FR2811720A1 - Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions - Google Patents

Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions Download PDF

Info

Publication number
FR2811720A1
FR2811720A1 FR0009365A FR0009365A FR2811720A1 FR 2811720 A1 FR2811720 A1 FR 2811720A1 FR 0009365 A FR0009365 A FR 0009365A FR 0009365 A FR0009365 A FR 0009365A FR 2811720 A1 FR2811720 A1 FR 2811720A1
Authority
FR
France
Prior art keywords
turbine
turbines
wind
rail
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0009365A
Other languages
French (fr)
Other versions
FR2811720B1 (en
Inventor
Jacques Coste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR0009365A priority Critical patent/FR2811720B1/en
Publication of FR2811720A1 publication Critical patent/FR2811720A1/en
Application granted granted Critical
Publication of FR2811720B1 publication Critical patent/FR2811720B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0472Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor
    • F03D3/049Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield orientation being adaptable to the wind motor with converging inlets, i.e. the shield intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/232Geometry three-dimensional prismatic conical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

One of the turbines is peripheral and the other is concentric both of which act at the same time on a central common axis. When used as a water immersed turbine a casing (39) encloses the upstream half of the turbine. Turbine counter rotation is done by using a coupled pair of conic pinions which drive the common axis (37) of the concentric turbine (2) with its inverse profile blades with respect to the blades of the outer turbine (1). The curvature and shape of the blades are such that the driving force air or water gives maximum efficiency. Vertical axis wind or water driven turbine, principally for use in electricity generation. When used as a wind turbine they allow the uses of a alternator drive which has a low rotational speed which permits direct coupling of the turbine axis thus reducing mechanical losses due to gearing. The turbine assembly is omnidirectional and its efficiency can be improved by adding, on a perpendicular line (7) to the driving force, fixed ailerons. These ailerons allow a better attack of the drive force on the tangent to the turbines so as to further increase the efficiency when operating as an air turbine. An armature pivots on a circular rail to maintain the line (7) perpendicular to the wind. Displacement of the armature on the rail is done with the aid of cylindrical rollers rolling on the rail. Tronconic rollers center the armature on the rail

Description

1 28117201 2811720

La présente invention a pour objet à titre de produit industriel nouveau, un dispositif de turbines a axe vertical utilisant la force d'éléments moteurs tel que le vent ou l'eau pour l'entraînement, principalement d'alternateurs générateurs d'électricité, ces turbines peuvent également entraîner des pompes immergées à axe vertical. Dans le cas d'alternateur l'emplacement sous les turbines permet l'emploi d'alternateurs-volant qui sont à faible vitesse de rotation ce qui permet l'accouplement direct a l'axe des turbines évitant ainsi les pertes mécaniques par l'emploi d'un multiplicateur de vitesse, inconvénients majeurs des éoliennes à axe horizontal. Dans ce dispositif, qui dans le cas de son utilisation en turbine aérienne est omnidirectionnel, deux turbines agissent en même temps sur un axe central, un double couple de pignons coniques calés au bas de l'arbre inverse le sens de rotation entre les deux turbines, la turbine concentrique à son profil de pale inversé par rapport au profil de la turbine périphérique. La courbure des pales des deux turbines présente un profil tel, que l'écoulement de l'élément moteur vent ou eau, par poussée et traînée, donne le rendement maximum. Bien qu'omnidirectionnelles on améliore le rendement des turbines, dans le cas du vent en adjoignant sur la ligne perpendiculaire au vent (7) des ailerons fixes (3) solidaire de  The subject of the present invention is, as a new industrial product, a device for turbines with a vertical axis using the force of motor elements such as wind or water for driving, mainly alternators generating electricity, these turbines can also drive submersible pumps with a vertical axis. In the case of alternator the location under the turbines allows the use of flywheel alternators which are at low speed of rotation which allows direct coupling to the axis of the turbines thus avoiding mechanical losses by use a speed multiplier, major drawbacks of wind turbines with a horizontal axis. In this device, which in the case of its use in an overhead turbine is omnidirectional, two turbines act at the same time on a central axis, a double pair of bevel gears wedged at the bottom of the shaft reverses the direction of rotation between the two turbines , the turbine concentric with its blade profile inverted with respect to the profile of the peripheral turbine. The curvature of the blades of the two turbines has a profile such that the flow of the wind or water motor element, by thrust and drag, gives the maximum efficiency. Although omnidirectional, the efficiency of the turbines is improved, in the case of wind by adding on the line perpendicular to the wind (7) fixed fins (3) integral with

l'armature (17) qui permettent d'obtenir la poussée du vent sur les tangentes des turbines.  the armature (17) which make it possible to obtain the thrust of the wind on the tangents of the turbines.

Pour accroître encore ce rendement les ailerons se positionnent automatiquement dans l'axe du vent ligne (6), pour obtenir l'orientation une girouette (34) détecte le sens du vent, un capteur rotatoire (36) et son asservissement commandent le moto-réducteur (26) (27) qui entraîne en rotation et en degrés voulus l'ensemble du dispositif sur un rail circulaire (11). Un alternateur auxiliaire (29) à vitesse plus élevée, que l'alternateur (28), est entraîné par un des petits pignons du couple conique (30) c'est alternateur sert d'excitation a l'alternateur principal (28). L'autre axe du petit pignon du couple (30) entraîne un régulateur à force centrifuge (31) auquel fait suite un système analogique qui permet la régulation du courant d'excitation fournit par l'alternateur (29). L'écoulement de l'air se fait par les passages (38) aux bas des turbines, c'est air suit en grande partie, la génératrice d'un cône central (5) ayant sa base (4) en haut des turbines c'est ce cône (5) qui évite que l'air résiduel ne perturbe l'arrière de la turbine, autre avantage de cette disposition la contribution de c'est air à refroidir les alternateurs (28) et (29). De part leurs principes et leurs constructions ces aéro-turbines demandent des hauteurs moins importantes, pour prendre le vent, que les dispositifs à axes horizontaux, leur mise en rotation se fait à partir de vents faibles jusqu'aux plus forts vents de tempête. Lorsque ce  To further increase this efficiency, the ailerons are automatically positioned in the line wind axis (6), to obtain the orientation a wind vane (34) detects the direction of the wind, a rotary sensor (36) and its servo control the motor- reducer (26) (27) which drives the entire device in rotation and in desired degrees on a circular rail (11). An auxiliary alternator (29) at higher speed, than the alternator (28), is driven by one of the small pinions of the bevel gear (30) that alternator serves as excitation to the main alternator (28). The other axis of the small torque pinion (30) drives a centrifugal force regulator (31) followed by an analog system which allows the regulation of the excitation current supplied by the alternator (29). The air flow is through the passages (38) at the bottom of the turbines, it is air follows largely, the generator of a central cone (5) having its base (4) at the top of the turbines c 'is this cone (5) which prevents the residual air from disturbing the rear of the turbine, another advantage of this arrangement is the contribution of air to cool the alternators (28) and (29). Due to their principles and their construction, these aero-turbines require less significant heights, to catch the wind, than the devices with horizontal axes, their rotation is made from weak winds to the strongest storm winds. When this

2 28117202 2811720

dispositif de turbine utilise, comme élément moteur, I'eau un carter (39) que représente la fig. 1 ferme la moitié de la turbine a son aval. Tous ces avantages présentent un net progrès technique sur tout ce qui a été fait dans le domaine des turbines notamment dans le domaine des éoliennes avec axe vertical ou horizontal. La fig. 1 permet de voir les deux turbines(1) et (2) vue du dessus est dépouillée des mécanismes d'asservissement et des armatures. Dans cette vue on remarque l'axe (37) supportant les deux turbines. Le quart de turbine extérieure (1) se trouvant entre les lignes médianes (6) et (7) à droite présente les trois quarts des pales a plat face au vent les autres pales agissent par leurs profils. A gauche des lignes (6) et (7) les pales créent une force par l'action du vent sur leurs profils, des poussées identique mais inverses se situant de gauche à droite se produisent sur la turbine concentrique. (2). On retrouve des effets similaires lorsque la turbine est immergée dans l'eau. Une forme d'exécution de l'invention est décrite ci-après à titre indicatif et nullement limitatif. En se référant aux dessins annexés décrivant le dispositif de turbine aérienne on voit fig. I la turbine concentrique (2), les ailerons (3) diamétralement opposés se situant sur la ligne médiane (7), I'axe (37) supportant les deux turbines, et le cône (5). Avec la fig.2 on voit la courbure et le profil exact des pales à conserves, toutes proportions gardées, en fabrications. La fig. 3 est une vue en coupe qui permet de voir l'ensemble du dispositif, un socle (35) en béton armé pouvant être, si nécessaire, surmonté d'une armature métallique qui supporte le rail profilé en I (11) rail sur lequel roulent les galets (16) répartis sur la circonférence de l'armature circulaire (17) ces galets (16) sont solidaires de (17) par les pièces (13) et (18) ces mêmes pièces (18) maintiennent en place les galets (12) qui roulent sous le profilé circulaire (1 1), ces galets (12) permettent le centrage de tout l'ensemble sur le rail (11) leurs profils étant tronconique, on remarque le galet (14) recouvert d'un bandage en caoutchouc (15), bandage qui permet l'adhérence sur le rail, ce galet est entraîné par le moto-réducteur (26) (27) qui est mis en action par l'ensemble détecteur (34)(36) qui se trouve au sommet des turbines sur le support (33) solidaire de l'armature. Les paliers (19) et (20) sont également solidaire de l'armature (17) ils maintiennent l'axe (37) la turbine (2) est solidaire de c'est axe. La couronne au bas du couple conique (30) ait également solidaire de c'est axe, le cône (4) (5) fait partie de la turbine (2) les paliers (21) et (22) maintiennent l'armature (8) de la turbine (1) sur l'axe (37) la couronne supérieure du couple (30) est solidaire de l'armature (8), I'écartement entre les deux couronnes s'obtient avec l'entretoise (24), le haut et le bas de la turbine(1) est entièrement fermer (9) alors que la turbine (2) est partiellement ouverte (38). Une armature (10) auxiliaire solidaire de (17) sert de plancher à l'ensemble (30) (29) (31), ce plancher supporte également la butée a billes (23). Cette butée réduit les contraintes axiales agissant sur les paliers (19) et (20). L'entrainement de l'alternateur-volant (28) se fait par l'accouplement (25). Dans I'application en turbine immergée il est bien évident que l'armature (10) prend place au dessus des turbines ainsi que les éléments (30) (24) (25) (23) (32) et (31) de même que les alternateurs (28) et (29), Le système de rail et les galets ne sont plus utilisé. Le dispositif de détection(33) (34) (36) et le moto-réducteur (26) deviennent inutiles, d'autres dispositifs pour commander l'hydraulique peuvent les remplacer Il est bien entendu que la présente invention n'est pas limitée au mode de réalisation décrit et représenté, il constitue seulement un exemple auquel de nombreuses modifications peuvent être  turbine device uses, as a driving element, water a casing (39) represented in FIG. 1 closes half of the turbine downstream. All these advantages present a clear technical progress on all that has been done in the field of turbines in particular in the field of wind turbines with vertical or horizontal axis. Fig. 1 shows the two turbines (1) and (2) seen from above is stripped of the servo mechanisms and armatures. In this view we note the axis (37) supporting the two turbines. The quarter of the outer turbine (1) located between the center lines (6) and (7) on the right presents three quarters of the blades flat facing the wind, the other blades act by their profiles. To the left of lines (6) and (7) the blades create a force by the action of the wind on their profiles, identical but reverse thrusts from left to right occur on the concentric turbine. (2). Similar effects are found when the turbine is immersed in water. An embodiment of the invention is described below for information and is in no way limiting. Referring to the appended drawings describing the air turbine device, FIG. I the concentric turbine (2), the diametrically opposite fins (3) lying on the center line (7), the axis (37) supporting the two turbines, and the cone (5). With fig. 2 we see the curvature and the exact profile of the canned blades, all proportions kept, in production. Fig. 3 is a sectional view which allows the whole device to be seen, a reinforced concrete base (35) which can be, if necessary, surmounted by a metal frame which supports the I-shaped rail (11) rail on which roll the rollers (16) distributed over the circumference of the circular frame (17) these rollers (16) are integral with (17) by the parts (13) and (18) these same parts (18) hold the rollers in place ( 12) which roll under the circular profile (1 1), these rollers (12) allow the centering of the whole assembly on the rail (11) their profiles being frustoconical, we note the roller (14) covered with a bandage rubber (15), tire which allows adhesion to the rail, this roller is driven by the gear motor (26) (27) which is activated by the detector assembly (34) (36) which is located top of the turbines on the support (33) integral with the frame. The bearings (19) and (20) are also integral with the frame (17) they hold the axis (37) the turbine (2) is integral with this axis. The crown at the bottom of the bevel gear (30) is also integral with this axis, the cone (4) (5) is part of the turbine (2) the bearings (21) and (22) maintain the armature (8 ) of the turbine (1) on the axis (37) the upper crown of the couple (30) is integral with the frame (8), the spacing between the two crowns is obtained with the spacer (24), the top and bottom of the turbine (1) is fully closed (9) while the turbine (2) is partially open (38). An auxiliary frame (10) integral with (17) serves as a floor for the assembly (30) (29) (31), this floor also supports the thrust ball (23). This stop reduces the axial stresses acting on the bearings (19) and (20). The flywheel alternator (28) is driven by the coupling (25). In the submerged turbine application it is obvious that the armature (10) takes place above the turbines as well as the elements (30) (24) (25) (23) (32) and (31) as well as the alternators (28) and (29), The rail system and the rollers are no longer used. The detection device (33) (34) (36) and the gear motor (26) become useless, other devices for controlling the hydraulics can replace them. It is understood that the present invention is not limited to embodiment described and shown, it is only an example to which many modifications can be

apportées sans que l'on s'écarte de la présente invention.  made without departing from the present invention.

Claims (4)

R E V E N D I C A T I O N S REVENDICATIONS 2810R E V E N D I C A T I O N S CLAIMS 2810 1 - Dispositif de turbine a axe vertical utilisant la force d'éléments moteurs qui sont selon l'adaptation le vent ou l'eau pour l'entraînement, principalement d'alternateurs générateurs d'électricité, dans le cas d'utilisation du vent l'emplacement de l'alternateur principal sous les turbines permet l'emploi d'alternateur-volant qui sont à faible vitesse de rotation ce qui permet l'accouplement direct a l'axe des turbines réduisant ainsi les pertes mécaniques d'une surmultiplication. Ce dispositif se caractérise par deux turbines, dont une périphérique et une concentrique agissant en même temps sur un axe central commun, lors de l'utilisation en turbine immergée dans l'eau un carter ferme la moitié de  1 - Turbine device with vertical axis using the force of motor elements which are, depending on the adaptation, wind or water for driving, mainly alternators generating electricity, in the case of the use of wind l 'location of the main alternator under the turbines allows the use of alternator-flywheel which are at low speed of rotation which allows direct coupling to the axis of the turbines thus reducing the mechanical losses of an overdrive. This device is characterized by two turbines, including a peripheral and a concentric acting at the same time on a common central axis, when using a turbine immersed in water a casing closes half of l'aval de la turbine.downstream of the turbine. 2 - Dispositif selon la revendication 1 se caractérisant en ce que la turbine périphérique et la concentrique tournent en sens contraire l'une de l'autre, cette inversion est obtenue par un double couple de pignons coniques (30) qui entraîne l'axe commun (37) la turbine concentrique (2) à son profil de pale inversé par rapport au profil de la turbine périphérique (1), la courbure des pales et leurs profils font que l'écoulement de l'élément  2 - Device according to claim 1 characterized in that the peripheral turbine and the concentric rotate in opposite directions to each other, this inversion is obtained by a double pair of bevel gears (30) which drives the common axis (37) the concentric turbine (2) with its blade profile inverted with respect to the profile of the peripheral turbine (1), the curvature of the blades and their profiles mean that the flow of the element moteur air ou eau donnent le rendement maximum.  air or water motor give maximum efficiency. 3 - Dispositif selon les revendications 1 et 2 se caractérisant en ce que l'ensemble des  3 - Device according to claims 1 and 2 characterized in that all of the deux turbines est omnidirectionnel on améliore encore le rendement, en adjoignant sur la ligne perpendiculaire a l'élément moteur (7), des ailerons fixes qui permettent une meilleure attaque de l'élément moteur sur la tangente des turbines, pour accroître encore le rendement est ce lorsque le dispositif fonctionne en turbine aérienne,l'armature (17) pivote sur le rail circulaire (11), pour maintenir la ligne (7) perpendiculaire au vent, le déplacement de l'armature (17) sur le rail (11) s'effectue avec le concours des galets cylindriques (16) roulant sur le rail, les galets tronconiques (12) permettent le centrage de  two turbines is omnidirectional the yield is further improved, by adding on the line perpendicular to the motor element (7), fixed fins which allow a better attack of the motor element on the tangent of the turbines, to further increase the efficiency is this when the device operates in an air turbine, the frame (17) pivots on the circular rail (11), to keep the line (7) perpendicular to the wind, the movement of the frame (17) on the rail (11) is carried out with the help of the cylindrical rollers (16) rolling on the rail, the frustoconical rollers (12) allow the centering of l'armature (17) sur le rail.the frame (17) on the rail. 4 - Dispositif selon l'une quelconque des revendications précédentes se caractérisant en  4 - Device according to any one of the preceding claims, characterized in ce que la disposition des turbines ainsi que le profil de leurs pales permettent de bénéficié de l'élément moteur, vent ou eau, sur 50% de la surface totale des pales des turbines, ce rendement résulte des effets suivant, le quart de turbine extérieure (1) se trouvant entre les lignes médianes (6) et (7) à droite, présente les trois quarts des pales a plat face au vent les autres pales agissent par leurs profils. A gauche des lignes (6) et (7) les pales créent une force par l'action du vent sur leurs profils, des poussées identiques  what the arrangement of the turbines as well as the profile of their blades allow to benefit from the motor element, wind or water, on 50% of the total surface of the blades of the turbines, this yield results from the following effects, the quarter of the outer turbine (1) lying between the center lines (6) and (7) on the right, presents three quarters of the blades flat facing the wind, the other blades act by their profiles. To the left of lines (6) and (7) the blades create a force by the action of the wind on their profiles, identical thrusts mais inverses se situant de gauche à droite se produisent sur la turbine concentrique (2).  but inverses located from left to right occur on the concentric turbine (2). On retrouve des effets similaires lorsque la turbine est immergée dans l'eau.  Similar effects are found when the turbine is immersed in water. - Dispositif selon la revendication 3 se caractérisant en ce que l'orientation de l'armature (1 7)par pivotement sur le rail (11) s'effectue par les ordres venant de l'ensemble détecteur, de direction du vent, (34)(36) qui commande un moto-réducteur (26)(27) en bout duquel se trouve le galet caoutchouté (14) entraînent par friction I'ensemble sur le rail (11).   - Device according to claim 3 characterized in that the orientation of the frame (1 7) by pivoting on the rail (11) is effected by orders from the detector assembly, wind direction, (34 ) (36) which controls a geared motor (26) (27) at the end of which is the rubberized roller (14) frictionally drive the assembly on the rail (11). 6 - Dispositif selon les revendications 1,2 se caractérisant en ce que l'écoulement de  6 - Device according to claims 1,2 characterized in that the flow of l'élément moteur air ou eau se fait par les passages (38) aux bas des turbines, c'est écoulement est en partie possible par l'action du cône central (5) ayant sa base (4) en haut des turbines, dans le cas d'utilisation en turbine à air, l'air sortant permet le refroidissement d'auxiliaires comme l'alternateur (29) et le régulateur centrifuge (31)  the air or water engine element is made by the passages (38) at the bottom of the turbines, it is flow is partly possible by the action of the central cone (5) having its base (4) at the top of the turbines, in in the case of use in an air turbine, the outgoing air allows the cooling of auxiliaries such as the alternator (29) and the centrifugal regulator (31) donnant l'excitation a l'alternateur principal (28).  giving excitation to the main alternator (28). 7 - Dispositif selon les revendications 1,2,3,5 prises ensemble se caractérisant en ce que  7 - Device according to claims 1,2,3,5 taken together, characterized in that l'alternateur-volant (28) est posé sur le bas de l'armature (17), audessus se situe l'armature auxiliaire (10) qui supporte l'ensemble du double couple de pignons coniques  the alternator-flywheel (28) is placed on the bottom of the frame (17), above is located the auxiliary frame (10) which supports the assembly of the double pair of bevel gears (30), I'alternateur auxiliaire(29), le régulateur centrifuge (31) et leurs paliers (32).  (30), the auxiliary alternator (29), the centrifugal regulator (31) and their bearings (32). 8 - Dispositif selon les revendications 1,2,4,6 prises ensemble se caractérisant en ce que  8 - Device according to claims 1,2,4,6 taken together, characterized in that dans l'application en turbine immergée dans l'eau, un carter (39) ferme la moitié de la turbine a son aval, est en ce que les turbines (1) et (2) se trouvent sous l'armature (10) qui devient le plancher est sur lequel prennent place le couple conique (30), I'alternateur auxiliaire (29), le régulateur (31) et leurs paliers (32), ainsi que l'alternateur principal (28)  in the application in a turbine immersed in water, a casing (39) closes half of the turbine downstream, is that the turbines (1) and (2) are located under the frame (10) which becomes the floor is on which take place the bevel gear (30), the auxiliary alternator (29), the regulator (31) and their bearings (32), as well as the main alternator (28) qui se fixe à une armature semblable à (17) solidaire du plancher (10).  which is attached to a frame similar to (17) integral with the floor (10). 9 - Dispositif selon les revendications 1,8 se caractérisant en ce que, lors de l'utilisation  9 - Device according to claims 1,8 characterized in that, during use en turbine immergée, le système de rail (11) avec les galets (12) et (14) non plus d'applications.  in submerged turbine, the rail system (11) with the rollers (12) and (14) no more applications. 10 - Dispositif selon l'une quelconque des revendications 1,2,4,6,8,9 se caractérisant en  10 - Device according to any one of claims 1,2,4,6,8,9 characterized in ce que lorsque la turbine fonctionne avec le vent l'ensemble repose, avec une armature  what when the turbine works with the wind the whole rests, with a frame métallique intermédiaire, sur un socle en béton armé (35).  intermediate metal, on a reinforced concrete base (35).
FR0009365A 2000-07-13 2000-07-13 AERIAL (AIR) OR UNDERWATER (WATER) TURBINE IN TWO REVERSE ROTORS Expired - Fee Related FR2811720B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0009365A FR2811720B1 (en) 2000-07-13 2000-07-13 AERIAL (AIR) OR UNDERWATER (WATER) TURBINE IN TWO REVERSE ROTORS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0009365A FR2811720B1 (en) 2000-07-13 2000-07-13 AERIAL (AIR) OR UNDERWATER (WATER) TURBINE IN TWO REVERSE ROTORS

Publications (2)

Publication Number Publication Date
FR2811720A1 true FR2811720A1 (en) 2002-01-18
FR2811720B1 FR2811720B1 (en) 2002-12-13

Family

ID=8852602

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0009365A Expired - Fee Related FR2811720B1 (en) 2000-07-13 2000-07-13 AERIAL (AIR) OR UNDERWATER (WATER) TURBINE IN TWO REVERSE ROTORS

Country Status (1)

Country Link
FR (1) FR2811720B1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2382381A (en) * 2001-11-21 2003-05-28 John Freer Green Improvements in wind turbines
WO2006022551A1 (en) * 2004-08-25 2006-03-02 Wave Energy As A liquid turbine device including a turbine wheel with more than one set of blades in radial succession
CN1328502C (en) * 2005-03-25 2007-07-25 陈秋平 Magnetic suspension driving apparatus with arbor wheel and turbine for wind energy electricity generation
WO2007129049A1 (en) * 2006-05-02 2007-11-15 David Mcsherry Turbine for extracting energy from a flowing fluid
WO2010020018A1 (en) * 2008-08-22 2010-02-25 Fourivers Power Engineering Pty Ltd Power generation apparatus
WO2010123400A1 (en) 2009-04-24 2010-10-28 МИХОВ, Александр Петрович Wind energy installation
WO2011017780A3 (en) * 2009-08-12 2011-08-11 Josip Bilic Vertical axis wind turbine with two concentric rotors
EA015696B1 (en) * 2007-12-26 2011-10-31 Вячеслав Степанович Климов Coaxial rotor windmill and method of increasing kinetic energy of the flow
CN102269121A (en) * 2011-08-19 2011-12-07 李荣江 Vertical-axis wind driven rotating power generation system
WO2012007630A1 (en) * 2010-07-16 2012-01-19 Dobgir, S.L. "vertical-axis wind turbine"
WO2012007934A1 (en) * 2010-07-13 2012-01-19 Twinergy Energy Systems Ltd Dual vertical wind turbine
US20120187698A1 (en) * 2009-11-05 2012-07-26 Clifford Bassett Systems and methods to generate electricity using a flow of air
WO2013005099A1 (en) * 2011-07-07 2013-01-10 7907095 Canada Inc. Horizontal multiple stages wind turbine
WO2013024367A1 (en) 2011-08-16 2013-02-21 Mikhov, Alexander Petrovich Wind power generator
WO2013038215A1 (en) * 2011-09-15 2013-03-21 Macher Gépészeti És Elektronikai Kft. Dual-turbine wind power station placed on a vertical axis
WO2013068977A1 (en) * 2011-11-11 2013-05-16 Dattatraya Rajaram Shelke Turbine having free and power rotors
US8659180B2 (en) 2007-08-24 2014-02-25 Fourivers Power Engineering Pty Ltd. Power generation apparatus
WO2014056049A1 (en) 2012-10-11 2014-04-17 Bilić Josip Device using multiple renewable energy sources (dumres)
WO2014106765A1 (en) * 2013-01-04 2014-07-10 Perrenoud Yvan Turbine with helical blades
JP2015007414A (en) * 2013-06-26 2015-01-15 石津 雅勇 Impeller with booster function
RU2543362C2 (en) * 2012-09-03 2015-02-27 Виктор Иванович Кривчиков Damless hydro-electric power plant
WO2015168817A1 (en) * 2014-05-06 2015-11-12 Hugo Orlando Reineck Vertical-axis wind turbine having a static-rigid body
WO2017034504A1 (en) * 2015-08-25 2017-03-02 Виктор Иванович КРИВЧИКОВ Damless hydroelectric power plant
CN107762562A (en) * 2017-10-31 2018-03-06 陈育雄 A kind of rotating water, steam turbine
IT201600109808A1 (en) * 2016-10-31 2018-05-01 Gizzi Patrizia INTEGRATED SYSTEM FOR THE PRODUCTION OF ELECTRICAL ENERGY BY MEANS OF HIGH-VALUE ENERGY CONVERSION DEVICES, OBTAINED FROM RENEWABLE SOURCES.
CN109404205A (en) * 2018-08-20 2019-03-01 郭文清 Land and water windmill
DE102022004917A1 (en) 2022-12-28 2024-07-04 Bruno Zay FUTURE WIND TURBINE FOR HIGH WIND EXPLOITATION
DE102023000866A1 (en) 2023-03-08 2024-09-12 Bruno Zay Battery charging while driving or parking for electric boats, electric yachts and electric ships

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523295A (en) * 1923-10-27 1925-01-13 James T Ryan Windmill
US4116581A (en) * 1977-01-21 1978-09-26 Bolie Victor W Severe climate windmill
US4236866A (en) * 1976-12-13 1980-12-02 Valentin Zapata Martinez System for the obtainment and the regulation of energy starting from air, sea and river currents
FR2541732A1 (en) * 1982-09-27 1984-08-31 Rignault Jean Compound anemodynamic motor with its applications to propulsion
US4606697A (en) * 1984-08-15 1986-08-19 Advance Energy Conversion Corporation Wind turbine generator
DE19516504A1 (en) * 1995-05-05 1996-11-07 Reetz Hans Juergen Vertical rotor wind-driven generator
US5664418A (en) * 1993-11-24 1997-09-09 Walters; Victor Whirl-wind vertical axis wind and water turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523295A (en) * 1923-10-27 1925-01-13 James T Ryan Windmill
US4236866A (en) * 1976-12-13 1980-12-02 Valentin Zapata Martinez System for the obtainment and the regulation of energy starting from air, sea and river currents
US4116581A (en) * 1977-01-21 1978-09-26 Bolie Victor W Severe climate windmill
FR2541732A1 (en) * 1982-09-27 1984-08-31 Rignault Jean Compound anemodynamic motor with its applications to propulsion
US4606697A (en) * 1984-08-15 1986-08-19 Advance Energy Conversion Corporation Wind turbine generator
US5664418A (en) * 1993-11-24 1997-09-09 Walters; Victor Whirl-wind vertical axis wind and water turbine
DE19516504A1 (en) * 1995-05-05 1996-11-07 Reetz Hans Juergen Vertical rotor wind-driven generator

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2382381A (en) * 2001-11-21 2003-05-28 John Freer Green Improvements in wind turbines
WO2006022551A1 (en) * 2004-08-25 2006-03-02 Wave Energy As A liquid turbine device including a turbine wheel with more than one set of blades in radial succession
CN1328502C (en) * 2005-03-25 2007-07-25 陈秋平 Magnetic suspension driving apparatus with arbor wheel and turbine for wind energy electricity generation
WO2007129049A1 (en) * 2006-05-02 2007-11-15 David Mcsherry Turbine for extracting energy from a flowing fluid
GB2450668A (en) * 2006-05-02 2008-12-31 David Mcsherry Turbine for extracting energy from a flowing fluid
US9239038B2 (en) 2007-08-24 2016-01-19 Fourivers Power Engineering Pty Ltd Power generation apparatus
US8659180B2 (en) 2007-08-24 2014-02-25 Fourivers Power Engineering Pty Ltd. Power generation apparatus
EA015696B1 (en) * 2007-12-26 2011-10-31 Вячеслав Степанович Климов Coaxial rotor windmill and method of increasing kinetic energy of the flow
WO2010020018A1 (en) * 2008-08-22 2010-02-25 Fourivers Power Engineering Pty Ltd Power generation apparatus
WO2010123400A1 (en) 2009-04-24 2010-10-28 МИХОВ, Александр Петрович Wind energy installation
WO2011017780A3 (en) * 2009-08-12 2011-08-11 Josip Bilic Vertical axis wind turbine with two concentric rotors
US20120187698A1 (en) * 2009-11-05 2012-07-26 Clifford Bassett Systems and methods to generate electricity using a flow of air
US9291150B2 (en) * 2009-11-05 2016-03-22 Clifford Bassett Systems and methods to generate electricity using a flow of air
WO2012007934A1 (en) * 2010-07-13 2012-01-19 Twinergy Energy Systems Ltd Dual vertical wind turbine
WO2012007630A1 (en) * 2010-07-16 2012-01-19 Dobgir, S.L. "vertical-axis wind turbine"
ES2389214A1 (en) * 2010-07-16 2012-10-24 Dobgir, S.L. "vertical-axis wind turbine"
US9121388B2 (en) 2010-07-16 2015-09-01 Dobgir, S.L. Vertical-axis wind turbine
WO2013005099A1 (en) * 2011-07-07 2013-01-10 7907095 Canada Inc. Horizontal multiple stages wind turbine
WO2013024367A1 (en) 2011-08-16 2013-02-21 Mikhov, Alexander Petrovich Wind power generator
CN102269121A (en) * 2011-08-19 2011-12-07 李荣江 Vertical-axis wind driven rotating power generation system
WO2013038215A1 (en) * 2011-09-15 2013-03-21 Macher Gépészeti És Elektronikai Kft. Dual-turbine wind power station placed on a vertical axis
WO2013068977A1 (en) * 2011-11-11 2013-05-16 Dattatraya Rajaram Shelke Turbine having free and power rotors
RU2543362C2 (en) * 2012-09-03 2015-02-27 Виктор Иванович Кривчиков Damless hydro-electric power plant
WO2014056049A1 (en) 2012-10-11 2014-04-17 Bilić Josip Device using multiple renewable energy sources (dumres)
WO2014106765A1 (en) * 2013-01-04 2014-07-10 Perrenoud Yvan Turbine with helical blades
JP2015007414A (en) * 2013-06-26 2015-01-15 石津 雅勇 Impeller with booster function
WO2015168817A1 (en) * 2014-05-06 2015-11-12 Hugo Orlando Reineck Vertical-axis wind turbine having a static-rigid body
WO2017034504A1 (en) * 2015-08-25 2017-03-02 Виктор Иванович КРИВЧИКОВ Damless hydroelectric power plant
IT201600109808A1 (en) * 2016-10-31 2018-05-01 Gizzi Patrizia INTEGRATED SYSTEM FOR THE PRODUCTION OF ELECTRICAL ENERGY BY MEANS OF HIGH-VALUE ENERGY CONVERSION DEVICES, OBTAINED FROM RENEWABLE SOURCES.
CN107762562A (en) * 2017-10-31 2018-03-06 陈育雄 A kind of rotating water, steam turbine
CN109404205A (en) * 2018-08-20 2019-03-01 郭文清 Land and water windmill
DE102022004917A1 (en) 2022-12-28 2024-07-04 Bruno Zay FUTURE WIND TURBINE FOR HIGH WIND EXPLOITATION
DE102023000866A1 (en) 2023-03-08 2024-09-12 Bruno Zay Battery charging while driving or parking for electric boats, electric yachts and electric ships

Also Published As

Publication number Publication date
FR2811720B1 (en) 2002-12-13

Similar Documents

Publication Publication Date Title
FR2811720A1 (en) Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions
US8080913B2 (en) Hollow turbine
US5495128A (en) Wind powered generator
US5088884A (en) Rotor assembly for fluid driven engine
US20070018459A1 (en) Hydroelectric turbine and method for producing electricity from tidal flow
TWI491798B (en) Submersible power generating plant, driven by a water flow
AU2006202467A1 (en) Water current generator
RU2011137545A (en) SMALL ANTI-OPPOSITE ROTATION SCREWS SYSTEM
US9322392B2 (en) Enclosed vertical axis fluid rotor
US20140117667A1 (en) Marine current power plant and a method for its operation
US7744345B1 (en) Wind power generator
US5905311A (en) Integrated hydroelectric unit
JP6526727B2 (en) Pipe screw pump unit
FR2902157A1 (en) Vertical axis rotor e.g. savonius rotor, for transforming wind energy into e.g. mechanical energy, has cylindrical sheath coaxial to cylindrical turbine and with vertical opening to permit penetration of wind into sheath to act on vanes
EP0787901B1 (en) Wind powered generator
WO2018109776A1 (en) Design and fabrication of advanced vertical axis wind turbine with self-alignment blades
JPH11141453A (en) Wind force device
WO2009003285A1 (en) Wind turbine with vertical axis with blades fitted with a return means
FR2901580A1 (en) Savonius-type rotor unit for e.g. vertical axis wind turbine, has curved blades including curved profile defined by arc of main circle having specific radius of curvature, and overlapped to create central passage
WO2004063565A1 (en) Wind concentrating device for vertical axis wind turbine
JP3063354U (en) Tidal current turbine
FR2494781A1 (en) Vertical axis wind or water driven turbine - uses horizontal radial arms with vertical pivoted vane at end of each and stop placed to hold mobile vane across flow
RU2368797C2 (en) Hydropower plant
RU2030777C1 (en) Wind power plant
US1740595A (en) Stream motor

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20070330