FR2926355A1 - COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN. - Google Patents

COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN. Download PDF

Info

Publication number
FR2926355A1
FR2926355A1 FR0850132A FR0850132A FR2926355A1 FR 2926355 A1 FR2926355 A1 FR 2926355A1 FR 0850132 A FR0850132 A FR 0850132A FR 0850132 A FR0850132 A FR 0850132A FR 2926355 A1 FR2926355 A1 FR 2926355A1
Authority
FR
France
Prior art keywords
column
nitrogen
carbon monoxide
mixture
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0850132A
Other languages
French (fr)
Inventor
Marc Wagner
Beraud Natacha Haik
Diez De Baldeon Daniel Machon
Jean Jacques Talbot
Antoine Hernandez
Philippe Grigoletto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to FR0850132A priority Critical patent/FR2926355A1/en
Priority to PCT/FR2008/052290 priority patent/WO2009087324A2/en
Publication of FR2926355A1 publication Critical patent/FR2926355A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/0285Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/20H2/N2 mixture, i.e. synthesis gas for or purge gas from ammonia synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.

Abstract

Une colonne de séparation (K4) par distillation cryogénique d'un mélange ayant comme composants principaux monoxyde de carbone et soit du méthane soit de l'azote a un condenseur de tête (V9) constitué par un vaporiseur à film (25).A separation column (K4) by cryogenic distillation of a mixture having as main components carbon monoxide and either methane or nitrogen has a top condenser (V9) consisting of a film vaporizer (25).

Description

2926355 La présente invention est relative à une colonne de séparation d'un mélange de monoxyde de carbone et d'azote ou de monoxyde de carbone et de méthane ou d'azote et d'argon et éventuellement de méthane par distillation cryogénique et à un appareil incorporant une telle colonne. The present invention relates to a column for separating a mixture of carbon monoxide and nitrogen or carbon monoxide and methane or nitrogen and argon and optionally methane by cryogenic distillation and a device incorporating such a column.

Les appareils de séparation des mélanges de monoxyde de carbone et d'hydrogène comprennent de plus en plus souvent une colonne permettant d'épurer le monoxyde de carbone en azote. Cette colonne de séparation comprend un vaporiseur-condenseur en tête à inclure à l'intérieur d'une capacité. io Les références de la société demanderesse jusqu'ici étaient basées sur un vaporiseur en thermosiphon immergé dans un bain de monoxyde de carbone liquide. Un vaporiseur-condenseur en thermosiphon présente les inconvénients suivants : 15 • Une quantité importante de liquide contenue dans la capacité du vaporiseur, ce qui contribue largement à l'encours global en monoxyde de carbone de la boite froide, pose un problème de sécurité et conduit à un surdimensionnement des traitements des purges cryogéniques. • La capacité du vaporiseur-condenseur a une section plus importante 20 que la colonne CO-N2, ce qui contribue à augmenter inutilement la section de l'enveloppe de la boite froide • On cherche une performance en échange relativement élevée, ce qui conduit à un volume d'échangeur élevé du fait des limitations des vaporiseur en thermosiphon.Apparatus for separating mixtures of carbon monoxide and hydrogen more and more often include a column for purifying carbon monoxide to nitrogen. This separation column includes an overhead vaporizer-condenser to be included within a capacity. The references of the applicant company hitherto were based on a thermosiphon vaporizer immersed in a bath of liquid carbon monoxide. A thermosiphon vaporizer-condenser has the following drawbacks: • A large quantity of liquid contained in the vaporizer's capacity, which largely contributes to the overall amount of carbon monoxide in the cold box, poses a safety problem and leads to oversized cryogenic purge treatments. • The capacity of the vaporizer-condenser has a larger section than the CO-N2 column, which contributes to increase unnecessarily the section of the envelope of the cold box • We seek a relatively high exchange performance, which leads to a high volume of exchanger due to the limitations of the thermosiphon vaporizer.

25 Les vaporiseurs à film sont connus pour la séparation d'air dans les documents Developments in Falling Film Type (Downflow) Reboilers in the Air Separation Industry de Chakravarty et al., Fifth International Conferenc on Enhanced, Compact and Ultra Compact Heat Exchangers, Hoboken, septembre 2005 et Trace Component Accumulation in Downflow Reboilers 30 de Houghton et al, 2000 AIChE Spring Meeting, Atlanta, mars 2000. Selon la présente invention, il est prévu d'utiliser un vaporiseur à film comme condenseur de tête d'une colonne de séparation de monoxyde de carbone et d'azote ou d'une colonne de séparation de monoxyde de carbone et 2 2926355 de méthane. Selon un aspect de l'invention, il est prévu une colonne de séparation par distillation cryogénique d'un mélange ayant comme composants principaux i) du monoxyde de carbone et soit du méthane soit de l'azote ou ii) de l'azote, de 5 l'argon et éventuellement du méthane , la colonne ayant un condenseur de tête caractérisée en ce que le condenseur de tête est constitué par un vaporiseur à film. Selon d'autres aspects facultatifs : - le vaporiseur à film est incliné par rapport à la verticale avec un angle io d'inclinaison allant de 1° à 10°. - le mélange a comme composants principaux du monoxyde de carbone et de l'azote. - le mélange a comme composants principaux du monoxyde de carbone et du méthane.Film vaporizers are known for air separation in the documents Developments in Falling Film Type (Downflow) Reboilers in the Air Separation Industry of Chakravarty et al., Fifth International Conferenc on Enhanced, Compact and Ultra Compact Heat Exchangers, Hoboken , September 2005 and Trace Component Accumulation in Downflow Reboilers of Houghton et al., 2000 AIChE Spring Meeting, Atlanta, March 2000. According to the present invention, it is intended to use a film vaporizer as the top condenser of a column of separation of carbon monoxide and nitrogen or a carbon monoxide and methane separation column. According to one aspect of the invention, there is provided a cryogenic distillation separation column of a mixture having as main components i) carbon monoxide and either methane or nitrogen or ii) nitrogen, Argon and optionally methane, the column having a head condenser characterized in that the overhead condenser is constituted by a film evaporator. According to other optional aspects: the film evaporator is inclined with respect to the vertical with an inclination angle ranging from 1 ° to 10 °. the mixture has as main components carbon monoxide and nitrogen. the mixture has as main components carbon monoxide and methane.

15 Selon un autre aspect de l'invention, il est prévu un appareil de séparation par distillation cryogénique d'un mélange ayant comme composants principaux du monoxyde de carbone, de l'hydrogène, de l'azote et éventuellement du méthane ou d'azote et d'argon et éventuellement de méthane comprenant au moins une colonne comme décrite ci-dessus.According to another aspect of the invention, there is provided an apparatus for separation by cryogenic distillation of a mixture having as main components carbon monoxide, hydrogen, nitrogen and optionally methane or nitrogen. and argon and optionally methane comprising at least one column as described above.

20 Selon un autre objet de l'invention, il est prévu un procédé de séparation par distillation cryogénique d'un mélange ayant comme composants principaux du monoxyde de carbone et soit du méthane soit de l'azote ou d'azote et d'argon et éventuellement de méthane utilisant une colonne telle que décrite ci-dessus.According to another object of the invention, there is provided a method of separation by cryogenic distillation of a mixture having as main components of carbon monoxide and either methane or nitrogen or nitrogen and argon and optionally methane using a column as described above.

25 Optionnellement : - au moins dans une marche le liquide est vaporisé à au moins 98%, voire 100% en sortie du vaporiseur à film. Le procédé de séparation par distillation cryogénique sépare de préférence un mélange ayant comme composants principaux du monoxyde de 30 carbone, de l'hydrogène, d'azote et éventuellement du. L'invention sera décrite en plus de détail par rapport aux figures, dont la figure 1 représente une partie d'un appareil de séparation d'un mélange de monoxyde de carbone, d'hydrogène, de méthane et d'azote et dont les figures 3 2926355 2, 2 bis et 3 représentent un vaporiseur à film adapté à être utilisé dans une colonne selon l'invention. Un mélange 1 de monoxyde de carbone et de méthane est envoyé à la colonne K3 pour être séparé en un liquide de cuve 21 riche en méthane et un 5 gaz de tête 23 riche en monoxyde de carbone. Le condenseur de tête V1 de la colonne K3 est un condenseur selon la demande de brevet FR 07 55165 avec un échangeur 5 entouré d'une barrière. Le condenseur V1 peut être du type vaporiseur à film. La somme des liquides regroupés dans le fluide 3 provenant d'un cycle est envoyée au io condenseur V1 où il se vaporise pour former un gaz 25. Une partie du liquide de cuve 4 du condenseur V1 est envoyée à un vaporiseur V2 de la ligne d'échange principale, par exemple un thermosiphon de la ligne d'échange principale. Une autre partie 7 du liquide peut être envoyée à un vaporiseur V5 Dans le cas d'un procédé lavage au méthane , V5 est le sous-refroidisseur de 15 la colonne de lavage au méthane, V5 pouvant fonctionner en thermosiphon sur le sous-refroidisseur de la colonne de lavage au méthane et le reste du liquide 9 est envoyé au condenseur de tête V9 d'une colonne de séparation d'azote et de monoxyde de carbone K4 alimentée par une partie au moins du gaz 23 provenant de la tête de la colonne K3. Un gaz riche en azote 15 est prélevé en 20 sortie de l'échangeur 25 et un liquide 13 riche en monoxyde de carbone est soutiré en cuve et envoyé au condenseur de tête V9. L'échangeur de chaleur 25 est alimenté par les liquides 9,13 et sert à condenser l'azote de tête de la colonne K4. L'échangeur 25 fonctionne comme un vaporiseur à film. Une partie du liquide 17 du condenseur V9 est envoyée au vaporiseur V2 de la ligne 25 d'échange principale (V2 pouvant être un thermosiphon de la ligne d'échange principale). Le vaporiseur à film 5, 25 présente une configuration à faible section et à performance thermique au volume élevée. La quantité de CO liquide dans la capacité du vaporiseur est minimale 30 car elle est réduite à l'excédent liquide en sortie du vaporiseur. • Le vaporiseur à film classique a toutefois un défaut dans cette application dans la mesure où il est normalement conçu pour ne pas vaporiser en totalité le liquide, car pour que l'échange soit bon, il faut que le liquide à 4 2926355 vaporiser reste diphasique sur tout le trajet de la vaporisation. Ceci pose un problème à marche réduite dans le cas d'une colonne CO / N2, tel que K4. En effet, le liquide à vaporiser est constitué en majeure partie du liquide du fond de la cuve de la colonne CO / N2, lequel est ensuite remonté dans le 5 vaporiseur V9 par le fait de l'écart de pression entre la colonne et la capacité du vaporiseur. Si le vaporiseur à film est conçu pour ne pas vaporiser tout le liquide en marche normale, à marche réduite on va vaporiser tout le liquide et en même temps condenser plus de vapeur CO / N2 du haut de la colonne, ce qui va conduire à une chute de la pression et à des instabilités du fait d'un io défaut de piston hydraulique pour remonter le CO liquide du fond de cuve de colonne jusqu'au vaporiseur. La solution est de concevoir un vaporiseur à film dont le liquide est presque totalement vaporisé en sortie du vaporiseur dans les conditions de marche normale .Donc en cas de marche réduite, une partie importante du 15 vaporiseur fonctionne en échange gaz/gaz, ce qui n'est pas du tout performant et va conduire à une augmentation de l'écart des températures. Dans les passages de condensation, de même les vapeurs ne seront pas totalement condensées ce qui entraîne une augmentation de la perte de charge et un envahissement liquide du bas du vaporiseur donc une réduction d'autant de sa 20 performance. Dans la Figure 2, on voit l'échangeur 25 alimenté en azote gazeux par la conduite 29 reliant l'échangeur avec la tête de la colonne K4. L'azote liquide est renvoyé à la colonne par la conduite 31. Un débit d'azote 15 est soutiré généralement en sortie de l'échangeur 25. L'échangeur est alimenté en liquide 25 par une conduite 9 qui envoie du liquide à travers une vanne 33 et la conduite 35 directement au-dessus des passages ouverts du vaporiseur à film 25. La Figure 2bis représente un vaporiseur à film en tête de colonne de séparation CO/CH4 K3 où une autre conduite 39 reliée à la conduite 3 par une vanne 37 permet d'alimenter directement le bain de liquide autour de l'échangeur 5, la 30 sortie de la vapeur 23 se faisant en tête de colonne CO/CH4 K3. Une amélioration supplémentaire serait d'installer le vaporiseur à film 5,25 avec un angle faible par rapport à la verticale de manière à avoir une gamelle d'alimentation inclinée donc de dégager le liquide des passages 5 2926355 extrêmes à bas niveau, ce qui réduit encore d'autant la surface effective d'échange à bas régime. Dans l'exemple le vaporiseur est incliné à 5° de la verticale V mais l'inclinaison peut varier entre 1° et 10°.Optionally: at least in one step the liquid is vaporized at least 98% or even 100% at the outlet of the film vaporizer. The process of separation by cryogenic distillation preferably separates a mixture having as main components carbon monoxide, hydrogen, nitrogen and possibly hydrogen. The invention will be described in more detail with respect to the figures, of which FIG. 1 represents a part of an apparatus for separating a mixture of carbon monoxide, hydrogen, methane and nitrogen and whose figures 2, 2a and 3 show a film vaporizer adapted for use in a column according to the invention. A mixture 1 of carbon monoxide and methane is sent to column K3 to be separated into a methane-rich tank liquid 21 and a carbon monoxide-rich overhead gas 23. The top condenser V1 of the column K3 is a condenser according to the patent application FR 07 55165 with a heat exchanger 5 surrounded by a barrier. The condenser V1 may be of the film vaporizer type. The sum of the liquids grouped in the fluid 3 coming from a cycle is sent to the condenser V1 where it vaporises to form a gas 25. A part of the tank liquid 4 of the condenser V1 is sent to a vaporizer V2 of the line D. main exchange, for example a thermosiphon of the main exchange line. Another part 7 of the liquid can be sent to a vaporizer V5. In the case of a methane washing process, V5 is the sub-cooler of the methane scrubber, V5 being able to work as a thermosiphon on the subcooler of the methane washing column and the remainder of the liquid 9 is sent to the head condenser V9 of a nitrogen and carbon monoxide separation column K4 fed by at least a portion of the gas 23 coming from the head of the column K3. A nitrogen-rich gas is withdrawn from the exchanger 25 and a carbon monoxide-rich liquid 13 is withdrawn in the tank and sent to the top condenser V9. The heat exchanger 25 is fed with the liquids 9, 13 and serves to condense the nitrogen at the top of the column K4. The exchanger 25 functions as a film vaporizer. Part of the liquid 17 of the condenser V9 is sent to the vaporizer V2 of the main exchange line (V2 may be a thermosiphon of the main exchange line). The film vaporizer 5, 25 has a low section configuration and high volume thermal performance. The amount of liquid CO in the vaporizer capacity is minimal because it is reduced to the excess liquid at the outlet of the vaporizer. • The conventional film vaporizer, however, has a defect in this application in that it is normally designed not to vaporize the entire liquid, because for the exchange is good, it is necessary that the liquid to 4 2926355 vaporize remains two-phase along the entire path of the vaporization. This poses a reduced running problem in the case of a CO / N2 column, such as K4. Indeed, the liquid to be vaporized consists for the most part of the bottom liquid of the tank of the CO / N2 column, which is then raised in the V9 vaporizer due to the pressure difference between the column and the capacity vaporizer. If the film vaporizer is designed not to vaporize all the liquid in normal operation, at reduced speed we will vaporize all the liquid and at the same time condense more CO / N2 vapor from the top of the column, which will lead to a pressure drop and instabilities due to a hydraulic piston defect to raise the liquid CO from the column bottom to the vaporizer. The solution is to design a film vaporizer whose liquid is almost completely vaporized at the outlet of the vaporizer under normal operating conditions. Thus, in the case of reduced running, a large part of the vaporizer operates in gas / gas exchange, which is not at all efficient and will lead to an increase in the difference in temperatures. In the condensation passages, the vapors will not be completely condensed, which leads to an increase in the pressure drop and a liquid invasion of the bottom of the vaporizer, thus reducing its performance by as much. In Figure 2, we see the exchanger 25 fed with nitrogen gas through line 29 connecting the exchanger with the head of the column K4. The liquid nitrogen is returned to the column via the pipe 31. A nitrogen flow 15 is withdrawn generally at the outlet of the exchanger 25. The exchanger is supplied with liquid 25 by a pipe 9 which sends liquid through a valve 33 and the pipe 35 directly above the open passages of the film vaporizer 25. FIG. 2bis shows a film vaporizer at the top of the separation column CO / CH4 K3 where another pipe 39 connected to pipe 3 by a valve 37 directly feeds the liquid bath around the exchanger 5, the outlet of the steam 23 being at the top of column CO / CH4 K3. An additional improvement would be to install the 5.25 film vaporizer at a small angle to the vertical so as to have a sloped feed bowl thus to clear the liquid from the extreme low level passages, thereby reducing still the effective area of exchange at low speed. In the example the vaporizer is inclined at 5 ° from the vertical V but the inclination can vary between 1 ° and 10 °.

5 L'invention s'applique également aux procédés et aux appareils de traitement de gaz de purge de synthèse d'ammoniac utilisant des colonnes qui séparent des mélanges ayant pour composants principaux de l'azote et de l'argon et/ou des mélanges ayant pour composants principaux de l'azote, de l'argon et du méthane. Dans ces cas, la colonne de séparation utilisée peut lo avoir un condenseur de tête comprenant un vaporiseur à film. Le liquide se vaporisant dans le condenseur peut être du monoxyde de carbone, de l'azote ou un autre liquide. Des procédés de ce genre sont décrits dans Separation of Gases d'Isalski, 1989, chapitre 6. 15 6 The invention is also applicable to ammonia synthesis purge gas treatment processes and apparatus using columns which separate mixtures having nitrogen and argon as main components and / or mixtures having for major components of nitrogen, argon and methane. In these cases, the separation column used may have a head condenser comprising a film evaporator. The liquid vaporizing in the condenser may be carbon monoxide, nitrogen or other liquid. Such methods are described in Isalski's Separation of Gases, 1989, Chapter 6. 15

Claims (8)

REVENDICATIONS 1. Colonne de séparation (K3, K4) par distillation cryogénique d'un mélange (1, 23) ayant comme composants principaux i) du monoxyde de carbone et soit du méthane soit de l'azote ou ii) de l'azote, de l'argon et éventuellement du méthane, la colonne ayant un condenseur de tête (5, 25) caractérisée en ce que le condenseur de tête est constitué par un vaporiseur à film. io 1. Separation column (K3, K4) by cryogenic distillation of a mixture (1, 23) having as main components i) carbon monoxide and either methane or nitrogen or ii) nitrogen, argon and optionally methane, the column having a top condenser (5, 25) characterized in that the top condenser is constituted by a film evaporator. io 2. Colonne selon la revendication 1 dans lequel le vaporiseur à film (5, 25) est incliné par rapport à la verticale avec un angle d'inclinaison allant de 1° à 10°. 2. Column according to claim 1 wherein the film vaporizer (5, 25) is inclined relative to the vertical with an inclination angle of 1 ° to 10 °. 3. Colonne selon la revendication 1 ou 2 de séparation d'un mélange 15 (23) ayant comme composants principaux du monoxyde de carbone et de l'azote. 3. Column according to claim 1 or 2 for separating a mixture (23) having as main components carbon monoxide and nitrogen. 4. Colonne selon la revendication 1 ou 2 de séparation d'un mélange (1) ayant comme composants principaux du monoxyde de carbone et du 20 méthane. 4. Column according to claim 1 or 2 for separation of a mixture (1) having as main components carbon monoxide and methane. 5. Appareil de séparation par distillation cryogénique d'un mélange ayant comme composants principaux du monoxyde de carbone, de l'hydrogène, de l'azote et éventuellement du méthane comprenant au moins 25 une colonne (K3, K4) selon l'une des revendications précédentes. 5. Apparatus for separation by cryogenic distillation of a mixture having as main components carbon monoxide, hydrogen, nitrogen and optionally methane comprising at least one column (K3, K4) according to one of preceding claims. 6. Procédé de séparation par distillation cryogénique d'un mélange (1, 23) ayant comme composants principaux du monoxyde de carbone et soit du méthane soit de l'azote ou d'azote et d'argon et éventuellement de méthane 30 utilisant une colonne (K3, K4) selon l'une des revendications 1 à 4. 7 2926355 6. Process for the cryogenic distillation separation of a mixture (1, 23) having as main components carbon monoxide and either methane or nitrogen or nitrogen and argon and optionally methane using a column (K3, K4) according to one of claims 1 to 4. 7 2926355 7. Procédé selon la revendication 6 dans lequel au moins dans une marche le liquide (3, 9, 13) est vaporisé à au moins 98%, voire 100% en sortie du vaporiseur à film (5, 25). 5 7. The method of claim 6 wherein at least in one step the liquid (3, 9, 13) is vaporized at least 98% or 100% at the output of the film vaporizer (5, 25). 5 8. Procédé de séparation par distillation cryogénique d'un mélange (1) ayant comme composants principaux du monoxyde de carbone, de l'hydrogène, d'azote et éventuellement du méthane ou d'azote et d'argon et éventuellement de méthane comprenant une étape de procédé selon la revendication 6 ou 7. i0 8. A method of separation by cryogenic distillation of a mixture (1) having as main components carbon monoxide, hydrogen, nitrogen and optionally methane or nitrogen and argon and optionally methane comprising process step according to claim 6 or 7. i0
FR0850132A 2008-01-10 2008-01-10 COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN. Withdrawn FR2926355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0850132A FR2926355A1 (en) 2008-01-10 2008-01-10 COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN.
PCT/FR2008/052290 WO2009087324A2 (en) 2008-01-10 2008-12-12 Column for separating a carbon monoxide and nitrogen mixture by cryogenic distillation, and apparatus including such column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0850132A FR2926355A1 (en) 2008-01-10 2008-01-10 COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN.

Publications (1)

Publication Number Publication Date
FR2926355A1 true FR2926355A1 (en) 2009-07-17

Family

ID=39789410

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0850132A Withdrawn FR2926355A1 (en) 2008-01-10 2008-01-10 COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN.

Country Status (2)

Country Link
FR (1) FR2926355A1 (en)
WO (1) WO2009087324A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328375B (en) * 2011-01-17 2016-02-10 乔治洛德方法研究和开发液化空气有限公司 Low ternperature separation process is used to produce the method and apparatus of ammonia synthesis gas and pure methane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB930682A (en) * 1958-08-01 1963-07-10 Petrocarbon Dev Ltd Improvements in and relating to the low temperature separation of gases
US3992168A (en) * 1968-05-20 1976-11-16 Kobe Steel Ltd. Heat exchanger with rectification effect
US4478621A (en) * 1982-04-28 1984-10-23 Linde Aktiengesellschaft Process for the extraction of carbon monoxide from gas streams
US5784899A (en) * 1995-06-20 1998-07-28 Nippon Sanso Corporation Argon separation method and apparatus therefor
FR2891901A1 (en) * 2005-10-06 2007-04-13 Air Liquide METHOD FOR VAPORIZATION AND / OR CONDENSATION IN A HEAT EXCHANGER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB930682A (en) * 1958-08-01 1963-07-10 Petrocarbon Dev Ltd Improvements in and relating to the low temperature separation of gases
US3992168A (en) * 1968-05-20 1976-11-16 Kobe Steel Ltd. Heat exchanger with rectification effect
US4478621A (en) * 1982-04-28 1984-10-23 Linde Aktiengesellschaft Process for the extraction of carbon monoxide from gas streams
US5784899A (en) * 1995-06-20 1998-07-28 Nippon Sanso Corporation Argon separation method and apparatus therefor
FR2891901A1 (en) * 2005-10-06 2007-04-13 Air Liquide METHOD FOR VAPORIZATION AND / OR CONDENSATION IN A HEAT EXCHANGER

Also Published As

Publication number Publication date
WO2009087324A3 (en) 2013-03-21
WO2009087324A2 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
FR2716816A1 (en) Process for restarting an auxiliary argon / oxygen separation column by distillation, and corresponding installation
CA2788759C (en) Apparatus and method for the distillation separation of a mixture containing carbon dioxide
FR2723184A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER PRESSURE WITH VARIABLE FLOW RATE
EP2140216B1 (en) Method and device for separating a mixture containing at least hydrogen, nitrogen and carbon monoxide by cryogenic distillation
CA2865991C (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
CA2761307A1 (en) Process and plant for recovering argon in a separation unit for a purge gas used in the synthesis of ammonia
EP1966554B1 (en) Air separating device by means of cryogenic distillation
EP3350119B1 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
FR2926355A1 (en) COLUMN FOR SEPARATING A MIXTURE OF CARBON MONOXIDE AND NITROGEN BY CRYOGENIC DISTILLATION AND APPARATUS INCORPORATING SUCH A COLUMN.
WO2018020091A1 (en) Method and apparatus for scrubbing at cryogenic temperature in order to produce a mixture of hydrogen and nitrogen
EP3049741B1 (en) Method and apparatus for cryogenic separation of a mixture containing at least carbon monoxide, hydrogen and nitrogen
FR3102548A1 (en) Process and apparatus for air separation by cryogenic distillation
EP3783292A1 (en) Method and device for producing carbon monoxide by partial condensation
FR2930328A1 (en) Air separating method for oxycombustion application in boiler, involves sending oxygen and nitrogen enriched liquids to low pressure column, removing oxygen enriched gas in condenser, and drawing nitrogen enriched gas from column
EP2872298B1 (en) Method and apparatus for cooling a flow containing at least 35% carbon dioxide and mercury
WO2022175204A1 (en) Method and apparatus for liquefying hydrogen
FR2795496A1 (en) APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR3057056A1 (en) METHOD AND APPARATUS FOR RECOVERING ARGON IN A AMMONIA SYNTHESIS PURGE GAS SEPARATION UNIT
FR3132234A3 (en) Process for separating nitrogen from vaporized gas from a liquefied natural gas storage
FR2777641A1 (en) Air distillation process to produce argon
FR3120431A1 (en) Purification of carbon monoxide by cryogenic distillation
FR2764681A1 (en) METHOD AND PLANT FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR3119996A3 (en) Method and apparatus for separating a gas containing nitrogen, hydrogen and methane
FR2831251A1 (en) Nitrogen and oxygen production process by air distillation in a double column where part of the oxygen-rich liquid from the first column is vaporized and expanded rather than injected into the second column
FR3110223A1 (en) Process for extracting nitrogen from a stream of natural gas or bio-methane

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20110930