladite centrale inertielle (6) étant reliée à un ordinateur (20), de préférence situé dans la cabine (13) du grutier, auquel sont transmises les données enregistrées en temps réel d'accélérations longitudinales de ladite centrale inertielle dans les trois direction d'un repère mobile (Xc, Yc, Zc) et accélérations en rotation (.p1, 'p2, y3) de ladite centrale inertielle par rapport aux mêmes axes du repère mobile (Xc, Yc, Zc) de ladite centrale inertielle, l'ordinateur étant apte à indiquer position et orientation dudit objet suspendu audit lien dans un repère fixe (X, Y, Z) de l'espace déduites des position et orientation de la centrale inertielle, et, de préférence, l'ordinateur étant capable de visualiser sur un écran des mouvements dudit objet dans l'espace. 7. Device according to one of claims 1 to 6, characterized in that it comprises a said link (8, 8a-8b) is equipped with an inertial unit (6), said inertial unit being fixed on said link ( 8, 8a-8b), preferably such that the axis of said link, when it is stretched by a said suspended object, coincides with one of the axes (7c) of the reference (Xc, Yc, Zc) linked to the inertial unit, said inertial unit (6) being connected to a computer (20), preferably located in the cabin (13) of the crane operator, to which are transmitted the data recorded in real time longitudinal accelerations of said inertial unit in the three directions of a moving mark (Xc, Yc, Zc) and rotational accelerations (.p1, 'p2, y3) of said inertial unit with respect to the same axes of the mobile mark (Xc, Yc, Zc) of said inertial unit , the computer being able to indicate position and orientation of said object suspended at said link in a reference fixed (X, Y, Z) space deduced from the position and orientation of the inertial unit, and preferably the computer being able to display on a screen movements of said object in space. 8. Dispositif selon la revendication 7, caractérisé en ce que ladite centrale inertielle (6) est couplée à un filtre de Kalman (20a) qui permet d'écrêter (16a-16b) les amplitudes d'accélérations enregistrées par la centrale inertielle, en cas d'amplitude d'accélération importante de la centrale inertielle causée par un choc sur ledit objet, et de substituer à ces amplitudes d'accélérations ainsi écrêtées les valeurs probables d'évolution des paramètres de position de ladite centrale inertielle, et, de préférence, ledit filtre de Kalman permettant en outre d'identifier l'emplacement duditchoc et, de préférence encore, visualiser sur l'écran la position de l'objet lors du choc et/ou d'un autre dit objet déjà posé avec lequel ledit objet en cours de pose est rentré en collision. 8. Device according to claim 7, characterized in that said inertial unit (6) is coupled to a Kalman filter (20a) which allows to clipping (16a-16b) the acceleration amplitudes recorded by the inertial unit, in a case of large amplitude of acceleration of the inertial unit caused by an impact on said object, and of substituting for these amplitudes of accelerations thus clipped the probable values of evolution of the position parameters of said inertial unit, and preferably , said Kalman filter further making it possible to identify the location of the duditchoc and, more preferably, to display on the screen the position of the object during the impact and / or of another said object already laid with which said object during installation has collided. 9. Dispositif selon l'une des revendications 7 ou 8, caractérisé en ce que ladite centrale inertielle (6) est combinée à un dispositif de mesure directe de la position de ladite centrale inertielle dans ledit repère fixe (yl, y2, y3), ladite mesure comprenant l'étude du trajet d'une onde émise par ledit dispositif de mesure, tel qu'un dispositif de visée laser, un théodolite automatique ou, de préférence, un GPS différentiel. 9. Device according to one of claims 7 or 8, characterized in that said inertial unit (6) is combined with a device for directly measuring the position of said inertial unit in said fixed frame (yl, y2, y3), said measurement comprising the study of the path of a wave emitted by said measuring device, such as a laser sighting device, an automatic theodolite or, preferably, a differential GPS. 10. Dispositif selon l'une des revendications 1 à 9, caractérisé en ce que ledit lien (8, 8a-8b) présente une rigidité à la torsion supérieure à celle dudit câble de levage (la), ledit lien étant de préférence constitué d'une chaîne métallique ou d'un tube ou profilé en acier ou matériau composite, ledit tube ou profilé présentant une rigidité à la torsion et de la souplesse en flexion par rapport à sa direction longitudinale. 10. Device according to one of claims 1 to 9, characterized in that said link (8, 8a-8b) has a greater torsional stiffness than said lifting cable (la), said link being preferably constituted by a metal chain or a tube or profile made of steel or composite material, said tube or profile having a torsional rigidity and flexural flexibility with respect to its longitudinal direction. 11. Dispositif selon l'une des revendications 1 à 10, caractérisé en ce que ledit lien (8, 8a-8b) est relié à l'extrémité inférieure dudit câble de levage par un anneau ou crochet de raccordement (Id), l'extrémité supérieure dudit lien (8) coopérant avec ledit crochet ou anneau de raccordement (Id) par l'intermédiaire d'un tourillon (29). 11. Device according to one of claims 1 to 10, characterized in that said link (8, 8a-8b) is connected to the lower end of said lifting cable by a ring or hook connection (Id), the upper end of said link (8) cooperating with said hook or connecting ring (Id) via a pin (29). 12- Dispositif selon l'une des revendications 1 à 11, caractérisé en ce que le dispositif de préhension (5b) est solidaire de l'extrémité inférieure du lien (8, 8a-8b) et apte à coopérer avec un dit objet, de telle sorte que : - le centre de gravité dudit objet reste dans l'alignement dudit lien en cours de levage et déplacement, et - les mouvements dudit objet et dudit lien en rotation par rapport à l'axe dudit lien (Zc) sont répercutés l'un à l'autre. 12- Device according to one of claims 1 to 11, characterized in that the gripping device (5b) is integral with the lower end of the link (8, 8a-8b) and adapted to cooperate with a said object, of such that: the center of gravity of said object remains in alignment with said link being lifted and displaced, and the movements of said object and said link in rotation with respect to the axis of said link (Zc) are passed on one to another. 13. Dispositif selon l'une des revendications 1 à 12, caractérisé en ce que ladite centrale inertielle (6) est solidaire dudit lien (8, 8a-8b) à proximité dudit anneau ou crochet de raccordement (Id) entre lesdits câbles de levage et ledit lien, le cas échéant dessous un dit tourillon (29) relié à l'extrémité dudit lien et coopérant avec un dit crochet ou anneau de raccordement (Id). 13. Device according to one of claims 1 to 12, characterized in that said inertial unit (6) is integral with said link (8, 8a-8b) near said ring or hook connection (Id) between said hoisting ropes. and said link, where appropriate under a said pin (29) connected to the end of said link and cooperating with said hook or connecting ring (Id). 14. Procédé de déplacement et de levage d'un objet à l'aide d'un dispositif selon l'une des revendications 1 à 13, caractérisé en ce que l'on stabilise et/ou on ajuste le positionnement dudit objet suspendu audit câble de levage, en actionnant au moins un dit treuil de traction, en : a- inclinant (33) ledit câble de levage (1a) par rapport à la verticale (ZZ) et déplaçant en translation ledit objet (4), dans un plan vertical passant par un dit câble de traction et ledit câble de levage, de préférence, un plan vertical passant par l'axe de ladite flèche (XIX'1), et/ou b- déplaçant ledit objet latéralement par rapport à un plan vertical passant par l'axe (XIX'1) de ladite flèche, dans un plan passant par deux câbles de traction (9a, 9b), les deux câbles de traction coopérant avec desdits treuils de traction disposés de part et d'autre de ladite flèche. 14. A method of moving and lifting an object with the aid of a device according to one of claims 1 to 13, characterized in that one stabilizes and / or adjusts the positioning of said object suspended to said cable lifting, by actuating at least one said pulling winch, by: a-tilting (33) said lifting cable (1a) with respect to the vertical (ZZ) and translating said object (4) in a vertical plane passing through a said traction cable and said hoisting cable, preferably a vertical plane passing through the axis of said boom (XIX'1), and / or b- moving said object laterally with respect to a vertical plane passing through the axis (XIX'1) of said boom, in a plane passing through two traction cables (9a, 9b), the two traction cables cooperating with said traction winches disposed on either side of said boom. 15. Procédé selon la revendication 14, caractérisé en ce que l'on met en oeuvre un dispositif selon l'une des revendications 5 ou 6, et on actionne en rotation ledit palier motorisé (30) de façon à orienter l'objet, par rotation sur lui-même, en phase finale de dépose. 15. The method of claim 14, characterized in that it implements a device according to one of claims 5 or 6, and said motor bearing (30) is rotated so as to orient the object, by rotation on itself, in the final phase of removal. 16. Procédé selon l'une des revendications 14 ou 15, caractérisé en ce que l'on met en oeuvre un dispositif selon l'une des revendications 7 à 12 et on déplace ledit objet en vue de le poser à un emplacement déterminé, en fonction de sa position et de son orientation angulaire par rapport aux trois dimensions de l'espace dans un repère fixe (X, Y, Z) et, de préférence, en fonction de la visualisation de ses mouvements, tels que calculés par ledit ordinateur. 16. Method according to one of claims 14 or 15, characterized in that it implements a device according to one of claims 7 to 12 and said object is moved to pose at a specific location, in function of its position and its angular orientation with respect to the three dimensions of the space in a fixed reference (X, Y, Z) and, preferably, according to the visualization of its movements, as calculated by said computer. 17. Procédé selon la revendication 16, caractérisé en ce que, seules, les données d'accélération angulaire (yl, y2, y3) enregistrées à l'aide de ladite centrale inertielle sont traitées au sein de l'ordinateur (20), celui-ci étant couplé à un filtre de Kalman (20a), et la position longitudinale dans l'espace dudit objet par rapport audit repère fixe (X, Y, Z) étant fournie par l'intermédiaire d'un dispositif additionnel de détermination directe de la position de ladite centrale inertielle au moyen d'émission d'ondes (7a-7b), tel qu'un dispositif de type système de visée laser, théodolite ou, de préférence, un dispositif de type GPS différentiel. 17. The method according to claim 16, characterized in that only the angular acceleration data (y1, y2, y3) recorded with the aid of said inertial unit are processed within the computer (20). it being coupled to a Kalman filter (20a), and the longitudinal position in the space of said object with respect to said fixed reference (X, Y, Z) being provided by means of an additional device for direct determination of the position of said inertial unit by means of wave emission (7a-7b), such as a laser aiming system type device, theodolite or, preferably, a differential GPS type device. 18. Procédé selon la revendication 17, caractérisé en ce que la réalisation par le filtre de Kalman (20a) de l'écrêtage (16a, 16b) des amplitudes d'accélération causées par des chocs sur ledit objet, est exploitée pour identifier et, de préférence, visualiser sur un écran, l'occurrence d'un choc sur ledit objet. 18. A method according to claim 17, characterized in that the realization by the Kalman filter (20a) of the clipping (16a, 16b) acceleration amplitudes caused by shocks on said object, is used to identify and, preferably, displaying on a screen, the occurrence of a shock on said object. 19. Procédé selon l'une des revendications 1 à 18, caractérisé en ce que ledit objet est un bloc de béton et on réalise, par levage, déplacement et pose de blocs, un assemblage de blocs dans une position voulue pour la réalisation d'une digue de protection de rivage ou digue portuaire reposant sur le fond de la mer. 19. Method according to one of claims 1 to 18, characterized in that said object is a concrete block and is made by lifting, moving and laying blocks, an assembly of blocks in a desired position for the realization of a shore protection dyke or harbor dike resting on the bottom of the sea. 20. Procédé selon la revendication 19, caractérisé en ce que ladite centrale inertielle est fixée sur ledit lien à une distance dudit bloc telle que ladite centrale inertielle reste toujours maintenue hors d'eau. 20. The method of claim 19, characterized in that said inertial unit is fixed on said link at a distance from said block such that said inertial unit is always kept out of water.
FR0850490A 2008-01-25 2008-01-25 DEVICE FOR LIFTING AND MOVING AN OBJECT COMPRISING THE IMPLEMENTATION OF AT LEAST ONE TENSION CABLE Withdrawn FR2926805A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR0850490A FR2926805A1 (en) 2008-01-25 2008-01-25 DEVICE FOR LIFTING AND MOVING AN OBJECT COMPRISING THE IMPLEMENTATION OF AT LEAST ONE TENSION CABLE
AT09706770T ATE531665T1 (en) 2008-01-25 2009-01-20 DEVICE FOR LIFTING AND MOVING AN OBJECT, INCLUDING A MOTOR-DRIVEN BEARING
EP09706770A EP2231498B1 (en) 2008-01-25 2009-01-20 Device for lifting and moving an object, including a powered bearing
PCT/FR2009/050076 WO2009095579A1 (en) 2008-01-25 2009-01-20 Device for lifting and moving an object, including a powered bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0850490A FR2926805A1 (en) 2008-01-25 2008-01-25 DEVICE FOR LIFTING AND MOVING AN OBJECT COMPRISING THE IMPLEMENTATION OF AT LEAST ONE TENSION CABLE

Publications (1)

Publication Number Publication Date
FR2926805A1 true FR2926805A1 (en) 2009-07-31

Family

ID=39722576

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0850490A Withdrawn FR2926805A1 (en) 2008-01-25 2008-01-25 DEVICE FOR LIFTING AND MOVING AN OBJECT COMPRISING THE IMPLEMENTATION OF AT LEAST ONE TENSION CABLE

Country Status (4)

Country Link
EP (1) EP2231498B1 (en)
AT (1) ATE531665T1 (en)
FR (1) FR2926805A1 (en)
WO (1) WO2009095579A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364948A1 (en) * 2010-03-08 2011-09-14 Liebherr-Werk Ehingen GmbH Crane
EP2455322A1 (en) * 2010-11-18 2012-05-23 Liebherr-Werk Ehingen GmbH Crane
CN111894341A (en) * 2020-08-04 2020-11-06 深圳海油工程水下技术有限公司 Centering method for back-twist tower crane
CN112723170A (en) * 2021-01-14 2021-04-30 浙江三一装备有限公司 Crane jib lifting method, jib lifting operation system and crane
US20220297981A1 (en) * 2019-09-11 2022-09-22 Enabl A/S A combination comprising a crane and a load guiding arrangement arranged for mounting to the crane and use of a load guiding arrangement in such combination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772465A (en) * 2022-04-27 2022-07-22 广西路建工程集团有限公司 Floating carrier movement control method based on steel trestle rail traction of Beidou system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1481234A (en) * 1922-01-14 1924-01-15 Bergen Point Iron Works Digging apparatus
CA662030A (en) * 1963-04-23 Mansaver Industries Motor actuated rotary crane hook
US4171053A (en) * 1977-08-24 1979-10-16 Cecce Robert F Antipendulation crane
GB2252295A (en) * 1991-01-31 1992-08-05 James Daniel Davidson Offshore crane control system
US6039193A (en) * 1999-01-14 2000-03-21 The United States Of America As Represented By The Secretary Of The Navy Integrated and automated control of a crane's rider block tagline system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA662030A (en) * 1963-04-23 Mansaver Industries Motor actuated rotary crane hook
US1481234A (en) * 1922-01-14 1924-01-15 Bergen Point Iron Works Digging apparatus
US4171053A (en) * 1977-08-24 1979-10-16 Cecce Robert F Antipendulation crane
GB2252295A (en) * 1991-01-31 1992-08-05 James Daniel Davidson Offshore crane control system
US6039193A (en) * 1999-01-14 2000-03-21 The United States Of America As Represented By The Secretary Of The Navy Integrated and automated control of a crane's rider block tagline system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364948A1 (en) * 2010-03-08 2011-09-14 Liebherr-Werk Ehingen GmbH Crane
CN102190256A (en) * 2010-03-08 2011-09-21 利勃海尔爱茵根有限公司 Crane
US8944262B2 (en) 2010-03-08 2015-02-03 Liebherr-Werk Ehingen Gmbh Load hook control device for a crane
CN102190256B (en) * 2010-03-08 2016-04-27 利勃海尔爱茵根有限公司 Hoisting crane
EP2455322A1 (en) * 2010-11-18 2012-05-23 Liebherr-Werk Ehingen GmbH Crane
US8678208B2 (en) 2010-11-18 2014-03-25 Liebherr-Werk Ehingen Gmbh Crane
US20220297981A1 (en) * 2019-09-11 2022-09-22 Enabl A/S A combination comprising a crane and a load guiding arrangement arranged for mounting to the crane and use of a load guiding arrangement in such combination
US11939192B2 (en) * 2019-09-11 2024-03-26 Enabl A/S Combination comprising a crane and a load guiding arrangement arranged for mounting to the crane and use of a load guiding arrangement in such combination
CN111894341A (en) * 2020-08-04 2020-11-06 深圳海油工程水下技术有限公司 Centering method for back-twist tower crane
CN112723170A (en) * 2021-01-14 2021-04-30 浙江三一装备有限公司 Crane jib lifting method, jib lifting operation system and crane
CN112723170B (en) * 2021-01-14 2023-05-05 浙江三一装备有限公司 Crane, and boom lifting method and boom lifting operation system thereof

Also Published As

Publication number Publication date
ATE531665T1 (en) 2011-11-15
EP2231498A1 (en) 2010-09-29
EP2231498B1 (en) 2011-11-02
WO2009095579A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
EP2231499B1 (en) Device for lifting and moving an object, including an inertial unit
EP2231498B1 (en) Device for lifting and moving an object, including a powered bearing
EP2791000B1 (en) Fairlead for guiding an anchoring chain and intended to be provided to anchoring equipment on the floor of a floating platform
CA2961707C (en) Fairlead intended to engage with an anchor chain, for a system for anchoring a floating installation to the ground
EP3536899B1 (en) Drilling machine comprising a connection device for a device for measuring verticality
FR2859717A1 (en) CUTTING BUCKET, ESPECIALLY A MOTOR DIPPING BUCKET
FR2536456A1 (en) DRILLING SYSTEM FROM A WATER PLAN, INSENSITIVE TO THE COOL
EP2948621B1 (en) Method for determining the position of a cutting device in the ground using a mobile carriage
FR2590539A1 (en) SINGLE CABLE MOORING SYSTEM AND METHOD OF MAKING A HIGH SEA TERMINAL USING SUCH A SYSTEM
CA1103467A (en) No translation available
CA1112060A (en) Alignment device for submerged tube ends by means of a surface support
EP0054498A1 (en) Installation for dredging a sea bottom, particularly for great depths
FR2628141A1 (en) DEVICE AND METHOD FOR PRECISION POSITIONING OF BODIES ON FIXED STRUCTURES WITH LARGE DEPTHS
CA1187163A (en) Mixed device for transmitting longitudinal or transverse waves
EP0585188A1 (en) Device for automatically laying underground conduits
CA2975344C (en) Device for precutting a column for a floor
FR2946367A1 (en) TOOL AND METHOD FOR PLACING CONCRETE CARAPLE BLOCKS
EP0533559B1 (en) Pincer grab excavator
FR2682474A1 (en) Method, device and installation for determining the direction of the strand entering the water of a mooring or towing cable on a craft
EP0709526A2 (en) Back-filling device for pipe trenches
EP0533558A1 (en) Pincer grab excavator
FR2785685A1 (en) Oil and gas prospecting vehicle, deploys cables and inserts seismic sensors rapidly and automatically at locations over extensive, variably-sloping site without prior survey, and without pausing
EP3012219A1 (en) Earthworking device that can be adapted to the deck of a telescopic truck
FR2785684A1 (en) Fully automatic mobile storage, handling, deployment and retrieval equipment for belts of seismic sensors, buries them individually over large area at controlled speed, avoiding onerous, time-consuming manual methods
FR3125504A1 (en) Process for the assembly or disassembly of a blade on an offshore wind turbine and platform equipped for the implementation of such a process.

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20131203