FR2825578A1 - Reducing sensitivity of plants to diseases and pathogens, by overexpressing a lipoxygenase, also vectors and cassettes for the process and transformed plants - Google Patents
Reducing sensitivity of plants to diseases and pathogens, by overexpressing a lipoxygenase, also vectors and cassettes for the process and transformed plants Download PDFInfo
- Publication number
- FR2825578A1 FR2825578A1 FR0107470A FR0107470A FR2825578A1 FR 2825578 A1 FR2825578 A1 FR 2825578A1 FR 0107470 A FR0107470 A FR 0107470A FR 0107470 A FR0107470 A FR 0107470A FR 2825578 A1 FR2825578 A1 FR 2825578A1
- Authority
- FR
- France
- Prior art keywords
- lipoxygenase
- plants
- plant
- promoter
- lox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000128 Lipoxygenases Proteins 0.000 title claims abstract description 181
- 102000003820 Lipoxygenases Human genes 0.000 title claims abstract description 179
- 239000013598 vector Substances 0.000 title claims abstract description 26
- 244000052769 pathogen Species 0.000 title claims abstract description 23
- 201000010099 disease Diseases 0.000 title claims abstract description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims description 47
- 230000035945 sensitivity Effects 0.000 title abstract description 7
- 230000008569 process Effects 0.000 title description 4
- 230000014509 gene expression Effects 0.000 claims abstract description 63
- 241000196324 Embryophyta Species 0.000 claims description 170
- 230000000694 effects Effects 0.000 claims description 41
- 241000701489 Cauliflower mosaic virus Species 0.000 claims description 27
- 108091033319 polynucleotide Proteins 0.000 claims description 7
- 102000040430 polynucleotide Human genes 0.000 claims description 7
- 239000002157 polynucleotide Substances 0.000 claims description 7
- 101000983844 Oryza sativa subsp. japonica Linoleate 9S-lipoxygenase 1 Proteins 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 4
- 230000037011 constitutive activity Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 abstract 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 57
- 244000061176 Nicotiana tabacum Species 0.000 description 55
- 230000009261 transgenic effect Effects 0.000 description 44
- 108090000623 proteins and genes Proteins 0.000 description 37
- 230000003993 interaction Effects 0.000 description 23
- 210000004027 cell Anatomy 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000000284 extract Substances 0.000 description 17
- 230000003902 lesion Effects 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 16
- 108090000790 Enzymes Proteins 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 15
- 229930027917 kanamycin Natural products 0.000 description 14
- 229960000318 kanamycin Drugs 0.000 description 14
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 14
- 229930182823 kanamycin A Natural products 0.000 description 14
- 238000009825 accumulation Methods 0.000 description 13
- 235000014113 dietary fatty acids Nutrition 0.000 description 13
- 239000000194 fatty acid Substances 0.000 description 13
- 229930195729 fatty acid Natural products 0.000 description 13
- 238000011081 inoculation Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000002018 overexpression Effects 0.000 description 12
- 239000005712 elicitor Substances 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 230000009466 transformation Effects 0.000 description 11
- 241000894006 Bacteria Species 0.000 description 10
- 101150106914 LOX1 gene Proteins 0.000 description 10
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 10
- 150000004665 fatty acids Chemical class 0.000 description 10
- 235000020778 linoleic acid Nutrition 0.000 description 10
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 10
- 230000037361 pathway Effects 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 101100353046 Caenorhabditis elegans mig-6 gene Proteins 0.000 description 9
- 108700019146 Transgenes Proteins 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 241000233866 Fungi Species 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 230000007123 defense Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 241000238631 Hexapoda Species 0.000 description 7
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 7
- 240000003768 Solanum lycopersicum Species 0.000 description 7
- 244000061456 Solanum tuberosum Species 0.000 description 7
- HNICUWMFWZBIFP-KDFHGORWSA-N alpha-Artemisic acid Chemical compound CCCCCC(O)\C=C\C=C\CCCCCCCC(O)=O HNICUWMFWZBIFP-KDFHGORWSA-N 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 230000001717 pathogenic effect Effects 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- 206010020649 Hyperkeratosis Diseases 0.000 description 6
- 235000002595 Solanum tuberosum Nutrition 0.000 description 6
- 208000027418 Wounds and injury Diseases 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 108010064894 hydroperoxide lyase Proteins 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- MBDOYVRWFFCFHM-SNAWJCMRSA-N (2E)-hexenal Chemical compound CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 4
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 4
- 241000233654 Oomycetes Species 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 150000002432 hydroperoxides Chemical class 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000012064 sodium phosphate buffer Substances 0.000 description 4
- 238000004809 thin layer chromatography Methods 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000001131 transforming effect Effects 0.000 description 4
- 241000589158 Agrobacterium Species 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- -1 Fatty acid hydroperoxides Chemical class 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 101100343701 Mus musculus Loxl1 gene Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 241000233622 Phytophthora infestans Species 0.000 description 3
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 3
- 108060000307 allene oxide cyclase Proteins 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000010804 cDNA synthesis Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 108010069299 divinyl ether synthase Proteins 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 241001233957 eudicotyledons Species 0.000 description 3
- 230000035784 germination Effects 0.000 description 3
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 3
- 230000037353 metabolic pathway Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 108010058731 nopaline synthase Proteins 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 235000012015 potatoes Nutrition 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241000219194 Arabidopsis Species 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 2
- 241000335053 Beta vulgaris Species 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 2
- 240000008574 Capsicum frutescens Species 0.000 description 2
- 108010022172 Chitinases Proteins 0.000 description 2
- 102000012286 Chitinases Human genes 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 241000219146 Gossypium Species 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 108010025815 Kanamycin Kinase Proteins 0.000 description 2
- 241000219739 Lens Species 0.000 description 2
- 241000209510 Liliopsida Species 0.000 description 2
- 241000208134 Nicotiana rustica Species 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000208292 Solanaceae Species 0.000 description 2
- 101000611441 Solanum lycopersicum Pathogenesis-related leaf protein 6 Proteins 0.000 description 2
- 240000003829 Sorghum propinquum Species 0.000 description 2
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000016571 aggressive behavior Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 230000010165 autogamy Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- HHZKKFXQEIBVEV-CXXUKANQSA-N colneleic acid Chemical compound CCCCC\C=C/C=C/O\C=C\CCCCCCC(O)=O HHZKKFXQEIBVEV-CXXUKANQSA-N 0.000 description 2
- OYKAXBUWOIRLGF-VMBRNALUSA-N colnelenic acid Chemical compound CC\C=C/C\C=C/C=C/O\C=C\CCCCCCC(O)=O OYKAXBUWOIRLGF-VMBRNALUSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 244000038559 crop plants Species 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- MGLDCXPLYOWQRP-UHFFFAOYSA-N eicosa-5,8,11,14-tetraynoic acid Chemical compound CCCCCC#CCC#CCC#CCC#CCCCC(O)=O MGLDCXPLYOWQRP-UHFFFAOYSA-N 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000009483 enzymatic pathway Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 101150070593 lox gene Proteins 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008261 resistance mechanism Effects 0.000 description 2
- 230000008458 response to injury Effects 0.000 description 2
- 230000003938 response to stress Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- MBDOYVRWFFCFHM-UHFFFAOYSA-N trans-2-hexenal Natural products CCCC=CC=O MBDOYVRWFFCFHM-UHFFFAOYSA-N 0.000 description 2
- MAZWDMBCPDUFDJ-UHFFFAOYSA-N trans-Traumatinsaeure Natural products OC(=O)CCCCCCCCC=CC(O)=O MAZWDMBCPDUFDJ-UHFFFAOYSA-N 0.000 description 2
- MAZWDMBCPDUFDJ-VQHVLOKHSA-N traumatic acid Chemical compound OC(=O)CCCCCCCC\C=C\C(O)=O MAZWDMBCPDUFDJ-VQHVLOKHSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 1
- OEYKGJFTEBHJCL-PDBXOOCHSA-N (9z,12z,15z)-octadeca-9,12,15-trieneperoxoic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(=O)OO OEYKGJFTEBHJCL-PDBXOOCHSA-N 0.000 description 1
- KIHXTOVLSZRTHJ-FNORWQNLSA-N (e)-12-oxododec-9-enoic acid Chemical compound OC(=O)CCCCCCC\C=C\CC=O KIHXTOVLSZRTHJ-FNORWQNLSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- 150000000687 9-[1'E,3'Z,6'Z-trien-1'-yloxy]-non-8E-enoic acids Chemical class 0.000 description 1
- 150000000688 9-[1'E,3'Z-dien-1'-yloxy]-non-8E-enoic acids Chemical class 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 206010001488 Aggression Diseases 0.000 description 1
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 101000983836 Arabidopsis thaliana Lipoxygenase 2, chloroplastic Proteins 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241001120669 Colletotrichum lindemuthianum Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229920000832 Cutin Polymers 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 102000000541 Defensins Human genes 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- 101150111720 EPSPS gene Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 101100128612 Glycine max LOX1.2 gene Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 101150012639 HPPD gene Proteins 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- 101150046318 LOX2 gene Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241001344131 Magnaporthe grisea Species 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 241000233620 Phytophthora cryptogea Species 0.000 description 1
- 241000233645 Phytophthora nicotianae Species 0.000 description 1
- 241000233629 Phytophthora parasitica Species 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241000589615 Pseudomonas syringae Species 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 241000813090 Rhizoctonia solani Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000008406 SarachaNachtschatten Nutrition 0.000 description 1
- 241000242677 Schistosoma japonicum Species 0.000 description 1
- 235000004790 Solanum aculeatissimum Nutrition 0.000 description 1
- 235000008424 Solanum demissum Nutrition 0.000 description 1
- 235000018253 Solanum ferox Nutrition 0.000 description 1
- 235000000208 Solanum incanum Nutrition 0.000 description 1
- 235000013131 Solanum macrocarpon Nutrition 0.000 description 1
- 235000009869 Solanum phureja Nutrition 0.000 description 1
- 240000002307 Solanum ptychanthum Species 0.000 description 1
- 235000000341 Solanum ptychanthum Nutrition 0.000 description 1
- 235000017622 Solanum xanthocarpum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001361 allenes Chemical class 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 229940098396 barley grain Drugs 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 230000004345 fruit ripening Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 101150029559 hph gene Proteins 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002545 isoxazoles Chemical class 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000000503 lectinlike effect Effects 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- GEWDNTWNSAZUDX-UHFFFAOYSA-N methyl 7-epi-jasmonate Natural products CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 108010023506 peroxygenase Proteins 0.000 description 1
- 238000003322 phosphorimaging Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000028624 response to insect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007727 signaling mechanism Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
<Desc/Clms Page number 1> <Desc / Clms Page number 1>
Sur-expression d'une lipoxygénase dans les plantes et diminution de la sensibilité des plantes aux maladies et aux agressions par des organismes pathogènes
La présente invention concerne des procédés pour diminuer la sensibilité des plantes aux maladies et aux attaques par des organismes pathogènes. Les procédés selon l'invention consistent à sur-exprimer une lipoxygénase dans les plantes pour diminuer leur sensibilité aux maladies et aux agressions. L'invention a également pour objet des cassettes d'expression, des vecteurs et des plantes transformées mis en oeuvre dans les procédés selon l'invention. Over-expression of a lipoxygenase in plants and reduction in the sensitivity of plants to diseases and attacks by pathogenic organisms
The present invention relates to methods for decreasing the susceptibility of plants to disease and attack by pathogenic organisms. The methods according to the invention consist in over-expressing a lipoxygenase in plants to reduce their sensitivity to diseases and aggressions. The invention also relates to expression cassettes, vectors and transformed plants used in the methods according to the invention.
Les lipoxygénases (LOXs) sont des enzymes ubiquitaires chez les plantes supérieures et les mammifères. Elles catalysent la dioxygénation d'acides gras polyinsaturés contenant un motif (Z, Z)-1, 4-pentadiène. Chez les végétaux, les substrats de l'enzyme sont l'acide linoléique (C18 : 2) et linolénique (C18 : 3), deux constituants majeurs des membranes cellulaires. Ces acides gras polyinsaturés sont généralement complexés sous forme de phosphoglycérolipides membranaires et ne sont accessibles aux LOXs qu'après action d'une phospholipase de type A2 ou d'acyl hydrolases lipolytiques. Des travaux récents suggèrent cependant que certaines LOXs pourraient, dans certaines circonstances, oxyder des acides gras estérifiés et des lipides membranaires (1-4). L'acide arachidonique, qui n'est pas détectable chez les végétaux, mais fait partie des constituants membranaires chez les Oomycètes, est également un substrat pour les LOXs végétales (5). Lipoxygenases (LOXs) are ubiquitous enzymes in higher plants and mammals. They catalyze the oxygenation of polyunsaturated fatty acids containing a (Z, Z) -1,4-pentadiene motif. In plants, the enzyme's substrates are linoleic (C18: 2) and linolenic (C18: 3), two major constituents of cell membranes. These polyunsaturated fatty acids are generally complexed in the form of membrane phosphoglycerolipids and are only accessible to LOXs after the action of a phospholipase of type A2 or lipolytic acyl hydrolases. Recent work, however, suggests that certain LOXs could, under certain circumstances, oxidize esterified fatty acids and membrane lipids (1-4). Arachidonic acid, which is not detectable in plants, but is one of the membrane constituents in Oomycetes, is also a substrate for plant LOXs (5).
Les LOXs sont classées selon la position du carbone sur lequel est inséré préférentiellement l'oxygène moléculaire. Chez les végétaux, on distingue des 13-LOXs et des 9-LOXs ; une même enzyme peut cependant utiliser l'une ou l'autre position, indifféremment ou bien avec une préférence pour une position. Cette spécificité peut être modifiée en fonction des conditions de pH et de concentration en O2 du milieu (4). La spécificité de position d'une LOX n'est pas directement prévisible d'après sa séquence primaire, même si certains éléments structuraux reliés à cette propriété sont maintenant connus (6,7). LOXs are classified according to the position of the carbon on which molecular oxygen is preferentially inserted. In plants, there are 13-LOXs and 9-LOXs; the same enzyme can however use either position, either indifferently or with a preference for a position. This specificity can be modified as a function of the pH and O2 concentration conditions of the medium (4). The position specificity of a LOX is not directly predictable from its primary sequence, even if certain structural elements linked to this property are now known (6,7).
Les produits formés dans la réaction sont des hydroperoxydes d'acides gras, très réactifs et susceptibles de causer, via des réactions radicalaires, la dégradation des constituants majeurs de la cellule (lipides, protéines, acides nucléiques) (8). Les hydroperoxydes d'acides gras sont rapidement convertis en une série de composés possédant des activités biologiques diverses. Tous les produits dérivés d'acides gras polyinsaturés via une oxygénation sont collectivement nommés oxylipines. The products formed in the reaction are hydroperoxides of fatty acids, very reactive and capable of causing, via radical reactions, the degradation of the major constituents of the cell (lipids, proteins, nucleic acids) (8). Fatty acid hydroperoxides are quickly converted to a series of compounds with diverse biological activities. All products derived from polyunsaturated fatty acids via oxygenation are collectively called oxylipins.
<Desc/Clms Page number 2> <Desc / Clms Page number 2>
Les LOXs de plantes ont été associées à des processus physiologiques variés, sur la base de profils d'expression des gènes et d'activité enzymatique. Ainsi, il a été proposé que des LOXs soient impliquées dans la régulation de la maturation des graines, de la germination, de la maturation des fruits, de la sénescence des feuilles et des fleurs. La participation précise des LOXs à ces processus reste cependant à déterminer. Un rôle important est également attribué aux LOXs dans les réponses aux stress, en particulier la blessure, et les attaques parasitaires (4,5, 9). Une forte induction de l'expression de gènes LOX est ainsi mesurée dans de nombreuses plantes monocotylédones ou dicotylédones lors de leur interaction avec des bactéries, des virus ou des champignons, ainsi qu'après blessure mécanique ou causée par des insectes sur les feuilles. Plant LOXs have been associated with various physiological processes, based on gene expression profiles and enzyme activity. Thus, it has been proposed that LOXs be involved in the regulation of seed ripening, germination, fruit ripening, senescence of leaves and flowers. The precise participation of LOXs in these processes remains to be determined, however. An important role is also attributed to LOXs in stress responses, in particular injury, and parasitic attacks (4,5, 9). A strong induction of LOX gene expression is thus measured in many monocotyledonous or dicotyledonous plants during their interaction with bacteria, viruses or fungi, as well as after mechanical injury or caused by insects on the leaves.
Cette diversité dans les fonctions biologiques pourrait être assurée du fait de la présence de différentes isoenzymes, présentant des mécanismes de régulation ainsi que des localisations tissulaires et subcellulaires très variés, selon les espèces et les isoformes considérées (5). A cela s'ajoute la diversité des oxylipines générées à partir des produits de la LOX, qui est modulée en fonction du type d'hydroperoxyde formé et de la nature des enzymes qui les métabolisent. This diversity in biological functions could be ensured due to the presence of different isoenzymes, presenting regulatory mechanisms as well as very varied tissue and subcellular locations, depending on the species and isoforms considered (5). Added to this is the diversity of oxylipins generated from LOX products, which is modulated according to the type of hydroperoxide formed and the nature of the enzymes which metabolize them.
Les hydroperoxydes d'acides gras générés par la LOX sont en effet convertis suivant plusieurs voies enzymatiques distinctes (4). La voie de l'hydroperoxyde lyase (HPL) catalyse le clivage de 13-ou 9-hydroperoxydes d'acides gras pour aboutir à la synthèse d'aldéhydes volatils en C6 ou en C9 et d'acides à chaîne courte, en C12-ou en C9, comme l'acide 12-oxo-trans-9-dodécénoïque, précurseur de l'acide traumatique. Les aldéhydes en C6 jouent un rôle important dans la fragrance des plantes mais certains comme le trans-2hexenal ont aussi des propriétés anti-microbiennes (10). Récemment, il a été montré que le trans-2-hexenal pouvait aussi agir comme molécule-signal permettant l'activation de gènes de défense (11). L'acide traumatique appelé aussi hormone de blessure aurait un rôle dans la cicatrisation des tissus en favorisant les divisions cellulaires aux sites de blessures (5). The hydroperoxides of fatty acids generated by LOX are in fact converted according to several distinct enzymatic pathways (4). The hydroperoxide lyase (HPL) path catalyzes the cleavage of 13-or 9-hydroperoxides of fatty acids to result in the synthesis of volatile aldehydes in C6 or C9 and short chain acids in C12-or in C9, like 12-oxo-trans-9-dodecenoic acid, precursor of traumatic acid. C6 aldehydes play an important role in the fragrance of plants, but some such as trans-2hexenal also have anti-microbial properties (10). Recently, it has been shown that trans-2-hexenal can also act as a signal molecule enabling the activation of defense genes (11). Traumatic acid, also called the wound hormone, is believed to play a role in tissue healing by promoting cell division at injury sites (5).
Une deuxième voie enzymatique impliquée dans la métabolisation des hydroperoxydes d'acides gras produits par la LOX concerne l'allène oxyde synthase (AOS). Cette enzyme catalyse la déshydratation de l'acide 13-hydroperoxylinolénique et forme un allène oxyde qui est le précurseur de l'acide jasmonique. L'acide jasmonique est une molécule-clé des mécanismes de signalisation de la plante permettant l'activation de nombreux gènes de défense (12) parmi lesquels les gènes codant pour des inhibiteurs de protéases, actifs contre les insectes, et aussi de nombreuses protéines PR (chitinase, défensine, thionine, glucanase). A second enzymatic pathway involved in the metabolism of the fatty acid hydroperoxides produced by LOX concerns the allene oxide synthase (AOS). This enzyme catalyzes the dehydration of 13-hydroperoxylinolenic acid and forms an oxide allene which is the precursor of jasmonic acid. Jasmonic acid is a key molecule in the plant's signaling mechanisms enabling the activation of numerous defense genes (12) including the genes coding for protease inhibitors, active against insects, and also many PR proteins. (chitinase, defensin, thionine, glucanase).
Le rôle des jasmonates comme molécule-signal a été récemment souligné par diverses The role of jasmonates as a signal molecule has been recently emphasized by various
<Desc/Clms Page number 3><Desc / Clms Page number 3>
expériences montrant que des mutants d'Arabidopsis ou de tomate affectés dans la biosynthèse de ces molécules ou leur perception, présentaient une déficience dans l'induction de gènes de défense (13), une plus grande sensibilité à des organismes normalement non-pathogènes pour les plantes sauvages (14) ou une résistance réduite contre des insectes (15). Une troisième voie enzymatique de conversion des hydroperoxydes concerne la formation de divinylethers d'acides gras. Ces composés, qui peuvent être formés à partir de 13-ou de 9-hydroperoxydes ont été isolés de divers végétaux. La première divinylether synthase (DES) a été récemment clonée chez la tomate (16). Les divinylether d'acides gras produits à partir de 9-hydroperoxydes, l'acide colnéléique et l'acide colnélénique, présentent des propriétés antifongiques, notamment vis-à-vis de Phytophthora infestans (17). experiments showing that mutants of Arabidopsis or tomato affected in the biosynthesis of these molecules or their perception, showed a deficiency in the induction of defense genes (13), a greater sensitivity to organisms normally non-pathogenic for them wild plants (14) or reduced resistance against insects (15). A third enzymatic way of converting hydroperoxides concerns the formation of divinyl ethers of fatty acids. These compounds, which can be formed from 13-or 9-hydroperoxides, have been isolated from various plants. The first divinylether synthase (DES) was recently cloned in tomatoes (16). The fatty acid divinylether produced from 9-hydroperoxides, colneleic acid and colnelenic acid, have antifungal properties, in particular with regard to Phytophthora infestans (17).
D'autres modifications des produits de la réaction catalysée par la LOX concernent des époxydations par des époxygenases et peroxygénases. Cette voie métabolique permet la synthèse de molécules à activité antimicrobienne et pourrait intervenir dans la synthèse de monomères de cutine qui outre leur fonction structurale peuvent aussi induire l'activité de gènes de défense (18). Other modifications of the products of the reaction catalyzed by LOX relate to epoxidation by epoxygenases and peroxygenases. This metabolic pathway allows the synthesis of molecules with antimicrobial activity and could intervene in the synthesis of cutin monomers which, in addition to their structural function, can also induce the activity of defense genes (18).
Les hydroperoxydes d'acides gras produits par la LOX peuvent enfin générer la formation de radicaux libres intervenant dans des mécanismes de dégradation des membranes liés à la mort cellulaire (5). The hydroperoxides of fatty acids produced by LOX can finally generate the formation of free radicals involved in mechanisms of degradation of membranes linked to cell death (5).
L'ensemble de ces données montre donc que l'activité initiale de la LOX est essentielle pour la synthèse d'un ensemble de molécules, dont certaines présentent des activités antimicrobiennes ou sont impliquées dans la signalisation conduisant à la défense. All of these data therefore show that the initial activity of LOX is essential for the synthesis of a set of molecules, some of which exhibit antimicrobial activities or are involved in signaling leading to defense.
L'activité LOX augmente notablement chez le tabac en réponse à des éliciteurs (19, 20). L'isolement d'un clone d'ADN complémentaire de LOX, nommé pTL-J2 (21), a permis la caractérisation du gène de tabac correspondant, appelé LOX. Des expériences d'hybridation ADN/ARN (hybridation de type northern) ont montré que LOTI, s'exprime dans des cellules de tabac en culture consécutivement à l'application d'éliciteur et dans des plantes de tabac inoculées par l'oomycète Phytophthora parasitica nicotianae, Ppn (22). LOX activity increases markedly in tobacco in response to elicitors (19, 20). The isolation of a LOX complementary DNA clone, called pTL-J2 (21), allowed the characterization of the corresponding tobacco gene, called LOX. DNA / RNA hybridization experiments (northern hybridization) have shown that LOTI is expressed in tobacco cells in culture following the application of elicitor and in tobacco plants inoculated with the oomycete Phytophthora parasitica nicotianae, Ppn (22).
Les transcrits correspondant à ce gène ne sont pas détectables chez des plantes saines ou des cellules non traitées. Une étude biochimique montre que in vitro la LOX de cellules de tabac élicitées permet la production de 9-et 13-hydroperoxydes d'acide gras avec une insertion préférentielle de l'oxygène moléculaire en position 9 (20). Transcripts corresponding to this gene are not detectable in healthy plants or untreated cells. A biochemical study shows that in vitro the LOX of elicited tobacco cells allows the production of 9-and 13-hydroperoxides of fatty acids with preferential insertion of molecular oxygen in position 9 (20).
Consécutivement à l'inoculation racinaire de tabac par Ppn, une forte induction de l'expression du gène est mesurée. Dans le cas d'une interaction incompatible (plante Following the root inoculation of tobacco with Ppn, a strong induction of gene expression is measured. In the case of an incompatible interaction (plant
<Desc/Clms Page number 4><Desc / Clms Page number 4>
résistante/race du microorganisme avirulente), on mesure une induction précoce de l'activité du gène, avec un maximum d'accumulation de transcrits à 24 heures (22). L'induction du gène est plus tardive et de plus faible amplitude dans le cas d'une interaction compatible (plante sensible/race virulente), comme cela a également été observé dans d'autres modèles de type gène-pour-gène, comme les interactions entre la tomate et Pseudomonas syringae (23), le riz et Magnaporthe grisea (24), et la pomme de terre et Phytophthora infestans (25). resistant / avirulent microorganism race), an early induction of gene activity is measured, with a maximum of accumulation of transcripts at 24 hours (22). The induction of the gene is later and of smaller amplitude in the case of a compatible interaction (susceptible plant / virulent race), as has also been observed in other gene-for-gene models, such as interactions between tomatoes and Pseudomonas syringae (23), rice and Magnaporthe grisea (24), and potatoes and Phytophthora infestans (25).
L'expression du gène LOX1 n'est pas détectée dans les tissus des plantes de tabac saines à l'exception des plantes en floraison pour lesquelles des transcrits LOX sont détectés en faible quantité dans les pétales et les sépales, et des jeunes germinations (22,26). Dans ce dernier cas, une expression transitoire du gène LOX1 est détectée entre les deuxième et quatrième jours après le début de la germination. The expression of the LOX1 gene is not detected in the tissues of healthy tobacco plants, with the exception of flowering plants for which LOX transcripts are detected in small quantities in the petals and sepals, and young germinations (22 , 26). In the latter case, a transient expression of the LOX1 gene is detected between the second and fourth day after the start of germination.
Villalba et collaborateurs (27) ont montré qu'une glycoprotéine élicitrice isolée de parois de Ppn, appelée CBEL pour Cellulose Binding Elicitor Lectin, induit le gène LOX1 lorsqu'elle est infiltrée dans le mésophylle foliaire de plantes de tabac. Les transcrits LOX1 apparaissent lors des premières quatre heures suivant l'infiltration et leur niveau est
maximum à 12 heures. Un polysaccharide issu d'algues marines, le -carraghénane, est également inducteur du gène LOX1 lorsqu'il est appliqué à des plantes de tabac par infiltration dans le mésophylle foliaire (28). Villalba et al. (27) have shown that an elicitor glycoprotein isolated from Ppn walls, called CBEL for Cellulose Binding Elicitor Lectin, induces the LOX1 gene when it is infiltrated into the leaf mesophyll of tobacco plants. LOX1 transcripts appear during the first four hours after infiltration and their level is
maximum at 12 o'clock. A polysaccharide from marine algae, carrageenan, is also an inducer of the LOX1 gene when applied to tobacco plants by infiltration into the leaf mesophyll (28).
Dans des cellules de tabac, l'expression du gène LOX1 est détectée consécutivement à des traitements éliciteurs. Dans le cas d'éliciteur de Ppn (extrait de parois), une induction de l'expression du gène LOX1 est détectée dans les deux premières heures après traitement, avec un maximum d'accumulation à 24 heures (22). La cryptogéine, un peptide éliciteur de Phytophthora cryptogea, oomycète pour lequel le tabac n'est pas un hôte ainsi que l'endopolygalacturonase de Colletotrichum lindemuthianum permettent aussi l'induction du gène LOX1 (26). Il a été montré par ailleurs que l'induction du gène LOX1 était plus précoce que celle de gènes de défense comme ceux codant les protéines PR qui sont les chitinases et ssl-3 glucanases, suggérant le rôle potentiel de la voie de la LOX dans la transduction du signal déclenchant les réactions de défense (26). L'expression de LOX1 dans les cellules est également inductible par le methyl-jasmonate (22,29), indiquant ainsi une autoamplification possible de cette voie, alors qu'aucune accumulation de transcrits LOX n'est détectée après l'application d'acide salicylique (22). In tobacco cells, expression of the LOX1 gene is detected following elicitor treatments. In the case of Ppn elicitor (wall extract), induction of expression of the LOX1 gene is detected within the first two hours after treatment, with a maximum accumulation at 24 hours (22). Cryptogeine, an elicitor peptide of Phytophthora cryptogea, oomycete for which tobacco is not a host, as well as the endopolygalacturonase of Colletotrichum lindemuthianum also allow the induction of the LOX1 gene (26). It has also been shown that the induction of the LOX1 gene was earlier than that of defense genes such as those encoding the PR proteins which are chitinases and ssl-3 glucanases, suggesting the potential role of the LOX pathway in transduction of the signal triggering the defense reactions (26). LOX1 expression in cells is also inducible by methyl-jasmonate (22,29), thus indicating a possible self-amplification of this pathway, when no accumulation of LOX transcripts is detected after the application of acid salicylic (22).
L'analyse de l'expression du gène LOX1 montre que l'induction de la LOX constitue une réponse précoce de la plante à l'infection par Ppn, suggérant un rôle dans l'établissement de la résistance. Ce rôle potentiel a été confirmé par l'obtention de plantes Analysis of the expression of the LOX1 gene shows that the induction of LOX constitutes an early response of the plant to infection by Ppn, suggesting a role in the establishment of resistance. This potential role has been confirmed by obtaining plants
<Desc/Clms Page number 5><Desc / Clms Page number 5>
transgéniques exprimant l'ADN complémentaire du gène en orientation anti-sens. En effet, ces plantes, provenant de la lignée 46-8 normalement résistante à la race 0 de Ppn, présentent des niveaux d'activité LOX fortement diminués et ont perdu leur capacité à déclencher la réaction incompatible (30, 31). Cette expérience montre clairement que l'expression du gène LOX est nécessaire à l'établissement de l'état de résistance dans l'interaction de type gène-pour-gène entre le tabac et Ppn. Les plantes anti-sens LOX sont également plus sensibles à un autre champignon pathogène du tabac, Rhizoctonia solani (30, 31). En parallèle, Rustérucci et collaborateurs (32), ont montré que des 9hydroperoxydes s'accumulent durant la réponse de type hypersensible du tabac à la cryptogéine, et que cette accumulation est nécessaire au développement de cette réaction. transgenics expressing the DNA complementary to the gene in antisense orientation. Indeed, these plants, originating from the line 46-8 normally resistant to race 0 of Ppn, exhibit greatly reduced LOX activity levels and have lost their capacity to trigger the incompatible reaction (30, 31). This experiment clearly shows that the expression of the LOX gene is necessary for establishing the state of resistance in the gene-for-gene interaction between tobacco and Ppn. LOX nonsense plants are also more sensitive to another pathogenic tobacco fungus, Rhizoctonia solani (30, 31). In parallel, Rustérucci and collaborators (32), have shown that 9hydroperoxides accumulate during the hypersensitive type response of tobacco to cryptogeine, and that this accumulation is necessary for the development of this reaction.
Chez une autre solanacée, la pomme de terre, des oxylipines issues de la voie 9-LOX, en particulier les acides colnéléique et colnélénique, s'accumulent préférentiellement dans des cellules en culture en réponse à un éliciteur de P. infestans (33). L'ensemble de ces données suggère un rôle majeur de la voie 9-LOX chez les solanacées, dont le tabac, dans la réponse aux agents pathogènes, en particulier les Oomycètes. Chez ces plantes, la voie 13-LOX participe à la réponse aux agents pathogènes, comme le montre la synthèse précoce de jasmonates (29) ; elle est également impliquée dans la réponse à la blessure et aux insectes. In another solanacea, the potato, oxylipins from the 9-LOX pathway, in particular colneleic and colnelenic acids, preferentially accumulate in cultured cells in response to a P. infestans elicitor (33). All of these data suggest a major role for the 9-LOX pathway in nightshade, including tobacco, in the response to pathogens, in particular Oomycetes. In these plants, the 13-LOX pathway participates in the response to pathogens, as shown by the early synthesis of jasmonates (29); it is also involved in the response to injury and insects.
Ainsi, des plantes de pomme de terre exprimant une construction anti-sens 13-LOX se sont révélées plus sensibles à l'attaque par des insectes (34). Thus, potato plants expressing a 13-LOX antisense construct have been shown to be more susceptible to attack by insects (34).
Peu de tentatives de sur-exprimer une LOX dans les plantes ont été rapportées dans la littérature. En effet, l'expression d'une LOX pose des questions de faisabilité en raison des propriétés toxiques potentielles des LOXs, si elles oxydent directement les biomembranes, et des produits qu'elles forment. Few attempts to over-express LOX in plants have been reported in the literature. Indeed, the expression of a LOX poses feasibility questions because of the potential toxic properties of LOXs, if they directly oxidize biomembranes, and of the products they form.
Chez le tabac, l'introduction de la LOX2 de soja sous le contrôle d'un promoteur chimérique, formé par fusion du promoteur 35S du virus de la mosaïque du chou-fleur (CaMV) et d'un"enhancer"isolé du virus de la mosaïque de la luzerne, a permis la production de cals transgéniques présentant une activité LOX environ 2 fois plus forte que celle de cals transformés avec le vecteur dépourvu de séquence LOX. Ces cals sont capables de former de 3 à 6 fois plus d'aldéhydes volatils, produits de la voie 13-LOX via une 13-
HPL, que les cals contrôle. Des plantes transgéniques ont été régénérées à partir de ces cals mais bien que présentant une forte accumulation de la protéine hétérologue, ces plantes n'ont pas une activité LOX différente de celle de plantes contrôle. Elles forment cependant des quantités plus importantes d'aldéhydes volatils que les plantes contrôle (35). Plus récemment, une 13-LOX spécifique des corps lipidiques de graines de concombre a été In tobacco, the introduction of soy LOX2 under the control of a chimeric promoter, formed by fusion of the cauliflower mosaic virus (CaMV) 35S promoter and an "enhancer" isolated from the alfalfa mosaic, allowed the production of transgenic calluses having a LOX activity approximately 2 times stronger than that of calluses transformed with the vector devoid of LOX sequence. These calluses are capable of forming 3 to 6 times more volatile aldehydes, produced from the 13-LOX pathway via a 13-
HPL, which the calluses control. Transgenic plants have been regenerated from these calluses but although having a strong accumulation of the heterologous protein, these plants do not have a LOX activity different from that of control plants. However, they form larger amounts of volatile aldehydes than the control plants (35). More recently, a 13-LOX specific lipid body from cucumber seeds has been
<Desc/Clms Page number 6><Desc / Clms Page number 6>
exprimée chez le tabac (36). La protéine hétérologue s'accumule dans toute la plante, chez les tabacs transgéniques, et en particulier dans les graines où elle est localisée essentiellement dans les corps lipidiques comme chez le concombre. Sa présence se traduit par une modification qualitative de l'activité LOX des plantes transgéniques, tant in vitro que in vivo. Une 13-LOX chloroplastique d'Arabidopsis, AtLOX2, a été utilisée dans une construction en orientation sens sous le contrôle du promoteur CaMV 35S pour transformer des arabettes. Les auteurs se sont cependant focalisés sur les évènements de transformation ayant conduit à une diminution d'activité LOX par co-suppression (37). Enfin, chez la lentille, la transformation transitoire de protoplastes avec une construction contenant une LOX de lentille sous le contrôle du promoteur CaMV 35S a conduit à une augmentation de 20% de l'activité LOX de ces protoplastes (38). Aucune des plantes ou cultures transformées décrites ci-dessus n'a été testée par rapport à une réponse en relation avec l'attaque par des agents pathogènes. Par ailleurs, les expériences réalisées concernent essentiellement des 13-LOXs. expressed in tobacco (36). The heterologous protein accumulates throughout the plant, in transgenic tobacco, and in particular in seeds where it is localized mainly in lipid bodies such as in cucumber. Its presence results in a qualitative modification of the LOX activity of transgenic plants, both in vitro and in vivo. A 13-LOX chloroplastic from Arabidopsis, AtLOX2, was used in a direction-oriented construction under the control of the CaMV 35S promoter to transform arabettes. However, the authors focused on the transformation events that led to a decrease in LOX activity by co-suppression (37). Finally, in the lens, the transient transformation of protoplasts with a construction containing a lens LOX under the control of the CaMV 35S promoter led to a 20% increase in the LOX activity of these protoplasts (38). None of the transformed plants or cultures described above have been tested for response to attack by pathogens. In addition, the experiments carried out mainly concern 13-LOXs.
En outre, les hypothèses concernant la participation des lipoxygénases dans les mécanismes de défense des plantes reposent essentiellement sur les activités biologiques de certaines oxylipines (39). Or, la biosynthèse d'une majorité des oxylipines, et en particulier l'acide jasmonique et les aldéhydes volatils issus de la voie 13-LOX, et les divinylethers issus de la voie 9-LOX, nécessite l'activité d'enzymes métabolisant les produits de la LOX, telles que l'AOS, l'HPL, ou la DES, au-delà de la LOX elle-même. L'expression des gènes correspondant à ces enzymes est souvent inductible. Chez la tomate et Arabidopsis thaliana, l'expression de gènes codant l'AOS et l'HPL est inductible par la blessure (40-42). Par conséquent, l'action des seules lipoxygénases ne semble donc pas suffisante pour déclencher les mécanismes de résistance des plantes. In addition, the hypotheses concerning the participation of lipoxygenases in the defense mechanisms of plants are essentially based on the biological activities of certain oxylipins (39). However, the biosynthesis of a majority of oxylipins, and in particular jasmonic acid and volatile aldehydes from the 13-LOX pathway, and the divinyl ethers from the 9-LOX pathway, requires the activity of enzymes metabolizing the LOX products, such as AOS, HPL, or DES, beyond LOX itself. The expression of genes corresponding to these enzymes is often inducible. In tomatoes and Arabidopsis thaliana, the expression of genes encoding OSA and HPL is inducible by injury (40-42). Consequently, the action of lipoxygenases alone does not therefore seem sufficient to trigger the resistance mechanisms of plants.
Les plantes cultivées subissent l'agression de nombreux organismes pathogènes tels que les virus, les bactéries et les champignons mais également d'organismes ravageurs tels que les insectes. Ces agressions affaiblissent les plantes et diminuent les rendements de leur culture. Il existe donc un besoin important d'accroître les mécanismes de résistance des plantes et de diminuer leur sensibilité aux maladies et aux agressions par des organismes parasites ou pathogènes. Les mécanismes de réponse des plantes aux agressions par des agents pathogènes ont fait l'objet de nombreuses études. Il est maintenant communément admis que la voie de la lipoxygénase chez les plantes participe à leur système de défense et à l'établissement d'un état de résistance à travers la voie des oxylipines notamment. Cultivated plants are attacked by many pathogenic organisms such as viruses, bacteria and fungi, but also by pests such as insects. These attacks weaken the plants and decrease the yields of their crop. There is therefore an important need to increase the resistance mechanisms of plants and to decrease their sensitivity to diseases and attacks by parasitic or pathogenic organisms. The response mechanisms of plants to attack by pathogens have been the subject of numerous studies. It is now commonly accepted that the lipoxygenase pathway in plants participates in their defense system and in the establishment of a state of resistance through the pathway of oxylipins in particular.
<Desc/Clms Page number 7> <Desc / Clms Page number 7>
Cependant, la connaissance de ces voies métaboliques et des lipoxygénases n'a pas permis de développer des procédés permettant d'accroître directement la résistance des plantes. However, the knowledge of these metabolic pathways and lipoxygenases has not made it possible to develop methods allowing the plant resistance to be directly increased.
Ce problème est résolu par la présente invention puisqu'on a maintenant constaté que la sur-expression d'une lipoxygénase dans les plantes diminue directement la sensibilité des plantes aux maladies et aux attaques par des agents pathogènes. De façon inattendue, et bien que la lipoxygénase s'intègre dans des voies métaboliques complexes, la sur-expression d'une lipoxygénase dans les plantes est suffisante pour améliorer la réponse des plantes aux agressions par des pathogènes. De plus, la sur-expression de la lipoxygénase n'affecte pas de manière substantielle le phénotype des plantes transformées en dehors des nouvelles propriétés acquises. This problem is solved by the present invention since it has now been found that the over-expression of a lipoxygenase in plants directly reduces the susceptibility of plants to diseases and to attacks by pathogens. Unexpectedly, and although lipoxygenase integrates into complex metabolic pathways, the overexpression of a lipoxygenase in plants is sufficient to improve the response of plants to attack by pathogens. In addition, the overexpression of lipoxygenase does not substantially affect the phenotype of the transformed plants apart from the new acquired properties.
La présente invention consiste donc à sur-exprimer une lipoxygénase dans les plantes pour diminuer la sensibilité des plantes aux maladies et aux attaques par des organismes pathogènes ou ravageurs. L'invention a également pour objet des cassettes d'expression préférées pour la sur-expression de la lipoxygénase dans les plantes ainsi que des cellules végétales et des plantes transformées. The present invention therefore consists in over-expressing a lipoxygenase in plants to reduce the susceptibility of plants to diseases and attacks by pathogenic or pest organisms. The invention also relates to preferred expression cassettes for the overexpression of lipoxygenase in plants as well as plant cells and transformed plants.
Description de la liste des séquences SEQ ID No. 1 : Lipoxygénase (LOX1) de tabac. Description of the list of sequences SEQ ID No. 1: Tobacco lipoxygenase (LOX1).
SEQ ID No. 2 : Cassette d'expression Promoteur CaMV 35S-Séquence codante du gène LOXl de tabac - Terminateur nos. SEQ ID No. 2: Expression cassette CaMV 35S promoter-Coding sequence of the LOXl tobacco gene - Terminator nos.
SEQ ID No. 3-6 : Amorces pour PCR. SEQ ID No. 3-6: Primers for PCR.
Description de l'invention
La présente invention concerne un procédé pour diminuer la sensibilité des plantes aux maladies et aux agressions par des organismes pathogènes. Ce procédé consiste à surexprimer une lipoxygénase dans ces plantes.
Description of the invention
The present invention relates to a method for reducing the susceptibility of plants to disease and attack by pathogenic organisms. This process involves overexpressing a lipoxygenase in these plants.
Par"lipoxygénase"on entend une enzyme catalysant la dioxygenation d'acides gras polyinsaturés contenant un motif (Z, Z)-l, 4-pentadiène. Chez les végétaux, les substrats de l'enzyme sont l'acide linoléique (C18 : 2) et linolénique (C18 : 3), deux constituants majeurs des membranes cellulaires. By "lipoxygenase" is meant an enzyme catalyzing the dioxygenation of polyunsaturated fatty acids containing a (Z, Z) -1,4-pentadiene motif. In plants, the enzyme's substrates are linoleic (C18: 2) and linolenic (C18: 3), two major constituents of cell membranes.
"Sur-expression"signifie que la lipoxygénase est exprimée à un niveau supérieur au niveau d'expression observée dans une plante référence (non induite). Cette sur-expression se traduit par une accumulation plus importante des transcrits du gène de la lipoxygénase, de "Over-expression" means that the lipoxygenase is expressed at a level higher than the level of expression observed in a reference plant (not induced). This over-expression results in a greater accumulation of transcripts of the lipoxygenase gene,
<Desc/Clms Page number 8><Desc / Clms Page number 8>
la lipoxygénase elle-même et par une activité spécifique lipoxygénase accrue dans les tissus de la plante. Pour diminuer la sensibilité des plantes aux maladies et aux attaques par des organismes pathogènes il est important que le niveau d'expression de la lipoxygénase soit supérieur à celui d'une plante référence lorsque se produit l'agression par l'organisme pathogène. lipoxygenase itself and by increased specific lipoxygenase activity in plant tissues. To reduce the sensitivity of plants to diseases and attacks by pathogenic organisms, it is important that the level of expression of lipoxygenase is higher than that of a reference plant when aggression by the pathogenic organism occurs.
La sur-expression de la lipoxygénase permet de diminuer la sensibilité des plantes aux maladies et aux attaques par des organismes pathogènes. Par"agressions d'organismes pathogènes"on entend notamment des agressions des plantes par des virus, des bactéries, des champignons, des oomycètes ou encore des insectes. The overexpression of lipoxygenase makes it possible to decrease the susceptibility of plants to diseases and to attacks by pathogenic organisms. By "attacks by pathogenic organisms" is meant in particular attacks on plants by viruses, bacteria, fungi, oomycetes or even insects.
Dans un mode de réalisation préféré, le procédé consiste à sur-exprimer constitutivement une lipoxygénase dans les plantes. Le terme"constitutivement"désigne l'expression temporelle et spatiale de la lipoxygénase dans les plantes dans les procédés selon l'invention. Par"constitutivement"on entend l'expression d'une lipoxygénase dans les tissus de la plante pendant toute la vie de la plante et notamment au cours de l'ensemble de son cycle végétatif. Dans un premier mode de réalisation, la lipoxygénase est exprimée de façon constitutive dans tous les tissus de plante. Dans un deuxième mode de réalisation, la lipoxygénase est exprimée constitutivement dans les racines, les feuilles, les tiges, les fleurs et/ou les fruits. Dans un autre mode de réalisation de l'invention, la lipoxygénase est exprimée constitutivement dans les racines, les feuilles et/ou les tiges. In a preferred embodiment, the method includes constitutively over-expressing a lipoxygenase in plants. The term "constitutively" designates the temporal and spatial expression of the lipoxygenase in plants in the methods according to the invention. By "constitutively" means the expression of a lipoxygenase in the tissues of the plant throughout the life of the plant and in particular during the whole of its vegetative cycle. In a first embodiment, the lipoxygenase is expressed constitutively in all plant tissues. In a second embodiment, the lipoxygenase is expressed constitutively in the roots, the leaves, the stems, the flowers and / or the fruits. In another embodiment of the invention, the lipoxygenase is expressed constitutively in the roots, the leaves and / or the stems.
Dans un mode de réalisation particulier de l'invention, la lipoxygénase est une lipoxygénase"inductible"dans une plante référence. Dans la présente invention on entend par lipoxygénase"inductible"une lipoxygénase qui n'est pas exprimée ou exprimée à des niveaux très faibles et dont l'expression est fortement induite en réponse à des éliciteurs dans la réponse au stress, aux blessures et en particulier aux maladies et aux attaques par des organismes pathogènes. In a particular embodiment of the invention, the lipoxygenase is an "inducible" lipoxygenase in a reference plant. In the present invention, the term "inducible" lipoxygenase means a lipoxygenase which is not expressed or expressed at very low levels and whose expression is strongly induced in response to elicitors in the response to stress, injuries and in particular diseases and attacks by pathogenic organisms.
Dans un mode de réalisation préféré des procédés selon l'invention, la lipoxygénase a préférentiellement une activité de 9-lipoxygénase. Les lipoxygénases (LOX) sont classées selon la position du carbone sur lequel est inséré préférentiellement l'oxygène moléculaire. In a preferred embodiment of the methods according to the invention, the lipoxygenase preferably has 9-lipoxygenase activity. Lipoxygenases (LOX) are classified according to the position of the carbon on which molecular oxygen is preferentially inserted.
Chez les végétaux on distingue les 13-LOX et les 9-LOX. Des méthodes permettant de déterminer la spécificité de l'activité lipoxygénase sont décrites dans la littérature (Fournier et al., Plant 1. 3 : 63-70,1993 ; Homung et al., PNAS 96 : 4192-4197,1999 ; Rustérucci et al., 1. Biol. Biochem. 274 : 36446-36455,1999). In plants, 13-LOX and 9-LOX are distinguished. Methods for determining the specificity of lipoxygenase activity are described in the literature (Fournier et al., Plant 1. 3: 63-70,1993; Homung et al., PNAS 96: 4192-4197.1999; Rustérucci and al., 1. Biol. Biochem. 274: 36446-36455,1999).
Toute lipoxygénase dont la sur-expression dans les plantes permet de diminuer la sensibilité des plantes aux maladies et aux attaques par des organismes pathogènes est Any lipoxygenase whose over-expression in plants makes it possible to reduce the susceptibility of plants to diseases and attacks by pathogenic organisms is
<Desc/Clms Page number 9> <Desc / Clms Page number 9>
utilisable dans les procédés selon l'invention. Les lipoxygénases sont connues de l'homme du métier et d'autres lipoxygénases peuvent être identifiées en utilisant des techniques connues. On citera notamment à titre d'exemple les lipoxygénases de pomme de terre (Kolomoiets M. V. et al., Plant Physio. 124 : 1121-1130, 2000), de tomate (Genbank AY008278) de tubercule de pomme de terre (Royo et al., JBiol. Chem., 271 : 21012-21019, 1996 ; Casey, R., Plant Physiol., 107 : 265-266, 1995), la lipoxygénase de graine d'amande (Mita et al., Eur. J Biochem., 268 : 1500-1507, 2001) et la lipoxygénase de grain d'orge (Van Mechelem et al., Biochem. Biophys. Acta, 1254 : 221-225, 1995).
usable in the methods according to the invention. Lipoxygenases are known to those skilled in the art and other lipoxygenases can be identified using known techniques. Mention may in particular be made, for example, of potato lipoxygenases (Kolomoiets MV et al., Plant Physio. 124: 1121-1130, 2000), of tomato (Genbank AY008278) of potato tuber (Royo et al. , JBiol. Chem., 271: 21012-21019, 1996; Casey, R., Plant Physiol., 107: 265-266, 1995), almond seed lipoxygenase (Mita et al., Eur. J Biochem. , 268: 1500-1507, 2001) and barley grain lipoxygenase (Van Mechelem et al., Biochem. Biophys. Acta, 1254: 221-225, 1995).
De préférence, la lipoxygénase est une lipoxygénase de plante. Preferably, the lipoxygenase is a plant lipoxygenase.
Dans un mode de réalisation particulier de l'invention, il s'agit d'une lipoxygénase de plante solanacée. Parmi les plantes solanacées on citera notamment le tabac, la tomate, la pomme de terre ou encore le piment. In a particular embodiment of the invention, it is a solanaceous plant lipoxygenase. Among the solanaceae plants, mention will be made in particular of tobacco, tomatoes, potatoes and even chilli peppers.
Dans un autre mode de réalisation préférée de l'invention, la lipoxygénase présente au moins 80% d'homologie avec la lipoxygénase 1 (LOX1) de tabac de la SEQ ID No. 1. De manière avantageuse, le pourcentage d'homologie sera d'au moins 80 %, 85 %, 90 %, 95 % et de préférence d'au moins 98 % et plus préférentiellement d'au moins 99 % par rapport à la SEQ ID No. 1. Le terme"homologue"désigne un polypeptide pouvant présenter une délétion, une addition ou une substitution d'au moins un acide aminé. Les méthodes de mesure et d'identification des homologies entre polypeptides ou protéines sont connues de l'homme du métier. On peut employer par exemple le package UWGCG et le programme BESTFITT pour calculer les homologies (Devereux et al., Nucleic Acid Res. 12, 387-395, 1984). De préférence, ces lipoxygénases homologues conservent la même activité biologique que la lipoxygénase (LOX1) de tabac de la SEQ ID No. 1. Préférentiellement, ces polypeptides ont donc une activité de lipoxygénase et encore plus préférentiellement de 9lipoxygénase. In another preferred embodiment of the invention, the lipoxygenase has at least 80% homology with tobacco lipoxygenase 1 (LOX1) of SEQ ID No. 1. Advantageously, the percentage of homology will be d '' at least 80%, 85%, 90%, 95% and preferably at least 98% and more preferably at least 99% relative to SEQ ID No. 1. The term "homologous" denotes a polypeptide which may have a deletion, an addition or a substitution of at least one amino acid. The methods for measuring and identifying homologies between polypeptides or proteins are known to those skilled in the art. One can use for example the UWGCG package and the BESTFITT program to calculate homologies (Devereux et al., Nucleic Acid Res. 12, 387-395, 1984). Preferably, these homologous lipoxygenases retain the same biological activity as the tobacco lipoxygenase (LOX1) of SEQ ID No. 1. Preferentially, these polypeptides therefore have lipoxygenase activity and even more preferably lipoxygenase activity.
Dans un mode de réalisation encore plus préféré, les procédés selon la présente invention utilisent la lipoxygénase de la SEQ ID No. 1. In an even more preferred embodiment, the methods according to the present invention use the lipoxygenase of SEQ ID No. 1.
La sur-expression de la lipoxygénase dans les plantes est réalisée en transformant les plantes ou par application sur les plantes d'une molécule stimulant la synthèse de la lipoxygénase dans la plante. The overexpression of lipoxygenase in plants is achieved by transforming the plants or by applying to plants a molecule stimulating the synthesis of lipoxygenase in the plant.
Dans un mode de réalisation préféré de l'invention, la lipoxygénase est sur-exprimée par intégration dans le génome des plantes d'une cassette d'expression comprenant une séquence codant pour une lipoxygénase sous le contrôle d'un promoteur fonctionnel dans les plantes. In a preferred embodiment of the invention, the lipoxygenase is over-expressed by integration into the genome of plants of an expression cassette comprising a sequence coding for a lipoxygenase under the control of a promoter functional in plants.
<Desc/Clms Page number 10> <Desc / Clms Page number 10>
Par"promoteur", on entend selon l'invention la région non codante d'un gène impliquée dans la liaison avec l'ARN polymérase et avec d'autres facteurs qui sont responsables de l'initiation et de la régulation de la transcription conduisant à la production d'un transcrit d'ARN. Les promoteurs de plantes, utilisables dans les procédés selon la présente invention, sont largement décrits dans la littérature. By "promoter" is meant according to the invention the non-coding region of a gene involved in the binding with RNA polymerase and with other factors which are responsible for the initiation and regulation of the transcription leading to production of an RNA transcript. Plant promoters, which can be used in the methods according to the present invention, are widely described in the literature.
De préférence, le promoteur est un promoteur constitutif dans les plantes. Les promoteurs constitutifs utilisables dans les procédés selon l'invention sont également bien connus de l'homme du métier. Preferably, the promoter is a constitutive promoter in plants. The constitutive promoters which can be used in the methods according to the invention are also well known to those skilled in the art.
Comme séquence de régulation promotrice dans les plantes, on peut utiliser toute séquence promotrice d'un gène s'exprimant naturellement dans les plantes comme par exemple des promoteurs dits constitutifs d'origine bactérienne, virale ou végétale. On citera des promoteurs bactériens comme celui du gène de l'octopine synthase ou encore le gène de la nopaline synthase, des promoteurs viraux, comme le promoteur 35S du virus de la mosaïque du chou-fleur ou le promoteur CSVMV (WO 97/48819) et les promoteurs d'origine végétale comme le promoteur du gène d'histone (EP0507698) ou le promoteur d'un gène d'actine de riz (US 5,641, 876). Selon l'invention, on peut notamment utiliser, en association avec la séquence de régulation promotrice, d'autres séquences de régulation, qui sont situées entre le promoteur et la séquence codante, telles que des activateurs de transcription ("enhancer"). As promoter regulatory sequence in plants, any promoter sequence of a gene expressing itself naturally in plants can be used, for example promoters known as constitutive of bacterial, viral or plant origin. Bacterial promoters such as that of the octopine synthase gene or the nopaline synthase gene, viral promoters, such as the cauliflower mosaic virus 35S promoter or the CSVMV promoter (WO 97/48819) will be cited and promoters of plant origin such as the promoter of the histone gene (EP0507698) or the promoter of a rice actin gene (US 5,641,876). According to the invention, it is possible in particular to use, in association with the promoter regulatory sequence, other regulatory sequences which are located between the promoter and the coding sequence, such as transcription activators ("enhancer").
Dans un mode de réalisation préféré de l'invention, le promoteur constitutif est le promoteur 35S du virus de la mosaïque du chou-fleur. In a preferred embodiment of the invention, the constitutive promoter is the 35S promoter of the cauliflower mosaic virus.
Dans un autre mode de réalisation de l'invention, l'expression constitutive ou la surexpression de la lipoxygénase est obtenue en transformant les plantes de manière à placer un promoteur constitutif ou une séquence"enhancer"en amont ou à proximité du gène de la lipoxygénase dans les plantes. On peut notamment utiliser toute séquence de régulation permettant d'augmenter le niveau d'expression de la lipoxygénase dans les plantes. In another embodiment of the invention, the constitutive expression or the overexpression of the lipoxygenase is obtained by transforming the plants so as to place a constitutive promoter or an "enhancer" sequence upstream or close to the lipoxygenase gene in plants. One can in particular use any regulatory sequence making it possible to increase the level of expression of the lipoxygenase in plants.
Préférentiellement, la lipoxygénase est sur-exprimée dans les tiges, les feuilles et/ou les racines des plantes. Preferably, the lipoxygenase is over-expressed in the stems, leaves and / or roots of plants.
On entend par"plante"selon l'invention, tout organisme multicellulaire différencié capable de photosynthèse, en particulier monocotylédones ou dicotylédones, plus particulièrement des plantes de culture destinées ou non à l'alimentation animale ou humaine, comme le maïs, le blé, l'orge, le sorgho, le colza, le soja, le riz, la canne à sucre, la betterave, le tabac, le coton, etc. The term "plant" according to the invention means any differentiated multicellular organism capable of photosynthesis, in particular monocotyledons or dicotyledons, more particularly crop plants intended or not for animal or human food, such as corn, wheat, l barley, sorghum, rapeseed, soybeans, rice, sugar cane, beets, tobacco, cotton, etc.
<Desc/Clms Page number 11> <Desc / Clms Page number 11>
La sur-expression de la lipoxygénase peut être obtenue dans toute plante selon des méthodes connues de l'homme du métier. The overexpression of lipoxygenase can be obtained in any plant according to methods known to those skilled in the art.
Dans un mode de réalisation particulier de l'invention, les plantes sont choisies parmi les plantes solanacées. Parmi les plantes solanacées on citera notamment le tabac, la tomate, la pomme de terre ou encore le piment. In a particular embodiment of the invention, the plants are chosen from solanaceous plants. Among the solanaceae plants, mention will be made in particular of tobacco, tomatoes, potatoes and even chilli peppers.
Dans un mode de réalisation préféré de l'invention, la lipoxygénase est sur-exprimée par intégration dans le génome des plantes d'une cassette d'expression comprenant une séquence codant pour une lipoxygénase sous le contrôle d'un promoteur fonctionnel dans les plantes. Un polynucléotide codant pour une lipoxygénase est inséré dans une cassette d'expression en utilisant des techniques de clonage bien connues de l'homme du métier. In a preferred embodiment of the invention, the lipoxygenase is over-expressed by integration into the genome of plants of an expression cassette comprising a sequence coding for a lipoxygenase under the control of a promoter functional in plants. A polynucleotide encoding a lipoxygenase is inserted into an expression cassette using cloning techniques well known to those skilled in the art.
Cette cassette d'expression comprend les éléments nécessaires à la transcription et à la traduction des séquences codant pour la lipoxygénase dans les plantes. Avantageusement, cette cassette d'expression comprend à la fois des éléments permettant de faire produire la lipoxygénase par les plantes transformées et des éléments nécessaires à la régulation de cette expression. La présente invention concerne aussi des cassettes d'expression préférées pouvant être mises en oeuvre dans les procédés selon l'invention. This expression cassette includes the elements necessary for the transcription and translation of the sequences coding for lipoxygenase in plants. Advantageously, this expression cassette comprises both elements making it possible to produce lipoxygenase by the transformed plants and elements necessary for the regulation of this expression. The present invention also relates to preferred expression cassettes which can be used in the methods according to the invention.
Dans un mode de réalisation, la présente invention concerne des cassettes d'expression fonctionnelles dans les cellules végétales et les plantes comprenant un promoteur ayant une activité constitutive dans les plantes contrôlant l'expression d'un polynucléotide codant pour une lipoxygénase homologue à au moins 90 % à la lipoxygénase de la SEQ ID No. 1. De manière avantageuse, le pourcentage d'homologie sera d'au moins 80 %, 85 %, 90 %, 95 % et de préférence d'au moins 98 % et plus préférentiellement d'au moins 99 % par rapport à la SEQ ID No. l. De préférence, ce polynucléotide code pour une lipoxygénase ayant une activité 9-lipoxygénase. Plus préférentiellement, ce polynucléotide code pour la lipoxygénase de la SEQ ID No. l. Dans un mode de réalisation particulier de l'invention, le promoteur est le promoteur 35S du virus de la mosaïque du chou-fleur. In one embodiment, the present invention relates to functional expression cassettes in plant cells and plants comprising a promoter having constitutive activity in plants controlling the expression of a polynucleotide encoding a lipoxygenase homologous to at least 90 % with lipoxygenase of SEQ ID No. 1. Advantageously, the percentage of homology will be at least 80%, 85%, 90%, 95% and preferably at least 98% and more preferably d '' at least 99% compared to SEQ ID No. l. Preferably, this polynucleotide codes for a lipoxygenase having 9-lipoxygenase activity. More preferably, this polynucleotide codes for the lipoxygenase of SEQ ID No. 1. In a particular embodiment of the invention, the promoter is the 35S promoter of the cauliflower mosaic virus.
Les cassettes d'expression selon l'invention comprennent préférentiellement une séquence terminatrice. Ces séquences permettent la terminaison de la transcription et la polyadénylation de l'ARNm. Toute séquence terminatrice fonctionnelle dans les plantes peut être utilisée. Pour l'expression dans les plantes on peut notamment utiliser le terminateur nos d'Agrobacterium tumefaciens, ou encore des séquences terminatrices d'origine végétale, comme par exemple le terminateur d'histone (EP 0 633 317), le terminateur CaMV 35 S et le terminateur tml. Ces séquences terminatrices sont utilisables dans les plantes monocotylédones et dicotylédones. The expression cassettes according to the invention preferably comprise a terminator sequence. These sequences allow the termination of transcription and polyadenylation of the mRNA. Any functional terminator sequence in plants can be used. For expression in plants, it is possible in particular to use the terminator nos of Agrobacterium tumefaciens, or alternatively terminator sequences of plant origin, such as for example the histone terminator (EP 0 633 317), the terminator CaMV 35 S and the tml terminator. These terminator sequences are usable in monocotyledonous and dicotyledonous plants.
<Desc/Clms Page number 12> <Desc / Clms Page number 12>
Les techniques de construction de ces cassettes d'expression sont largement décrites dans la littérature (voir notamment Sambrook et al., Molecular Cloning : A Laboratory Manual, 1989). The techniques for constructing these expression cassettes are widely described in the literature (see in particular Sambrook et al., Molecular Cloning: A Laboratory Manual, 1989).
Avantageusement, les cassettes d'expression selon la présente invention sont insérées dans un vecteur pour leur réplication ou pour la transformation des plantes. Advantageously, the expression cassettes according to the present invention are inserted into a vector for their replication or for the transformation of plants.
La présente invention concerne également des vecteurs pour la transformation des plantes comprenant au moins une cassette d'expression selon la présente invention. Ce vecteur peut notamment être constitué par un plasmide ou un virus dans lequel est inséré une cassette d'expression selon l'invention. De nombreux vecteurs ont été développés pour la transformation des plantes avec Agrobacterium tumefaciens. D'autres vecteurs sont utilisés pour les techniques de transformation ne reposant pas sur l'utilisation d'Agrobacterium. Ces vecteurs sont bien connus de l'homme du métier et largement décrits dans la littérature. De manière préférée, les vecteurs de l'invention comprennent également au moins un marqueur de sélection. Parmi les marqueurs de sélection, on peut citer les gènes de résistance aux antibiotiques tel que le gène nptII pour la résistance à la kanamycine (Bevan et al., Nature 304 : 184-187,1983) et le gène hph pour la résistance à l'hygromycine (Gritz et al., Gene 25 : 179-188, 1983). On citera également les gènes de tolérance aux herbicides tel que le gène bar (White et al., NAR 18 : 1062,1990) pour la tolérance au bialaphos, le gène EPSPS (US 5,188, 642) pour la tolérance au glyophosate ou encore le gène HPPD (WO 96/38567) pour la tolérance aux isoxazoles. The present invention also relates to vectors for the transformation of plants comprising at least one expression cassette according to the present invention. This vector can in particular consist of a plasmid or a virus into which an expression cassette according to the invention is inserted. Many vectors have been developed for the transformation of plants with Agrobacterium tumefaciens. Other vectors are used for transformation techniques not based on the use of Agrobacterium. These vectors are well known to those skilled in the art and widely described in the literature. Preferably, the vectors of the invention also comprise at least one selection marker. Among the selection markers, there may be mentioned antibiotic resistance genes such as the nptII gene for resistance to kanamycin (Bevan et al., Nature 304: 184-187.1983) and the hph gene for resistance to 'hygromycin (Gritz et al., Gene 25: 179-188, 1983). We will also mention the herbicide tolerance genes such as the bar gene (White et al., NAR 18: 1062,1990) for bialaphos tolerance, the EPSPS gene (US 5,188, 642) for glyophosate tolerance or HPPD gene (WO 96/38567) for tolerance to isoxazoles.
La présente invention concerne donc des vecteurs comprenant une cassette d'expression selon l'invention. The present invention therefore relates to vectors comprising an expression cassette according to the invention.
L'invention a encore pour objet un procédé de transformation des plantes avec une cassette d'expression ou un vecteur selon l'invention. The invention also relates to a process for transforming plants with an expression cassette or a vector according to the invention.
Selon la présente invention la transformation des plantes peut être obtenue par tout moyen connu approprié, les techniques de transformation des plantes sont amplement décrites dans la littérature spécialisée. According to the present invention, the transformation of plants can be obtained by any suitable known means, the techniques for transforming plants are amply described in the specialized literature.
Certaines techniques utilisent Agrobacterium notamment pour la transformation des dicotylédones. Une série de méthodes consistent à utiliser comme moyen de transfert dans la plante un gène chimère inséré dans un plasmide Ti d'Agrobacterium tumefaciens ou Ri d'Agrobacterium rhizogenes. D'autres méthodes consistent à bombarder des cellules, des protoplastes ou des tissus avec des particules auxquelles sont accrochées les séquences d'ADN. D'autres méthodes peuvent également être utilisées telles que la micro-injection ou l'électroporation, ou encore la précipitation directe au moyen de PEG. Certain techniques use Agrobacterium in particular for the transformation of dicotyledons. A series of methods consists in using as a means of transfer into the plant a chimeric gene inserted into a Ti plasmid of Agrobacterium tumefaciens or Ri of Agrobacterium rhizogenes. Other methods include bombarding cells, protoplasts or tissues with particles to which the DNA sequences are attached. Other methods can also be used such as micro-injection or electroporation, or even direct precipitation using PEG.
<Desc/Clms Page number 13> <Desc / Clms Page number 13>
L'homme du métier fera le choix de la méthode appropriée en fonction de la nature de la cellule végétale ou de la plante. Those skilled in the art will choose the appropriate method depending on the nature of the plant cell or the plant.
La présente invention concerne les cellules végétales transformées comprenant une cassette d'expression et/ou un vecteur selon l'invention. The present invention relates to transformed plant cells comprising an expression cassette and / or a vector according to the invention.
Par"cellule végétale", on entend selon l'invention toute cellule issue d'une plante et pouvant constituer des tissus indifférenciés tels que des cals, des tissus différenciés tels que des embryons, des parties de plantes, des plantes ou des semences. By "plant cell" is meant according to the invention any cell originating from a plant and which can constitute undifferentiated tissues such as calluses, differentiated tissues such as embryos, parts of plants, plants or seeds.
La présente invention concerne également les plantes transformées comprenant une cassette d'expression, un vecteur et/ou des cellules transformées selon l'invention. The present invention also relates to the transformed plants comprising an expression cassette, a vector and / or cells transformed according to the invention.
On entend par"plante"selon l'invention, tout organisme multicellulaire différencié capable de photosynthèse, en particulier monocotylédones ou dicotylédones, plus particulièrement des plantes de culture destinées ou non à l'alimentation animale ou humaine, comme le maïs, le blé, l'orge, le sorgho, le colza, le soja, le riz, la betterave, le tabac, le coton, etc. The term "plant" according to the invention means any differentiated multicellular organism capable of photosynthesis, in particular monocotyledons or dicotyledons, more particularly crop plants intended or not for animal or human food, such as corn, wheat, l barley, sorghum, rapeseed, soybeans, rice, beets, tobacco, cotton, etc.
FIGURES Figure 1 La figure 1 présente la construction 35S-9-LOX utilisée pour la transformation du tabac. La séquence codante 9-LOX (LOX/) a été obtenue par amplification PCR puis insérée entre le promoteur 35S du virus de la mosaïque du chou-fleur (35S) et le terminateur de la nopaline synthase d'Agrobacterium tumefasciens (tnos). Ce vecteur comprend également le gène de la néomycine phosphotransférase (NPTII) conférant la résistance à la kanamycine chez les bactéries et les plantes."F" ("sens 35S") désigne l'amorce sens et"R" ("reverse LOX1") désigne l'amorce reverse. FIGURES Figure 1 Figure 1 shows the 35S-9-LOX construct used for tobacco processing. The coding sequence 9-LOX (LOX /) was obtained by PCR amplification and then inserted between the promoter 35S of the cauliflower mosaic virus (35S) and the terminator of the nopaline synthase of Agrobacterium tumefasciens (tnos). This vector also includes the neomycin phosphotransferase gene (NPTII) which confers resistance to kanamycin in bacteria and plants. "F" ("35S sense") designates the sense primer and "R" ("reverse LOX1") denotes the reverse primer.
Figure 2 La figure 2 est un histogramme représentant la mesure de l'activité spécifique
LOX dans les tiges des plants de tabac en nKAT/mg de protéine. 46-8 WT et
49-10 WT désigne les lignées parentales. S46-21, S46-26, S49-18 désigne les lignées transgéniques. En effet, préalablement à des tests d'inoculation par
Ppn, l'activité spécifique LOX ainsi que le niveau de transcrits correspondants ont été analysés pour des tiges de plantes de tabac âgées de 12 semaines. On observe que le niveau d'activité spécifique LOX dans les trois Figure 2 Figure 2 is a histogram representing the measurement of specific activity
LOX in the stems of tobacco plants in nKAT / mg protein. 46-8 WT and
49-10 WT designates the parental lines. S46-21, S46-26, S49-18 designate the transgenic lines. Indeed, prior to inoculation tests by
Ppn, the specific LOX activity as well as the level of corresponding transcripts were analyzed for stems of 12-week-old tobacco plants. We observe that the level of specific LOX activity in the three
<Desc/Clms Page number 14><Desc / Clms Page number 14>
lignées transgéniques retenues est significativement supérieur à celui mesuré dans les lignées parentales correspondantes. Transgenic lines retained is significantly higher than that measured in the corresponding parental lines.
Figure 3 La figure 3 est un histogramme représentant la mesure de la longueur des lésions en mm. Ces mesures ont été réalisées 48 heures (48h) ou 72 heures (72h) après l'inoculation. Les nombres entre parenthèses correspondent aux répétitions indépendantes réalisées. Les deux lignées S46-21 et S46-26, inoculées par Ppn 1 présentent des longueurs de lésions significativement inférieures à celles obtenues avec le même agent pathogène chez le parent sauvage, 46-8 WT. De même, la lignée S49-18 présente des lésions plus courtes que celles mesurées chez son parent sauvage 49-10 WT lors de l'inoculation de ces deux lignées par Ppn 0. Ces différences sont significatives à 48 heures et à 72 heures après l'inoculation. Figure 3 Figure 3 is a histogram representing the measurement of the length of the lesions in mm. These measurements were taken 48 hours (48 hours) or 72 hours (72 hours) after inoculation. The numbers in parentheses correspond to the independent repetitions performed. The two lines S46-21 and S46-26, inoculated with Ppn 1 have lesion lengths significantly shorter than those obtained with the same pathogen in the wild parent, 46-8 WT. Similarly, the S49-18 line has shorter lesions than those measured in its wild relative 49-10 WT during the inoculation of these two lines with Ppn 0. These differences are significant at 48 hours and 72 hours after l 'inoculation.
EXEMPLES Exemple 1 : Matériel biologique Des plantes de tabac (Nicotiana tabacum L. ) sauvages des deux lignées quasi- isogéniques 46-8 (46-8 WT) et 49-10 (49-10 WT) ont été utilisées (Helgeson et al., Phytopath. 62,1439-1443, 1972). Ces lignées se différencient par la présence chez la lignée 46-8 WT d'un locus de résistance à la race 0 de Ppn. Ainsi, la lignée 46-8 WT est résistante à la race 0 de Ppn et sensible à la race 1 de cet agent pathogène tandis que la lignée 49-10 WT est sensible aux deux races de Ppn. EXAMPLES Example 1: Biological material Wild tobacco plants (Nicotiana tabacum L.) from the two quasi-isogenic lines 46-8 (46-8 WT) and 49-10 (49-10 WT) were used (Helgeson et al. , Phytopath. 62, 1439-1443, 1972). These lines are distinguished by the presence in the 46-8 WT line of a locus of resistance to race 0 of Ppn. Thus, the 46-8 WT line is resistant to race 0 of Ppn and sensitive to race 1 of this pathogen while the line 49-10 WT is sensitive to both races of Ppn.
Les graines de lignées sauvages ou transgéniques sont stérilisées (Rancé et al., Plant Cell Report, 13,647-651, 1994) et semées sur milieu MS solide, additionné dans le cas des lignées transgéniques, de kanamycine (50 ug. mr1). Après 4 semaines de croissance in vitro
2-1 (hygrométrie 40%, température constante 25 C, lumière 60 Ilmol. m-2. s : 16h, obscurité : 8h), les plantes sauvages ou transgéniques résistantes à la kanamycine, sont transférées sur vermiculite en salle à culture (hygrométrie 80%, lumière 125 umol. m s : 16h, 25 C, obscurité : 8h, 18 C). The seeds of wild or transgenic lines are sterilized (Rancé et al., Plant Cell Report, 13,647-651, 1994) and sown on solid MS medium, added in the case of transgenic lines, kanamycin (50 ug. Mr1). After 4 weeks of growth in vitro
2-1 (humidity 40%, constant temperature 25 C, light 60 Ilmol. M-2. S: 16h, darkness: 8h), wild or transgenic plants resistant to kanamycin, are transferred to vermiculite in the culture room (hygrometry 80%, light 125 umol. Ms: 16h, 25 C, darkness: 8h, 18 C).
Les souches de Ppn utilisées correspondent aux isolats 1156 (race 0) et 1452 (race 1) (Hendrix, J. W. & Apple, J. L., Tobacco Science 11, 148-150,1967). Le mycélium de Ppn est cultivé à l'obscurité sur un milieu synthétique solide (Keen, N. T., Science 187,74-75, 1975). The Ppn strains used correspond to isolates 1156 (race 0) and 1452 (race 1) (Hendrix, J. W. & Apple, J. L., Tobacco Science 11, 148-150,1967). The Ppn mycelium is grown in the dark on a solid synthetic medium (Keen, N. T., Science 187,74-75, 1975).
<Desc/Clms Page number 15> <Desc / Clms Page number 15>
Exemple 2 : Obtention de la cassette promoteur CaMV 35S-séquence codante LOX1terminateur nos (p35S-LOXl)
TL-J2 est un ADN complémentaire de 2888 pb, correspondant au gène LOX1 de tabac induit par la pathogenèse. L'obtention de cet ADN complémentaire est décrite par Véronési et collaborateurs (Véronési et al., Plant Physiol. 108,1342, 1995), sa séquence est déposée dans GenBank sous le numéro d'accession X84040. Cet ADNc a été utilisé comme matrice pour l'amplification par PCR de la séquence codante de LOX. Example 2: Obtaining the CaMV 35S promoter cassette-coding sequence LOX1terminator nos (p35S-LOXl)
TL-J2 is a complementary DNA of 2888 bp, corresponding to the LOX1 gene from tobacco induced by pathogenesis. Obtaining this complementary DNA is described by Véronési et al. (Véronési et al., Plant Physiol. 108,1342, 1995), its sequence is deposited in GenBank under accession number X84040. This cDNA was used as a template for the PCR amplification of the LOX coding sequence.
Des amorces ont été synthétisées pour amplifier un fragment d'ADN de 2,6 kb, couvrant les positions 49 à 2667 de l'ADNc : - Amorce sens = 5'-GTTATCAAACAGTTTAAAATGTTTCTGGAG-3' - Amorce reverse = 5'-TGATTTAAAGTTCTATATTGAC-3' Ces amorces permettent de plus l'introduction de sites DraI (soulignés dans la séquence des amorces) en amont du codon d'initiation de la traduction et en aval du codon stop (indiqués en caractères gras dans la séquence des amorces) de la séquence LOX. Primers were synthesized to amplify a 2.6 kb DNA fragment, covering positions 49 to 2667 of the cDNA: - Sense primer = 5'-GTTATCAAACAGTTTAAAATGTTTCTGGAG-3 '- Reverse primer = 5'-TGATTTAAAGTTCTATATTGAC-3 '' These primers also allow the introduction of DraI sites (underlined in the primer sequence) upstream of the translation initiation codon and downstream of the stop codon (indicated in bold in the primer sequence) of the sequence LOX.
La réaction PCR a été conduite dans un volume total de 25 ul, contenant 50 ng de plasmide pTL-J2,50 pmol de chacune des amorces sens et reverse ci-dessus, 2,5 unités d'ADN polymérase Pfu (Stratagene Cloning Systems) et ajusté à 200 uM de chaque dNTP et 2 mM MgCL. Après 5 min de dénaturation à 94 C, le programme du thermocycleur était composé
de 20 cycles, incluant chacun 1 min de dénaturation à 94 C, 1 min d'hybridation à 50 C et 6 min d'extension à 72 C, suivis d'une étape finale de 40 min d'extension à 72 C. The PCR reaction was carried out in a total volume of 25 μl, containing 50 ng of plasmid pTL-J2.50 pmol of each of the sense primers and reverse above, 2.5 units of DNA polymerase Pfu (Stratagene Cloning Systems) and adjusted to 200 µM of each dNTP and 2 mM MgCL. After 5 min of denaturation at 94 C, the thermal cycler program was composed
20 cycles, each including 1 min of denaturation at 94 C, 1 min of hybridization at 50 C and 6 min of extension at 72 C, followed by a final step of 40 min of extension at 72 C.
L'ADN de cette réaction a été digéré par DraI, et séparé sur gel d'agarose 0, 8%. Le fragment à bouts francs de 2, 6 kb a été purifié à partir du gel (Kit QiaEx II, Qiagen) et cloné au site SmaI du vecteur pIPMO (Rancé et al., PNAS 6554-6559,1998) entre le promoteur CaMV 35S et la région 3'non traduite du gène de la nopaline synthase d'Agrobacterium tumefaciens (terminateur nos). Ce vecteur comprend également deux copies du gène de la neomycine phosphotransférase (NPTII) conférant la résistance à la kanamycine chez les bactéries et les plantes. Le mélange de ligation a été utilisé pour transformer des bactéries Escherichia coli XL1Blue compétentes, et des colonies résistantes à la kanamycine ont été sélectionnées puis criblées pour la présence de séquence LOX à l'aide de la sonde moléculaire TL-J2. Des colonies positives ont été mises en culture et les plasmides correspondant purifiés. L'orientation de la séquence LOX1 a été examinée pour chacun des plasmides par PCR en utilisant les amorces suivantes : The DNA of this reaction was digested with DraI, and separated on 0.8% agarose gel. The 2.6 kb blunt-end fragment was purified from the gel (Kit QiaEx II, Qiagen) and cloned at the SmaI site of the vector pIPMO (Rancé et al., PNAS 6554-6559,1998) between the CaMV 35S promoter and the 3 ′ untranslated region of the nopaline synthase gene of Agrobacterium tumefaciens (terminator nos). This vector also includes two copies of the neomycin phosphotransferase (NPTII) gene which confers resistance to kanamycin in bacteria and plants. The ligation mixture was used to transform competent Escherichia coli XL1Blue bacteria, and colonies resistant to kanamycin were selected and then screened for the presence of LOX sequence using the molecular probe TL-J2. Positive colonies were cultured and the corresponding plasmids purified. The orientation of the LOX1 sequence was examined for each of the plasmids by PCR using the following primers:
<Desc/Clms Page number 16><Desc / Clms Page number 16>
- Amorce F, sens 35S : 5'-GGCCATGGAGTCAAAGATTC-3'ciblant les nucléotides 6906-6925 du promoteur CaMV 35S (séquence disponible dans Genbank sous le numéro d'accession J02048). - Primer F, sense 35S: 5'-GGCCATGGAGTCAAAGATTC-3 'targeting nucleotides 6906-6925 of the CaMV 35S promoter (sequence available in Genbank under accession number J02048).
- Amorce R, reverse LOX7 : 5'-GCTCTGGCATGAAATTTCG-3'ciblant les nucléotides 2290-2272 (brin non-codant) de TL-J2.
- Primer R, reverse LOX7: 5'-GCTCTGGCATGAAATTTCG-3 'targeting nucleotides 2290-2272 (non-coding strand) of TL-J2.
Les réactions d'amplification ont été conduites dans un volume de 50 ul et comprenaient 100 ng de plasmide à tester, 10 pmol de chaque amorce et 1 unité de Taq ADN polymerase dans un milieu ajusté à 200 uM de chaque dNTP et 1, 5 mM MgCL. Le programme du thermocycleur incluait une étape de dénaturation initiale de 5 min à 94 C, puis 40 cycles consistant chacun en 1 min de dénaturation à 94 C, 1 min d'hybridation à 65 C et 2 min d'extension à 72 C, suivis d'une étape d'élongation finale de 10 min à 72 C. Les produits de la réaction ont été séparés sur gel 0. 8% d'agarose. Un plasmide pour lequel la présence d'un produit d'amplification de la taille attendue (2,8 kb) indiquait l'orientation sens de la séquence LOX par rapport au promoteur CaMV 35S dans la construction, a été sélectionné. The amplification reactions were carried out in a volume of 50 μl and included 100 ng of plasmid to be tested, 10 pmol of each primer and 1 unit of Taq DNA polymerase in a medium adjusted to 200 μM of each dNTP and 1.5 mM MgCl. The thermal cycler program included an initial denaturation step of 5 min at 94 C, then 40 cycles each consisting of 1 min denaturation at 94 C, 1 min hybridization at 65 C and 2 min extension at 72 C, followed a final elongation step of 10 min at 72 C. The reaction products were separated on a 0.8% agarose gel. A plasmid for which the presence of an amplification product of the expected size (2.8 kb) indicated the sense orientation of the LOX sequence with respect to the CaMV 35S promoter in the construction, was selected.
La séquence LOX et les jonctions de celle-ci avec le promoteur et le terminateur ont été entièrement séquencées. Le plasmide ainsi vérifié est nommé p35S-LOXl. La séquence de la construction CaMV 35S-LOXl est décrite à la SEQ ID No. 2. The LOX sequence and its junctions with the promoter and the terminator have been fully sequenced. The plasmid thus verified is named p35S-LOXl. The sequence of the CaMV 35S-LOX1 construction is described in SEQ ID No. 2.
Exemple 3 : Transformation génétique du tabac
Le plasmide p35S-LOXl a été mobilisé dans la souche LBA4404 d'Agrobacterium tumefaciens par choc thermique (Holsters et al., Mol. Gen. Genet. 163,181-187, 1978). Une colonie résistante à la kanamycine a été isolée, le plasmide purifié, et l'intégrité de la construction vérifiée par PCR avec les amorces F et R et dans les conditions décrites cidessus pour la détermination de l'orientation relative de la séquence LOX. Les bactéries recombinantes obtenues ont ensuite été utilisées pour l'infection de disques foliaires de tabac, Nicotiana tabacum, lignées 46-8 WT et 49-10 WT suivant des protocoles déjà décrits (Horsch et al., Science 227,1229-1231, 1985). EXAMPLE 3 Genetic Transformation of Tobacco
The plasmid p35S-LOX1 was mobilized in the LBA4404 strain of Agrobacterium tumefaciens by thermal shock (Holsters et al., Mol. Gen. Genet. 163,181-187, 1978). A colony resistant to kanamycin was isolated, the plasmid purified, and the integrity of the construction verified by PCR with the primers F and R and under the conditions described above for the determination of the relative orientation of the LOX sequence. The recombinant bacteria obtained were then used for the infection of tobacco leaf discs, Nicotiana tabacum, lines 46-8 WT and 49-10 WT according to protocols already described (Horsch et al., Science 227,1229-1231, 1985 ).
Les plantes régénérées sur un milieu de Murashige et Skoog (MS) contenant 150
u. g. ml'' de Kanamycine ont été placées en chambre de culture puis en serre pour l'obtention des graines Tl, par auto-fécondation. Les lignées transgéniques régénérées à partir des lignées parentales 46-8 WT et 49-10 WT sont nommées plantes S46-x et S49-x, respectivement. Plants regenerated on a Murashige and Skoog (MS) medium containing 150
ug ml '' of Kanamycin were placed in a culture chamber and then in a greenhouse to obtain the Tl seeds, by self-fertilization. The transgenic lines regenerated from the parental lines 46-8 WT and 49-10 WT are called plants S46-x and S49-x, respectively.
<Desc/Clms Page number 17> <Desc / Clms Page number 17>
Exemple 4 : Caractérisation des transformants primaires
La présence de la cassette d'expression 35S-LOX1 ainsi que le nombre de copies du transgène dans le génome des plantes régénérées ont été déterminés par des expériences de PCR et d'hybridation ADN/ADN (Southern). L'ADN génomique de plantes sauvages ou de plantes régénérées résistantes à la kanamycine a été préparé selon la méthode décrite par
Dellaporta et collaborateurs (Dellaporta et al., Plant Mol. Biol. Rep. 1, 19-21, 1983). Example 4: Characterization of the primary transformants
The presence of the 35S-LOX1 expression cassette and the number of copies of the transgene in the genome of the regenerated plants were determined by PCR and DNA / DNA hybridization experiments (Southern). The genomic DNA of wild plants or of regenerated plants resistant to kanamycin was prepared according to the method described by
Dellaporta et al. (Dellaporta et al., Plant Mol. Biol. Rep. 1, 19-21, 1983).
L'intégrité de l'ADN-T transféré a été vérifiée par amplification PCR à l'aide des amorces F sens 35S et R reverse LOXl)), décrites ci-dessus. Les conditions de la réaction étaient celle décrites ci-dessus, mais la quantité d'ADN matrice était dans ce cas de 800 ng d'ADN génomique. Le nombre de copies d'ADN-T insérées a été estimé par Southern blot (50). L'ADN génomique (15 ug) a été digéré par BamH1 et les produits de digestion ont été séparés sur gel d'agarose, puis transférés sur membrane de nylon. Une sonde CaMV 35S (nucléotides 6909 à 7440 de la séquence Genbank J02048) a été utilisée après marquage au [a-32p] dCTP. Le nombre de bandes hybridant cette sonde, après révélation par autoradiographie, est une bonne indication du nombre de sites d'insertion de la construction. The integrity of the transferred T-DNA was verified by PCR amplification using the primers F sense 35S and R reverse LOXl)), described above. The reaction conditions were as described above, but the amount of template DNA in this case was 800 ng of genomic DNA. The number of copies of T-DNA inserted was estimated by Southern blot (50). The genomic DNA (15 μg) was digested with BamH1 and the digestion products were separated on agarose gel, then transferred to a nylon membrane. A CaMV 35S probe (nucleotides 6909 to 7440 of the Genbank sequence J02048) was used after labeling with [a-32p] dCTP. The number of bands hybridizing this probe, after revelation by autoradiography, is a good indication of the number of insertion sites of the construction.
Exemple 5 : Transformation du tabac par la séquence codant la LOX1 de tabac sous le contrôle du promoteur constitutif CaMV 35 S
Afin d'exprimer constitutivement la LOX1 de tabac dans des tabacs transgéniques, la séquence codante correspondante a été introduite en orientation sens dans l'ADN de transfert du vecteur binaire pIPMO, en aval du promoteur constitutif CaMV 35S (p35S) (Fig.
ira). Cette construction, appelée p35S-LOXl contient également un gène de résistance à la kanamycine (NPTII) permettant de sélectionner les cellules végétales transformées. Les lignées de tabac 46-8 WT et 49-10 WT ont été transformées par Agrobacterium tumefaciens LBA 4404 dans laquelle la construction p35S-LOXI a été introduite. A partir des cals sélectionnés sur un milieu contenant de la kanamycine, 15 transformants primaires indépendants S46-x dérivant de la lignée 46-8 WT ont été régénérés. La lettre x désigne le numéro de la plante obtenue. De même, 25 transformants primaires indépendants S49-x ont été régénérés à partir de la lignée 49-10 WT. Ces plantes ont été acclimatées en chambre de culture puis transférées en serre jusqu'à floraison. Les graines correspondant aux plantes Tl ont été obtenues par auto-fécondation des transformants primaires. Example 5 Transformation of Tobacco by the Sequence Coding for Tobacco LOX1 Under the Control of the Constitutive Promoter CaMV 35 S
In order to constitutively express tobacco LOX1 in transgenic tobacco, the corresponding coding sequence was introduced in sense orientation into the transfer DNA of the binary vector pIPMO, downstream of the constitutive promoter CaMV 35S (p35S) (FIG.
go). This construct, called p35S-LOXl also contains a kanamycin resistance gene (NPTII) used to select the transformed plant cells. Tobacco lines 46-8 WT and 49-10 WT were transformed with Agrobacterium tumefaciens LBA 4404 in which the construction p35S-LOXI was introduced. From the calli selected on a medium containing kanamycin, 15 independent primary transformants S46-x derived from the line 46-8 WT were regenerated. The letter x indicates the number of the plant obtained. Likewise, 25 independent primary transformants S49-x were regenerated from the 49-10 WT line. These plants were acclimatized in the growing room and then transferred to the greenhouse until flowering. The seeds corresponding to the Tl plants were obtained by self-fertilization of the primary transformants.
L'intégrité de la construction introduite dans le génome des plantes transgéniques a été vérifiée par amplification PCR à partir d'une préparation d'ADN génomique des transformants primaires cultivés sur kanamycine et d'un couple d'amorces, l'une spécifique The integrity of the construct introduced into the genome of transgenic plants was verified by PCR amplification from a preparation of genomic DNA from the primary transformants cultivated on kanamycin and from a pair of primers, one specific
<Desc/Clms Page number 18><Desc / Clms Page number 18>
de la région 5'du promoteur CaMV 35S (F) et l'autre de la région 3'de la séquence codante LOXI (R). Les produits d'amplification ont été séparés sur un gel d'agarose et révélés au bromure d'ethidium. Pour 10 des 11 transformants primaires analysés, le profil obtenu correspond à une bande unique dont la taille (2,8 kb) correspond à la taille estimée du produit. En outre, ce profil est identique à celui obtenu avec le vecteur binaire p35S-LOXi, ce qui suggère qu'au moins une copie a été intégrée dans le génome de ces transformants. of the 5 ′ region of the CaMV 35S promoter (F) and the other of the 3 ′ region of the LOXI coding sequence (R). The amplification products were separated on an agarose gel and revealed with ethidium bromide. For 10 of the 11 primary transformants analyzed, the profile obtained corresponds to a single strip whose size (2.8 kb) corresponds to the estimated size of the product. In addition, this profile is identical to that obtained with the binary vector p35S-LOXi, which suggests that at least one copy has been integrated into the genome of these transformants.
En revanche, un transformant primaire ne possède pas un tel profil bien qu'il soit résistant à la kanamycine, indiquant une intégration incomplète de la construction. Les lignées parentales 46-8 WT et 49-10 WT, analysées en tant que témoins négatifs ne présentent pas de signal correspondant à la construction. In contrast, a primary transformant does not have such a profile although it is resistant to kanamycin, indicating incomplete integration of the construct. The parental lines 46-8 WT and 49-10 WT, analyzed as negative controls do not show a signal corresponding to the construction.
Le nombre de copies insérées dans chacune des lignées régénérées a été estimé par hybridation de type Southern à partir d'ADN génomique digéré par BamHI et d'une sonde homologue au promoteur CaMV 35S. L'ADN de transfert possède deux sites BamHI : le premier est situé entre le promoteur CaMV 35S et la séquence LOXI et un second dans la séquence LOTI. Les fragments BamHI hybridant la sonde CaMV 35S radiomarquée résultent donc d'une première coupure entre le promoteur CaMV 35S et LOXI et d'une seconde coupure dans le génome végétal, en amont de la bordure gauche de l'ADN de transfert. L'insertion de l'ADN de transfert dans le génome des plantes étant aléatoire, les fragments BamHI hybridant la sonde CaMV 35S radiomarquée, obtenus dans le cas d'insertions multiples, auront des tailles dépendant de la position du site BamH1 dans l'ADN génomique et donc probablement différentes. C'est pourquoi le nombre de ces fragments permet d'évaluer le nombre de sites d'insertion dans le génome. Les profils obtenus indiquent que les transformants primaires S46-3, S46-4, S46-26, S49-8, et S49-13 contiennent une copie du transgène, alors que deux copies ont été insérées dans le génome des lignées S49-18 et S49-28, et trois copies dans le génome des lignées S46-21, S49-14 et S49-30. La sonde radiomarquée CaMV 35S n'a pas hybridé avec l'ADN génomique correspondant aux lignées S49-24, ni avec celui des lignées parentales 46-8 WT et 49- 10WT. The number of copies inserted into each of the regenerated lines was estimated by Southern type hybridization from genomic DNA digested with BamHI and from a probe homologous to the CaMV 35S promoter. The transfer DNA has two BamHI sites: the first is located between the CaMV 35S promoter and the LOXI sequence and a second in the LOTI sequence. The BamHI fragments hybridizing the radiolabelled CaMV 35S probe therefore result from a first cut between the CaMV 35S promoter and LOXI and from a second cut in the plant genome, upstream of the left border of the transfer DNA. The insertion of the transfer DNA into the genome of the plants being random, the BamHI fragments hybridizing the radiolabelled CaMV 35S probe, obtained in the case of multiple insertions, will have sizes depending on the position of the BamH1 site in the DNA. genomics and therefore probably different. This is why the number of these fragments makes it possible to evaluate the number of insertion sites in the genome. The profiles obtained indicate that the primary transformants S46-3, S46-4, S46-26, S49-8, and S49-13 contain a copy of the transgene, while two copies have been inserted into the genome of lines S49-18 and S49-28, and three copies in the genome of lines S46-21, S49-14 and S49-30. The CaMV 35S radiolabelled probe did not hybridize with the genomic DNA corresponding to the S49-24 lines, nor with that of the parental lines 46-8 WT and 49-10WT.
Exemple 6 : Extraction et analyse des ARN
L'ARN total a été isolé à partir d'échantillons congelés de plantes de génération Tl ou sauvages. Le matériel végétal a été broyé dans l'azote liquide et l'ARN extrait à l'aide du Kit Extract-all (Eurobio). La concentration en acides nucléiques a été estimée par spectrophotométrie. Les expériences de northern blot ont été réalisées comme EXAMPLE 6 Extraction and Analysis of RNAs
Total RNA was isolated from frozen samples of T1 generation or wild plants. The plant material was ground in liquid nitrogen and the RNA extracted using the Extract-all Kit (Eurobio). The nucleic acid concentration was estimated by spectrophotometry. The northern blot experiments were performed as
<Desc/Clms Page number 19> <Desc / Clms Page number 19>
précédemment décrit (Rickauer et al., Planta 202, 155-162, 1997). Les filtres ont été hybridés avec la sonde TL-J2 radiomarquée.
previously described (Rickauer et al., Planta 202, 155-162, 1997). The filters were hybridized with the radiolabelled TL-J2 probe.
Exemple 7 : Analyse de l'accumulation des transcrits LOX dans les lignées transgéniques Tl Le niveau d'expression LOX a été évalué dans les différentes lignées transgéniques Tl en mesurant l'accumulation des transcrits LOX par northern blot. Les échantillons d'ARN totaux ont été préparés à partir de jeunes plantes de tabac transgéniques de 4 semaines sélectionnées in vitro sur un milieu contenant de la kanamycine. L'évaluation des niveaux respectifs d'expression du transgène dans ces lignées a été réalisée en comparant les profils obtenus avec le niveau de transcrits détectés dans des plantes sauvages, ainsi que dans une suspension cellulaire de tabac contrôle (témoins négatifs), ou dans une suspension cellulaire de tabac traitées par des éliciteurs de Ppn (témoin positif). Les résultats obtenus indiquent que le niveau de transcrits est faible, voire indétectable, dans les lignées transgéniques S46-3, S46-4, S49-8, S49-13, S49-24, S49-28 et S49-30. En revanche, les lignées S46-21, S46-26, S49-14 et S49-18 présentent une accumulation importante de transcrits LOX atteignant, après quantification, de 30 à 66 % du niveau détecté dans les cellules de tabac élicitées. Aucune accumulation de transcrit LOX n'est détectée dans la lignée sauvage ni dans les cellules de tabac témoin. L'introduction de la construction promoteur 35S-LOX1 dans le tabac s'accompagne donc d'une expression constitutive importante dans les lignées transgéniques S46-21, S46-26, S49-14 et S49-18. Example 7 Analysis of the Accumulation of LOX Transcripts in the T1 Transgenic Lines The level of LOX expression was evaluated in the various T1 transgenic lines by measuring the accumulation of the LOX transcripts by northern blot. The total RNA samples were prepared from young 4-week-old transgenic tobacco plants selected in vitro on a medium containing kanamycin. The evaluation of the respective levels of transgene expression in these lines was carried out by comparing the profiles obtained with the level of transcripts detected in wild plants, as well as in a control tobacco cell suspension (negative controls), or in a tobacco cell suspension treated with Ppn elicitors (positive control). The results obtained indicate that the level of transcripts is low, or even undetectable, in the transgenic lines S46-3, S46-4, S49-8, S49-13, S49-24, S49-28 and S49-30. On the other hand, the lines S46-21, S46-26, S49-14 and S49-18 show a significant accumulation of LOX transcripts reaching, after quantification, from 30 to 66% of the level detected in elicited tobacco cells. No accumulation of LOX transcript is detected in the wild line or in the control tobacco cells. The introduction of the promoter construct 35S-LOX1 in tobacco is therefore accompanied by an important constitutive expression in the transgenic lines S46-21, S46-26, S49-14 and S49-18.
Exemple 8 : Immunodétection de la LOX Obtention d'un sérum polyclonal de lapin anti-LOX1 de tabac : Des lapins ont été immunisés avec une protéine de fusion exprimée chez Escherichia coli et comprenant les 244 résidus C-terminaux de la LOX1 de tabac fusionnés à la glutathione S-transférase (GST) de Schistosomajaponicum. Un fragment XhoI de pTL-J2, correspondant aux nucléotides 1921 à 2888, a été inséré au siteXhoI du vecteur pGEX-5X-3 (Pharmacia, séquence disponible dans Genbank sous le numéro d'accession U13858) ce qui a permis l'obtention d'une fusion traductionnelle avec la séquence codante de la GST. Une colonie de bactéries contenant le plasmide recombinant a été sélectionnée et mise en culture. Ces bactéries ont été traitées par l'isopropylthio-p-galactoside à 4 mM pendant 16 heures à 37 C afin d'induire la production de la protéine de fusion. Les bactéries ont été récoltées par centrifugation à 6000 x g pendant 10 min puis les protéines ont été extraites par re- Example 8 Immunodetection of LOX Obtaining a polyclonal rabbit serum anti-LOX1 from tobacco: Rabbits were immunized with a fusion protein expressed in Escherichia coli and comprising the 244 C-terminal residues of LOX1 from tobacco fused to glutathione S-transferase (GST) from Schistosomajaponicum. An XhoI fragment of pTL-J2, corresponding to nucleotides 1921 to 2888, was inserted at the site XhoI of the vector pGEX-5X-3 (Pharmacia, sequence available in Genbank under the accession number U13858) which made it possible to obtain d 'a translational fusion with the coding sequence of GST. A colony of bacteria containing the recombinant plasmid was selected and cultured. These bacteria were treated with isopropylthio-p-galactoside at 4 mM for 16 hours at 37 ° C. in order to induce the production of the fusion protein. The bacteria were harvested by centrifugation at 6000 x g for 10 min and then the proteins were extracted by
<Desc/Clms Page number 20> <Desc / Clms Page number 20>
suspension du culot bactérien dans une solution tamponnée ajustée à 140 mM NaCl, 2, 7 mM KCI, 10 mM Na2HP04, 1, 8 mM KH2P04, pH 7, 3, à raison de 40 ul de solution par ml de culture, puis soniquation du mélange en 3 cycles de 1 min chacun, sur la glace. Le soniquat a été centrifugé à 10000 x g pendant 5 min et les protéines insolubles contenues dans le culot de centrifugation ont été récupérées et extraites dans le tampon de charge SDSPAGE IX (50) à 100 C pendant 10 min. Après une nouvelle centrifugation à 10000 xg pendant 5 min, l'extrait protéique a été chargé sur un gel dénaturant de polyacrylamide à 8%. Après électrophorèse et brève coloration au bleu de Coomassie, le gel a été décoloré et la bande correspondant à la protéine de fusion (55 kDa) a été excisée du gel et utilisée pour l'immunisation des animaux (Eurogentec). L'un des sérums, qui présentait le meilleur titre par rapport à la protéine de fusion et à la LOX1 de tabac a été retenu comme sérum anti- LOX1. Analyse western : Des extraits enzymatiques dialysés et concentrés, préparés comme décrit ci-dessus, ont été séparés en SDS-PAGE sur un gel à 10% à raison de 100 ig de protéines par piste, et après électrophorèse, les protéines séparées ont été transférées sur membrane de nitrocellulose par electro-transfert. Les analyses western ont été réalisées selon des protocoles standards. Le sérum anti-LOX1 à la dilution de 1 : 1000 a été utilisé comme anticorps primaire, et des IgGs de chèvre anti-IgGs de lapin, couplées à la phosphatase alcaline (Sigma), ont été utilisées comme anticorps secondaire. L'activité enzymatique phosphatase alcaline a été détectée par la méthode au NBT-BCIP.
suspension of the bacterial pellet in a buffered solution adjusted to 140 mM NaCl, 2.7 mM KCI, 10 mM Na2HP04, 1.8 mM KH2P04, pH 7.3, at a rate of 40 μl of solution per ml of culture, then sonication of the mix in 3 cycles of 1 min each, on ice. The soniquat was centrifuged at 10,000 xg for 5 min and the insoluble proteins contained in the centrifugation pellet were collected and extracted into the loading buffer SDSPAGE IX (50) at 100 C for 10 min. After a further centrifugation at 10,000 xg for 5 min, the protein extract was loaded onto a denaturing 8% polyacrylamide gel. After electrophoresis and brief staining with Coomassie blue, the gel was discolored and the band corresponding to the fusion protein (55 kDa) was excised from the gel and used for animal immunization (Eurogentec). One of the sera, which had the best titer compared to the fusion protein and to LOX1 from tobacco, was selected as anti-LOX1 serum. Western analysis: Dialysed and concentrated enzymatic extracts, prepared as described above, were separated on SDS-PAGE on a 10% gel at the rate of 100 μg of proteins per lane, and after electrophoresis, the separated proteins were transferred on nitrocellulose membrane by electro-transfer. Western analyzes were performed according to standard protocols. Anti-LOX1 serum at a dilution of 1: 1000 was used as the primary antibody, and goat anti-rabbit IgG IgGs, coupled with alkaline phosphatase (Sigma), were used as a secondary antibody. The alkaline phosphatase enzyme activity was detected by the NBT-BCIP method.
Exemple 9 : Détection de la protéine LOX1 dans les lignées transgeniques Tl
A partir des lignées transgéniques exprimant constitutivement le transgène LOXI, la recherche de la protéine LOX1 a été entreprise par une analyse western. Des extraits de protéines solubles, préparés à partir des parties aériennes de plantes de 8 semaines, ont été séparés par SDS-PAGE. La détection de la protéine LOX1 a été réalisée à l'aide d'un sérum polyclonal de lapin dirigé contre la partie C-terminale de la protéine LOX1. La révélation immunochimique montre la présence d'une bande unique dans les pistes correspondant aux lignées transgéniques S46-26 et S49-18. La taille du produit correspondant, comprise entre 79 et 101 kDa, est cohérente avec la taille calculée à partir de la séquence primaire de la protéine LOX1 (92kDa). En revanche, la protéine LOX1 n'est pas détectée dans les extraits préparés à partir des lignées parentales 46-8 WT et 49-10 WT. L'expression constitutive du transgène LOXI s'accompagne donc d'une accumulation de la protéine correspondante dans les lignées transgéniques S46-26 et S49-18. EXAMPLE 9 Detection of the LOX1 Protein in the Tl Transgenic Lines
Using transgenic lines constitutively expressing the LOXI transgene, the search for the LOX1 protein was undertaken by western analysis. Soluble protein extracts, prepared from the aerial parts of 8 week old plants, were separated by SDS-PAGE. The detection of the LOX1 protein was carried out using a polyclonal rabbit serum directed against the C-terminal part of the LOX1 protein. The immunochemical revelation shows the presence of a single band in the lanes corresponding to the transgenic lines S46-26 and S49-18. The size of the corresponding product, between 79 and 101 kDa, is consistent with the size calculated from the primary sequence of the LOX1 protein (92kDa). In contrast, the LOX1 protein is not detected in extracts prepared from the parental lines 46-8 WT and 49-10 WT. The constitutive expression of the LOXI transgene is therefore accompanied by an accumulation of the corresponding protein in the transgenic lines S46-26 and S49-18.
<Desc/Clms Page number 21> <Desc / Clms Page number 21>
Exemple 10 : Mesure de l'activité LOX
Les échantillons de plantes sauvages ou transgéniques ont été congelés puis broyés dans l'azote liquide et homogénéisés dans le tampon phosphate de sodium 0.25 M, pH6.5, contenant 5% de polyvinylpolypirrolidone, à raison de 1 ml de tampon par g de matière fraîche. Après décongélation, les extraits ont été mélangés au vortex et centrifugés pendant 5 min à 12000 x g. Le surnageant de centrifugation constitue l'extrait enzymatique brut. Example 10: Measurement of LOX activity
The samples of wild or transgenic plants were frozen and then ground in liquid nitrogen and homogenized in 0.25 M sodium phosphate buffer, pH 6.5, containing 5% polyvinylpolypirrolidone, at a rate of 1 ml of buffer per g of fresh material. . After thawing, the extracts were mixed with a vortex and centrifuged for 5 min at 12,000 x g. The centrifugation supernatant constitutes the crude enzyme extract.
Deux méthodes de mesure de l'activité LOX ont été employées. Two methods of measuring LOX activity were used.
Méthode chromatographique (CCM) : Un protocole a été adapté à partir d'une méthode décrite par Caldelari et Farmer (Caldelari, D. & Farmer, E. E., Phytochemistry 47,599-604, 1998). L'essai LOX a été conduit avec un aliquote de l'extrait enzymatique brut correspondant à 50 ug de protéines, dans un volume total de 0,4 ml de tampon phosphate de sodium 0,25 M, pH 6,5, saturé en air et contenant de l'acide linoléique marqué au 14C sur le carbone 1, à une concentration finale de 1, 2 u. M, pendant 30 min à 30 C. Le mélange réactionnel a ensuite été extrait 2 fois avec un mélange methanol-chloroforme (2 : 1) et les phases organiques ont été concentrées sous flux d'azote. Les extraits ont été séparés en chromatographie sur couche mince sur des plaques de silice, dans un mélange ether-hexaneacide formique (70 : 30 : 1). Les produits radio-marqués issus de la métabolisation de l'acide linoléique ainsi que le substrat restant ont été révélés par phosphorimaging. La quantité de substrat restant dans chaque réaction a été estimée par comparaison avec une réaction contrôle sans extrait enzymatique (logiciel ImageQuaNT) Méthode spectrophotométrique : L'extrait enzymatique brut a été dialysé et concentré par centrifugation sur une unité Ultrafree-4 (Millipore) équipée d'une membrane Biomax 1 OkDa NMWL, pendant 30 min à 3500 x g et à 4 C, puis a subi trois étapes de lavage par addition de 0,5 ml de tampon phosphate de sodium 0,25 M, pH 6,5 et centrifugation dans la même unité. L'activité LOX a été déterminée dans un essai d'un volume total de 475 Ill, par
mesure de la formation de diènes conjugués à , 234 nm (s=27000 M-l. cm'l) pendant 4 min à 30 C, dans du tampon phosphate de sodium 0, 25 M, pH 6, 5, saturé en air. L'acide linoléique a été utilisé comme substrat à la concentration finale de 820 uM. Les résultats sont exprimés en nanokatal. mg-l protéines. La teneur en protéines des aliquotes testés a été déterminé par la méthode de Bradford (Bradford, Anal. Biochem. 72, 248-254, 1976). Chromatographic method (CCM): A protocol was adapted from a method described by Caldelari and Farmer (Caldelari, D. & Farmer, EE, Phytochemistry 47,599-604, 1998). The LOX test was carried out with an aliquot of the crude enzyme extract corresponding to 50 μg of proteins, in a total volume of 0.4 ml of 0.25 M sodium phosphate buffer, pH 6.5, saturated with air. and containing linoleic acid labeled with 14C on carbon 1, at a final concentration of 1.2 u. M, for 30 min at 30 C. The reaction mixture was then extracted 2 times with a methanol-chloroform mixture (2: 1) and the organic phases were concentrated under nitrogen flow. The extracts were separated by thin layer chromatography on silica plates, in an ether-hexaneacidic mixture (70: 30: 1). The radio-labeled products resulting from the metabolism of linoleic acid as well as the remaining substrate were revealed by phosphorimaging. The amount of substrate remaining in each reaction was estimated by comparison with a control reaction without enzyme extract (ImageQuaNT software) Spectrophotometric method: The crude enzyme extract was dialyzed and concentrated by centrifugation on an Ultrafree-4 unit (Millipore) equipped with '' a Biomax 1 OkDa NMWL membrane, for 30 min at 3500 xg and at 4 ° C., then underwent three washing steps by adding 0.5 ml of 0.25 M sodium phosphate buffer, pH 6.5 and centrifugation in the same unit. LOX activity was determined in a test with a total volume of 475 Ill, by
measurement of the formation of conjugated dienes at 234 nm (s = 27000 Ml. cm'l) for 4 min at 30 ° C. in 0.25 M sodium phosphate buffer, pH 6.5, saturated with air. Linoleic acid was used as a substrate at the final concentration of 820 µM. The results are expressed in nanokatal. mg-l proteins. The protein content of the aliquots tested was determined by the method of Bradford (Bradford, Anal. Biochem. 72, 248-254, 1976).
<Desc/Clms Page number 22> <Desc / Clms Page number 22>
Exemple 11 : Transformation in vitro de l'acide linoléique par les plantes transgéniques Tl
Le niveau d'activité LOX des plantes transgéniques a été comparé à celui des lignées parentales 46-8 WT et 49-10 WT en mesurant, in vitro, la capacité de différents extraits enzymatiques à transformer un substrat naturel de cette enzyme, l'acide linoléique. Ces extraits, préparés à partir des parties aériennes de plantes âgées de 8 semaines, ont été incubés in vitro avec de l'acide linoléique marqué au 14C. Les produits radiomarqués, extraits puis séparés par chromatographie en couche mince (CCM), ont été révélés à l'aide d'un phosphorimager. A partir de l'image digitalisée de la CCM, l'acide linoléique non métabolisé à la fin de la réaction a été quantifié pour chaque piste et exprimé en pourcentage de l'acide linoléique mesuré dans une réaction témoin ne comportant pas d'extrait enzymatique. Ces pourcentages correspondent à la moyenne de trois répétitions indépendantes. Dans les essais, l'acide linoléique disparaît presque complètement dans les pistes correspondant aux plantes transgéniques S46-26 et S49-18 avec seulement 5 et 10 % de substrat restant en fin de réaction alors que dans le cas des lignées parentales 46-8 WT et 49-10 WT, environ 50 % du substrat n'est pas métabolisé. Afin de vérifier que cette différence entre les lignées WT et transgéniques est bien due à l'expression constitutive du transgène introduit, la même réaction a été réalisée en pré-incubant les extraits enzymatiques avec de l'ETYA (acide 5,8, 11, 14-eicosatétraynoïque), un inhibiteur spécifique des LOXs. Dans ce cas, environ 50 % de l'acide linoléique est détecté en fin de réaction aussi bien pour les lignées parentales que pour les lignées transgéniques. Ceci suggère que l'ensemble des lignées possède une activité indépendante de la LOX, capable de métaboliser une partie de l'acide gras introduit. Dans le cas où les extraits enzymatiques sont bouillis avant d'être incubés avec le substrat, entre 80 et 90% de l'acide gras est extrait en fin de réaction, montrant qu'il s'agit bien d'une réaction enzymatique et suggérant soit qu'une partie du substrat (entre 10 et 20%) est dégradée chimiquement, soit qu'elle n'est pas extractible dans les conditions utilisées. Cette expérience montre donc que les lignées transgéniques S46-26 et S49-18 présentent une activité de conversion de l'acide linoléique sensible à l'ETYA, ce qui n'est pas le cas des lignées parentales 46-8 WT et 49-10 WT.
EXAMPLE 11 In Vitro Transformation of Linoleic Acid by Tl Transgenic Plants
The LOX activity level of the transgenic plants was compared to that of the parental lines 46-8 WT and 49-10 WT by measuring, in vitro, the capacity of different enzymatic extracts to transform a natural substrate of this enzyme, the acid linoleic. These extracts, prepared from the aerial parts of 8-week-old plants, were incubated in vitro with 14C-labeled linoleic acid. The radiolabelled products, extracted and then separated by thin layer chromatography (TLC), were revealed using a phosphorimager. From the digitalized image of the TLC, the non-metabolized linoleic acid at the end of the reaction was quantified for each lane and expressed as a percentage of the linoleic acid measured in a control reaction not containing an enzymatic extract. . These percentages correspond to the average of three independent repetitions. In the tests, the linoleic acid disappears almost completely in the tracks corresponding to the transgenic plants S46-26 and S49-18 with only 5 and 10% of substrate remaining at the end of the reaction whereas in the case of the parental lines 46-8 WT and 49-10 WT, approximately 50% of the substrate is not metabolized. In order to verify that this difference between the WT and transgenic lines is indeed due to the constitutive expression of the transgene introduced, the same reaction was carried out by pre-incubating the enzymatic extracts with ETYA (acid 5,8, 11, 14-eicosatetraynoic), a specific LOX inhibitor. In this case, approximately 50% of the linoleic acid is detected at the end of the reaction both for the parental lines and for the transgenic lines. This suggests that all of the lines have an activity independent of LOX, capable of metabolizing part of the fatty acid introduced. In the case where the enzymatic extracts are boiled before being incubated with the substrate, between 80 and 90% of the fatty acid is extracted at the end of the reaction, showing that it is indeed an enzymatic reaction and suggesting either that part of the substrate (between 10 and 20%) is chemically degraded, or that it is not extractable under the conditions used. This experiment therefore shows that the transgenic lines S46-26 and S49-18 exhibit activity of conversion of linoleic acid sensitive to ETYA, which is not the case for the parental lines 46-8 WT and 49-10 WT.
Ceci montre que l'expression constitutive du transgène LOXI, ainsi que la présence de la protéine LOX1 dans les lignées transgéniques se traduit également par une augmentation de l'activité LOX dans ces plantes. Cette augmentation d'activité a également été mesurée dans la lignée S46-21. This shows that the constitutive expression of the LOXI transgene, as well as the presence of the LOX1 protein in the transgenic lines also results in an increase in LOX activity in these plants. This increase in activity was also measured in the S46-21 line.
<Desc/Clms Page number 23> <Desc / Clms Page number 23>
Exemple 12 : Inoculation de plantes de tabac par Ppn pn Une méthode d'inoculation caulinaire du tabac par Ppn a été employée. Des plantes de tabac sauvages (lignées 46-8 WT et 49-10 WT) ou transgéniques, âgées de 12 semaines, ont été inoculées par application d'une pastille de mycélium sur la tige après section de la partie apicale de celle-ci (à environ un tiers du sommet) avec une lame de rasoir. Les pastilles de mycélium provenaient de cultures en milieu gélosé âgées de 7 jours. Des plantes contrôle ont été traitées de manière identique, à l'exception de l'application de la pastille de mycélium, remplacée par une pastille de milieu stérile. Les tiges contrôle et inoculées ont été recouvertes d'un film d'aluminium pour préserver les tissus végétaux et le mycélium de la dessiccation. EXAMPLE 12 Inoculation of Tobacco Plants with Ppn pn A method of stem tobacco inoculation with Ppn was used. Wild tobacco plants (lines 46-8 WT and 49-10 WT) or transgenic, 12 weeks old, were inoculated by application of a mycelium tablet on the stem after section of the apical part thereof ( about a third of the top) with a razor blade. The mycelium pellets came from cultures in agar medium 7 days old. Control plants were treated identically, with the exception of the application of the mycelium tablet, replaced by a tablet of sterile medium. The control and inoculated stems were covered with an aluminum film to preserve the plant tissues and the mycelium from drying out.
Exemple 13 : Observation et mesure des symptômes
Les symptômes ont été observés et quantifiés 48 heures ou 72 heures après inoculation. Les tiges ont été sectionnées longitudinalement et la longueur des lésions a été mesurée pour chaque demi-tige en cinq points équidistants, répartis sur toute la largeur de la section. La longueur de lésion utilisée pour chaque individu correspond à la moyenne de ces 10 mesures. Example 13: Observation and measurement of symptoms
Symptoms were observed and quantified 48 hours or 72 hours after inoculation. The stems were cut longitudinally and the length of the lesions was measured for each half-stem at five equidistant points, distributed over the entire width of the section. The length of lesion used for each individual corresponds to the average of these 10 measurements.
Exemple 14 : Mesure de l'accumulation des transcrits LOXI et de l'activité spécifique LOX dans les tiges des lignées transgéniques Tl
La méthode retenue pour tester l'interaction entre le tabac et le microorganisme pathogène, Ppn, consiste à inoculer la tige par du mycélium de Ppn, après section de l'apex de la plante. En préambule à cette expérience, le niveau d'expression du transgène ainsi que l'activité spécifique LOX des tiges des lignées transgéniques S46-21, S46-26 et S49-18 ont été comparés à ceux observés chez les lignées parentales 46-8 WT et 49-10 WT. Pour chaque lignée, des ARNs totaux ont été préparés à partir d'un pool de 3 morceaux de tige provenant chacun d'une plante indépendante. Le résultat de l'hybridation avec une sonde LOI radiomarquée confirme l'accumulation des transcrits LOX dans les tiges des lignées transgéniques S46-21, S46-26 et S49-18 alors qu'aucun transcrit LOX n'est détecté dans les lignées parentales 46-8 WT et 49-10 WT. L'activité spécifique LOX a également été mesurée dans cet organe à partir d'extraits enzymatiques concentrés et dialysés. L'analyse a été réalisée au spectrophotomètre en mesurant, à 234 nm, l'apparition des hydroperoxydes d'acide gras. Pour chaque lignée étudiée, 3 mesures indépendantes ont été réalisées. Les Example 14 Measurement of the Accumulation of LOXI Transcripts and of the Specific LOX Activity in the Stems of the Tl Transgenic Lines
The method used to test the interaction between tobacco and the pathogenic microorganism, Ppn, consists in inoculating the stem with Ppn mycelium, after section of the plant apex. As a preamble to this experiment, the level of expression of the transgene as well as the specific LOX activity of the stems of the transgenic lines S46-21, S46-26 and S49-18 were compared with those observed in the parental lines 46-8 WT and 49-10 WT. For each line, total RNAs were prepared from a pool of 3 pieces of stem, each from an independent plant. The result of the hybridization with a radiolabeled LOI probe confirms the accumulation of LOX transcripts in the stems of the transgenic lines S46-21, S46-26 and S49-18 while no LOX transcript is detected in the parental lines 46 -8 WT and 49-10 WT. The specific LOX activity was also measured in this organ from concentrated and dialyzed enzyme extracts. The analysis was carried out with a spectrophotometer by measuring, at 234 nm, the appearance of the fatty acid hydroperoxides. For each line studied, 3 independent measurements were carried out. The
<Desc/Clms Page number 24><Desc / Clms Page number 24>
résultats obtenus, rassemblés dans un histogramme (Fig. 2), indiquent que l'activité spécifique LOX mesurée dans les lignées transgéniques S46-21, S46-26 et S49-18 est de 1,8 à 5 fois plus importante que le niveau d'activité mesuré dans les lignées parentales 46-8 WT et 49-10 WT. En outre, ces niveaux d'activité atteignent 25 % (S46-21) et 70 % (S49-18) du niveau d'activité LOX mesuré dans des cellules de tabac élicitées pendant 24 heures (353,8 nkat. mg' protéine, donnée non montrée). Cette analyse confirme donc que l'expression constitutive du transgène LOX ainsi que l'augmentation de l'activité LOX mesurées dans les plantes transgéniques caractérisent également les tiges.
results obtained, gathered in a histogram (Fig. 2), indicate that the specific LOX activity measured in the transgenic lines S46-21, S46-26 and S49-18 is 1.8 to 5 times greater than the level d activity measured in parental lines 46-8 WT and 49-10 WT. In addition, these activity levels reach 25% (S46-21) and 70% (S49-18) of the LOX activity level measured in 24 hour elicited tobacco cells (353.8 nkat. Mg 'protein, data not shown). This analysis therefore confirms that the constitutive expression of the LOX transgene as well as the increase in LOX activity measured in the transgenic plants also characterize the stems.
Exemple 15 : Analyse de l'interaction entre Ppn et les lignées transgéniques Tl avant pn et les liznées t une activité LOX constitutive
Afin d'examiner les conséquences de l'expression constitutive LOXI chez les lignées transgéniques S46-21, S46-26 et S49-18 sur leur interaction avec Ppn, des plantes de ces lignées, âgées de 12 semaines, ont été inoculées par cet agent pathogène au niveau des tiges. Les symptômes obtenus après inoculation par une race virulente de Ppn ont été comparés à ceux observés au cours d'une interaction compatible mettant en jeu la lignée parentale correspondante. Ainsi, les lignées S46-21, S46-26 et 46-8 WT ont été inoculées par la race 1 de Ppn alors que les lignées S49-18 et 49-10 WT ont été inoculées par la race 0 de Ppn. Un témoin d'incompatibilité a été réalisé en inoculant la lignée 46-8 WT par la race 0 de Ppn. Les symptômes obtenus 48 heures ou 72 heures après l'inoculation ont été observés sur des sections longitudinales des tiges et les lésions ont été mesurées (figure 3). Example 15 Analysis of the Interaction between Ppn and the Tl Transgenic Lines Before PN and the T Lines constitutive LOX Activity
In order to examine the consequences of the constitutive expression LOXI in the transgenic lines S46-21, S46-26 and S49-18 on their interaction with Ppn, plants of these lines, 12 weeks old, were inoculated with this agent pathogenic to the stems. The symptoms obtained after inoculation with a virulent Ppn race were compared to those observed during a compatible interaction involving the corresponding parental line. Thus, the lines S46-21, S46-26 and 46-8 WT were inoculated by race 1 of Ppn while the lines S49-18 and 49-10 WT were inoculated by race 0 of Ppn. An incompatibility control was carried out by inoculating the line 46-8 WT with race 0 of Ppn. Symptoms obtained 48 hours or 72 hours after inoculation were observed on longitudinal sections of the stems and lesions were measured (Figure 3).
Les symptômes observés sur les lignées parentales 46-8 WT et 49-10 WT sont typiques des interactions tabac/Ppn ; la lignée 46-8 WT, inoculée par la race 0 de Ppn, présente des lésions sèches et localisées caractéristiques d'une interaction incompatible. En revanche, les longues lésions brunes macérées, observées dans les interactions 46-8 WT/Ppn 1 et 49-10 WT/Ppn 0 traduisent la colonisation de la tige par l'agent pathogène et sont typiques d'interactions compatibles. En comparaison avec ces dernières, les lésions mesurées dans les lignées transgéniques, inoculées par la même race virulente que celle utilisée avec la lignée parentale correspondante, sont nettement réduites. Chez les deux lignées transgéniques retenues, S46-21 et S46-26, l'inoculation par la race 1 du champignon ne provoque pas la formation des ces longues lésions macérées. On observe des lésions beaucoup plus réduites que dans le cas compatible mais également beaucoup moins macérées. Cette différence est également observée lorsque sont comparées l'interaction compatible 49-1 OWT/Ppn 0 (lignée sauvage sensible à Ppn 0) et l'interaction entre la The symptoms observed on the parental lines 46-8 WT and 49-10 WT are typical of tobacco / Ppn interactions; line 46-8 WT, inoculated with race 0 of Ppn, presents dry and localized lesions characteristic of an incompatible interaction. On the other hand, the long macerated brown lesions observed in the 46-8 WT / Ppn 1 and 49-10 WT / Ppn 0 interactions reflect the colonization of the stem by the pathogen and are typical of compatible interactions. In comparison with the latter, the lesions measured in the transgenic lines, inoculated by the same virulent race as that used with the corresponding parental line, are markedly reduced. In the two transgenic lines selected, S46-21 and S46-26, inoculation by race 1 of the fungus does not cause the formation of these long macerated lesions. The lesions are much smaller than in the compatible case but also much less macerated. This difference is also observed when the compatible interaction 49-1 OWT / Ppn 0 (wild line sensitive to Ppn 0) and the interaction between the
<Desc/Clms Page number 25> <Desc / Clms Page number 25>
lignée transgénique S49-18, qui est issue de la lignée 49-1 OWT, et Ppn 0. On observe que les lésions provoquées lors de l'interaction S46-26/Ppn 1 ressemblent davantage aux nécroses apparaissant lors d'une interaction incompatible (46-8 WT I Ppn 0), qu'aux lésions accompagnant la colonisation des tissus de la plante par le champignon dans le cas d'une interaction compatible (46-8 WT/Ppn 1). Par exemple, les lésions obtenues 48 heures après l'inoculation dans les interactions S46-21/Ppn 1 et S46-26/Ppn 1 sont respectivement 3,4 et 2,4 fois plus courtes que celles mesurées dans l'interaction compatible 46-8 WT/Ppn 1. Pour la lignée S49-18, l'inoculation par la race 0 de Ppn provoque des lésions 2 fois plus courtes que celles observées pour la lignée parentale 49-10 WT inoculée par la même race du champignon. L'ensemble de ces résultats montre que l'expression constitutive LOX dans les lignées transgéniques s'accompagne d'une limitation nette de la progression du champignon.
transgenic line S49-18, which comes from the line 49-1 OWT, and Ppn 0. It is observed that the lesions caused during the interaction S46-26 / Ppn 1 more closely resemble the necroses appearing during an incompatible interaction ( 46-8 WT I Ppn 0), only to lesions accompanying colonization of plant tissues by the fungus in the case of a compatible interaction (46-8 WT / Ppn 1). For example, the lesions obtained 48 hours after inoculation in the S46-21 / Ppn 1 and S46-26 / Ppn 1 interactions are 3.4 and 2.4 times shorter respectively than those measured in the compatible interaction 46- 8 WT / Ppn 1. For the S49-18 line, inoculation with race 0 of Ppn causes lesions 2 times shorter than those observed for the parental line 49-10 WT inoculated by the same race of the fungus. All of these results show that the constitutive expression LOX in the transgenic lines is accompanied by a clear limitation of the progression of the fungus.
Au delà de la réduction de taille des lésions observées dans les lignées transgéniques inoculées par une race virulente de Ppn, la nature de celle-ci est également modifiée. Les lésions obtenues dans l'interaction S46-26/Ppn 1 ne sont pas macérées comme dans l'interaction compatible 46-8 WT/Ppn 1 mais plutôt sèches comme dans l'interaction incompatible 46-8 WT/Ppn 0. Ceci montre que l'activité constitutive LOX mesurée dans les lignées transgéniques S46-21, S46-26 et S49-18 participe activement à la résistance du tabac à Ppn. Beyond the reduction in size of the lesions observed in the transgenic lines inoculated by a virulent race of Ppn, the nature of the latter is also modified. The lesions obtained in the S46-26 / Ppn 1 interaction are not macerated as in the 46-8 WT / Ppn 1 compatible interaction but rather dry as in the 46-8 WT / Ppn 0 incompatible interaction. This shows that the constitutive LOX activity measured in the transgenic lines S46-21, S46-26 and S49-18 actively participates in the resistance of tobacco to Ppn.
<Desc/Clms Page number 26> <Desc / Clms Page number 26>
Références Bibliographiques 1. Brash, A. R., Ingram, C. D. & Harris, T. M. (1987) Analysis of a specific oxygenation reaction of soybean lipoxygenase-1 with fatty acids esterified in phospholipids, Biochemistry 26, 5465-5471. Bibliographic References 1. Brash, A. R., Ingram, C. D. & Harris, T. M. (1987) Analysis of a specific oxygenation reaction of soybean lipoxygenase-1 with fatty acids esterified in phospholipids, Biochemistry 26, 5465-5471.
2. Maccarrone, M., van Aarle, P. G., Veldink, G. A. & Vliegenthart, J. F. (1994) In vitro oxygenation of soybean biomembranes by lipoxygenase-2, Biochim. Biophys. Acta 1190,164-169. 2. Maccarrone, M., van Aarle, P. G., Veldink, G. A. & Vliegenthart, J. F. (1994) In vitro oxygenation of soybean biomembranes by lipoxygenase-2, Biochim. Biophys. Acta 1190,164-169.
3. Feussner, I., Bachmann, A., Hohne, M. & Kindl, H. (1998) All three acyl moieties oftrilinolein are efficiently oxygenated by recombinant His-tagged lipid body lipoxygenase in vitro, FEBS Lett. 431, 433-436. 3. Feussner, I., Bachmann, A., Hohne, M. & Kindl, H. (1998) All three acyl moieties oftrilinolein are efficiently oxygenated by recombinant His-tagged lipid body lipoxygenase in vitro, FEBS Lett. 431, 433-436.
4. Blée, E. (1998) Phytooxylipins and plant defense reactions, Prog. Lipid Res. 37, 33- 72. 4. Blée, E. (1998) Phytooxylipins and plant defense reactions, Prog. Lipid Res. 37, 33-72.
5. Rosahl, S. (1996) Lipoxygenases in plants-their role in development and stress response, Z Naturforsch., C : Biosci. 51, 123-138. 5. Rosahl, S. (1996) Lipoxygenases in plants-their role in development and stress response, Z Naturforsch., C: Biosci. 51, 123-138.
6. Hornung, E., Walther, M., Kuhn, H. & Feussner, 1. (1999) Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis, Proc. Natl. Acad. ScL U S. A. 96,4192-4197. 6. Hornung, E., Walther, M., Kuhn, H. & Feussner, 1. (1999) Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis, Proc. Natl. Acad. ScL U S. A. 96,4192-4197.
7. Kuhn, H. & Thiele, B. J. (1999) The diversity of the lipoxygenase family. Many sequence data but little information on biological significance, FEBS Lett 449,7-11.
7. Kuhn, H. & Thiele, BJ (1999) The diversity of the lipoxygenase family. Many sequence data but little information on biological significance, FEBS Lett 449,7-11.
8. Galliard, T. & Chan, H. W. S. (1980) in The Biochemistry ofPIants A comprehensive treatise, ed. Stumpf, P. K. (Academic Press, INC, New York), Vol. 4, pp. 8. Galliard, T. & Chan, H. W. S. (1980) in The Biochemistry ofPIants A comprehensive treatise, ed. Stumpf, P. K. (Academic Press, INC, New York), Vol. 4, pp.
131-161. 131-161.
9. Slusarenko, A. J. (1996) in Lipoxygenase and lipoxygenase pathway enzymes, ed. 9. Slusarenko, A. J. (1996) in Lipoxygenase and lipoxygenase pathway enzymes, ed.
Piazza, G. J. (AOCS Press, Champain, Illinois), pp. 176-197. Piazza, G. J. (AOCS Press, Champain, Illinois), p. 176-197.
10. Croft, K. P. C., Jüttner, F. & Slusarenko, A. J. (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L. ) leaves inoculated with Pseudomonas syringae pv. phaseolicola, Plant Physiot. 101, 13-24. 10. Croft, K. P. C., Jüttner, F. & Slusarenko, A. J. (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv. phaseolicola, Plant Physiot. 101, 13-24.
11. Bate, N. J. & Rothstein, S. J. (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes, Plant J 16,561-569. 11. Bate, N. J. & Rothstein, S. J. (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes, Plant J 16,561-569.
12. Reymond, P. & Farmer, E. E. (1998) Jasmonate and salicylate as global signals for defense gene expression, Current Opinion in Plant Biology 1,404-411. 12. Reymond, P. & Farmer, E. E. (1998) Jasmonate and salicylate as global signals for defense gene expression, Current Opinion in Plant Biology 1,404-411.
13. McConn, M., Creelman, R. A., Bell, E., Mullet, J. E. & Browse, J. (1997)
Jasmonate is essential for insect defense in Arabidopsis, Proc. Natl. Acad. Sei. U. S. A. 94, 5473-5477. 13. McConn, M., Creelman, RA, Bell, E., Mullet, JE & Browse, J. (1997)
Jasmonate is essential for insect defense in Arabidopsis, Proc. Natl. Acad. Sci. USA 94, 5473-5477.
14. Staswick, P. E., Yuen, G. Y. & Lehman, C. C. (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare, Plant J 15, 747-754. 14. Staswick, P. E., Yuen, G. Y. & Lehman, C. C. (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare, Plant J 15, 747-754.
15. Howe, G. A., Lightner, J., Browse, J. & Ryan, C. A. (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack, Plant Cell 8, 2067-2077. 15. Howe, G. A., Lightner, J., Browse, J. & Ryan, C. A. (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack, Plant Cell 8, 2067-2077.
16. Itoh, A. & Howe, G. A. (2001) Molecular cloning of a divinyl ether synthase : Identification as a CYP74 cytochrome P-450, J Biol. Chem. 276,3620-3627. 16. Itoh, A. & Howe, G. A. (2001) Molecular cloning of a divinyl ether synthase: Identification as a CYP74 cytochrome P-450, J Biol. Chem. 276.3620 to 3627.
<Desc/Clms Page number 27> <Desc / Clms Page number 27>
17. Weber, H., Chetelat, A., Caldelari, D. & Farmer, E. E. (1999) Divinyl ether fatty acid synthesis in late blight-diseased potato leaves, Plant Cell 11, 485-494. 17. Weber, H., Chetelat, A., Caldelari, D. & Farmer, E. E. (1999) Divinyl ether fatty acid synthesis in late blight-diseased potato leaves, Plant Cell 11, 485-494.
18. Schweizer, P., Felix, G., Buchala, A., Muller, C. & Metraux, J. P. (1996) Perception of free cutin monomers by plant cells, Plant J. 10, 331-341. 18. Schweizer, P., Felix, G., Buchala, A., Muller, C. & Metraux, J. P. (1996) Perception of free cutin monomers by plant cells, Plant J. 10, 331-341.
19. Rickauer, M., Fournier, J., Pouénat, M. L., Berthalon, E., Bottin, A. & Esquerre-Tugaye, M. T. (1990) Early changes in ethylene synthesis and lipoxygenase activity during defense induction in tobacco cells, Plant Physiology and Biochemistry 28, 647-653. 19. Rickauer, M., Fournier, J., Pouénat, ML, Berthalon, E., Bottin, A. & Esquerre-Tugaye, MT (1990) Early changes in ethylene synthesis and lipoxygenase activity during defense induction in tobacco cells, Plant Physiology and Biochemistry 28, 647-653.
20. Fournier, J., Pouénat, M. L., Rickauer, M., Rabinovitch-Chable, H., Rigaud, M. 20. Fournier, J., Pouénat, M. L., Rickauer, M., Rabinovitch-Chable, H., Rigaud, M.
& Esquerré-Tugayé, M. T. (1993) Purification and characterisation of elicitor-induced lipoxygenase in tobacco cells, Plant J. 3,63-70. & Esquerré-Tugayé, M. T. (1993) Purification and characterization of elicitor-induced lipoxygenase in tobacco cells, Plant J. 3,63-70.
21. Véronési, C., Fournier, J., Rickauer, M., Marolda, M. & Esquerré-Tugayé, M. 21. Véronési, C., Fournier, J., Rickauer, M., Marolda, M. & Esquerré-Tugayé, M.
T. (1995) Nucleotide sequence of an elicitor-induced tobacco lipoxygenase cDNA (Genbank X84040), Plant Physiol. 108,1342. T. (1995) Nucleotide sequence of an elicitor-induced tobacco lipoxygenase cDNA (Genbank X84040), Plant Physiol. 108.1342.
22. Véronési, C., Rickauer, M., Fournier, J., Pouénat, M. L. & Esquerré-Tugayé, M. T. (1996) Lipoxygenase gene expression in the tobacco-Phytophthora parasitica nicotiana interaction, Plant Physiol. 112,997-1004. 22. Véronési, C., Rickauer, M., Fournier, J., Pouénat, M. L. & Esquerré-Tugayé, M. T. (1996) Lipoxygenase gene expression in the tobacco-Phytophthora parasitica nicotiana interaction, Plant Physiol. 112.997 to 1004.
23. Koch, E., Meier, B. M., Eiben, H. G. & Slusarenko, A. J. (1992) A lipoxygenase from leaves of tomato (Lycopersicum esculentum Mill) is induced in response to plant pathogen Pseudomonas, Plant Physiol. 99,571-576. 23. Koch, E., Meier, B. M., Eiben, H. G. & Slusarenko, A. J. (1992) A lipoxygenase from leaves of tomato (Lycopersicum esculentum Mill) is induced in response to plant pathogen Pseudomonas, Plant Physiol. 99.571-576.
24. Peng, Y. L., Shirano, Y., Ohta, H., Hibino, T., Tanaka, K. & Shibata, D. (1994) A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus, J. Biol. Chem. 269,3755-3761. 24. Peng, Y. L., Shirano, Y., Ohta, H., Hibino, T., Tanaka, K. & Shibata, D. (1994) A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus, J. Biol. Chem. 269.3755 to 3761.
25. Kolomiets, M. V., Chen, H., Gladon, R. J., Braun, E. J. & Hannapel, D. J. 25. Kolomiets, M. V., Chen, H., Gladon, R. J., Braun, E. J. & Hannapel, D. J.
(2000) A leaf lipoxygenase of potato induced specifically by pathogen infection, Plant Physiol. 124,1121-1130. (2000) A leaf lipoxygenase of potato induced specifically by pathogen infection, Plant Physiol. 124.1121 to 1130.
26. Véronési, C. (1995) (Université Paul Sabatier-Toulouse III, Toulouse), pp. 90. 26. Véronési, C. (1995) (Paul Sabatier-Toulouse III University, Toulouse), pp. 90.
27. Villalba Mateos, F., Rickauer, M. & Esquerré-Tugayé, M. T. (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities, Mol. Plant-Microbe Interact. 10,
1045-1053. 27. Villalba Mateos, F., Rickauer, M. & Esquerré-Tugayé, MT (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities, Mol. Plant-Microbe Interact. 10
1045-1053.
28. Mercier, L., Lafitte, C., Borderies, G., Briand, X., Esquerre-Tugaye, M. T. & Fournier, J. (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defence, The New Phytologist 149, 43-51. 28. Mercier, L., Lafitte, C., Borderies, G., Briand, X., Esquerre-Tugaye, MT & Fournier, J. (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defense, The New Phytologist 149, 43-51.
29. Rickauer, M., Brodschelm, W., Bottin, A., Véronési, C., Grimal, H. & EsquerréTugayé, M. T. (1997) The jasmonate pathway is involved differentially in the regulation of different defence responses in tobacco cells, Planta 202,155-162. 29. Rickauer, M., Brodschelm, W., Bottin, A., Véronési, C., Grimal, H. & EsquerréTugayé, MT (1997) The jasmonate pathway is involved differentially in the regulation of different defense responses in tobacco cells, Planta 202,155-162.
30. Rancé, I. (1997) (Université Paris XI-Orsay), pp. 111. 30. Rancé, I. (1997) (University Paris XI-Orsay), pp. 111.
31. Rancé, I., Fournier, J. & Esquerré-Tugayé, M. T. (1998) The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences, Proc. Natl. 31. Rancé, I., Fournier, J. & Esquerré-Tugayé, M. T. (1998) The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences, Proc. Natl.
Acad. Sci. U S. A. 95,6554-6559. Acad. Sci. U S. A. 95,6554-6559.
32. Rustérucci, C., Montillet, J. L., Agnel, J. P., Battesti, C., Alonso, B., Knoll, A., Bessoule, J. J., Etienne, P., Suty, L., Blein, J. P. & Triantaphylides, C. (1999) Involvement oflipoxygenase-dependent production of fatty acid hydroperoxides in the 32. Rustérucci, C., Montillet, JL, Agnel, JP, Battesti, C., Alonso, B., Knoll, A., Bessoule, JJ, Etienne, P., Suty, L., Blein, JP & Triantaphylides, C. (1999) Involvement oflipoxygenase-dependent production of fatty acid hydroperoxides in the
<Desc/Clms Page number 28><Desc / Clms Page number 28>
development of the hypersensitive cell death induced by cryptogein on tobacco leaves, J. development of the hypersensitive cell death induced by cryptogein on tobacco leaves, J.
Biol. Chem. 274,36446-36455. Biol. Chem. 274.36446 to 36,455.
33. Göbel, C., Feussner, I., Schmidt, A., Scheel, D., Sanchez-Serrano, J., Hamberg, M. & Rosahl, S. (2001) Oxylipin profiling reveals the preferential stimulation of the 9lipoxygenase pathway in elicitor-treated potato cells, J. Biol. Chem. 276,6267-6273. 33. Göbel, C., Feussner, I., Schmidt, A., Scheel, D., Sanchez-Serrano, J., Hamberg, M. & Rosahl, S. (2001) Oxylipin profiling reveals the preferential stimulation of the 9lipoxygenase pathway in elicitor-treated potato cells, J. Biol. Chem. 276.6267 to 6273.
34. Royo, J., Leon, J., Vancanneyt, G., Albar, J. P., Rosahl, S., Ortego, F., Castanera, P. & Sanchez-Serrano, J. J. (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests, Proc. Natl. Acad. Sci. U. S. A. 96, 1146-1151. 34. Royo, J., Leon, J., Vancanneyt, G., Albar, JP, Rosahl, S., Ortego, F., Castanera, P. & Sanchez-Serrano, JJ (1999) Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests, Proc. Natl. Acad. Sci. U. S. A. 96, 1146-1151.
35. Deng, W., Grayburn, W. S., Hamilton-Kemp, T. R., Collins, G. B. & Hildebrand, D. F. (1992) Expression of soybean-embryo lipoxygenase 2 in transgenic tobacco tissue, Planta 187,203-208. 35. Deng, W., Grayburn, W. S., Hamilton-Kemp, T. R., Collins, G. B. & Hildebrand, D. F. (1992) Expression of soybean-embryo lipoxygenase 2 in transgenic tobacco tissue, Planta 187,203-208.
36. Hause, B., Weichert, H., Hohne, M., Kindl, H. & Feussner, I. (2000) Expression of cucumber lipid-body lipoxygenase in transgenic tobacco : lipid-body lipoxygenase is correctly targeted to seed lipid bodies, Planta 210,708-714. 36. Hause, B., Weichert, H., Hohne, M., Kindl, H. & Feussner, I. (2000) Expression of cucumber lipid-body lipoxygenase in transgenic tobacco: lipid-body lipoxygenase is correctly targeted to seed lipid bodies, Planta 210.708-714.
37. Bell, E., Creelman, R. A. & Mullet, J. E. (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis, Proc. Natl. Acad. 37. Bell, E., Creelman, R. A. & Mullet, J. E. (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis, Proc. Natl. Acad.
Sei. U. S. A. 92,8675-8679. Sci. U. S. A. 92,8675-8679.
38. Maccarrone, M., Hilbers, M. P., Veldink, G. A., Vliegenthart, J. F. & Finazzi Agro, A. (1995) Inhibition of lipoxygenase in lentil protoplasts by expression of antisense RNA, Biochim. Biophys. Acta 1259,1-3. 38. Maccarrone, M., Hilbers, M. P., Veldink, G. A., Vliegenthart, J. F. & Finazzi Agro, A. (1995) Inhibition of lipoxygenase in lentil protoplasts by expression of antisense RNA, Biochim. Biophys. Acta 1259,1-3.
39. Grechkin, A. (1998) Recent developments in biochemistry of the plant lipoxygenase pathway, Prog. Lipid Res. 37, 317-352. 39. Grechkin, A. (1998) Recent developments in biochemistry of the plant lipoxygenase pathway, Prog. Lipid Res. 37, 317-352.
40. Laudert, D., Pfannschmidt, U., Lottspeich, F., Hollander-Czytko, H. & Weiler,
E. W. (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana P allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates, Plant Mol. Bio !. 31,323-335. 40. Laudert, D., Pfannschmidt, U., Lottspeich, F., Hollander-Czytko, H. & Weiler,
EW (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana P allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates, Plant Mol. Organic !. 31.323-335.
41. Bate, N. J., Sivasankar, S., Moxon, C., Riley, J. M., Thompson, J. E. & Rothstein, S. J. (1998) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible, Plant Physio. 117,1393- 1400. 41. Bate, NJ, Sivasankar, S., Moxon, C., Riley, JM, Thompson, JE & Rothstein, SJ (1998) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible, Plant Physio. 117,1393-1,400.
42. Howe, G. A., Lee, G. I., Itoh, A., Li, L. & DeRocher, A. E. (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase, Plant Physio 123, 711-24. 42. Howe, G. A., Lee, G. I., Itoh, A., Li, L. & DeRocher, A. E. (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase, Plant Physio 123, 711-24.
43. Helgeson, J. P., Kemp, J. D., Haberlach, G. T. & Maxwell, D. P. (1972) A tissue culture system for studying disease resistance : the black shank disease in tobacco callus culture, Phytopath. 62,1439-1443. 43. Helgeson, J. P., Kemp, J. D., Haberlach, G. T. & Maxwell, D. P. (1972) A tissue culture system for studying disease resistance: the black shank disease in tobacco callus culture, Phytopath. 62.1439-1443.
44. Rancé, I., Tian, W. Z., Mathews, H., De Kochko, A., Beachy, R. N. & Fauquet, C. M. (1994) Partial dessication of mature embryo-derived calli, a simple treatment that dramatically enhances the regeneration ability ofindica rice., Plant Cell Report 13,647- 651. 44. Rancé, I., Tian, WZ, Mathews, H., De Kochko, A., Beachy, RN & Fauquet, CM (1994) Partial dessication of mature embryo-derived calli, a simple treatment that dramatically enhances the regeneration ability ofindica rice., Plant Cell Report 13,647-651.
45. Hendrix, J. W. & Apple, J. L. (1967) Stem resistance to Phytophthora parasitica var. nicotianae in tobacco derived from Nicotiana longiflora and Nicotiana plumbaginifolia, Tobacco Science 11,148-150. 45. Hendrix, J. W. & Apple, J. L. (1967) Stem resistance to Phytophthora parasitica var. nicotianae in tobacco derived from Nicotiana longiflora and Nicotiana plumbaginifolia, Tobacco Science 11,148-150.
<Desc/Clms Page number 29> <Desc / Clms Page number 29>
46. Keen, N. T. (1975) Specific elicitors of plant phytoalexin production : determinants of race specificity in pathogens ?, Science 187,74-75. 46. Keen, N. T. (1975) Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens?, Science 187,74-75.
47. Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M. & Schell, J. (1978) Transfection and transformation of Agrobacterium tumefaciens, Mol. Gen. 47. Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M. & Schell, J. (1978) Transfection and transformation of Agrobacterium tumefaciens, Mol. Gen.
Genet. 163,181-187. Broom. 163.181 to 187.
48. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eicholtz, D., Rogers, S. G. & Fraley, R. T. (1985) A simple and general method for transferring genes into plants, Science 227, 1229-1231. 48. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eicholtz, D., Rogers, S. G. & Fraley, R. T. (1985) A simple and general method for transferring genes into plants, Science 227, 1229-1231.
49. Dellaporta, S. L., Wood, J. & Hicks, J. B. (1983) A plant DNA minipreparation : version II., Plant Mol. Biol. Rep. 1, 19-21. 49. Dellaporta, S. L., Wood, J. & Hicks, J. B. (1983) A plant DNA minipreparation: version II., Plant Mol. Biol. Rep. 1, 19-21.
50. Sambrook, J., Fritsh, E. F. & Maniatis, T. (1989) Molecular cloning : a laboratory manual (Cold Spring Harbor Laboratory Press, New-York). 50. Sambrook, J., Fritsh, E. F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory Press, New York).
51. Caldelari, D. & Farmer, E. E. (1998) A rapid assay for the coupled cell free generation of oxylipins, Phytochemistry 47,599-604. 51. Caldelari, D. & Farmer, E. E. (1998) A rapid assay for the coupled cell free generation of oxylipins, Phytochemistry 47,599-604.
52. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. 52. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal.
Biochem. 72,248-254. Biochem. 72.248-254.
53. Seo, H. S., Song, J. T., Cheong, J.-J., Lee, Y.-H., Lee, Y.-W., Hwang, I., Lee, J. 53. Seo, H. S., Song, J. T., Cheong, J.-J., Lee, Y.-H., Lee, Y.-W., Hwang, I., Lee, J.
S. & Choi, Y. D. (2001) Jasmonic acid carboxyl methyltransferase : A key enzyme for jasmonate-regulated plant responses, Proc. Nail. Acad. SeL U. S. A. 98,4788-4793.S. & Choi, Y. D. (2001) Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses, Proc. Nail. Acad. SeL U. S. A. 98,4788-4793.
Claims (18)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0107470A FR2825578A1 (en) | 2001-06-07 | 2001-06-07 | Reducing sensitivity of plants to diseases and pathogens, by overexpressing a lipoxygenase, also vectors and cassettes for the process and transformed plants |
FR0114358A FR2825580B1 (en) | 2001-06-07 | 2001-11-07 | OVER-EXPRESSION OF A LIPOXYGENASE IN PLANTS AND REDUCED SENSITIVITY OF PLANTS TO DISEASES AND ATTACKS BY PATHOGENIC ORGANISMS |
CA002449273A CA2449273A1 (en) | 2001-06-07 | 2002-06-06 | Lipoxygenase overexpression in plants and reduction in plant sensitivity to diseases and attacks from pathogenic organisms |
EP02748941A EP1392834A2 (en) | 2001-06-07 | 2002-06-06 | Lipoxygenase overexpression in plants and reduction in plant sensitivity to diseases and attacks from pathogenic organisms |
PCT/FR2002/001943 WO2002099112A2 (en) | 2001-06-07 | 2002-06-06 | Lipoxygenase overexpression in plants and reduction in plant sensitivity to diseases and attacks from pathogenic organisms |
US10/731,642 US20040205842A1 (en) | 2001-06-07 | 2003-12-08 | Lipoxygenase overexpression in plants and reduction in plant sensitivity to diseases and to attacks from pathogenic organisms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0107470A FR2825578A1 (en) | 2001-06-07 | 2001-06-07 | Reducing sensitivity of plants to diseases and pathogens, by overexpressing a lipoxygenase, also vectors and cassettes for the process and transformed plants |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2825578A1 true FR2825578A1 (en) | 2002-12-13 |
Family
ID=8864067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0107470A Withdrawn FR2825578A1 (en) | 2001-06-07 | 2001-06-07 | Reducing sensitivity of plants to diseases and pathogens, by overexpressing a lipoxygenase, also vectors and cassettes for the process and transformed plants |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2825578A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11111858B2 (en) | 2017-01-27 | 2021-09-07 | General Electric Company | Cool core gas turbine engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0494687A (en) * | 1990-08-13 | 1992-03-26 | Mitsui Giyousai Shokubutsu Bio Kenkyusho:Kk | Rice lipoxygenase gene |
WO1997013851A1 (en) * | 1995-10-13 | 1997-04-17 | Purdue Research Foundation | Improvement of fruit quality by inhibiting production of lipoxygenase in fruits |
WO1997026364A1 (en) * | 1996-01-19 | 1997-07-24 | The Texas A & M University System | Method of inhibiting mycotoxin production in seed crops by modifying lipoxygenase pathway genes |
WO2000050575A2 (en) * | 1999-02-26 | 2000-08-31 | Calgene Llc | Nucleic acid sequence of a cucumber (cucumis sativus) fatty acid 9-hydroperoxide lyase |
WO2001036464A2 (en) * | 1999-11-18 | 2001-05-25 | Pioneer Hi-Bred International, Inc. | SUNFLOWER RhoGAP, LOX, ADH, AND SCIP-1 POLYNUCLEOTIDES AND METHODS OF USE |
-
2001
- 2001-06-07 FR FR0107470A patent/FR2825578A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0494687A (en) * | 1990-08-13 | 1992-03-26 | Mitsui Giyousai Shokubutsu Bio Kenkyusho:Kk | Rice lipoxygenase gene |
WO1997013851A1 (en) * | 1995-10-13 | 1997-04-17 | Purdue Research Foundation | Improvement of fruit quality by inhibiting production of lipoxygenase in fruits |
WO1997026364A1 (en) * | 1996-01-19 | 1997-07-24 | The Texas A & M University System | Method of inhibiting mycotoxin production in seed crops by modifying lipoxygenase pathway genes |
WO2000050575A2 (en) * | 1999-02-26 | 2000-08-31 | Calgene Llc | Nucleic acid sequence of a cucumber (cucumis sativus) fatty acid 9-hydroperoxide lyase |
WO2001036464A2 (en) * | 1999-11-18 | 2001-05-25 | Pioneer Hi-Bred International, Inc. | SUNFLOWER RhoGAP, LOX, ADH, AND SCIP-1 POLYNUCLEOTIDES AND METHODS OF USE |
Non-Patent Citations (9)
Title |
---|
BEAUDOIN NATHALIE ET AL: "Developmental regulation of two tomato lipoxygenase promoters in transgenic tobacco and tomato", PLANT MOLECULAR BIOLOGY, NIJHOFF PUBLISHERS, DORDRECHT, NL, vol. 33, no. 5, 1997, pages 835 - 846, XP002165965, ISSN: 0167-4412 * |
DATABASE EMBL 11 July 1995 (1995-07-11), "N.tabacum mRNA for lipoxygenase", XP002193024 * |
DATABASE WPI Section Ch Week 199219, Derwent World Patents Index; Class C06, AN 1992-156057, XP002193025 * |
HAUSE BETTINA ET AL: "Expression of cucumber lipid-body lipoxygenase in transgenic tobacco: Lipid-body lipoxygenase is correctly targeted to seed lipid bodies.", PLANTA (BERLIN), vol. 210, no. 5, April 2000 (2000-04-01), pages 708 - 714, XP002193023, ISSN: 0032-0935 * |
PLANT GENE REGISTER PGR95-009. VERONESI,C., FOURNIER,J., RICKAUER,M., MAROLDA,M. AND ESQUERRE-TUGAYE,M.-T. (1995) NUCLEOTIDE SEQUENCE OF AN ELICITOR-INDUCED TOBACCO LIPOXYGENASE CDNA (GENBANK X84040) (PGR95-009). PLANT PHYSIOL 108: 1342, XP002193021 * |
RANCE IANN ET AL: "The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 95, no. 11, 26 May 1998 (1998-05-26), pages 6554 - 6559, XP002165964, ISSN: 0027-8424 * |
RANCE IANN: "Thèse de doctorat: Isolement d'un gene lipoxygenase chez le tabac et recherche par la strategie antisens de son implication lors de l'interaction avec Phytophtora parasitica nicotianae", PASCAL, XP002166053 * |
RUSTERUCCI CHRISTINE ET AL: "Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves.", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, no. 51, 17 December 1999 (1999-12-17), pages 36446 - 36455, XP002193022, ISSN: 0021-9258 * |
VERONESI C ET AL: "Lypoxygenase gene expression in the tobacco-Phytophtora parasitica nicotianae interaction", PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, vol. 112, 1996, pages 997 - 1004, XP002166122, ISSN: 0032-0889 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11111858B2 (en) | 2017-01-27 | 2021-09-07 | General Electric Company | Cool core gas turbine engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kachroo et al. | An oleic acid–mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean | |
US7122719B2 (en) | Method of imparting disease resistance to plants by reducing polyphenol oxidase activities | |
AU2016399292B2 (en) | Herbicide tolerant protein, encoding gene and use thereof | |
CZ20013859A3 (en) | Plants resistant to herbicides | |
CZ20013860A3 (en) | Plants resistant to herbicides | |
FR2848568A1 (en) | New chimeric gene including a sequence for hydroxyphenyl pyruvate dioxygenase, useful for preparing transgenic plants resistant to herbicides that target this enzyme, by plastid transformation | |
US20090178158A1 (en) | Resistance against parasitic weeds | |
EP2627667B1 (en) | Production of plants having improved water-deficit tolerance | |
FR2800092A1 (en) | New chimeric gene, useful for producing pathogen-resistant transgenic plants, contains the sequence for the MYB30 transcription factor | |
WO2002099112A2 (en) | Lipoxygenase overexpression in plants and reduction in plant sensitivity to diseases and attacks from pathogenic organisms | |
FR2825578A1 (en) | Reducing sensitivity of plants to diseases and pathogens, by overexpressing a lipoxygenase, also vectors and cassettes for the process and transformed plants | |
EP2004816A2 (en) | Methods for increasing shoot-to-root ratio, seed production and resistance to diseases | |
EP2627772B1 (en) | Production of plants with improved tolerance to water deficit | |
WO2001083788A1 (en) | Plant pla2 polypeptides involved in plant defence reaction, polynucleotides encoding said polypeptides and transformed plants containing them | |
EP1121451B1 (en) | Method for obtaining transgenic plants expressing a protein with activity producing hydrogen peroxide by transformation by agrobacterium rhizogenes | |
CA2476048A1 (en) | Use of early light-inducible proteins (elip) to increase plant resistance to photochemical oxidant stress | |
FR2811680A1 (en) | INDUCTIBLE LIPOXYGENASE PROMOTER, EXPRESSION CASSETTES COMPRISING THE SAME AND TRANSFORMED PLANTS | |
Jacks et al. | Transformation of plants with a chloroperoxidase gene to enhance disease resistance | |
CA2422649A1 (en) | Hydroxy-phenyl pyruvate dioxygenase fused with a signal peptide, dna sequence and use for obtaining plants containing herbicide-tolerant plants | |
FR2796954A1 (en) | Fusion protein of hydroxyphenylpyruvate dioxygenase, useful for imparting herbicide resistance to plants, includes signal for non-cytoplasmic or non-plast localization | |
FR2796394A1 (en) | New SGS3 gene from Arabidopsis thaliana, useful for increasing virus resistance in plants and, when inhibited, for increasing transgene expression | |
WO2001055407A1 (en) | Novel sgs2 plant gene and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |