FR2914357A1 - SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE. - Google Patents

SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE. Download PDF

Info

Publication number
FR2914357A1
FR2914357A1 FR0754036A FR0754036A FR2914357A1 FR 2914357 A1 FR2914357 A1 FR 2914357A1 FR 0754036 A FR0754036 A FR 0754036A FR 0754036 A FR0754036 A FR 0754036A FR 2914357 A1 FR2914357 A1 FR 2914357A1
Authority
FR
France
Prior art keywords
circuit
main
radiator
cooling
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0754036A
Other languages
French (fr)
Other versions
FR2914357B1 (en
Inventor
Benoit Janier
Cedric Rouaud
Robert Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0754036A priority Critical patent/FR2914357B1/en
Priority to PCT/FR2008/050467 priority patent/WO2008132369A1/en
Priority to EP08775721A priority patent/EP2126308A1/en
Publication of FR2914357A1 publication Critical patent/FR2914357A1/en
Application granted granted Critical
Publication of FR2914357B1 publication Critical patent/FR2914357B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Système de refroidissement pour groupe motopropulseur de véhicule automobile, comprenant un circuit principal (9) pouvant être parcouru par un fluide caloporteur pour refroidir un premier ensemble d'organes du groupe motopropulseur à un premier niveau de température, un circuit secondaire (26) pouvant être parcouru par un fluide caloporteur pour refroidir un deuxième ensemble d'organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau, avec un radiateur principal (10) faisant partie du circuit principal et un radiateur secondaire (31) faisant partie du circuit secondaire, une vanne thermostatique (8) ou commandée étant montée dans le circuit principal en aval du moteur thermique (1) de façon à isoler le radiateur principal (10) lorsque la température du fluide caloporteur est inférieure à un premier seuil, et un vase d'expansion (12) monté dans le circuit principal en aval de la vanne thermostatique, caractérisé par le fait que les branchements sont tels que le radiateur secondaire (31) peut faire partie également du circuit principal dans un mode de fonctionnement du système. Le système peut comprendre en outre un radiateur supplémentaire (11) monté en parallèle du radiateur principal (10), et une deuxième vanne (31b) capable de laisser passer ou d'interdire le passage du fluide caloporteur provenant du moteur thermique (1)vers le radiateur secondaire.A motor vehicle power train cooling system, comprising a main circuit (9) capable of being traversed by a heat transfer fluid for cooling a first set of powertrain members to a first temperature level, a secondary circuit (26) being a heat transfer fluid for cooling a second set of powertrain members to a second temperature level, lower than the first level, with a main radiator (10) forming part of the main circuit and a secondary radiator (31) forming part of the secondary circuit, a thermostatic valve (8) or controlled being mounted in the main circuit downstream of the heat engine (1) so as to isolate the main radiator (10) when the temperature of the coolant is less than a first threshold, and a expansion vessel (12) mounted in the main circuit downstream of the thermostatic valve, characterized in that that the connections are such that the secondary radiator (31) can also be part of the main circuit in an operating mode of the system. The system may further comprise an additional radiator (11) connected in parallel with the main radiator (10), and a second valve (31b) capable of allowing or preventing the passage of the heat transfer fluid from the heat engine (1) towards the secondary radiator.

Description

B06-5178FR - AxC/EVH Société par actions simplifiée dite : RENAULT s.a.s.B06-5178 - AxC / EVH Simplified joint stock company known as: RENAULT s.a.s.

Système et procédé de refroidissement d'un groupe motopropulseur de véhicule automobile Invention de : JANIER Benoît ROUAUD Cédric YU Robert  System and method for cooling a power train of a motor vehicle Invention of: JANIER Benoît ROUAUD Cédric YU Robert

Système et procédé de refroidissement d'un groupe motopropulseur de véhicule automobile La présente invention est relative au refroidissement des groupes motopropulseurs de véhicule automobile, comportant un moteur thermique et différents organes qu'il convient de maintenir à une température de fonctionnement convenable. En particulier, dans de tels groupes motopropulseurs, on trouve certains organes qui doivent fonctionner à une température inférieure à celle qui correspond au fonctionnement normal d'autres organes. On peut donc chercher à maintenir de tels organes à la température la plus basse possible pour une meilleure performance ou encore maintenir ces organes à un niveau de température inférieur à un seuil critique pour assurer leur fiabilité de fonctionnement. C'est le cas en particulier du système de recyclage partiel des gaz d'échappement, qui comprend un échangeur de chaleur destiné à refroidir les gaz d'échappement avant leur admission dans le moteur thermique, et une vanne commandée pour piloter le débit des gaz d'échappement recyclés dans le moteur thermique (dits EGR). Il en est de même dans le cas d'un turbocompresseur équipant le moteur thermique et destiné à élever la pression de l'air admis dans le moteur. Compte tenu du niveau de température relativement faible auquel ces différents organes doivent fonctionner, la puissance thermique à évacuer par le radiateur pour maintenir le niveau de température est nettement plus importante que celle que peut évacuer un radiateur fonctionnant à une température plus élevée. Il en résulte une difficulté de conception du système de refroidissement et une difficulté d'intégration de ces différents éléments dans le véhicule. On constate par ailleurs une augmentation constante de la masse des véhicules et une augmentation des calories à évacuer pour le fonctionnement du moteur thermique, notamment à forte vitesse de déplacement du véhicule et à forte charge.  The present invention relates to the cooling of motor vehicle powertrains, comprising a heat engine and various members that should be maintained at a suitable operating temperature. In particular, in such powertrains, there are certain organs that must operate at a temperature below that corresponding to the normal operation of other organs. We can therefore seek to maintain such bodies at the lowest possible temperature for better performance or maintain these bodies at a temperature level below a critical threshold to ensure their reliability of operation. This is the case in particular of the partial exhaust gas recycling system, which comprises a heat exchanger intended to cool the exhaust gases before their admission into the heat engine, and a valve controlled to control the flow of the gases. exhaust systems recycled in the engine (so-called EGR). It is the same in the case of a turbocharger fitted to the engine and intended to increase the pressure of the air admitted into the engine. Given the relatively low temperature level at which these different organs must operate, the thermal power to be removed by the radiator to maintain the temperature level is significantly greater than that which can evacuate a radiator operating at a higher temperature. This results in a difficulty of design of the cooling system and a difficulty of integration of these various elements in the vehicle. There is also a constant increase in the mass of vehicles and an increase in calories to be removed for the operation of the engine, especially at high vehicle speed and high load.

I1 en résulte l'apparition d'un besoin pour une boucle de refroidissement à basse température avec une augmentation de la quantité de calories à évacuer, cette augmentation étant liée à la fois aux calories supplémentaires provenant de la boucle à basse température et aux calories rejetées par le moteur thermique. Le circuit de refroidissement classique d'un moteur thermique comprend généralement une pompe de circulation entraînée mécaniquement par le moteur thermique lui-même et un aérotherme constitué par un échangeur de chaleur qui permet de chauffer l'habitacle du véhicule. Une vanne thermostatique est généralement prévue de façon à faire communiquer le circuit de refroidissement du moteur thermique avec un autre circuit comprenant un radiateur supplémentaire. On dispose également, dans l'écoulement du fluide caloporteur, un vase d'expansion sous la forme d'un bocal hermétiquement fermé, traversé par le fluide caloporteur. Un tel organe permet la dilatation de l'eau utilisée à titre de fluide caloporteur grâce au maintien d'un certain volume d'air compressible à l'intérieur. I1 permet également de maintenir sous pression l'ensemble du circuit de refroidissement, afin d'éviter tout risque de cavitation de la pompe de circulation entraînée par le moteur. I1 est préférable de monter un tel vase d'expansion en aval de la vanne thermostatique et en parallèle du circuit de refroidissement du moteur de façon à limiter au maximum le volume de fluide caloporteur à réchauffer, ce qui permet de réduire l'énergie nécessaire au fonctionnement de l'ensemble en diminuant la durée de montée en température du moteur thermique. Pour assurer deux niveaux de température pour le fluide caloporteur, il a déjà été proposé dans certaines applications, des systèmes de refroidissement comportant deux circuits de refroidissement, soit indépendants, soit comportant des parties communes. La demande de brevet français 2 815 402 décrit un système de refroidissement de ce type pour un véhicule à propulsion hybride comportant un moteur thermique et au moins un moteur électrique. Le système permet de refroidir le moteur thermique à un premier niveau de température, et le moteur électrique et son unité de commande à un deuxième niveau de température inférieur au premier niveau. Le système décrit comporte un radiateur subdivisé en plusieurs compartiments. Le circuit de refroidissement comprend un circuit principal et un circuit secondaire qui est une dérivation du circuit principal. L'un des compartiments du radiateur fait partie du circuit secondaire. Le compartiment secondaire utilisé dans ce système est complètement dédié au circuit secondaire. Cependant, dans certaines situations où le circuit principal n'est pas connecté au circuit de refroidissement du moteur thermique, par exemple lors de la phase de démarrage à froid lorsque la vanne thermostatique est encore fermée, il serait intéressant de pouvoir utiliser une plus grande surface d'échange du radiateur pour abaisser la température du fluide caloporteur s'écoulant dans le circuit secondaire. De plus, il est important de prévoir des branchements de faible complexité et conçus de façon à contrôler convenablement la direction d'écoulement du fluide caloporteur dans le vase d'expansion, quelle que soit la température de fonctionnement du système. La présente invention a pour objet la réalisation d'un tel système de refroidissement qui permette de définir deux niveaux de température pour refroidir deux ensembles distincts d'organes du groupe motopropulseur, en particulier dans le cas où le circuit comprend un vase d'expansion monté en aval de la vanne thermostatique. La présente invention a également pour objet de permettre d'implanter plus facilement les différents radiateurs de refroidissement sur la face avant d'un véhicule tout en augmentant l'efficacité du refroidissement. L'invention a également pour objet un système de refroidissement qui permet aisément de refroidir la boîte de vitesses du véhicule automobile sans générer de perte de charge importante et sans augmenter sensiblement le volume du fluide caloporteur nécessaire. Dans un mode de réalisation, un système de refroidissement pour groupe motopropulseur de véhicule automobile à moteur thermique, comprend un circuit principal pouvant être parcouru par un fluide caloporteur pour refroidir un premier ensemble d'organes du groupe motopropulseur à un premier niveau de température et un circuit secondaire pouvant être parcouru par un fluide caloporteur pour refroidir un deuxième ensemble d'organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau. Un radiateur principal fait partie du circuit principal et un radiateur secondaire fait partie du circuit secondaire. Une première vanne thermostatique ou commandée, par exemple électriquement, est montée dans le circuit principal en aval du moteur thermique de façon à isoler le radiateur principal lorsque la température du fluide caloporteur est inférieure à un premier seuil. Un vase d'expansion est monté dans le circuit principal en aval de la vanne thermostatique afin de dégazer le fluide caloporteur. Les branchements sont tels que le radiateur secondaire peut faire partie également du circuit principal dans un mode de fonctionnement du système. Le système comprend en outre un radiateur supplémentaire monté en parallèle du radiateur principal, et une deuxième vanne thermostatique ou commandée, capable de laisser passer ou d'interdire le passage du fluide caloporteur provenant du moteur thermique vers le radiateur secondaire. Le refroidissement du moteur thermique et des différents organes du groupe motopropulseur est ainsi considérablement amélioré sans perturber le dégazage du fluide caloporteur. De plus, cette configuration permet de réduire les dimensions du radiateur principal qui peut alors plus facilement être implanté sur la face avant du véhicule, à côté par exemple du radiateur supplémentaire. La diminution de la surface d'échange qui résulte de telles dimensions réduites du radiateur principal est alors compensée, lorsque le besoin se fait sentir, en faisant passer le fluide caloporteur à travers le radiateur secondaire du circuit secondaire. Une troisième vanne thermostatique ou commandée peut être montée dans une dérivation entre la branche de retour du circuit principal et la branche de retour du circuit secondaire de façon à supprimer toute communication par ladite dérivation lorsque la température du fluide caloporteur est inférieure à un deuxième seuil supérieur au premier seuil. Le radiateur principal comprend de préférence une entrée principale et une sortie principale reliées directement au circuit principal ainsi qu'une sortie secondaire reliée au circuit principal par l'intermédiaire d'une vanne thermostatique ou commandée, et le radiateur supplémentaire est monté entre l'entrée principale et la sortie secondaire du radiateur principal.  This results in the emergence of a need for a low temperature cooling loop with an increase in the amount of calories to be exhausted, this increase being related to both the extra calories from the low temperature loop and the rejected calories. by the engine. The conventional cooling circuit of a thermal engine generally comprises a circulation pump mechanically driven by the engine itself and a heater constituted by a heat exchanger that heats the passenger compartment of the vehicle. A thermostatic valve is generally provided to communicate the cooling circuit of the heat engine with another circuit comprising an additional radiator. In the flow of the coolant, there is also an expansion vessel in the form of a hermetically sealed jar, through which the coolant passes. Such a member allows the expansion of the water used as heat transfer fluid by maintaining a certain volume of compressible air inside. It also makes it possible to keep the entire cooling circuit under pressure, in order to avoid any risk of cavitation of the circulation pump driven by the motor. It is preferable to mount such an expansion tank downstream of the thermostatic valve and in parallel with the engine cooling circuit so as to limit as much as possible the volume of heat transfer fluid to be heated, which makes it possible to reduce the energy required for operation of the assembly by decreasing the temperature rise time of the heat engine. To ensure two temperature levels for the heat transfer fluid, it has already been proposed in some applications, cooling systems having two cooling circuits, either independent or with common parts. French patent application 2,815,402 describes a cooling system of this type for a hybrid-propulsion vehicle comprising a heat engine and at least one electric motor. The system allows the heat engine to be cooled to a first temperature level, and the electric motor and its control unit to a second temperature level lower than the first level. The described system comprises a radiator subdivided into several compartments. The cooling circuit comprises a main circuit and a secondary circuit which is a bypass of the main circuit. One of the radiator compartments is part of the secondary circuit. The secondary compartment used in this system is completely dedicated to the secondary circuit. However, in some situations where the main circuit is not connected to the cooling circuit of the engine, for example during the cold start phase when the thermostatic valve is still closed, it would be interesting to use a larger area exchange of the radiator to lower the temperature of the heat transfer fluid flowing in the secondary circuit. In addition, it is important to provide connections of low complexity and designed to properly control the flow direction of the heat transfer fluid in the expansion tank, regardless of the operating temperature of the system. The subject of the present invention is the production of such a cooling system which makes it possible to define two temperature levels for cooling two distinct sets of powertrain members, in particular in the case where the circuit comprises a mounted expansion tank downstream of the thermostatic valve. Another object of the present invention is to make it easier to install the various cooling radiators on the front face of a vehicle while increasing the cooling efficiency. The subject of the invention is also a cooling system which makes it easy to cool the gearbox of the motor vehicle without generating a significant pressure drop and without appreciably increasing the volume of the heat transfer fluid required. In one embodiment, a cooling system for a power train of a motor vehicle with a heat engine, comprises a main circuit that can be traversed by a coolant to cool a first set of powertrain members to a first temperature level and a secondary circuit that can be traversed by a heat transfer fluid to cool a second set of members of the powertrain to a second temperature level, lower than the first level. A main radiator is part of the main circuit and a secondary radiator is part of the secondary circuit. A first thermostatic or controlled valve, for example electrically, is mounted in the main circuit downstream of the heat engine so as to isolate the main radiator when the temperature of the coolant is lower than a first threshold. An expansion vessel is mounted in the main circuit downstream of the thermostatic valve to degas the coolant. The connections are such that the secondary radiator can also be part of the main circuit in an operating mode of the system. The system further comprises an additional radiator mounted in parallel with the main radiator, and a second thermostatic or controlled valve, capable of allowing or preventing the passage of heat transfer fluid from the heat engine to the secondary radiator. The cooling of the engine and the various powertrain members is thus considerably improved without disturbing the degassing of the heat transfer fluid. In addition, this configuration reduces the size of the main radiator which can then be more easily implanted on the front of the vehicle, for example by the additional radiator. The reduction in the exchange surface resulting from such reduced dimensions of the main radiator is then compensated, when the need arises, by passing the heat transfer fluid through the secondary radiator of the secondary circuit. A third thermostatic or controlled valve may be mounted in a branch between the return branch of the main circuit and the return branch of the secondary circuit so as to eliminate any communication by said bypass when the temperature of the coolant is lower than a second upper threshold at the first threshold. The main radiator preferably comprises a main inlet and a main output connected directly to the main circuit and a secondary output connected to the main circuit via a thermostatic or controlled valve, and the additional radiator is mounted between the inlet main and secondary outlet of the main radiator.

Le premier ensemble d'organes du groupe motopropulseur capables d'être refroidis par le fluide caloporteur parcourant le circuit principal peut par exemple comprendre un injecteur supplémentaire, le circuit d'huile de lubrification du moteur et la boîte de vitesses du véhicule.  The first set of powertrain members capable of being cooled by the coolant flowing through the main circuit may for example comprise an additional injector, the engine lubricating oil circuit and the vehicle gearbox.

Le deuxième ensemble d'organes du groupe motopropulseur capables d'être refroidis par le fluide caloporteur parcourant le circuit secondaire peut par exemple comprendre le circuit de recirculation partielle des gaz d'échappement (EGR) et une vanne de recirculation partielle des gaz d'échappement (EGR).  The second set of powertrain members capable of being cooled by the coolant flowing through the secondary circuit may for example comprise the partial exhaust gas recirculation (EGR) circuit and a partial recirculation valve of the exhaust gas. (EGR).

Une pompe électrique est avantageusement montée dans le circuit secondaire afin de faire circuler le fluide caloporteur. On peut également prévoir un échangeur de refroidissement de l'huile de la boîte de vitesses monté en sortie du radiateur principal, de façon à refroidir la boîte de vitesses du véhicule.  An electric pump is advantageously mounted in the secondary circuit in order to circulate the coolant. It is also possible to provide a gearbox oil cooling exchanger mounted at the outlet of the main radiator, so as to cool the gearbox of the vehicle.

En variante, l'échangeur de refroidissement de l'huile de la boîte de vitesses peut être monté dans une dérivation de la branche de retour du circuit principal, équipée d'une vanne thermostatique ou commandée.  Alternatively, the cooling exchanger of the gearbox oil can be mounted in a branch of the return branch of the main circuit, equipped with a thermostatic or controlled valve.

On peut également refroidir un turbocompresseur dont le moteur thermique est équipé, par le fluide caloporteur parcourant le circuit secondaire. En variante, le turbocompresseur peut être monté dans une branche du circuit principal, en étant associé à une pompe électrique, afin d'être refroidi par le fluide caloporteur parcourant le circuit principal lorsque le moteur est arrêté. I1 est avantageux de raccorder le turbocompresseur en parallèle du circuit de recirculation des gaz d'échappement (EGR), ce qui permet d'éviter la nécessité de prévoir une pompe électrique. Selon un autre aspect, l'invention concerne également un procédé de refroidissement d'un groupe motopropulseur de véhicule automobile utilisant un fluide caloporteur circulant dans un circuit de refroidissement, dans lequel on fait en outre passer le fluide caloporteur dans un circuit principal pour refroidir un premier ensemble d'organes du groupe motopropulseur à un premier niveau de température, et on fait circuler le fluide caloporteur dans un circuit secondaire pour refroidir un deuxième ensemble d'organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau. Le circuit principal et le circuit secondaire peuvent être isolés du circuit de refroidissement par une vanne thermostatique ou commandée et on dégaze le fluide caloporteur en aval de la vanne. On extrait des calories du fluide caloporteur en le faisant passer à travers un radiateur principal et un radiateur supplémentaire montés en parallèle et on met en communication le circuit principal avec le circuit secondaire lorsqu'on souhaite augmenter le refroidissement du fluide caloporteur. L'invention sera mieux comprise à l'étude de quelques modes de réalisation décrits à titre d'exemples, et illustrés par les dessins annexés, sur lesquels : - la figure 1 est une vue schématique d'un système de refroidissement conforme à l'invention ; - la figure 2 montre l'écoulement du fluide caloporteur en phase de démarrage à froid du moteur thermique, la température du fluide caloporteur étant inférieure à un premier seuil ; - la figure 3 est une vue analogue à la figure 2, montrant l'écoulement du fluide caloporteur lorsque la température de celui-ci a dépassé un premier seuil tout en restant inférieure à un deuxième seuil supérieur au premier ; - la figure 4 est une vue analogue à la figure 2, illustrant la circulation du fluide caloporteur lorsque la température de celui-ci a dépassé le deuxième seuil ; - la figure 5 est une vue analogue à la figure 2 montrant l'écoulement du fluide caloporteur pour un refroidissement maximal ; - la figure 6 est une vue analogue à la figure 5 montrant une variante d'écoulement du fluide caloporteur pour un refroidissement maximal ; système de refroidissement selon réalisation d'un système de refroidissement selon l'invention. Tel qu'illustré sur la figure 1, le système de refroidissement pour groupe motopropulseur de véhicule automobile est adapté au refroidissement d'un moteur thermique 1 et de différents organes associés. Le refroidissement du moteur 1 est obtenu tout d'abord par circulation d'un fluide caloporteur tel que de l'eau, dans un circuit de refroidissement 2 comprenant une branche aller 2a et une branche retour 2b. Une pompe à eau 3 entraînée mécaniquement par le moteur 1, met en circulation le fluide caloporteur dans le circuit de refroidissement 2. Le circuit 2 comprend un aérotherme 4. Sur la figure 1 on a représenté différents organes à titre d'exemples qui nécessitent un refroidissement à un niveau de température comparable à celui du moteur thermique, niveau qui sera appelé dans la présente description niveau haut . - la figure 7 est une vue schématique d'un deuxième mode de réalisation d'un l'invention ; et - la figure 8 est une vue schématique d'un troisième mode de I1 s'agit notamment d'un injecteur supplémentaire qui peut être monté par exemple dans la ligne d'échappement du moteur thermique afin d'assurer la régénération d'un filtre à particules. Cet injecteur supplémentaire est refroidi par un échangeur de chaleur 5 monté en parallèle de l'aérotherme 4 dans le circuit de refroidissement 2. De même, on a représenté sur la figure 1 un échangeur de chaleur 6 capable de refroidir l'huile de lubrification du moteur 1. L'échangeur 6 est monté dans une dérivation 7 du circuit de refroidissement 2 sur la branche de retour 2b de celui-ci. Une vanne thermostatique 8 est montée dans un circuit principal 9 qui peut être parcouru par le fluide caloporteur sortant du moteur thermique 1 lorsque la vanne thermostatique 8 est ouverte, c'est-à-dire lorsque la température du fluide caloporteur dépasse un premier seuil de température T1 qui correspond à la limite inférieure du niveau haut . La vanne thermostatique 8 peut être remplacée par une vanne commandée, par exemple électriquement, associée à un capteur de température du fluide caloporteur, fournissant un signal de commande. Le circuit principal 9 comporte une branche aller 9a et une branche retour 9b. La vanne thermostatique 8 est montée sur la branche aller 9a. Un radiateur principal 10 et un radiateur supplémentaire 11 sont montés dans le circuit principal 9. Un vase d'expansion 12 traversé par le fluide caloporteur est monté en aval de la vanne thermostatique 8. Une conduite 13 communiquant avec la branche aller 9a est reliée à l'entrée 14 du radiateur principal 10. Une conduite 15 piquée sur la branche aller 9a est reliée à l'entrée du radiateur supplémentaire 11. Une conduite 16 également piquée sur la branche aller 9a, en aval de la vanne thermostatique 8, est reliée à l'entrée du vase d'expansion 12. Le vase d'expansion 12 permet notamment le dégazage du fluide caloporteur. A cet effet, il comprend un récipient hermétiquement fermé, une entrée en partie basse pour le fluide caloporteur et une sortie en partie haute. La sortie du radiateur supplémentaire 11 est reliée par une conduite 17, d'une part à la branche retour 9b du circuit principal 9, par un branchement 18 et d'autre part à la sortie du radiateur principal 10. Une vanne thermostatique 19, capable de s'ouvrir à partir d'une température T2 supérieure au seuil d'ouverture T1 de la vanne 8, est montée dans le branchement 18. La vanne thermostatique 19 peut également être remplacée, comme la vanne thermostatique 8, par une vanne commandée du même type. La sortie 22 du radiateur principal 10 est reliée à un échangeur de chaleur 23 destiné à refroidir l'huile de la boîte de vitesses du véhicule automobile. En sortie de l'échangeur 23, la conduite 24 est piquée sur la branche de retour 9b du circuit principal 9. De même, la conduite 25 reliée à la sortie du vase d'expansion 12 est piquée sur la branche de retour 9b du circuit principal 9. Le système de refroidissement comprend en outre un circuit de refroidissement secondaire 26 avec une branche aller 26a et une branche retour 26b. Une pompe de circulation électrique 27 est montée dans la branche aller 26a. Le fluide caloporteur s'écoulant dans le circuit secondaire 26 est à un niveau de température inférieur au niveau haut . On parlera ici de niveau bas . Le fluide caloporteur mis en circulation par la pompe 27 traverse un premier échangeur de chaleur 28 capable de refroidir le système de recirculation partielle des gaz d'échappement (EGR), puis un échangeur de chaleur 29 capable de refroidir la vanne de commande du système de recirculation des gaz d'échappement EGR. Un échangeur de chaleur 30 est également prévu pour refroidir le turbocompresseur du moteur thermique dans l'exemple illustré. L'échangeur de chaleur 30 est monté en parallèle de l'échangeur de chaleur 29. Le circuit secondaire 26 comprend un radiateur secondaire 31 parcouru par le fluide caloporteur au bas niveau de température. Une vanne trois voies commandée 31b est montée dans la branche retour 26b du circuit secondaire 26. La vanne 31b est également connectée par un conduit 32, directement au circuit de refroidissement 2, à la sortie du moteur 1. Elle est donc capable de mettre en communication le fluide caloporteur à haute température avec le circuit secondaire 26. La vanne 31b peut être remplacée par une vanne thermostatique.  It is also possible to cool a turbocharger, the heat engine of which is equipped with the heat transfer fluid flowing through the secondary circuit. Alternatively, the turbocharger can be mounted in a branch of the main circuit, being associated with an electric pump, to be cooled by the coolant flowing through the main circuit when the engine is stopped. It is advantageous to connect the turbocharger in parallel with the exhaust gas recirculation (EGR) circuit, thereby avoiding the need to provide an electric pump. According to another aspect, the invention also relates to a method of cooling a power unit of a motor vehicle using a coolant circulating in a cooling circuit, in which the heat transfer fluid is also passed through a main circuit to cool a first set of powertrain members at a first temperature level, and circulating the coolant in a secondary circuit for cooling a second set of powertrain members to a second temperature level, lower than the first level. The main circuit and the secondary circuit can be isolated from the cooling circuit by a thermostatic or controlled valve and the coolant is degassed downstream of the valve. Calories are extracted from the coolant by passing it through a main radiator and an additional radiator connected in parallel, and the main circuit is put into communication with the secondary circuit when it is desired to increase the cooling of the coolant. The invention will be better understood from the study of some embodiments described by way of example, and illustrated by the appended drawings, in which: FIG. 1 is a schematic view of a cooling system conforming to FIG. invention; FIG. 2 shows the flow of the heat transfer fluid during the cold start phase of the heat engine, the temperature of the coolant being lower than a first threshold; - Figure 3 is a view similar to Figure 2, showing the flow of heat transfer fluid when the temperature thereof has exceeded a first threshold while remaining lower than a second threshold greater than the first; - Figure 4 is a view similar to Figure 2, illustrating the circulation of the coolant when the temperature thereof has exceeded the second threshold; - Figure 5 is a view similar to Figure 2 showing the flow of heat transfer fluid for maximum cooling; - Figure 6 is a view similar to Figure 5 showing a variant of the heat transfer fluid flow for maximum cooling; cooling system according to the production of a cooling system according to the invention. As illustrated in Figure 1, the cooling system for powertrain of a motor vehicle is adapted to the cooling of a heat engine 1 and various associated members. The cooling of the engine 1 is obtained firstly by circulating a coolant such as water, in a cooling circuit 2 comprising a forward branch 2a and a return branch 2b. A water pump 3 driven mechanically by the engine 1, circulates the heat transfer fluid in the cooling circuit 2. The circuit 2 comprises a heater 4. In FIG. 1 there are shown various members as examples which require a cooling to a temperature level comparable to that of the engine, which level will be called in this description high level. FIG. 7 is a schematic view of a second embodiment of an invention; and FIG. 8 is a diagrammatic view of a third embodiment of a particular injector which can be mounted, for example, in the exhaust line of the heat engine to ensure the regeneration of a filter. with particles. This additional injector is cooled by a heat exchanger 5 connected in parallel with the heater 4 in the cooling circuit 2. Likewise, there is shown in FIG. 1 a heat exchanger 6 capable of cooling the lubricating oil of the 1. The exchanger 6 is mounted in a branch 7 of the cooling circuit 2 on the return branch 2b thereof. A thermostatic valve 8 is mounted in a main circuit 9 which can be traversed by the heat transfer fluid leaving the heat engine 1 when the thermostatic valve 8 is open, that is to say when the temperature of the heat transfer fluid exceeds a first threshold of temperature T1 which corresponds to the lower limit of the high level. The thermostatic valve 8 can be replaced by a controlled valve, for example electrically, associated with a temperature sensor of the coolant, providing a control signal. The main circuit 9 comprises a forward branch 9a and a return branch 9b. The thermostatic valve 8 is mounted on the forward leg 9a. A main radiator 10 and an additional radiator 11 are mounted in the main circuit 9. An expansion vessel 12 through which the coolant flows is mounted downstream of the thermostatic valve 8. A pipe 13 communicating with the forward leg 9a is connected to the inlet 14 of the main radiator 10. A pipe 15 stitched on the forward leg 9a is connected to the inlet of the additional radiator 11. A pipe 16 also stitched on the forward leg 9a, downstream of the thermostatic valve 8, is connected at the inlet of the expansion vessel 12. The expansion vessel 12 allows in particular the degassing of the coolant. For this purpose, it comprises a hermetically sealed container, an inlet at the bottom for the coolant and an outlet at the top. The output of the additional radiator 11 is connected by a pipe 17, on the one hand to the return branch 9b of the main circuit 9, by a connection 18 and on the other hand to the output of the main radiator 10. A thermostatic valve 19, capable to open from a temperature T2 greater than the opening threshold T1 of the valve 8, is mounted in the branch 18. The thermostatic valve 19 can also be replaced, like the thermostatic valve 8, by a valve controlled by same type. The outlet 22 of the main radiator 10 is connected to a heat exchanger 23 for cooling the gearbox oil of the motor vehicle. At the outlet of the exchanger 23, the pipe 24 is stitched on the return leg 9b of the main circuit 9. Similarly, the pipe 25 connected to the outlet of the expansion tank 12 is stitched on the return leg 9b of the circuit main 9. The cooling system further comprises a secondary cooling circuit 26 with a forward branch 26a and a return branch 26b. An electric circulation pump 27 is mounted in the forward leg 26a. The heat transfer fluid flowing in the secondary circuit 26 is at a temperature level below the high level. We will speak here of low level. The heat transfer fluid circulated by the pump 27 passes through a first heat exchanger 28 capable of cooling the partial exhaust gas recirculation system (EGR), then a heat exchanger 29 capable of cooling the control valve of the exhaust gas system. EGR exhaust gas recirculation. A heat exchanger 30 is also provided for cooling the turbocharger of the engine in the example shown. The heat exchanger 30 is connected in parallel with the heat exchanger 29. The secondary circuit 26 comprises a secondary radiator 31 traversed by the heat transfer fluid at the low temperature level. A controlled three-way valve 31b is mounted in the return branch 26b of the secondary circuit 26. The valve 31b is also connected via a duct 32, directly to the cooling circuit 2, at the output of the engine 1. It is therefore able to implement communicating the heat transfer fluid at high temperature with the secondary circuit 26. The valve 31b can be replaced by a thermostatic valve.

La branche de retour 26b du circuit secondaire 26 est également reliée directement à la branche retour 9b du circuit principal 9, par un conduit 33. Une vanne commandée 34 est en outre montée dans une dérivation 35 mettant en communication la branche aller 26a du circuit secondaire 26 et la branche retour 9b du circuit principal 9. La vanne 34 peut être remplacée par une vanne thermostatique. De plus, les deux vannes 19 et 34 qui sont, dans l'exemple illustré, des vannes deux voies, peuvent être remplacées par une seule vanne trois voies.  The return branch 26b of the secondary circuit 26 is also connected directly to the return branch 9b of the main circuit 9, via a conduit 33. A controlled valve 34 is also mounted in a branch 35 putting in communication the forward branch 26a of the secondary circuit. 26 and the return branch 9b of the main circuit 9. The valve 34 can be replaced by a thermostatic valve. In addition, the two valves 19 and 34 which are, in the illustrated example, two-way valves, can be replaced by a single three-way valve.

En se reportant à la figure 2, on va maintenant décrire la circulation du fluide caloporteur dans une phase de démarrage du moteur thermique 1, c'est-à-dire lorsque la température du fluide caloporteur est inférieure au premier seuil de température TI. Sur la figure 2 et les figures 3, 4 et 5, le fluide caloporteur à haute température (niveau haut ) a été représenté par un trait gras, les flèches notant le sens de circulation dans le circuit de refroidissement 2 et dans le circuit principal 9. Le fluide caloporteur s'écoulant à température plus basse (niveau bas ) dans le circuit secondaire 26 a été représenté en tirets, les flèches montrant le sens de circulation. Les traits fins illustrent les canalisations qui ne sont pas parcourues par le fluide caloporteur. Lorsque le moteur thermique 1 fonctionne à froid, par exemple au démarrage, comme illustré sur la figure 2, la vanne thermostatique 8 est fermée. Le fluide caloporteur s'écoule dans le circuit de refroidissement 2 entraîné par la pompe à eau 3. L'aérotherme 4 permet de transférer les calories du fluide caloporteur à l'habitacle du véhicule ainsi que le refroidissement de l'injecteur supplémentaire grâce à l'échangeur 5, et le refroidissement de l'huile de lubrification du moteur grâce à l'échangeur 6.  Referring to Figure 2, we will now describe the circulation of the heat transfer fluid in a starting phase of the engine 1, that is to say when the temperature of the heat transfer fluid is lower than the first temperature threshold TI. In FIG. 2 and FIGS. 3, 4 and 5, the heat-transfer fluid at high temperature (high level) has been represented by a bold line, the arrows denoting the direction of circulation in the cooling circuit 2 and in the main circuit 9 The heat transfer fluid flowing at a lower temperature (low level) in the secondary circuit 26 has been shown in dashed lines, the arrows showing the direction of circulation. The fine lines illustrate the pipes that are not traversed by the heat transfer fluid. When the heat engine 1 runs cold, for example at startup, as shown in Figure 2, the thermostatic valve 8 is closed. The heat transfer fluid flows into the cooling circuit 2 driven by the water pump 3. The heater 4 transfers the heat transfer fluid calories to the passenger compartment of the vehicle and the cooling of the additional injector through the exchanger 5, and the cooling of the engine lubricating oil through the exchanger 6.

La pompe électrique 27 est en fonctionnement et fait circuler le fluide caloporteur au niveau bas de température dans le circuit secondaire 26. Celui-ci traverse le radiateur secondaire 31 dans le sens des flèches indiqué sur la figure 2. Le refroidissement du système de recirculation des gaz d'échappement EGR par les échangeurs 28 et 29 ainsi que le refroidissement du turbocompresseur par l'échangeur 30 sont assurés de manière efficace puisque le fluide caloporteur est bien refroidi par le radiateur secondaire 31 en étant maintenu au niveau bas de température. Dans ce mode de fonctionnement, la vanne commandée 34 est fermée pour empêcher toute recirculation à l'envers dans le vase d'expansion 12, recirculation qui risquerait de perturber son fonctionnement. I1 est en effet essentiel que le fluide caloporteur pénètre toujours par la conduite d'entrée 16 du vase d'expansion 12, qui pénètre en position basse dans le vase 12 et ressorte par la conduite de sortie 25 située en position haute, afin d'assurer le dégazage. La vanne trois voies 31b est placée de façon à laisser uniquement passer le fluide caloporteur de la branche retour 26b vers le radiateur secondaire 31. Aucune circulation n'est autorisée dans le conduit 32.  The electric pump 27 is in operation and circulates the heat transfer fluid at the low temperature level in the secondary circuit 26. This passes through the secondary radiator 31 in the direction of the arrows indicated in FIG. 2. The cooling of the recirculation system of the EGR exhaust gas through the exchangers 28 and 29 and the cooling of the turbocharger by the heat exchanger 30 are effectively provided since the heat transfer fluid is well cooled by the secondary radiator 31 while being kept at low temperature. In this mode of operation, the controlled valve 34 is closed to prevent any recirculation upside down in the expansion tank 12, recirculation which could disrupt its operation. It is indeed essential that the coolant always enters through the inlet line 16 of the expansion tank 12, which enters the lower position in the vessel 12 and out through the outlet pipe 25 located in the upper position, in order to ensure the degassing. The three-way valve 31b is placed so as to let only the heat transfer fluid of the return branch 26b to the secondary radiator 31. No circulation is allowed in the conduit 32.

La figure 3 illustre le fonctionnement du système de refroidissement lorsque le véhicule est en phase de roulage intermédiaire, la température du fluide caloporteur étant supérieure au premier seuil de température T1 mais cependant inférieure à un deuxième seuil T2 avec T2 supérieur à T1. La vanne thermostatique 8 est alors partiellement ouverte. La pompe électrique 27 fonctionne toujours et le refroidissement du système de recirculation des gaz d'échappement EGR se fait par la traversée du radiateur secondaire 31. Le fluide caloporteur s'écoule également dans le circuit principal 9 partiellement ouvert, et peut traverser le vase d'expansion 12 depuis la conduite d'entrée 16 vers la conduite de sortie 25. Le fluide caloporteur provenant de la branche aller 9a du circuit 9 traverse également le radiateur supplémentaire 1l à partir de la conduite 15. Le fluide ayant traversé le radiateur supplémentaire 11 revient se mélanger avec le fluide caloporteur sortant du radiateur principal 10.  FIG. 3 illustrates the operation of the cooling system when the vehicle is in an intermediate rolling phase, the temperature of the coolant being greater than the first temperature threshold T1 but still less than a second threshold T2 with T2 greater than T1. The thermostatic valve 8 is then partially open. The electric pump 27 still operates and the cooling of the exhaust gas recirculation system EGR is carried out through the passage of the secondary radiator 31. The heat transfer fluid also flows into the main circuit 9, which is partially open, and can pass through the vessel. expansion 12 from the inlet pipe 16 to the outlet pipe 25. The heat transfer fluid from the forward leg 9a of the circuit 9 also passes through the additional radiator 11 from the pipe 15. The fluid having passed through the additional radiator 11 returns to mix with the heat transfer fluid leaving the main radiator 10.

La vanne commandée 34 est fermée et la vanne trois voies 31b laisse le passage du fluide caloporteur uniquement depuis la branche de retour 26b vers le radiateur secondaire 31 comme dans la configuration de la figure 2.  The controlled valve 34 is closed and the three-way valve 31b leaves the passage of the coolant only from the return branch 26b to the secondary radiator 31 as in the configuration of Figure 2.

On notera que tout le débit de fluide caloporteur du circuit principal 9 alimentant le moteur thermique 1 traverse l'échangeur 23 de la boîte de vitesses et que le dégazage se fait convenablement grâce à la circulation dans le bon sens à travers le vase d'expansion 12.  It will be noted that all the heat transfer fluid flow rate of the main circuit 9 supplying the heat engine 1 passes through the exchanger 23 of the gearbox and that the degassing is done properly thanks to the flow in the correct direction through the expansion vessel. 12.

Tant que la température ne dépasse pas un seuil T2 supérieur au premier seuil T1, la vanne thermostatique 19 reste fermée. Dès que ce deuxième seuil est franchi, la vanne 19 s'ouvre pour augmenter la perméabilité du circuit 9 et donc le débit de fluide caloporteur traversant les échangeurs. Cette configuration est illustrée sur la figure 4. Lorsque le besoin de refroidissement du moteur thermique augmente encore, la vanne thermostatique 8 étant totalement ouverte, la vanne trois voies 31b est commandée de façon à changer de position, laissant le passage du fluide caloporteur au premier niveau haut de température provenant du moteur 1 vers le radiateur secondaire 31 et interdisant le retour du fluide caloporteur au deuxième niveau bas de température, provenant de la branche de retour 26b du circuit secondaire 26. Cette phase est illustrée sur la figure 5. Le débit du fluide caloporteur provenant du moteur 1 se répartit dans le radiateur principal 10, le radiateur supplémentaire 11 et le radiateur secondaire 31. Dans cette configuration, la vanne thermostatique 19 est ouverte. Dans ce mode de fonctionnement, le fluide caloporteur provenant de la branche retour 26b du circuit secondaire 26 revient dans la branche retour 9b du circuit 9 par la conduite 33. Sur la figure 5, la vanne 34 est représentée fermée. Sur la figure 6 au contraire, la seule différence est la vanne 34 ouverte, ce qui réalise un bipass des échangeurs 28 et 29 du système EGR de façon à augmenter encore le débit traversant le radiateur secondaire 31.  As long as the temperature does not exceed a threshold T2 greater than the first threshold T1, the thermostatic valve 19 remains closed. As soon as this second threshold is crossed, the valve 19 opens to increase the permeability of the circuit 9 and therefore the flow of heat transfer fluid through the exchangers. This configuration is illustrated in FIG. 4. When the cooling need of the heat engine still increases, the thermostatic valve 8 being completely open, the three-way valve 31b is controlled so as to change its position, leaving the passage of the coolant to the first one. high level of temperature from the engine 1 to the secondary radiator 31 and prohibiting the return of the coolant at the second low temperature level, from the return branch 26b of the secondary circuit 26. This phase is illustrated in Figure 5. The flow heat transfer fluid from the engine 1 is distributed in the main radiator 10, the additional radiator 11 and the secondary radiator 31. In this configuration, the thermostatic valve 19 is open. In this operating mode, the coolant coming from the return branch 26b of the secondary circuit 26 returns to the return branch 9b of the circuit 9 via the line 33. In FIG. 5, the valve 34 is shown closed. In FIG. 6, on the contrary, the only difference is the valve 34 open, which makes a bipass of the exchangers 28 and 29 of the EGR system so as to further increase the flow rate passing through the secondary radiator 31.

Dans les modes de fonctionnement illustrés sur les figures 5 et 6, il n'y a plus de risque de recirculation en sens inverse dans le vase d'expansion 12 car le débit de la pompe de circulation 3 est nettement plus important que dans le mode de fonctionnement illustré sur les autres figures. Le système de recirculation des gaz d'échappement EGR ainsi que le turbocompresseur sont toujours refroidis par le circuit secondaire dans lequel circule le fluide caloporteur au bas niveau de température. La pompe électrique 27 peut fonctionner ou être arrêtée selon les conditions de refroidissement souhaitées.  In the modes of operation illustrated in FIGS. 5 and 6, there is no longer any risk of recirculation in the opposite direction in the expansion vessel 12 because the flow rate of the circulation pump 3 is much greater than in the operating mode. operation illustrated in the other figures. The exhaust gas recirculation system EGR and the turbocharger are always cooled by the secondary circuit in which the heat transfer fluid circulates at the low temperature level. The electric pump 27 can be operated or stopped depending on the desired cooling conditions.

On notera que lorsque le moteur 1 est arrêté après avoir fonctionné comme illustré sur les figures 5 et 6, la vanne thermostatique 8, qui était ouverte, se ferme progressivement. La vanne 31 est commandée pour revenir dans la position illustrée sur la figure 2. La circulation du fluide caloporteur dans le circuit secondaire 26 est alors identique à celle qui est illustrée sur la figure 2. La pompe à eau électrique 27 fonctionne pendant un certain temps après l'arrêt du moteur afin de permettre le refroidissement du turbocompresseur au moyen de l'échangeur 30. La vanne commandée 34 doit être fermée afin d'éviter toute circulation en sens inverse dans le vase d'expansion 12. Lors du remplissage de l'ensemble du système de refroidissement, on place la vanne 34 en position ouverte une fois la pompe de circulation 27 arrêtée. La vanne thermostatique 8 est de préférence également ouverte.  Note that when the engine 1 is stopped after operating as shown in Figures 5 and 6, the thermostatic valve 8, which was open, closes gradually. The valve 31 is controlled to return to the position shown in Figure 2. The circulation of the heat transfer fluid in the secondary circuit 26 is then identical to that shown in Figure 2. The electric water pump 27 operates for a certain time after stopping the engine to allow the cooling of the turbocharger by means of the exchanger 30. The controlled valve 34 must be closed in order to prevent any circulation in the opposite direction in the expansion tank 12. When filling the the entire cooling system, the valve 34 is placed in the open position once the circulation pump 27 has stopped. The thermostatic valve 8 is preferably also open.

Le mode de réalisation illustré sur la figure 7, sur laquelle les éléments identiques portent les mêmes références, se distingue du mode de réalisation illustré sur la figure 1 par le montage de l'échangeur de chaleur 30 adapté au refroidissement du turbocompresseur sur une branche 36 en parallèle de l'aérotherme 4, l'échangeur 5 étant également monté sur ladite branche 36. Une pompe à eau électrique supplémentaire 37 est montée dans la branche 36 de façon à améliorer la circulation du fluide caloporteur. Un tel branchement permet d'augmenter le débit de fluide caloporteur traversant l'échangeur 30 par rapport au mode de réalisation illustré sur la figure 1. La figure 8 illustre un autre mode de réalisation qui se différencie du mode de réalisation illustré sur la figure 1 par le montage de l'échangeur 23 destiné au refroidissement de la boîte de vitesses. Dans ce mode de réalisation, l'échangeur 23 est en effet monté sur une dérivation 38 de la branche de retour 9b du circuit principal 9. Un thermostat supplémentaire 39 est monté entre les piquages d'entrée et de sortie de la dérivation 38. On pourrait également adopter dans le mode de réalisation de la figure 8, la modification illustrée sur la figure 7 concernant le montage de l'échangeur 30.  The embodiment illustrated in FIG. 7, in which the identical elements bear the same references, differs from the embodiment illustrated in FIG. 1 by mounting the heat exchanger 30 adapted to cooling the turbocharger on a branch 36. in parallel with the heater 4, the exchanger 5 is also mounted on said branch 36. An additional electric water pump 37 is mounted in the branch 36 so as to improve the circulation of the coolant. Such a connection makes it possible to increase the flow rate of heat transfer fluid passing through the heat exchanger 30 with respect to the embodiment illustrated in FIG. 1. FIG. 8 illustrates another embodiment that differs from the embodiment illustrated in FIG. by mounting the exchanger 23 for cooling the gearbox. In this embodiment, the exchanger 23 is in fact mounted on a branch 38 of the return branch 9b of the main circuit 9. An additional thermostat 39 is mounted between the input and output taps of the branch 38. could also adopt in the embodiment of Figure 8, the modification illustrated in Figure 7 relating to the assembly of the exchanger 30.

Claims (11)

REVENDICATIONS 1. Système de refroidissement pour groupe motopropulseur de véhicule automobile, comprenant un circuit principal (9) pouvant être parcouru par un fluide caloporteur pour refroidir un premier ensemble d'organes du groupe motopropulseur à un premier niveau de température, un circuit secondaire (26) pouvant être parcouru par un fluide caloporteur pour refroidir un deuxième ensemble d'organes du groupe motopropulseur à un deuxième niveau de température, inférieur au premier niveau, avec un radiateur principal (10) faisant partie du circuit principal et un radiateur secondaire (31) faisant partie du circuit secondaire, une première vanne thermostatique (8) ou commandée étant montée dans le circuit principal en aval du moteur thermique (1) de façon à isoler le radiateur principal (10) lorsque la température du fluide caloporteur est inférieure à un premier seuil, et un vase d'expansion (12) monté dans le circuit principal en aval de la vanne thermostatique, caractérisé par le fait que les branchements sont tels que le radiateur secondaire (31) peut faire partie également du circuit principal dans un mode de fonctionnement du système, et que le système comprend en outre un radiateur supplémentaire (11) monté en parallèle du radiateur principal (10), et une deuxième vanne (3 lb) capable de laisser passer ou d'interdire le passage du fluide caloporteur provenant du moteur thermique (1) vers le radiateur secondaire.  A motor vehicle power train cooling system, comprising a main circuit (9) capable of being traversed by a heat transfer fluid for cooling a first set of powertrain members to a first temperature level, a secondary circuit (26). which can be traversed by a heat transfer fluid to cool a second set of members of the powertrain to a second temperature level, lower than the first level, with a main radiator (10) forming part of the main circuit and a secondary radiator (31) making part of the secondary circuit, a first thermostatic valve (8) or controlled being mounted in the main circuit downstream of the heat engine (1) so as to isolate the main radiator (10) when the temperature of the coolant is less than a first threshold , and an expansion tank (12) mounted in the main circuit downstream of the thermostatic valve, characterized in that the connections are such that the secondary radiator (31) can also be part of the main circuit in an operating mode of the system, and the system further comprises an additional radiator (11) connected in parallel with the main radiator ( 10), and a second valve (3 lb) capable of allowing or preventing the passage of heat transfer fluid from the engine (1) to the secondary radiator. 2. Système selon la revendication précédente dans lequel une troisième vanne thermostatique ou commandée (34) est montée dans une dérivation (35) entre la branche de retour (9b) du circuit principal (9) et la branche de retour (26b) du circuit secondaire (26) de façon à supprimer toute communication par ladite dérivation lorsque la température du fluide caloporteur est inférieure à un deuxième seuil supérieur au premier seuil.  2. System according to the preceding claim wherein a third thermostatic or controlled valve (34) is mounted in a branch (35) between the return leg (9b) of the main circuit (9) and the return branch (26b) of the circuit secondary (26) so as to eliminate any communication by said derivation when the temperature of the heat transfer fluid is less than a second threshold greater than the first threshold. 3. Système selon l'une des revendications précédentes dans lequel le radiateur principal (10) comprend une entrée principale et une sortie principale reliées directement au circuit principal ainsi qu'une sortie secondaire reliée au circuit principal par l'intermédiaire d'unevanne thermostatique (19), et le radiateur supplémentaire (11) est monté entre l'entrée principale et la sortie secondaire du radiateur principal.  3. System according to one of the preceding claims wherein the main radiator (10) comprises a main inlet and a main output connected directly to the main circuit and a secondary output connected to the main circuit via a thermostatic valve ( 19), and the additional radiator (11) is mounted between the main inlet and the secondary outlet of the main radiator. 4. Système selon l'une des revendications précédentes dans lequel le premier ensemble d'organes du groupe motopropulseur capables d'être refroidis par le fluide caloporteur parcourant le circuit principal comprend un injecteur supplémentaire, le circuit d'huile de lubrification du moteur et la boîte de vitesses du véhicule.  4. System according to one of the preceding claims wherein the first set of members of the powertrain capable of being cooled by the coolant flowing through the main circuit comprises an additional injector, the engine lubricating oil circuit and the vehicle gearbox. 5. Système selon l'une des revendications précédentes dans lequel le deuxième ensemble d'organes du groupe motopropulseur capables d'être refroidis par le fluide caloporteur parcourant le circuit secondaire comprend le circuit de recirculation partielle des gaz d'échappement (EGR) et une vanne de recirculation partielle des gaz d'échappement (EGR).  5. System according to one of the preceding claims wherein the second set of bodies of the powertrain capable of being cooled by the coolant flowing through the secondary circuit comprises the partial recirculation circuit exhaust (EGR) and a partial exhaust gas recirculation valve (EGR). 6. Système selon l'une des revendications précédentes dans lequel une pompe électrique (27) est montée dans le circuit secondaire.  6. System according to one of the preceding claims wherein an electric pump (27) is mounted in the secondary circuit. 7. Système selon l'une des revendications précédentes dans lequel un échangeur de refroidissement (23) de l'huile de la boîte de vitesses est monté en sortie du radiateur principal.  7. System according to one of the preceding claims wherein a cooling exchanger (23) of the gearbox oil is mounted at the output of the main radiator. 8. Système selon l'une des revendications 1 à 6 dans lequel un échangeur de refroidissement de l'huile de la boîte de vitesses est monté dans une dérivation de la branche de retour du circuit principal équipée d'une vanne thermostatique ou commandée.  8. System according to one of claims 1 to 6 wherein a gearbox oil cooling exchanger is mounted in a branch of the return leg of the main circuit equipped with a thermostatic valve or controlled. 9. Système selon l'une des revendications précédentes dans lequel un turbocompresseur est refroidi par le fluide caloporteur parcourant le circuit secondaire.  9. System according to one of the preceding claims wherein a turbocharger is cooled by the coolant flowing through the secondary circuit. 10. Système selon l'une des revendications 1 à 8 dans lequel un turbocompresseur monté dans une branche du circuit principal, associé à une pompe électrique (37), est refroidi par le fluide caloporteur parcourant le circuit principal.  10. System according to one of claims 1 to 8 wherein a turbocharger mounted in a branch of the main circuit, associated with an electric pump (37), is cooled by the coolant flowing through the main circuit. 11. Procédé de refroidissement d'un groupe motopropulseur de véhicule automobile utilisant un fluide caloporteur circulant dans un circuit de refroidissement, dans lequel on fait en outre passer le fluide caloporteur dans un circuit principal pour refroidir un premier ensemble d'organes du groupe motopropulseur à un premier niveau de température, et on fait circuler le fluide caloporteur dans un circuit secondaire pour refroidir un deuxième ensemble d'organes du groupemotopropulseur à un deuxième niveau de température, inférieur au premier niveau, le circuit principal et le circuit secondaire pouvant être isolés du circuit de refroidissement par une vanne thermostatique ou commandée et on dégaze le fluide caloporteur en aval de la vanne thermostatique, caractérisé par le fait qu'on extrait des calories du fluide caloporteur en le faisant passer à travers un radiateur principal et un radiateur supplémentaire montés en parallèle et qu'on met en communication le circuit principal avec le circuit secondaire lorsqu'on souhaite augmenter le refroidissement du fluide caloporteur.  11. A method of cooling a power unit of a motor vehicle using a coolant circulating in a cooling circuit, wherein the coolant is further passed through a main circuit for cooling a first set of members of the powertrain to a first temperature level, and circulating the heat transfer fluid in a secondary circuit to cool a second set of members of the powertrain unit to a second temperature level, lower than the first level, the main circuit and the secondary circuit being isolated from the cooling circuit by a thermostatic or controlled valve and the coolant is degassed downstream of the thermostatic valve, characterized by extracting heat from the coolant by passing it through a main radiator and an additional radiator mounted in parallel and put in communication the circui t with the secondary circuit when it is desired to increase the cooling of the coolant.
FR0754036A 2007-03-26 2007-03-26 SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE. Expired - Fee Related FR2914357B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0754036A FR2914357B1 (en) 2007-03-26 2007-03-26 SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE.
PCT/FR2008/050467 WO2008132369A1 (en) 2007-03-26 2008-03-19 System and method for cooling the propulsion unit of an automobile
EP08775721A EP2126308A1 (en) 2007-03-26 2008-03-19 System and method for cooling the propulsion unit of an automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0754036A FR2914357B1 (en) 2007-03-26 2007-03-26 SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE.

Publications (2)

Publication Number Publication Date
FR2914357A1 true FR2914357A1 (en) 2008-10-03
FR2914357B1 FR2914357B1 (en) 2009-05-01

Family

ID=38231380

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0754036A Expired - Fee Related FR2914357B1 (en) 2007-03-26 2007-03-26 SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE.

Country Status (3)

Country Link
EP (1) EP2126308A1 (en)
FR (1) FR2914357B1 (en)
WO (1) WO2008132369A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942004A1 (en) * 2009-02-06 2010-08-13 Peugeot Citroen Automobiles Sa Engine e.g. diesel engine, for motor vehicle, has exhaust manifold integrated in cylinder head, turbocharger providing supercharged air to engine, and cooling circuit cooling supercharged air cooler and exhaust manifold
FR2948727A1 (en) * 2009-07-29 2011-02-04 Peugeot Citroen Automobiles Sa Cooling system for supercharged internal combustion engine of automobile, has valve authorizing flow of fluid from high or low temperature circuit into cooling branch when flow is established or not established in exchanger, respectively
WO2012079715A1 (en) * 2010-12-18 2012-06-21 Volkswagen Aktiengesellschaft Cooling circuit for an internal combustion engine having exhaust gas recirculation and method for operating an internal combustion engine having such a cooling circuit
FR2970301A1 (en) * 2011-01-10 2012-07-13 Eddie Essayem Device for controlling temperature of engine of liquid-cooled moped e.g. scooter, has temperature sensor connected to electronic control circuit for actuating solenoid valves that allow moving heat transfer medium through control radiator
FR3069288A1 (en) * 2017-07-19 2019-01-25 Renault S.A.S. SYSTEM FOR DISPENSING LIQUID IN A COOLING CIRCUIT

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353757A (en) * 1992-07-13 1994-10-11 Nippondenso Co., Ltd. Vehicular use cooling apparatus
WO2003042515A1 (en) * 2001-11-13 2003-05-22 Valeo Thermique Moteur System for managing heat energy produced by a motor vehicle heat engine
WO2003042619A1 (en) * 2001-11-13 2003-05-22 Valeo Thermique Moteur Heat exchanger module comprising a main radiator and a secondary radiator
WO2004085807A1 (en) * 2003-03-28 2004-10-07 Scania Cv Ab (Publ) Cooling arrangement and a method for cooling a retarder
FR2864150A1 (en) * 2003-12-22 2005-06-24 Valeo Thermique Moteur Sa Heat energy controlling system for motor vehicle, has switching units activated sequentially during passage of system from disconnected to connected configurations in which radiator is linked to low and high temperature circuits
GB2420847A (en) * 2004-12-04 2006-06-07 Ford Global Tech Llc Engine cooling system with independent control of coolant supply through a cylinder head and a cylinder block
FR2900197A1 (en) * 2006-04-21 2007-10-26 Renault Sas SYSTEM AND METHOD FOR CONTROLLING THE TEMPERATURE OF A SUPERCHARGED ENGINE AND COMPRISING AN EXHAUST GAS RECYCLING CIRCUIT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353757A (en) * 1992-07-13 1994-10-11 Nippondenso Co., Ltd. Vehicular use cooling apparatus
WO2003042515A1 (en) * 2001-11-13 2003-05-22 Valeo Thermique Moteur System for managing heat energy produced by a motor vehicle heat engine
WO2003042619A1 (en) * 2001-11-13 2003-05-22 Valeo Thermique Moteur Heat exchanger module comprising a main radiator and a secondary radiator
WO2004085807A1 (en) * 2003-03-28 2004-10-07 Scania Cv Ab (Publ) Cooling arrangement and a method for cooling a retarder
FR2864150A1 (en) * 2003-12-22 2005-06-24 Valeo Thermique Moteur Sa Heat energy controlling system for motor vehicle, has switching units activated sequentially during passage of system from disconnected to connected configurations in which radiator is linked to low and high temperature circuits
GB2420847A (en) * 2004-12-04 2006-06-07 Ford Global Tech Llc Engine cooling system with independent control of coolant supply through a cylinder head and a cylinder block
FR2900197A1 (en) * 2006-04-21 2007-10-26 Renault Sas SYSTEM AND METHOD FOR CONTROLLING THE TEMPERATURE OF A SUPERCHARGED ENGINE AND COMPRISING AN EXHAUST GAS RECYCLING CIRCUIT

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942004A1 (en) * 2009-02-06 2010-08-13 Peugeot Citroen Automobiles Sa Engine e.g. diesel engine, for motor vehicle, has exhaust manifold integrated in cylinder head, turbocharger providing supercharged air to engine, and cooling circuit cooling supercharged air cooler and exhaust manifold
FR2948727A1 (en) * 2009-07-29 2011-02-04 Peugeot Citroen Automobiles Sa Cooling system for supercharged internal combustion engine of automobile, has valve authorizing flow of fluid from high or low temperature circuit into cooling branch when flow is established or not established in exchanger, respectively
WO2012079715A1 (en) * 2010-12-18 2012-06-21 Volkswagen Aktiengesellschaft Cooling circuit for an internal combustion engine having exhaust gas recirculation and method for operating an internal combustion engine having such a cooling circuit
FR2970301A1 (en) * 2011-01-10 2012-07-13 Eddie Essayem Device for controlling temperature of engine of liquid-cooled moped e.g. scooter, has temperature sensor connected to electronic control circuit for actuating solenoid valves that allow moving heat transfer medium through control radiator
FR3069288A1 (en) * 2017-07-19 2019-01-25 Renault S.A.S. SYSTEM FOR DISPENSING LIQUID IN A COOLING CIRCUIT

Also Published As

Publication number Publication date
FR2914357B1 (en) 2009-05-01
WO2008132369A1 (en) 2008-11-06
EP2126308A1 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
EP2643643B2 (en) Device for the thermal conditioning of a passenger compartment of a vehicle
EP2066884B1 (en) Cooling circuit for the thermal engine of an automotive vehicle
EP2773522B1 (en) Air-conditioning loop for a heating, ventilation and/or air-conditioning system
EP2935853B1 (en) Engine intake air thermal management device and associated thermal management method
WO2009068504A1 (en) Pollution control and heating device and method for a motor vehicle
FR2914357A1 (en) SYSTEM AND METHOD FOR COOLING A MOTOR POWERTRAIN OF A MOTOR VEHICLE.
FR2731952A1 (en) AIR CONDITIONING FLUID CIRCUIT FOR A VEHICLE FOR ADJUSTABLE POWER HEATING
FR2949515A1 (en) Equipment for reheating e.g. fluid of unit in hybrid car, has heat exchanging units allowing heat exchange between exhaust gas and heat transfer liquid in intermediate circuit, and heat transfer liquid and fluid of unit, respectively
EP3676516B1 (en) Cooling circuit assembly for a heat engine and a gearbox
FR2890697A1 (en) Vehicle engine has Exhaust Gas Recirculation (EGR) circuit equipped with supplementary cooler
EP2126309A1 (en) System and method for cooling a motor propulsion unit on a motor vehicle
FR2976322A1 (en) Air distributor for combustion engine of heat transfer system in car, has two U-shaped heat exchangers connected in series with respect to charging air and traversed by coolant having specified temperature at inlets of exchangers
FR2908457A3 (en) Recycled exhaust gas cooling system for e.g. oil engine of motor vehicle, has main circuit, and secondary circuit with secondary valve for limiting or preventing circulation of liquid in secondary circuit when cooling is not required
FR3078389A1 (en) THERMAL INSTALLATION FOR HEAT AND ELECTRIC MOTORS WITH AUTOMATIC ELECTRICAL TRANSMISSION AND FLUID / FLUID CONDENSER
FR2936393A1 (en) Vehicle i.e. diesel hybrid vehicle, has supply circuit for supplying fuel to heat engine and including branch traversed by cooler exchanger of electrical system, where fuel is used as coolant in exchanger
EP2061959B1 (en) System for cooling the propulsion unit of a motor vehicle and method for controlling such a system
FR2978206A1 (en) Temperature control device for car, has recycled gas radiator connected between port and connection point, and valve system for circulating fluids of principal and secondary circuits in recycled gas radiator
EP3557177B1 (en) Radiator for cooling with integrated bypass and cooling circuit
FR3059610A1 (en) METHOD FOR CONTROLLING A TEMPERATURE OF GEARBOX OIL
FR3066151B1 (en) METHOD FOR CONTROLLING A TEMPERATURE OF GEARBOX OIL BY SQUADING ON A RADIATOR DRIVE
FR3066537B1 (en) METHOD FOR CONTROLLING A LUBRICATING OIL TEMPERATURE OF A THERMAL MOTOR AT TWO OUTPUT FLOWS
FR3114127A3 (en) Thermostated degassing tapping
FR3078388A1 (en) THERMAL INSTALLATION FOR INTERNAL COMBUSTION ENGINE WITH AIR CONDITIONING OPTIMIZED BY SYNERGY BETWEEN ITS COLD AND HOT LOOPS
WO2022117374A1 (en) Refrigerating fluid circuit comprising an accumulator bypass branch
FR3109912A1 (en) Thermal management device for a hybrid motor vehicle

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 10

ST Notification of lapse

Effective date: 20171130