FR2811720A1 - Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions - Google Patents
Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions Download PDFInfo
- Publication number
- FR2811720A1 FR2811720A1 FR0009365A FR0009365A FR2811720A1 FR 2811720 A1 FR2811720 A1 FR 2811720A1 FR 0009365 A FR0009365 A FR 0009365A FR 0009365 A FR0009365 A FR 0009365A FR 2811720 A1 FR2811720 A1 FR 2811720A1
- Authority
- FR
- France
- Prior art keywords
- turbine
- turbines
- wind
- rail
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 230000005611 electricity Effects 0.000 title claims abstract description 4
- 238000005086 pumping Methods 0.000 title 1
- 230000002093 peripheral effect Effects 0.000 claims abstract description 5
- 230000008878 coupling Effects 0.000 claims abstract description 4
- 238000010168 coupling process Methods 0.000 claims abstract description 4
- 238000005859 coupling reaction Methods 0.000 claims abstract description 4
- 238000005096 rolling process Methods 0.000 claims abstract 2
- 230000009471 action Effects 0.000 claims description 3
- 230000008901 benefit Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 2
- 239000011150 reinforced concrete Substances 0.000 claims description 2
- 230000006978 adaptation Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000006073 displacement reaction Methods 0.000 abstract 1
- 238000011144 upstream manufacturing Methods 0.000 abstract 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/04—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
- F03D3/0436—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
- F03D3/0472—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor
- F03D3/049—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/062—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
- F03B17/063—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/10—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/60—Cooling or heating of wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/20—Geometry three-dimensional
- F05B2250/23—Geometry three-dimensional prismatic
- F05B2250/232—Geometry three-dimensional prismatic conical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Wind Motors (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
1 28117201 2811720
La présente invention a pour objet à titre de produit industriel nouveau, un dispositif de turbines a axe vertical utilisant la force d'éléments moteurs tel que le vent ou l'eau pour l'entraînement, principalement d'alternateurs générateurs d'électricité, ces turbines peuvent également entraîner des pompes immergées à axe vertical. Dans le cas d'alternateur l'emplacement sous les turbines permet l'emploi d'alternateurs-volant qui sont à faible vitesse de rotation ce qui permet l'accouplement direct a l'axe des turbines évitant ainsi les pertes mécaniques par l'emploi d'un multiplicateur de vitesse, inconvénients majeurs des éoliennes à axe horizontal. Dans ce dispositif, qui dans le cas de son utilisation en turbine aérienne est omnidirectionnel, deux turbines agissent en même temps sur un axe central, un double couple de pignons coniques calés au bas de l'arbre inverse le sens de rotation entre les deux turbines, la turbine concentrique à son profil de pale inversé par rapport au profil de la turbine périphérique. La courbure des pales des deux turbines présente un profil tel, que l'écoulement de l'élément moteur vent ou eau, par poussée et traînée, donne le rendement maximum. Bien qu'omnidirectionnelles on améliore le rendement des turbines, dans le cas du vent en adjoignant sur la ligne perpendiculaire au vent (7) des ailerons fixes (3) solidaire de The subject of the present invention is, as a new industrial product, a device for turbines with a vertical axis using the force of motor elements such as wind or water for driving, mainly alternators generating electricity, these turbines can also drive submersible pumps with a vertical axis. In the case of alternator the location under the turbines allows the use of flywheel alternators which are at low speed of rotation which allows direct coupling to the axis of the turbines thus avoiding mechanical losses by use a speed multiplier, major drawbacks of wind turbines with a horizontal axis. In this device, which in the case of its use in an overhead turbine is omnidirectional, two turbines act at the same time on a central axis, a double pair of bevel gears wedged at the bottom of the shaft reverses the direction of rotation between the two turbines , the turbine concentric with its blade profile inverted with respect to the profile of the peripheral turbine. The curvature of the blades of the two turbines has a profile such that the flow of the wind or water motor element, by thrust and drag, gives the maximum efficiency. Although omnidirectional, the efficiency of the turbines is improved, in the case of wind by adding on the line perpendicular to the wind (7) fixed fins (3) integral with
l'armature (17) qui permettent d'obtenir la poussée du vent sur les tangentes des turbines. the armature (17) which make it possible to obtain the thrust of the wind on the tangents of the turbines.
Pour accroître encore ce rendement les ailerons se positionnent automatiquement dans l'axe du vent ligne (6), pour obtenir l'orientation une girouette (34) détecte le sens du vent, un capteur rotatoire (36) et son asservissement commandent le moto-réducteur (26) (27) qui entraîne en rotation et en degrés voulus l'ensemble du dispositif sur un rail circulaire (11). Un alternateur auxiliaire (29) à vitesse plus élevée, que l'alternateur (28), est entraîné par un des petits pignons du couple conique (30) c'est alternateur sert d'excitation a l'alternateur principal (28). L'autre axe du petit pignon du couple (30) entraîne un régulateur à force centrifuge (31) auquel fait suite un système analogique qui permet la régulation du courant d'excitation fournit par l'alternateur (29). L'écoulement de l'air se fait par les passages (38) aux bas des turbines, c'est air suit en grande partie, la génératrice d'un cône central (5) ayant sa base (4) en haut des turbines c'est ce cône (5) qui évite que l'air résiduel ne perturbe l'arrière de la turbine, autre avantage de cette disposition la contribution de c'est air à refroidir les alternateurs (28) et (29). De part leurs principes et leurs constructions ces aéro-turbines demandent des hauteurs moins importantes, pour prendre le vent, que les dispositifs à axes horizontaux, leur mise en rotation se fait à partir de vents faibles jusqu'aux plus forts vents de tempête. Lorsque ce To further increase this efficiency, the ailerons are automatically positioned in the line wind axis (6), to obtain the orientation a wind vane (34) detects the direction of the wind, a rotary sensor (36) and its servo control the motor- reducer (26) (27) which drives the entire device in rotation and in desired degrees on a circular rail (11). An auxiliary alternator (29) at higher speed, than the alternator (28), is driven by one of the small pinions of the bevel gear (30) that alternator serves as excitation to the main alternator (28). The other axis of the small torque pinion (30) drives a centrifugal force regulator (31) followed by an analog system which allows the regulation of the excitation current supplied by the alternator (29). The air flow is through the passages (38) at the bottom of the turbines, it is air follows largely, the generator of a central cone (5) having its base (4) at the top of the turbines c 'is this cone (5) which prevents the residual air from disturbing the rear of the turbine, another advantage of this arrangement is the contribution of air to cool the alternators (28) and (29). Due to their principles and their construction, these aero-turbines require less significant heights, to catch the wind, than the devices with horizontal axes, their rotation is made from weak winds to the strongest storm winds. When this
2 28117202 2811720
dispositif de turbine utilise, comme élément moteur, I'eau un carter (39) que représente la fig. 1 ferme la moitié de la turbine a son aval. Tous ces avantages présentent un net progrès technique sur tout ce qui a été fait dans le domaine des turbines notamment dans le domaine des éoliennes avec axe vertical ou horizontal. La fig. 1 permet de voir les deux turbines(1) et (2) vue du dessus est dépouillée des mécanismes d'asservissement et des armatures. Dans cette vue on remarque l'axe (37) supportant les deux turbines. Le quart de turbine extérieure (1) se trouvant entre les lignes médianes (6) et (7) à droite présente les trois quarts des pales a plat face au vent les autres pales agissent par leurs profils. A gauche des lignes (6) et (7) les pales créent une force par l'action du vent sur leurs profils, des poussées identique mais inverses se situant de gauche à droite se produisent sur la turbine concentrique. (2). On retrouve des effets similaires lorsque la turbine est immergée dans l'eau. Une forme d'exécution de l'invention est décrite ci-après à titre indicatif et nullement limitatif. En se référant aux dessins annexés décrivant le dispositif de turbine aérienne on voit fig. I la turbine concentrique (2), les ailerons (3) diamétralement opposés se situant sur la ligne médiane (7), I'axe (37) supportant les deux turbines, et le cône (5). Avec la fig.2 on voit la courbure et le profil exact des pales à conserves, toutes proportions gardées, en fabrications. La fig. 3 est une vue en coupe qui permet de voir l'ensemble du dispositif, un socle (35) en béton armé pouvant être, si nécessaire, surmonté d'une armature métallique qui supporte le rail profilé en I (11) rail sur lequel roulent les galets (16) répartis sur la circonférence de l'armature circulaire (17) ces galets (16) sont solidaires de (17) par les pièces (13) et (18) ces mêmes pièces (18) maintiennent en place les galets (12) qui roulent sous le profilé circulaire (1 1), ces galets (12) permettent le centrage de tout l'ensemble sur le rail (11) leurs profils étant tronconique, on remarque le galet (14) recouvert d'un bandage en caoutchouc (15), bandage qui permet l'adhérence sur le rail, ce galet est entraîné par le moto-réducteur (26) (27) qui est mis en action par l'ensemble détecteur (34)(36) qui se trouve au sommet des turbines sur le support (33) solidaire de l'armature. Les paliers (19) et (20) sont également solidaire de l'armature (17) ils maintiennent l'axe (37) la turbine (2) est solidaire de c'est axe. La couronne au bas du couple conique (30) ait également solidaire de c'est axe, le cône (4) (5) fait partie de la turbine (2) les paliers (21) et (22) maintiennent l'armature (8) de la turbine (1) sur l'axe (37) la couronne supérieure du couple (30) est solidaire de l'armature (8), I'écartement entre les deux couronnes s'obtient avec l'entretoise (24), le haut et le bas de la turbine(1) est entièrement fermer (9) alors que la turbine (2) est partiellement ouverte (38). Une armature (10) auxiliaire solidaire de (17) sert de plancher à l'ensemble (30) (29) (31), ce plancher supporte également la butée a billes (23). Cette butée réduit les contraintes axiales agissant sur les paliers (19) et (20). L'entrainement de l'alternateur-volant (28) se fait par l'accouplement (25). Dans I'application en turbine immergée il est bien évident que l'armature (10) prend place au dessus des turbines ainsi que les éléments (30) (24) (25) (23) (32) et (31) de même que les alternateurs (28) et (29), Le système de rail et les galets ne sont plus utilisé. Le dispositif de détection(33) (34) (36) et le moto-réducteur (26) deviennent inutiles, d'autres dispositifs pour commander l'hydraulique peuvent les remplacer Il est bien entendu que la présente invention n'est pas limitée au mode de réalisation décrit et représenté, il constitue seulement un exemple auquel de nombreuses modifications peuvent être turbine device uses, as a driving element, water a casing (39) represented in FIG. 1 closes half of the turbine downstream. All these advantages present a clear technical progress on all that has been done in the field of turbines in particular in the field of wind turbines with vertical or horizontal axis. Fig. 1 shows the two turbines (1) and (2) seen from above is stripped of the servo mechanisms and armatures. In this view we note the axis (37) supporting the two turbines. The quarter of the outer turbine (1) located between the center lines (6) and (7) on the right presents three quarters of the blades flat facing the wind, the other blades act by their profiles. To the left of lines (6) and (7) the blades create a force by the action of the wind on their profiles, identical but reverse thrusts from left to right occur on the concentric turbine. (2). Similar effects are found when the turbine is immersed in water. An embodiment of the invention is described below for information and is in no way limiting. Referring to the appended drawings describing the air turbine device, FIG. I the concentric turbine (2), the diametrically opposite fins (3) lying on the center line (7), the axis (37) supporting the two turbines, and the cone (5). With fig. 2 we see the curvature and the exact profile of the canned blades, all proportions kept, in production. Fig. 3 is a sectional view which allows the whole device to be seen, a reinforced concrete base (35) which can be, if necessary, surmounted by a metal frame which supports the I-shaped rail (11) rail on which roll the rollers (16) distributed over the circumference of the circular frame (17) these rollers (16) are integral with (17) by the parts (13) and (18) these same parts (18) hold the rollers in place ( 12) which roll under the circular profile (1 1), these rollers (12) allow the centering of the whole assembly on the rail (11) their profiles being frustoconical, we note the roller (14) covered with a bandage rubber (15), tire which allows adhesion to the rail, this roller is driven by the gear motor (26) (27) which is activated by the detector assembly (34) (36) which is located top of the turbines on the support (33) integral with the frame. The bearings (19) and (20) are also integral with the frame (17) they hold the axis (37) the turbine (2) is integral with this axis. The crown at the bottom of the bevel gear (30) is also integral with this axis, the cone (4) (5) is part of the turbine (2) the bearings (21) and (22) maintain the armature (8 ) of the turbine (1) on the axis (37) the upper crown of the couple (30) is integral with the frame (8), the spacing between the two crowns is obtained with the spacer (24), the top and bottom of the turbine (1) is fully closed (9) while the turbine (2) is partially open (38). An auxiliary frame (10) integral with (17) serves as a floor for the assembly (30) (29) (31), this floor also supports the thrust ball (23). This stop reduces the axial stresses acting on the bearings (19) and (20). The flywheel alternator (28) is driven by the coupling (25). In the submerged turbine application it is obvious that the armature (10) takes place above the turbines as well as the elements (30) (24) (25) (23) (32) and (31) as well as the alternators (28) and (29), The rail system and the rollers are no longer used. The detection device (33) (34) (36) and the gear motor (26) become useless, other devices for controlling the hydraulics can replace them. It is understood that the present invention is not limited to embodiment described and shown, it is only an example to which many modifications can be
apportées sans que l'on s'écarte de la présente invention. made without departing from the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0009365A FR2811720B1 (en) | 2000-07-13 | 2000-07-13 | AERIAL (AIR) OR UNDERWATER (WATER) TURBINE IN TWO REVERSE ROTORS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0009365A FR2811720B1 (en) | 2000-07-13 | 2000-07-13 | AERIAL (AIR) OR UNDERWATER (WATER) TURBINE IN TWO REVERSE ROTORS |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2811720A1 true FR2811720A1 (en) | 2002-01-18 |
FR2811720B1 FR2811720B1 (en) | 2002-12-13 |
Family
ID=8852602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0009365A Expired - Fee Related FR2811720B1 (en) | 2000-07-13 | 2000-07-13 | AERIAL (AIR) OR UNDERWATER (WATER) TURBINE IN TWO REVERSE ROTORS |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2811720B1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2382381A (en) * | 2001-11-21 | 2003-05-28 | John Freer Green | Improvements in wind turbines |
WO2006022551A1 (en) * | 2004-08-25 | 2006-03-02 | Wave Energy As | A liquid turbine device including a turbine wheel with more than one set of blades in radial succession |
CN1328502C (en) * | 2005-03-25 | 2007-07-25 | 陈秋平 | Magnetic suspension driving apparatus with arbor wheel and turbine for wind energy electricity generation |
WO2007129049A1 (en) * | 2006-05-02 | 2007-11-15 | David Mcsherry | Turbine for extracting energy from a flowing fluid |
WO2010020018A1 (en) * | 2008-08-22 | 2010-02-25 | Fourivers Power Engineering Pty Ltd | Power generation apparatus |
WO2010123400A1 (en) | 2009-04-24 | 2010-10-28 | МИХОВ, Александр Петрович | Wind energy installation |
WO2011017780A3 (en) * | 2009-08-12 | 2011-08-11 | Josip Bilic | Vertical axis wind turbine with two concentric rotors |
EA015696B1 (en) * | 2007-12-26 | 2011-10-31 | Вячеслав Степанович Климов | Coaxial rotor windmill and method of increasing kinetic energy of the flow |
CN102269121A (en) * | 2011-08-19 | 2011-12-07 | 李荣江 | Vertical-axis wind driven rotating power generation system |
WO2012007630A1 (en) * | 2010-07-16 | 2012-01-19 | Dobgir, S.L. | "vertical-axis wind turbine" |
WO2012007934A1 (en) * | 2010-07-13 | 2012-01-19 | Twinergy Energy Systems Ltd | Dual vertical wind turbine |
US20120187698A1 (en) * | 2009-11-05 | 2012-07-26 | Clifford Bassett | Systems and methods to generate electricity using a flow of air |
WO2013005099A1 (en) * | 2011-07-07 | 2013-01-10 | 7907095 Canada Inc. | Horizontal multiple stages wind turbine |
WO2013024367A1 (en) | 2011-08-16 | 2013-02-21 | Mikhov, Alexander Petrovich | Wind power generator |
WO2013038215A1 (en) * | 2011-09-15 | 2013-03-21 | Macher Gépészeti És Elektronikai Kft. | Dual-turbine wind power station placed on a vertical axis |
WO2013068977A1 (en) * | 2011-11-11 | 2013-05-16 | Dattatraya Rajaram Shelke | Turbine having free and power rotors |
US8659180B2 (en) | 2007-08-24 | 2014-02-25 | Fourivers Power Engineering Pty Ltd. | Power generation apparatus |
WO2014056049A1 (en) | 2012-10-11 | 2014-04-17 | Bilić Josip | Device using multiple renewable energy sources (dumres) |
WO2014106765A1 (en) * | 2013-01-04 | 2014-07-10 | Perrenoud Yvan | Turbine with helical blades |
JP2015007414A (en) * | 2013-06-26 | 2015-01-15 | 石津 雅勇 | Impeller with booster function |
RU2543362C2 (en) * | 2012-09-03 | 2015-02-27 | Виктор Иванович Кривчиков | Damless hydro-electric power plant |
WO2015168817A1 (en) * | 2014-05-06 | 2015-11-12 | Hugo Orlando Reineck | Vertical-axis wind turbine having a static-rigid body |
WO2017034504A1 (en) * | 2015-08-25 | 2017-03-02 | Виктор Иванович КРИВЧИКОВ | Damless hydroelectric power plant |
CN107762562A (en) * | 2017-10-31 | 2018-03-06 | 陈育雄 | A kind of rotating water, steam turbine |
IT201600109808A1 (en) * | 2016-10-31 | 2018-05-01 | Gizzi Patrizia | INTEGRATED SYSTEM FOR THE PRODUCTION OF ELECTRICAL ENERGY BY MEANS OF HIGH-VALUE ENERGY CONVERSION DEVICES, OBTAINED FROM RENEWABLE SOURCES. |
CN109404205A (en) * | 2018-08-20 | 2019-03-01 | 郭文清 | Land and water windmill |
DE102022004917A1 (en) | 2022-12-28 | 2024-07-04 | Bruno Zay | FUTURE WIND TURBINE FOR HIGH WIND EXPLOITATION |
DE102023000866A1 (en) | 2023-03-08 | 2024-09-12 | Bruno Zay | Battery charging while driving or parking for electric boats, electric yachts and electric ships |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1523295A (en) * | 1923-10-27 | 1925-01-13 | James T Ryan | Windmill |
US4116581A (en) * | 1977-01-21 | 1978-09-26 | Bolie Victor W | Severe climate windmill |
US4236866A (en) * | 1976-12-13 | 1980-12-02 | Valentin Zapata Martinez | System for the obtainment and the regulation of energy starting from air, sea and river currents |
FR2541732A1 (en) * | 1982-09-27 | 1984-08-31 | Rignault Jean | Compound anemodynamic motor with its applications to propulsion |
US4606697A (en) * | 1984-08-15 | 1986-08-19 | Advance Energy Conversion Corporation | Wind turbine generator |
DE19516504A1 (en) * | 1995-05-05 | 1996-11-07 | Reetz Hans Juergen | Vertical rotor wind-driven generator |
US5664418A (en) * | 1993-11-24 | 1997-09-09 | Walters; Victor | Whirl-wind vertical axis wind and water turbine |
-
2000
- 2000-07-13 FR FR0009365A patent/FR2811720B1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1523295A (en) * | 1923-10-27 | 1925-01-13 | James T Ryan | Windmill |
US4236866A (en) * | 1976-12-13 | 1980-12-02 | Valentin Zapata Martinez | System for the obtainment and the regulation of energy starting from air, sea and river currents |
US4116581A (en) * | 1977-01-21 | 1978-09-26 | Bolie Victor W | Severe climate windmill |
FR2541732A1 (en) * | 1982-09-27 | 1984-08-31 | Rignault Jean | Compound anemodynamic motor with its applications to propulsion |
US4606697A (en) * | 1984-08-15 | 1986-08-19 | Advance Energy Conversion Corporation | Wind turbine generator |
US5664418A (en) * | 1993-11-24 | 1997-09-09 | Walters; Victor | Whirl-wind vertical axis wind and water turbine |
DE19516504A1 (en) * | 1995-05-05 | 1996-11-07 | Reetz Hans Juergen | Vertical rotor wind-driven generator |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2382381A (en) * | 2001-11-21 | 2003-05-28 | John Freer Green | Improvements in wind turbines |
WO2006022551A1 (en) * | 2004-08-25 | 2006-03-02 | Wave Energy As | A liquid turbine device including a turbine wheel with more than one set of blades in radial succession |
CN1328502C (en) * | 2005-03-25 | 2007-07-25 | 陈秋平 | Magnetic suspension driving apparatus with arbor wheel and turbine for wind energy electricity generation |
WO2007129049A1 (en) * | 2006-05-02 | 2007-11-15 | David Mcsherry | Turbine for extracting energy from a flowing fluid |
GB2450668A (en) * | 2006-05-02 | 2008-12-31 | David Mcsherry | Turbine for extracting energy from a flowing fluid |
US9239038B2 (en) | 2007-08-24 | 2016-01-19 | Fourivers Power Engineering Pty Ltd | Power generation apparatus |
US8659180B2 (en) | 2007-08-24 | 2014-02-25 | Fourivers Power Engineering Pty Ltd. | Power generation apparatus |
EA015696B1 (en) * | 2007-12-26 | 2011-10-31 | Вячеслав Степанович Климов | Coaxial rotor windmill and method of increasing kinetic energy of the flow |
WO2010020018A1 (en) * | 2008-08-22 | 2010-02-25 | Fourivers Power Engineering Pty Ltd | Power generation apparatus |
WO2010123400A1 (en) | 2009-04-24 | 2010-10-28 | МИХОВ, Александр Петрович | Wind energy installation |
WO2011017780A3 (en) * | 2009-08-12 | 2011-08-11 | Josip Bilic | Vertical axis wind turbine with two concentric rotors |
US20120187698A1 (en) * | 2009-11-05 | 2012-07-26 | Clifford Bassett | Systems and methods to generate electricity using a flow of air |
US9291150B2 (en) * | 2009-11-05 | 2016-03-22 | Clifford Bassett | Systems and methods to generate electricity using a flow of air |
WO2012007934A1 (en) * | 2010-07-13 | 2012-01-19 | Twinergy Energy Systems Ltd | Dual vertical wind turbine |
WO2012007630A1 (en) * | 2010-07-16 | 2012-01-19 | Dobgir, S.L. | "vertical-axis wind turbine" |
ES2389214A1 (en) * | 2010-07-16 | 2012-10-24 | Dobgir, S.L. | "vertical-axis wind turbine" |
US9121388B2 (en) | 2010-07-16 | 2015-09-01 | Dobgir, S.L. | Vertical-axis wind turbine |
WO2013005099A1 (en) * | 2011-07-07 | 2013-01-10 | 7907095 Canada Inc. | Horizontal multiple stages wind turbine |
WO2013024367A1 (en) | 2011-08-16 | 2013-02-21 | Mikhov, Alexander Petrovich | Wind power generator |
CN102269121A (en) * | 2011-08-19 | 2011-12-07 | 李荣江 | Vertical-axis wind driven rotating power generation system |
WO2013038215A1 (en) * | 2011-09-15 | 2013-03-21 | Macher Gépészeti És Elektronikai Kft. | Dual-turbine wind power station placed on a vertical axis |
WO2013068977A1 (en) * | 2011-11-11 | 2013-05-16 | Dattatraya Rajaram Shelke | Turbine having free and power rotors |
RU2543362C2 (en) * | 2012-09-03 | 2015-02-27 | Виктор Иванович Кривчиков | Damless hydro-electric power plant |
WO2014056049A1 (en) | 2012-10-11 | 2014-04-17 | Bilić Josip | Device using multiple renewable energy sources (dumres) |
WO2014106765A1 (en) * | 2013-01-04 | 2014-07-10 | Perrenoud Yvan | Turbine with helical blades |
JP2015007414A (en) * | 2013-06-26 | 2015-01-15 | 石津 雅勇 | Impeller with booster function |
WO2015168817A1 (en) * | 2014-05-06 | 2015-11-12 | Hugo Orlando Reineck | Vertical-axis wind turbine having a static-rigid body |
WO2017034504A1 (en) * | 2015-08-25 | 2017-03-02 | Виктор Иванович КРИВЧИКОВ | Damless hydroelectric power plant |
IT201600109808A1 (en) * | 2016-10-31 | 2018-05-01 | Gizzi Patrizia | INTEGRATED SYSTEM FOR THE PRODUCTION OF ELECTRICAL ENERGY BY MEANS OF HIGH-VALUE ENERGY CONVERSION DEVICES, OBTAINED FROM RENEWABLE SOURCES. |
CN107762562A (en) * | 2017-10-31 | 2018-03-06 | 陈育雄 | A kind of rotating water, steam turbine |
CN109404205A (en) * | 2018-08-20 | 2019-03-01 | 郭文清 | Land and water windmill |
DE102022004917A1 (en) | 2022-12-28 | 2024-07-04 | Bruno Zay | FUTURE WIND TURBINE FOR HIGH WIND EXPLOITATION |
DE102023000866A1 (en) | 2023-03-08 | 2024-09-12 | Bruno Zay | Battery charging while driving or parking for electric boats, electric yachts and electric ships |
Also Published As
Publication number | Publication date |
---|---|
FR2811720B1 (en) | 2002-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2811720A1 (en) | Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions | |
US8080913B2 (en) | Hollow turbine | |
US5495128A (en) | Wind powered generator | |
US5088884A (en) | Rotor assembly for fluid driven engine | |
US20070018459A1 (en) | Hydroelectric turbine and method for producing electricity from tidal flow | |
TWI491798B (en) | Submersible power generating plant, driven by a water flow | |
AU2006202467A1 (en) | Water current generator | |
RU2011137545A (en) | SMALL ANTI-OPPOSITE ROTATION SCREWS SYSTEM | |
US9322392B2 (en) | Enclosed vertical axis fluid rotor | |
US20140117667A1 (en) | Marine current power plant and a method for its operation | |
US7744345B1 (en) | Wind power generator | |
US5905311A (en) | Integrated hydroelectric unit | |
JP6526727B2 (en) | Pipe screw pump unit | |
FR2902157A1 (en) | Vertical axis rotor e.g. savonius rotor, for transforming wind energy into e.g. mechanical energy, has cylindrical sheath coaxial to cylindrical turbine and with vertical opening to permit penetration of wind into sheath to act on vanes | |
EP0787901B1 (en) | Wind powered generator | |
WO2018109776A1 (en) | Design and fabrication of advanced vertical axis wind turbine with self-alignment blades | |
JPH11141453A (en) | Wind force device | |
WO2009003285A1 (en) | Wind turbine with vertical axis with blades fitted with a return means | |
FR2901580A1 (en) | Savonius-type rotor unit for e.g. vertical axis wind turbine, has curved blades including curved profile defined by arc of main circle having specific radius of curvature, and overlapped to create central passage | |
WO2004063565A1 (en) | Wind concentrating device for vertical axis wind turbine | |
JP3063354U (en) | Tidal current turbine | |
FR2494781A1 (en) | Vertical axis wind or water driven turbine - uses horizontal radial arms with vertical pivoted vane at end of each and stop placed to hold mobile vane across flow | |
RU2368797C2 (en) | Hydropower plant | |
RU2030777C1 (en) | Wind power plant | |
US1740595A (en) | Stream motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |
Effective date: 20070330 |