JP2015007414A - Impeller with booster function - Google Patents

Impeller with booster function Download PDF

Info

Publication number
JP2015007414A
JP2015007414A JP2013133612A JP2013133612A JP2015007414A JP 2015007414 A JP2015007414 A JP 2015007414A JP 2013133612 A JP2013133612 A JP 2013133612A JP 2013133612 A JP2013133612 A JP 2013133612A JP 2015007414 A JP2015007414 A JP 2015007414A
Authority
JP
Japan
Prior art keywords
impeller
water
output shaft
flow
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013133612A
Other languages
Japanese (ja)
Other versions
JP5725575B2 (en
Inventor
石津 雅勇
Masao Ishizu
雅勇 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013133612A priority Critical patent/JP5725575B2/en
Publication of JP2015007414A publication Critical patent/JP2015007414A/en
Application granted granted Critical
Publication of JP5725575B2 publication Critical patent/JP5725575B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

PROBLEM TO BE SOLVED: To increase output efficiency of an impeller.SOLUTION: An outer impeller 6 and an inner impeller 3 of an impeller with a booster function constitute an impeller group 10 via a gear change power transmission device 7. The inner impeller is rotary-driven at a rotation speed higher than that of the outer impeller by fluid energy flowing in the impeller group, so as to rectify a turbulence flowing in the impeller group. The rectified fluid is circulated in the impeller group together with a centrifugal force, so as to boost the fluid energy to the outer impeller in a backflow region. In the impeller with the booster function, a flow introduction device such as a guide vane or a synchronous mechanism inevitable for a cross flow type watermill is omitted.

Description

本願発明は、クロスフロー型羽根車に内側羽根車を併設し、内側羽根車がクロスフロー型羽根車の回転速度よりも早い回転速度で回転し、逆流領域にある鉛直軸式クロスフロー型羽根車の湾曲型羽根に流体力をブーストし、逆流領域にある湾曲型羽根からも回転エネルギの抽出を可能にした機構を提供する。 The present invention has a cross flow type impeller with an inner impeller, the inner impeller rotates at a rotational speed faster than the rotational speed of the cross flow impeller, and is a vertical axis cross flow type impeller in a reverse flow region. A mechanism that boosts the fluid force to the curved blades and enables extraction of rotational energy from the curved blades in the backflow region is also provided.

渓流や農業用水路等の開水路において、低落差・低水位の流水エネルギーを効果的に利用する手段として、水車構造が簡易で設置や維持管理が容易なクロスフロー型水車発電機の採用が行はれている。
しかしながら、クロスフロー型水車の場合、水車羽根への逆流領域で大きな逆流抵抗を受けるため振動の発生や回転が困難となり、クロスフロー型水車に不可欠な逆流領域カバーや水車に流入する流量と水車の回転速度の同期調整機構等、精密導流装置が必要であり、これらの課題を解決することが求められていた。
In open channels such as mountain streams and agricultural canals, cross-flow turbine generators with a simple turbine structure and easy installation and maintenance are being used as a means of effectively using low-head and low-level water flow energy. It is.
However, in the case of a cross-flow type turbine, it is difficult to generate vibration and rotation because it receives a large resistance to the counter-flow to the turbine blades. A precision flow guide device such as a synchronous adjustment mechanism for rotational speed is required, and it has been desired to solve these problems.

例えば、非特許文献1に示すように水車全体を水没させる場合、羽根車への逆流領域での大きな逆流抵抗を受けるため、逆流領域での羽根が受ける逆流を、搖動羽が流れに対し平行に搖動し自動的に逆流を逃がし、振角に応じて復元力が生じるように、羽根軸と水車フランジとの間に引っ張りバネを取り付けた、非特許文献1の1章4頁の図―1及び写真―1のような搖動羽車を開発した従来の技術がある。
(非特許文献1)(1章3頁)
For example, as shown in Non-Patent Document 1, when the entire water wheel is submerged, it receives a large back flow resistance in the back flow region to the impeller, so that the back flow received by the blade in the back flow region is parallel to the flow of the peristaltic blade. Figure 1 on page 1 of Chapter 1 of Non-Patent Document 1, with a tension spring attached between the blade shaft and the turbine wheel flange so that it backs up and automatically escapes the reverse flow and generates a restoring force according to the swing angle. There is a conventional technology that developed a peristaltic impeller as shown in Photo-1.
(Non-patent document 1) (Chapter 1, page 3)

また、非特許文献1に示されている水車は、クロスフロー水車に不可欠な導流管やガイドベーン及び流出部に落差工を設けないで、水車の導水口に堰や水寄せ板を設けて圧力水頭を上げ、水車内を貫流する水位の落差を活用して水車内の流水を加速させ出力効率の増加を図っている技術がある。
(非特許文献1)(3章27頁)
In addition, the water turbine shown in Non-Patent Document 1 is provided with a weir and a water catching plate at the water inlet of the water turbine without providing a drop pipe in the guide pipe and guide vane and the outflow part that are indispensable for the cross-flow water turbine. There is a technology that raises the pressure head and uses the head of the water level that flows through the turbine to accelerate the flowing water in the turbine to increase the output efficiency.
(Non-Patent Document 1) (Chapter 3, page 27)

また、特許文献1に示す技術は、効率よく流体を回転翼に送り込むためには、一対の回転翼間に至る仕切りと案内部14を設けて水寄せし、導水効果を計っているものや前記非特許文献1の3章27頁で記載のように、水車の導水口に堰や水寄せ板を設けて圧力水頭を上げる事で出力効率の増加を図っている技術がある。 In addition, in the technique shown in Patent Document 1, in order to efficiently send the fluid to the rotor blades, a partition and a guide portion 14 are provided between the pair of rotor blades to draw water and measure the water guiding effect. As described in Chapter 3, page 27 of Non-Patent Document 1, there is a technique for increasing the output efficiency by increasing the pressure head by providing a weir or a water drainage plate at the water inlet of the water turbine.

特開2011−117314号公報(第7ページ)JP2011-117314A (7th page)

国土技術政策総合研究所資料第328号流水エネルギー活用に関する調査報告書 (第1章3頁、第3章27頁)National Land Policy Research Institute Document No. 328 Survey Report on Utilization of Flowing Water Energy (Chapter 1, Page 3, Chapter 3, Page 27) 小原歯車工業株式会社KHK STOCK GEARS3006 vol.8 (平成6年8月20日改訂8版P294〜295)Ohara Gear Industry Co., Ltd. KHK STOCK GEARS3006 vol.8 (August 20, 1994 revised 8th edition P294-295)

解決しようとする問題点は、前述の非特許文献1、(1章参照27頁)の機構によれば、逆流領域での羽根車が受ける逆流抵抗を搖動羽が流れに対し平行に搖動し、逆流を逃がし自動的に張りバネによって復元する機構を用い、ガイドベーンや同期機構等の省略を図っている、然し乍ら、搖動水車に流入する流水が、渦や、不連続な脈流が流入する場合及び、搖動水車の出力負荷が短周期で急激に変動した場合、羽根の仰角が流体力や翼後渦に応じて変動し、羽軸と水車フランジ部との間に設けた張りバネの強度が非自動の場合、前記羽根の仰角変動や過渡現象に対応できず、羽根の仰角が不連続に脈動し、この不連続に脈動した流体力が増幅され羽根車の回転が不規則な回転斑を生じ振動破損を引き起こすことがある、この現象に対応するには、引っ張りバネの強度や水車の公転位置と搖動羽に対する流体力を、自動制御する必要があり実用化には課題がある。 The problem to be solved is that according to the mechanism described in Non-Patent Document 1 (see page 1 of Chapter 1), the peristaltic resistance of the impeller received by the impeller in the backflow region is oscillated in parallel to the flow. Using a mechanism that escapes backflow and automatically restores with tension springs, omits guide vanes and synchronization mechanisms, etc., however, when vortex or discontinuous pulsating current flows into the peristaltic turbine And, when the output load of the peristaltic turbine changes rapidly in a short cycle, the elevation angle of the blades changes according to the fluid force and the vortex behind the blade, and the strength of the tension spring provided between the blade shaft and the turbine flange portion is In the case of non-automatic, it is not possible to cope with the fluctuation in the elevation angle of the blade and transient phenomenon, the elevation angle of the blade pulsates discontinuously, the fluid force pulsating the discontinuity is amplified, and the rotation of the impeller irregularly rotates. To deal with this phenomenon that may cause vibration damage However, it is necessary to automatically control the strength of the tension spring, the revolution position of the water wheel, and the fluid force against the peristaltic blade, and there are problems in practical application.

また、国総研資料1の3章27ページに示されている水車は、縮流導水装置として、水車の導水口に堰や水寄せ板を設けて水位を上げ、鉛直軸型クロスフロー水車内を貫流する水位の落差を活用して水車内の流水を加速させ、出力効率の増加を図っている。
しかしながら、水車の導水口に水寄せ板や堰を設けて水位を上げて水車入り口と排水口の水位の落差を活用し、水車内の流水を加速させて出力効率の増加を図ることは、鉛直軸型クロスフロー水車の場合、水車内を貫流した多量の流水が、排水口近傍の水車羽根に再度流体力を作用させて効率を上げるのが特質で、国総研資料1の3章記載の水車は、水車羽根が水車の軸方向に平行して延在して設けているため、排水口近傍の水車羽根に作用する流水は、水車羽根に沿って勾配をつけ斜めに降下排水し、水車入り口と排水口の水位の落差を大きくすればする程、水車羽根に作用する流体力が減少し、回転方向に十分作用せず、特に水車羽の回転数が低下するに従い、自由水面流からの流れが羽根車を貫流す際に水位が急激に低下し、水車羽根に作用する流体力が弱くなる。
したがって、落差による出力効率の増加を図る効果と、クロスフロー水車の特質と相反する矛盾が生じるという課題がある。
(非特許文献1)(3章参照27〜28頁)
In addition, the water turbine shown in Chapter 3 page 27 of the National Institute of Advanced Industrial Science and Technology (NIST) is a constricted water transfer device. The head of the water level that flows through is used to accelerate the running water in the turbine to increase the output efficiency.
However, it is not possible to increase the output efficiency by installing a water collecting plate or a weir at the water inlet of the water turbine to raise the water level and utilize the water level difference between the water turbine inlet and the water outlet to accelerate the running water in the water turbine. In the case of a shaft-type cross-flow turbine, a characteristic is that a large amount of flowing water that has flowed through the turbine wheel acts again on the turbine blades near the drain to increase the efficiency. Since the turbine blades extend in parallel to the axial direction of the turbine wheel, the flowing water that acts on the turbine blade blades near the drain port is drained and slanted with a gradient along the turbine blade blade, The larger the drop in the water level at the drain and the outlet, the less the fluid force acting on the turbine blades, and it does not act sufficiently in the direction of rotation, especially as the rotational speed of the turbine blades decreases, the flow from free surface flow As the water flows through the impeller, the water level drops rapidly, Fluid force use is weakened.
Therefore, there is a problem in that there is a contradiction that contradicts the effect of increasing the output efficiency due to the head and the characteristics of the crossflow turbine.
(Non-Patent Document 1) (See Chapter 3, pages 27-28)

また、特許文献1に開示されている発明は、効率よく流体を回転翼に送り込むためには、一対の回転翼間に至る仕切りと案内部14を設けて水寄せし導水効果を計っているが、ケーシング12の流体案内部14の流体の流れ込む側の相反する側の溜り部分Zに水が存在すると回転翼の回転に抗力負荷がかかるという、問題を提起されその解決を図っているが不合理のために課題がのこる。 In addition, in the invention disclosed in Patent Document 1, in order to efficiently send the fluid to the rotor blades, a partition and a guide portion 14 are provided between the pair of rotor blades to draw water and measure the water guiding effect. Although there is a problem that a drag load is applied to the rotation of the rotor blades when water is present in the reservoir portion Z on the opposite side of the fluid flow side of the fluid guide portion 14 of the casing 12, an attempt is made to solve the problem. Because of this, problems remain.

上記課題を解決するため請求項1に記載した本願発明を、図1と2を示して詳述する。
回転出力軸15に嵌設した円錐状のボス1に、ブースト羽根2を複数個周設し、前記「円錐状のボスと一体的に固設した内側羽根車3」に、「複数個の湾曲型羽根4を周設した外側羽根車6」を、変速動力伝動装置7を介在して、前記外側羽根車6が有する軸受部5を、内側羽根車3に突設した回転出力軸15に軸着し、羽根車群10を構設する。
また、内側羽根車3の外周縁8と外側羽根車6に周設した湾曲型羽根4の内周縁17を一定間隔をあけ、その区画を貫流路9として画成する。
In order to solve the above problems, the present invention described in claim 1 will be described in detail with reference to FIGS.
A plurality of boost blades 2 are provided around a conical boss 1 fitted to the rotation output shaft 15, and a plurality of curved portions are provided on the “inner impeller 3 fixed integrally with the conical boss”. The outer impeller 6 around which the mold blades 4 are provided is connected to the rotary output shaft 15 that is provided on the inner impeller 3 so that the bearing portion 5 of the outer impeller 6 is interposed via the transmission power transmission device 7. And set up the impeller group 10.
Further, the outer peripheral edge 8 of the inner impeller 3 and the inner peripheral edge 17 of the curved blade 4 provided around the outer impeller 6 are spaced apart from each other, and the section is defined as a through flow path 9.

請求項2記載の本願発明を、図2〜4と7を示して詳述する。
前記羽根車群10を活用した、可搬式鉛直軸型クロスフロー水力発電装置74(以下発電装置74と略称する場合がある。)を、流が生じている水中に水没させて用い、前記発電装置74が有するケーシング61の羽根車部19に設けた流入口20から流入する順流水21が、前記羽根車部19に内設した羽根車群10の内側羽根車3と外側羽根車6を回転駆動し、前記内側羽根車3と外側羽根車6は、前記変速動力伝動装置7の手段によって相間関係で互に連係して回転作動し、内側羽根車3は外側羽根車6の回転速度より高速で同一方向に回転し、前記内側羽根車3に突設した回転出力軸15を、前記羽根車部19の蓋板33に設けた主軸受け部28で回転自在に貫通軸支し、前記貫通した回転出力軸15を、架構部63が有する電動発電機71に伝動し駆動する。
The present invention of claim 2 will be described in detail with reference to FIGS.
A portable vertical axis cross-flow hydraulic power generation device 74 (hereinafter sometimes abbreviated as a power generation device 74) using the impeller group 10 is submerged in the water in which the flow is generated, and the power generation device is used. The forward water 21 flowing in from the inlet 20 provided in the impeller part 19 of the casing 61 of 74 has rotationally driven the inner impeller 3 and the outer impeller 6 of the impeller group 10 provided in the impeller part 19. The inner impeller 3 and the outer impeller 6 are rotated in cooperation with each other by means of the transmission power transmission device 7, and the inner impeller 3 is faster than the rotational speed of the outer impeller 6. The rotation output shaft 15 that rotates in the same direction and protrudes from the inner impeller 3 is rotatably supported by the main bearing portion 28 provided on the cover plate 33 of the impeller portion 19, and the rotation that penetrates the shaft is supported. The output shaft 15 is electrically driven by the frame 63. Transmission and to drive on the machine 71.

前記羽根車群10の作動によって羽根車群10内を貫流する流水の変化を図3を示して詳述する。
前記羽根車部19に内設した羽根車群10は、ブースト羽根2を有する内側羽根車3と、湾曲型羽根4を有する外側羽根車6と、変速動力伝動装置7で構成し、羽根車部19の流水入り口20から流入した順流水21が、前記湾曲型羽根4とブースト羽根2に、流体力を作用し、羽根の抵抗を受けて流速を減衰しながら溢水分流12し、貫流路9を翼後渦13や乱流を含んだ貫流水11として貫流し、前記貫流水11は、前記貫流路9を貫流する過程で内側羽根車3に固設したブースト羽根2と円錐状のボス1の回転手段によって、翼後渦13や乱流を含んだ貫流水11をボスの頂点方向23に掻き揚げ合成整流しながら排出開口部14近傍の射流を防ぎ、且つ排出開口部14近傍に設けている軸方向に平行して延在した湾曲型羽根4の背面24上部に再度流体力を作用させ、湾曲型羽根4の羽と羽の間を強制的に射出して排水49し、前記湾曲型羽根4の回転数が低下した場合においても、羽根車群内を貫流する貫流水11は、排出開口部14近傍で射流することなく、排水開口部14から強制的に排水49して羽根車部19内の流速を加速し、出力効率の増加を図ることが出来る、したがって非特許文献1、の落差効果とクロスフロー水車の特質と相反する矛盾を解消する最も主要な特徴とする。
The change of the flowing water flowing through the impeller group 10 by the operation of the impeller group 10 will be described in detail with reference to FIG.
The impeller group 10 provided in the impeller part 19 includes an inner impeller 3 having boost blades 2, an outer impeller 6 having curved blades 4, and a transmission power transmission device 7. The forward flow water 21 flowing in from the flow inlet 20 of the 19 fluid acts on the curved blades 4 and the boost blades 2 and receives the resistance of the blades to reduce the flow velocity, thereby flowing the overflow water flow 12, It flows as a through-flow water 11 including a wing vortex 13 and turbulent flow, and the flow-through water 11 is formed by a boost blade 2 fixed to the inner impeller 3 and a conical boss 1 in the process of flowing through the through-flow passage 9. By rotating means, the through-flow water 11 including the wing vortex 13 and the turbulent flow is lifted up in the boss apex direction 23 to prevent commutation and is provided in the vicinity of the discharge opening 14 while performing synthetic rectification. Back surface of curved blade 4 extending parallel to the axial direction The fluid force is again applied to the upper part of 4 to forcibly inject between the wings of the curved blade 4 and drain 49, and even when the rotational speed of the curved blade 4 decreases, Through water 11 that flows through the drain opening 14 is forced to drain 49 through the drain opening 14 to accelerate the flow velocity in the impeller 19 and increase the output efficiency. Therefore, it is the most important feature that resolves the contradiction conflicting with the head effect of Non-Patent Document 1 and the characteristics of the crossflow turbine.

前記強制排水について図3を示して詳述する。
外側羽根車6に固設した湾曲型羽根4(以下、単に湾曲型羽根4と略称する場合がある。)の周速は、羽根車部19の流水入り口20から流入する順流水21の流速に順応して回転し、前記順流水21の流速が速い場合は湾曲型羽根4の回転速度が高速状態になり、前記湾曲型羽根4に流体力が作用した順流水21は羽根の抵抗を受け、流速を減衰しながら射流して湾曲型羽根4の背面24に沿って排水する。
また前記順流水21の流速が遅い場合は湾曲型羽根4の回転速度が低速状態になり、回転数が低下するに従い順流水21の羽根に作用する流体力が低下し、羽根車群10内部の中央部を貫流しながら、急激に水面勾配を下げ、順流水21に対する羽根の抵抗を減衰しながら排出開口部14近傍の湾曲型羽根4の背面24に沿って排水49する、したがって、湾曲型羽根4の回転速度が高速又は低速、いずれの場合においても、排水近傍の軸方向に平行して延在した湾曲型羽根4には十分に流体力が作用せずクロスフロー水車の特質が生かせない。
The forced drainage will be described in detail with reference to FIG.
The peripheral speed of the curved blade 4 (hereinafter simply referred to as the curved blade 4) fixed to the outer impeller 6 is equal to the flow velocity of the forward water 21 flowing from the flowing water inlet 20 of the impeller portion 19. When the flow speed of the forward flow water 21 is high, the rotational speed of the curved blade 4 is high, and the forward water 21 in which the fluid force acts on the curved blade 4 receives the resistance of the blade, The water is discharged along the back surface 24 of the curved blade 4 by spraying while the flow velocity is attenuated.
Further, when the flow velocity of the forward flow water 21 is low, the rotational speed of the curved blade 4 is in a low speed state, and the fluid force acting on the blade of the forward flow water 21 decreases as the rotational speed decreases, and the impeller group 10 has an internal speed. While flowing through the central portion, the water surface gradient is drastically lowered, and drainage 49 is performed along the back surface 24 of the curved blade 4 near the discharge opening 14 while attenuating the resistance of the blade against the forward water 21. Therefore, the curved blade When the rotational speed of 4 is high or low, the curved blades 4 extending parallel to the axial direction in the vicinity of the drainage do not have sufficient fluid force, and the characteristics of the crossflow turbine cannot be utilized.

そこで、湾曲型羽根4の回転速度が低速または高速に拘らず、排出開口部14から貫流水11を強制的に排水する手段として、内側羽根車3に固着したボスの形状を頂点方向に傾斜縮小23し、内側羽根車3の回転速度が外側羽根車6の回転速度より高速で同一方向に回転する変速動力伝動装置7の手段を駆使し、前記貫流水11を、ボス1の頂点方向に掻き揚げ、遠心力を伴って流水を加速し、かつ排出開口部14近傍の射流を防ぎ、排出開口部14近傍の、前記順流水21の流速に順応して回転する湾曲型羽根4の周速をはるかに越える流速で「軸方向に平行して延在した湾曲型羽根4」の羽と羽との間を、湾曲型羽根4の上部方向に射出排水し、湾曲型羽根4の回転トルクに寄与しない排水で「湾曲型羽根4から受ける余分な乱流水抵抗」の影響を軽減し、湾曲型羽根4の回転が高速又は低速に拘わらず、効率良く強制的に排水するため、落差に頼らず羽根車群10内の流水を加速させ、出力効率の増加を図ることが出来、非特許文献1、の落差効果とクロスフロー水車の特質と相反する矛盾を解消する最も主要な特徴とする。 Therefore, regardless of whether the rotational speed of the curved blade 4 is low or high, the shape of the boss fixed to the inner impeller 3 is inclined and reduced in the apex direction as means for forcibly draining the through water 11 from the discharge opening 14. 23. Using the means of the transmission power transmission device 7 in which the rotational speed of the inner impeller 3 is higher than the rotational speed of the outer impeller 6 and rotates in the same direction, the flow-through water 11 is scraped in the apex direction of the boss 1. The peripheral speed of the curved blade 4 rotating in accordance with the flow velocity of the forward water 21 in the vicinity of the discharge opening 14 near the discharge opening 14 is prevented by accelerating flowing water with centrifugal force and preventing the jet near the discharge opening 14. The flow between the wings of the “curved blades 4 extending in parallel to the axial direction” is discharged and drained in the upper direction of the curved blades 4 at a much higher flow rate, contributing to the rotational torque of the curved blades 4. The excess turbulent water from the curved blade 4 ”And the curved blades 4 are forced to drain efficiently regardless of whether the rotation of the curved blades 4 is high or low. Therefore, the flow of water in the impeller group 10 is accelerated without depending on the head, and the output efficiency is increased. This is the most important feature that resolves the contradiction conflicting with the head effect of Non-Patent Document 1 and the characteristics of the crossflow turbine.

前記、内側羽根車3の回転が湾曲型羽根4の周速をはるかに越える値で回転する設定手段は、図2と7に示すように、変速動力伝動装置7の遊星歯車B82と太陽歯車A81の歯数及びリング歯車C83の歯数を選択して、内側羽根車3の回転速度が外側羽根車6の回転速度より高速回転するように設定し、併せて、内側羽根車3の回転出力軸15を介して駆動する永久磁石式電動発電機(以下発電機71と称する場合がある)の出力電力を時分割し、デューティ比の設定を、1/20程度にした電力を、発電機71内に電動機用として併巻した駆動コイルに帰還し、発電機71と電動機を時分割して回転出力軸15を駆動し、内側羽根車3の回転をアシストして、順流水21の流速に順応して回転する湾曲型羽根4の周速を見かけ上停止に近い状態に調整して実現する。
また本発明の主体は羽根車の流体系の活用にあるので、電気関係の説明は省略する。
The setting means for rotating the inner impeller 3 at a value far exceeding the peripheral speed of the curved blade 4 is, as shown in FIGS. 2 and 7, planetary gear B82 and sun gear A81 of the transmission power transmission device 7. And the number of teeth of the ring gear C83 are selected so that the rotational speed of the inner impeller 3 is higher than the rotational speed of the outer impeller 6, and the rotational output shaft of the inner impeller 3 is also set. The output power of a permanent magnet type motor / generator (hereinafter also referred to as a generator 71) that is driven via the power supply 15 is time-divided, and the duty ratio is set to about 1/20. The generator 71 and the motor are time-divided to drive the rotary output shaft 15 and assist the rotation of the inner impeller 3 to adapt to the flow velocity of the forward water 21. The peripheral speed of the curved blade 4 that rotates is apparently stopped. Realized by adjusting the stomach condition.
Further, since the main subject of the present invention is the utilization of the fluid system of the impeller, description of the electrical relationship is omitted.

前記請求項3記載の内郭部(以下ブースト内郭部25と称する場合がある)について図1〜5を示して詳述する。
逆流領域側の羽根車部19の外周縁に、平板体を、流水入り口20に設けた位置決め支柱55から周方向に排気筒38に至る間に周設し、前記ブースター内郭部25の内周壁面30と、内側羽根車3に固設した円錐状ボス1の頂点方向に傾斜した円錐面23との区画断面が、台形類似状42に形成された区画を、排水堰75から半時計方向に位置決め支柱55に至る区画間をブースター流路36として画成する。
The inner portion of the third aspect (hereinafter sometimes referred to as boost inner portion 25) will be described in detail with reference to FIGS.
A flat plate is provided around the outer peripheral edge of the impeller portion 19 on the reverse flow region side from the positioning column 55 provided at the flowing water inlet 20 to the exhaust pipe 38 in the circumferential direction, and the inner periphery of the booster inner portion 25 is provided. A section in which the section of the wall surface 30 and the conical surface 23 inclined to the apex direction of the conical boss 1 fixed to the inner impeller 3 is formed in a trapezoid-like shape 42 extends from the drainage weir 75 in a counterclockwise direction. A section extending to the positioning column 55 is defined as a booster flow path 36.


前記貫流路9を流通する順流水21が排出開口部14近傍にある動作中の湾曲型羽根の背面24に再度流体力を作用し、前記湾曲型羽根4の抵抗を受けて減衰して排水する排水と、ブースト羽根2の回転手段によって強制的に排水する排水が共に、排出開口部14から排水49し、前記排水49から漏洩した溢水分流水43や、貫流水11の一部が漏洩した回生流44が、ブースト羽根2の回転手段によって加速しながら排水堰75を流越し、ブースト流45としてブースター流路36を循環する、その循環する過程でブースト流45は、ブースト羽根2と一体化した円錐状のボス1の頂点方向に掻き揚げられ、射流を防ぎ逆流領域近傍の湾曲型羽根4の背面24に流体力をブーストし、逆流領域近傍の湾曲型羽根車6を駆動する。
,
The forward water 21 flowing through the through-flow passage 9 acts again on the back surface 24 of the curved curved blade in operation near the discharge opening 14, attenuates and drains by receiving the resistance of the curved blade 4. Both drainage and drainage forcibly drained by the rotating means of the boost blades 2 drain from the drain opening 14, and the excess water running water 43 leaked from the drainage 49 and the regenerative from which a part of the through water 11 leaked The stream 44 passes through the drainage weir 75 while accelerating by the rotating means of the boost blade 2 and circulates through the booster flow path 36 as the boost flow 45. In the circulating process, the boost flow 45 is integrated with the boost blade 2. It is lifted up in the apex direction of the conical boss 1 to prevent the jet flow, boost the fluid force to the back surface 24 of the curved blade 4 near the backflow region, and drive the curved impeller 6 near the backflow region.

また、前記ブースト流45が、ブースター流路36を循環する過程で羽根車部19の外周から外に飛び出し流出するのを、羽根車部19の外周に設けたブースター内郭部25の手段によって阻止し、且つ効果的に凝集し、前記凝集したブースト流45が湾曲型羽根4の背面24に流体力をブーストすることによって、湾曲型羽根4の表面18よりも背面24の方が空気抵抗が大きくなり、背面24が押される方向に回転力が回転出力軸15に生じ、逆流領域での羽根車群10が受ける逆流抵抗を克複し、逆流領域側の湾曲型羽根4からも回転トルクの抽出31が可能となり搖動水車が課題とした、引っ張りバネの強度や水車の公転位置と搖動羽に対する流体力を自動制御する必要無く、搖動水車の欠陥を超えた最も主要な特徴とする。 Further, the boost flow 45 is prevented from jumping out and flowing out from the outer periphery of the impeller portion 19 in the process of circulating the booster flow path 36 by means of the booster inner portion 25 provided on the outer periphery of the impeller portion 19. And the agglomerated boost flow 45 boosts the fluid force to the back surface 24 of the curved blade 4 so that the air resistance at the back surface 24 is greater than that at the surface 18 of the curved blade 4. Thus, a rotational force is generated in the rotation output shaft 15 in the direction in which the back surface 24 is pushed, overcomes the reverse flow resistance received by the impeller group 10 in the reverse flow region, and the rotational torque is extracted also from the curved blade 4 on the reverse flow region side. This is the most important feature beyond the defects of peristaltic turbines, without the need to automatically control the strength of the tension spring, the revolving position of the turbines and the fluid force against the peristaltic wings.

また、請求項2記載の羽根車群10をケーシングの羽根車部19に内設し、流が生じている水中に水没させて用いるケーシング61は、図4に示すように、導水部27と羽根車部19とブースター内郭部25で構成し、前記ケーシングを構成するいずれの部位も図5と6に示すように、底板37と蓋板33を備え、前記導水部27の傾斜側板51とブースター内郭部25の手段によって、羽根車部19の内部と側溝60の内壁面L52間のたまり部分57を周流する流水を遮断し、特許文献1が課題にした、案内部の流体の流れ込む側の相反する側の壁面の溜まり水の影響を効果的に解消したことを特徴とする。 In addition, as shown in FIG. 4, a casing 61 in which the impeller group 10 according to claim 2 is installed in the impeller portion 19 of the casing and is submerged in the water in which the flow is generated, As shown in FIGS. 5 and 6, the vehicle portion 19 and the booster inner portion 25 are configured by the vehicle portion 19 and the booster inner portion 25, and each portion includes a bottom plate 37 and a cover plate 33, and the inclined side plate 51 and the booster of the water guide portion 27. By the means of the inner portion 25, the flowing water flowing around the pool portion 57 between the inside of the impeller portion 19 and the inner wall surface L52 of the side groove 60 is cut off, and the fluid flow side of the guide portion, which is the subject of Patent Document 1, is a problem. It is characterized by effectively eliminating the effect of accumulated water on the opposite wall surface.

また、従来の技術として非特許文献1の3章27頁に記載した、水車の導水口に堰や水寄せ板を設けて圧力水頭を上げる技術や、特許文献1に示す効率よく流体を回転翼に送り込むためには、一対の回転翼間に至る仕切りと案内部14を設けて水寄や水頭を上げるといういずれの技術も、流入水の流量や流速の急激な変化に対応するためクロスフロー型羽車には導流同期機能等が不可欠で、前記機構のみでは導流装置としての効果は期待できず、本願発明による、前記発電装置74を構成する「羽根車群10を内設するケーシング61の導水部27に設けた傾斜側板51」を、前記傾斜側板51の端末56と、流水入口20の位置決め支柱55と、ブースター内郭部25の始点40が、前記位置決め支柱55に定着する条件を満たす事によって、流入水の流量や流速の急激な変化が有る場合においても同期機構等は不要になり、クロスフロー型羽車には不可欠なガイドベーンも省略できる機能を備えた発電装置74を主要な特徴とする。 In addition, as a conventional technique, a technique described in Chapter 3 page 27 of Non-Patent Document 1 for providing a weir and a water-feeding plate at a water inlet of a water turbine to raise a pressure head, and a method for efficiently supplying fluid to a rotor blade as shown in Patent Document 1 In order to feed the water into the water, any technique of providing a partition between the pair of rotor blades and the guide portion 14 to raise the water surface and the water head is a cross-flow type in order to cope with a sudden change in the flow rate and flow velocity of the influent water. The impeller is indispensable for a conduction guide synchronization function, and the above-described mechanism alone cannot be expected to have an effect as a conduction device. According to the present invention, the “casing 61 in which the impeller group 10 is installed” is formed. The inclined side plate 51 provided in the water guide portion 27 is a condition in which the terminal 56 of the inclined side plate 51, the positioning column 55 of the flowing water inlet 20, and the starting point 40 of the booster inner portion 25 are fixed to the positioning column 55. By filling, flow Even when there is a sudden change in the flow rate or flow rate of the incoming water, a synchronization mechanism or the like is not necessary, and the power generation device 74 having a function that can omit guide vanes essential to the crossflow type impeller is a main feature.

上記の構成により次のような効果を有する装置を提供できる。
搖動羽車のように、逆流領域で羽根が受ける逆流を、搖動羽が流れに平行にして自動的に逆転流を逃がし順流領域で羽根を復元する方式や水車の導水口に堰や水寄せ板を設けて水位を上げ、排水口との落差を用いて水車内の流水を加速させ、出力率の増加を図るという従来の技術が有るが、このような問題のある機構を使用しなくても、外側羽根車と内側羽根車を変速動力伝動装置を介在して併設し、内側羽根車の回転速度が外側羽根車の回転速度より高速で同一方向に回転する機構を駆使し、ブースター内郭部と内側羽根車に固着した円錐形状のボスを活用したことで、逆流領域での羽根車が受ける逆流抵抗を克複し羽根車内の流水を加速させ射流を防ぎ、クロスフロー型羽根車の特質を生かし、且つクロスフロー型羽根車には不可欠なガイドベーンや同期機構等の導流装置の省略を図ることが出来るという利点がある。
With the above configuration, an apparatus having the following effects can be provided.
Like the peristaltic impeller, the backflow received by the blades in the backflow region is automatically released in parallel with the peristaltic blades so that the backflow is restored and the blades are restored in the forward flow region. There is a conventional technology that raises the water level and accelerates the running water in the water turbine using the head with the drain outlet to increase the output rate, but even without using such a problematic mechanism The outer impeller and the inner impeller are provided with a transmission power transmission, and the inner impeller is rotated in the same direction at a higher speed than the outer impeller. And the conical boss fixed to the inner impeller, the reverse flow resistance that the impeller receives in the reverse flow region is overcome, the flow of water in the impeller is accelerated and the jet flow is prevented, and the characteristics of the cross flow type impeller are improved. Indispensable gas for the cross flow type impeller. There is an advantage that it is possible to omit the Doben and synchronization mechanism guiding flow devices or the like.

1、内側羽根車3と、外側羽根車6と、円錐状のボス1、及び貫流路9の部位に対応する断面図と平面図を線で結んだ説明図であって、想像部分の軸受け部5の部分は細部のため、カクレ線を省略して可視部分に置き換え、また、歯車部7の詳細は図2に記載した、説明図。 2、内側羽根車の外周縁8と、ブースト羽根の外周縁8と、貫流路の内周円8は、共通の指示点に付き、詳述する上ですべて符号を8と称する。 3、湾曲型羽根4の内周縁17と、貫流路9の外周円17は、共通の指示点に付き、詳述する上ですべて符号を17と称する。 4、図1と3と8に記載した平面図において、外側羽根車6の外周円外部に記載した矢印22と31は、順流領域22近傍の湾曲型羽根4と、逆流領域31近傍の湾曲型羽根4と、双方の湾曲型羽根4から回転トルクが抽出できる事を示す説明用平面図。 5、台形区画42は、排水堰75から矢印42方向の位置決め支柱55に至る区間を、貫流路9と台形区画42と一定区間重畳したブースター流路36を画成した、平面図、また図2に、台形区画42をハッチングで表記した図を併記した。1, an inner impeller 3, an outer impeller 6, a conical boss 1 and a cross-sectional view corresponding to the parts of the through-flow passage 9 and a plan view connected with lines, and a bearing portion of an imaginary part Since the portion 5 is a detail, the clack line is omitted and replaced with a visible portion, and the details of the gear portion 7 are described in FIG. 2. The outer peripheral edge 8 of the inner impeller, the outer peripheral edge 8 of the boost blade, and the inner peripheral circle 8 of the through flow passage are attached to a common indicating point, and are all referred to as 8 for detailed description. 3. The inner peripheral edge 17 of the curved blade 4 and the outer peripheral circle 17 of the through-flow passage 9 are attached to a common indicating point, and will be referred to as a reference numeral 17 in detail. 4, in the plan views described in FIGS. 1, 3 and 8, the arrows 22 and 31 described outside the outer peripheral circle of the outer impeller 6 are the curved blade 4 near the forward flow region 22 and the curved shape near the reverse flow region 31. The explanatory top view which shows that a rotational torque can be extracted from the blade | wing 4 and both curved blade | wings 4. FIG. 5. The trapezoidal section 42 is a plan view in which a section extending from the drainage weir 75 to the positioning column 55 in the direction of the arrow 42 is defined as a booster flow path 36 that overlaps the through flow path 9 and the trapezoidal section 42 with a certain section. Further, a figure in which the trapezoidal section 42 is hatched is shown. 1、変速動力伝動装置7の要部と、羽根車群10の部位に対応する断面図と平面図を線で結んだ説明図。 2、貫流路9は、湾曲型羽根縁の回転軌跡を17とし、ブースト羽根縁の回転軌跡を8とした断面図。 3、図1にはボス1にハッチングを表記しているが、図2には、ボス1の頂点方向に傾斜した面23の視認が容易にするため、ボス1にハッチングの表記を省略した。1 is an explanatory diagram in which a main part of a transmission power transmission device 7 and a cross-sectional view and a plan view corresponding to a part of an impeller group 10 are connected by lines. 2 is a cross-sectional view of the through-flow passage 9 where the rotation trajectory of the curved blade edge is 17 and the rotation trajectory of the boost blade edge is 8. 3, hatching is written on the boss 1 in FIG. 1, but in FIG. 2, the hatching is omitted from the boss 1 in order to make it easy to see the surface 23 inclined in the apex direction of the boss 1. 1.図3の主体は「ブースター内郭部25」の形成手段と、貫流路9を貫流する流水の変化に対応する羽根車群10の動作説明にあるので、図4記載の羽根車部19と羽根車部の流入口20の図面は、図3においては省略し、符号のみ記載するに留めた説明用平面図。 2、図1の5に併記したブースター流路36の説明用平面図。1. 3 mainly includes the means for forming the “booster inner section 25” and the explanation of the operation of the impeller group 10 corresponding to the change of the flowing water flowing through the through-flow passage 9. Therefore, the impeller 19 and the impeller shown in FIG. Drawing of the inflow port 20 of a vehicle part is abbreviate | omitted plan view which abbreviate | omitted in FIG. 2. The top view for description of the booster flow path 36 written together in 5 of FIG. 落し蓋式U字側溝60を活用したケーシング61の導水部27と、羽根車部19と、ブースター内郭部25と、溜まり部分57と、位置決め支柱55及び排気筒38の、要部の関係を示す平面図。The relationship of the principal part of the water guide part 27 of the casing 61 using the drop lid type | formula U-shaped side groove 60, the impeller part 19, the booster inner part 25, the accumulation part 57, the positioning support | pillar 55, and the exhaust pipe 38 is shown. Plan view. ケーシング部61と、羽根車部19と、駆動伝動部59と、ケーシング61の底板37と、排気筒38と、ブースター内郭部25の内側30の、位置関連を説明用する概念斜視図。The conceptual perspective view explaining the positional relationship of the casing part 61, the impeller part 19, the drive transmission part 59, the baseplate 37 of the casing 61, the exhaust pipe 38, and the inner side 30 of the booster inner part 25. 実施例1と2に係る架構63と導水部27蓋33と底板37の斜視図。The perspective view of the frame 63, the water guide part 27 lid | cover 33, and the baseplate 37 which concern on Example 1 and 2. FIG. 実施1と2に係る、発電装置74を側溝60の懸架台73に脱着自在に載着する概念斜視図。The conceptual perspective view which mounts the electric power generating apparatus 74 which concerns on Example 1 and 2 on the suspension stand 73 of the side groove 60 so that attachment or detachment is possible. 1、発明を実施するための形態4に係る風力羽根車群46の断面図に対応する平面図を線で結んだ説明図。 2、天盤77と回転盤79の各々の内周円17と外周円6bは同等の対面仕様で、天盤77の外周縁6bと、湾曲型羽根4の外周縁6bと、外側羽根車6の外周縁6bは共通の指示点に付き、詳述する符号を6bと称する。1, explanatory drawing which connected the top view corresponding to sectional drawing of wind impeller group 46 concerning form 4 for carrying out the invention with a line. 2. The inner circumferential circle 17 and the outer circumferential circle 6b of each of the top 77 and the rotating disc 79 have the same facing specifications, the outer circumferential edge 6b of the ceiling 77, the outer circumferential edge 6b of the curved blade 4, and the outer impeller 6 The outer peripheral edge 6b is attached to a common indicating point, and the reference numeral described in detail is referred to as 6b. 1、発明を実施するための形態4に係る風力羽根車群46の内側羽根車3と、外側羽根車6と、「天盤77と軸受け部84と軸受け部84を固設した輻78」を、構設する図である。 2、外側羽根車6を上方から見たA面と下から見たB面を二段に重複して記載した概念斜視図。 3、アシスト羽根車に関する概念斜視図。1, the inner impeller 3 of the wind impeller group 46 according to the form 4 for carrying out the invention, the outer impeller 6, and “radiant 78 in which the roof 77, the bearing portion 84, and the bearing portion 84 are fixedly installed”. FIG. 2. The conceptual perspective view which overlapped and described the A surface which looked at the outer side impeller 6 from the upper part, and the B surface which looked from the lower part. 3. The conceptual perspective view regarding an assist impeller.

〈第1の実施形態〉
以下本願発明について図1を示して詳述する。
ブースター機能つき羽根車を構成する羽根車群10は、内側羽根車3と外側羽根車6と、変速動力伝動装置7で構成し、前記内側羽根車3は、その内側羽根車の中心位置に固着した円錐状のボス1に回転出力軸15を突設し、前記円錐状ボス1に、羽根2として内側羽根車の外周縁8と、回転出力軸に固設した円錐状ボス1間に、回転出力軸を中心として周方向に一定間隔をあけて放射状に複数個を円錐状ボスの頂点方向の傾斜面23に沿って拡大した板体状の羽根2(以下ブースト羽根2と称する場合がある)を周設し、更に変速動力伝動装置7が有する太陽歯車A81を回転出力軸15に嵌着し、前記太陽歯車A81を嵌着した回転出力軸15と、円錐状ボス1と、ブースト羽根2を、一体的に固設して内側羽根車3を構成する。
また、前記内側羽根車3に併設する外側羽根車6は、その外側羽根車の中心位置に軸受部5を挿嵌し、前記外側羽根車の外周縁6から貫流路9の外周軌跡17間に、複数個の平板体を弓状に湾曲形成した湾曲型羽根4を、外側羽根車6の回転方向58に湾曲型羽根の湾曲表面18を向けて外側羽根車6に配置し、回転出力軸15を中心として周方向に一定間隔をあけて、軸方向に平行して延在するよう外側羽根車6に周設して外側羽根車6を構設し、前記軸受部5と遊星歯車B82の軸35を埋設した外側羽根車6を、変速動力伝動装置7の遊星歯車B82と太陽歯車A81を介在して、前記内側羽根車3に突設した回転出力軸15に、前記外側羽根車6の軸受部5を回転自在に軸着し、内側羽根車3と外側羽根車6の羽根面側が対面して構設し羽根車群10を構成する。
<First Embodiment>
Hereinafter, the present invention will be described in detail with reference to FIG.
An impeller group 10 that constitutes an impeller with a booster function includes an inner impeller 3, an outer impeller 6, and a transmission power transmission device 7, and the inner impeller 3 is fixed to the center position of the inner impeller. A rotating output shaft 15 is projected from the conical boss 1 and rotated between the outer peripheral edge 8 of the inner impeller as the blade 2 and the conical boss 1 fixed to the rotating output shaft. A plate-like blade 2 (hereinafter sometimes referred to as a boost blade 2) in which a plurality are radially expanded around the output shaft along the inclined surface 23 in the apex direction of the conical boss at regular intervals in the circumferential direction. The sun gear A81 included in the transmission power transmission device 7 is fitted to the rotation output shaft 15, and the rotation output shaft 15 to which the sun gear A81 is fitted, the conical boss 1 and the boost blade 2 are provided. The inner impeller 3 is configured by being integrally fixed.
Further, the outer impeller 6 provided along with the inner impeller 3 has a bearing portion 5 inserted into the center position of the outer impeller, and between the outer peripheral edge 6 of the outer impeller and the outer peripheral locus 17 of the through passage 9. The curved blade 4 formed by bending a plurality of flat plates into an arcuate shape is disposed on the outer impeller 6 with the curved surface 18 of the curved blade directed in the rotational direction 58 of the outer impeller 6, and the rotational output shaft 15. The outer impeller 6 is provided around the outer impeller 6 so as to extend in parallel with the axial direction at a constant interval in the circumferential direction, and the shaft of the bearing portion 5 and the planetary gear B82 is provided. The outer impeller 6 in which the inner impeller 35 is embedded is connected to the rotation output shaft 15 protruding from the inner impeller 3 with the planetary gear B82 and the sun gear A81 of the transmission power transmission device 7 interposed therebetween. The part 5 is rotatably attached to the shaft, and the inner impeller 3 and the outer impeller 6 are faced to each other. The impeller group 10 is configured.

〈第2の実施形態〉
第2の実施形態は、請求項2記載の羽根車群10を構設する手段として用いる変速力伝動装置7について図2を示して詳述する。
前記外側羽根車6のキャリア側面29に遊星歯車B82の歯車軸35を埋設し、その遊星歯車軸35に遊星歯車B82を回転自在に軸着し、その遊星歯車B82と内側羽根車3の回転出力軸15に嵌着した太陽歯車A81を噛合A32し、併せて遊星歯車B82と、ケーシングの蓋板33に固設したリング歯車C83と噛合B34するとともに、前記外側羽根車6に挿嵌した軸受け部5を、内側羽根車3の回転出力軸15に回転自在に軸着し、前記外側羽根車が有する湾曲型羽根の内周縁17と、内側羽根車の外周縁8を一定間隔をあけて、内側羽根車3のブースト羽根側と外側羽根車6の湾曲型羽根側が対面して構設し、前記内側羽根車と外側羽根車は、相間関係で互に連係して作動し、内側羽根車3の回転速度が外側羽根車6の回転速度より高速で同一方向に回転する羽根車群10を構設する。
<Second Embodiment>
In the second embodiment, the transmission transmission 7 used as means for constructing the impeller group 10 according to claim 2 will be described in detail with reference to FIG.
The gear shaft 35 of the planetary gear B82 is embedded in the carrier side surface 29 of the outer impeller 6, and the planetary gear B82 is rotatably mounted on the planetary gear shaft 35. The rotational output of the planetary gear B82 and the inner impeller 3 is output. The sun gear A81 fitted on the shaft 15 is meshed with A32, and the planetary gear B82 is meshed with the ring gear C83 fixed to the cover plate 33 of the casing B34, and the bearing portion is fitted on the outer impeller 6. 5 is rotatably attached to the rotation output shaft 15 of the inner impeller 3, and the inner peripheral edge 17 of the curved blades of the outer impeller and the outer peripheral edge 8 of the inner impeller are spaced apart from each other by a predetermined interval. The boost impeller side of the impeller 3 and the curved impeller side of the outer impeller 6 face each other, and the inner impeller and the outer impeller operate in conjunction with each other. The rotational speed is the rotational speed of the outer impeller 6 Ri is 構設 the impeller group 10 which rotates in the same direction at high speed.

前記、内側羽根車3の回転速度が外側羽根車6の回転速度より高速で同一方向転する機構について、非特許文献2記載の遊星歯車装置と図2を示して詳述する。
そこで、本願発明の変速動力伝動装置7と非特許文献2記載の遊星歯車装置と同一構成要素については、同一の符号を付与しその説明を省略する。
遊星歯車装置の遊星歯車B82の歯数を16に設定し、且つ太陽歯車A81の歯数も16に、更にリング歯車C83の歯数を48に設定した遊星歯車装置において、リング歯車C83を固定し、太陽歯車A81を出力とするプラネタリ型のキャリア入力方式を援用した場合を例にして、変速動力伝動装置に置き換えした外側羽根車6をキャリアとして配役し、前記外側羽根車6のキャリア面側29に遊星歯車B82の軸35を埋設し、その遊星歯車軸に遊星歯車B82を回転自在に遊嵌し、この遊星歯車B82と内側羽根車3の回転出力軸15に、嵌着した太陽歯車A81と、噛合A32し、併せて遊星歯車B82はリング歯車C83とも噛合B34する。
この場合、リング歯車C83を固定するという条件下においては、遊星歯車B82がリング歯車C83と噛合B34しながら、太陽歯車A81の外周を遊星し回転する、その遊星回転する遊星歯車B82を軸着した外側羽根車6と内側羽根車3は相間関係で互いに連係して同一方向に回転する。
したがって、外側羽根車6が流水力の作用で回転し、その回転を遊星歯車装置のそれぞれ歯車の歯数によって定まる減速伝達比で内側羽根車3を連動回転するから前記選択した歯車B82の歯数を16及び歯車A81の歯数を16に、更にリング歯車C83の歯数を48に設定した場合、非特許文献2によると計算の結果は、外側羽根車の回転速度は内羽根車の回転速度の1/4になり、したがって内羽根車の回転速度は外羽根車の回転速度はより4倍高速回転する。
前記計算の根拠は非特許文献2を参考にした。
また、遊星歯車装置のリング歯車C83を固定した太陽歯車A81を出力とするプラネタリ型のキャリア入力方式の減速伝達比の計算方法は、非特許文献2に委ねる。
The mechanism in which the rotational speed of the inner impeller 3 rotates in the same direction at a higher speed than the rotational speed of the outer impeller 6 will be described in detail with reference to the planetary gear device described in Non-Patent Document 2 and FIG.
Therefore, the same components as those of the transmission power transmission device 7 of the present invention and the planetary gear device described in Non-Patent Document 2 are assigned the same reference numerals and explanation thereof is omitted.
In the planetary gear device in which the number of teeth of the planetary gear B82 of the planetary gear device is set to 16, the number of teeth of the sun gear A81 is set to 16, and the number of teeth of the ring gear C83 is set to 48, the ring gear C83 is fixed. In the case where a planetary type carrier input method using the sun gear A81 as an output is used as an example, the outer impeller 6 replaced with a transmission power transmission device is cast as a carrier, and the carrier surface side 29 of the outer impeller 6 is used. The planet gear B82 is embedded in the shaft 35, the planetary gear B82 is rotatably fitted on the planetary gear shaft, and the sun gear A81 fitted on the planetary gear B82 and the rotation output shaft 15 of the inner impeller 3 The planetary gear B82 also meshes with the ring gear C83 B34.
In this case, under the condition that the ring gear C83 is fixed, the planetary gear B82 meshes with the ring gear C83 and B34 planetarily rotates around the outer periphery of the sun gear A81. The outer impeller 6 and the inner impeller 3 are linked to each other in a phase relationship and rotate in the same direction.
Therefore, the outer impeller 6 rotates by the action of hydrodynamic force, and the rotation of the inner impeller 3 is interlocked and rotated at a reduction transmission ratio determined by the number of gear teeth of the planetary gear unit. 16 and the number of teeth of the gear A81 are set to 16, and the number of teeth of the ring gear C83 is set to 48. According to Non-Patent Document 2, the calculation result shows that the rotational speed of the outer impeller is the rotational speed of the inner impeller. Therefore, the rotational speed of the inner impeller rotates four times faster than the rotational speed of the outer impeller.
The basis of the calculation was based on Non-Patent Document 2.
Further, the calculation method of the reduction transmission ratio of the planetary type carrier input system that outputs the sun gear A81 to which the ring gear C83 of the planetary gear device is fixed is left to Non-Patent Document 2.


〈第3の実施形態〉
第3の実施の形態を、請求項1記載の貫流路9と請求項3記載のブースター流路36の画成について図1〜3を示して詳述する。
外側根車6が有する湾曲型羽根の内周縁17と、内側羽根車が有するブースト羽根2の外周縁8を、一定間隔あけて貫流路9として貫流水11の流路を画成し、更に平板体を内郭部(以下ブースト内郭部25と称する場合がある。)として、流水入り口20に設けた位置決め支柱55を始点として排気筒38間に、時計回りに外側羽根車6の外周縁16の回転軌跡に沿って円弧を描きながら前記ブースター内郭部25の内周壁30と外側羽根車6の外周縁16が摺接しない間隔39をあけて羽根車部19の外周縁に周設し、前記ブースター内郭部25の内壁面30と、記前内側羽根車3に固着したボ ス1の頂点方向に傾斜した円錐面23との間が台形状類似の断面42に区画された流路を、ブースター流路36として、前記貫流路9と一定区分を重畳して画成する。
.
<Third Embodiment>
The third embodiment will be described in detail with reference to FIGS. 1 to 3 for the definition of the through flow channel 9 according to claim 1 and the booster flow channel 36 according to claim 3.
The inner peripheral edge 17 of the curved blades of the outer root wheel 6 and the outer peripheral edge 8 of the boost blades 2 of the inner blade wheel are formed at a predetermined interval to define a flow path of the through water 11 as a through flow path 9. The body is an inner part (hereinafter may be referred to as a boost inner part 25), and the outer peripheral edge 16 of the outer impeller 6 is clockwise between the exhaust pipes 38 with the positioning column 55 provided at the running water inlet 20 as a starting point. The inner peripheral wall 30 of the booster inner section 25 and the outer peripheral edge 16 of the outer impeller 6 are spaced around the outer peripheral edge of the impeller 19 while drawing an arc along the rotation trajectory. A flow path defined by a trapezoidal cross section 42 is defined between the inner wall surface 30 of the booster inner shell 25 and the conical surface 23 inclined in the apex direction of the box 1 fixed to the inner impeller 3 described above. As the booster channel 36, the through channel 9 and a certain section Define by overlapping minutes.

前記羽根車群10内に画成した貫流路9は、羽根車部19の流水入り口20から流入した順流水21が、羽根車群内を貫流11し、変速動力伝動装置7の変速手段によって回転する「湾曲型羽根4の内周縁17」を貫流する低速流と、「ブースト羽根2の外周縁8」を貫流する高速流と、それぞれ一定間間隔(符号17と8間)をあけた各羽根縁間の周速に応じて同一方向に流水し、速度の異なる流水は容易に混合して合成されることなく「両流水間に隔たり」が出来て、貫流路9と、前記貫流路9と重畳したブースター流路36を画成する。 In the through-flow passage 9 defined in the impeller group 10, the forward water 21 flowing in from the inlet 20 of the impeller portion 19 flows through the impeller group 11 and is rotated by the speed change means of the transmission power transmission device 7. The low-speed flow that flows through the “inner peripheral edge 17 of the curved blade 4”, the high-speed flow that flows through the “outer peripheral edge 8 of the boost blade 2”, and each blade that is spaced by a certain interval (between reference numerals 17 and 8). The water flowing in the same direction according to the peripheral speed between the edges, and the water flowing at different speeds can be easily mixed and synthesized without being synthesized, so that a “separation between the two water flows” can be made. An overlapped booster channel 36 is defined.

また、前記貫流路9を流通する貫流水11が、排出開口部14近傍にある動作中の湾曲型羽根4の背面24に再度流体力を作用し、羽根の抵抗を受けて減衰した貫流水11が、ブースト羽根2の回転手段によって強制的に排出開口部14から排水49し、その排水から漏洩した溢水分流水43や貫流水11の残留した回生流44が、ブースト羽根2の回転手段によって加速しながら排水堰75を流越し、ブースト流45としてブースター流路36を循環し、前記ブースト流45がブースター流路36を環流する過程で、円錐状ボス1の頂点方向に掻き揚げ凝集し、前記凝集したブースト流45を湾曲型羽根4の背面24にブーストするとともに、更に循環流26として羽根車部19の流水入口20方面へ還流して貫流水11を有効に活用し、逆流領域側の湾曲型羽根4からも回転トルクの抽出31が可能となり、逆流領域でのクロスフロー水車には不可欠なガイドベーンや同期機構等、導流装置の省略することが出来る。 Further, the once-through water 11 flowing through the through-flow passage 9 acts again on the back surface 24 of the curved curved blade 4 in operation near the discharge opening 14 and is attenuated by the resistance of the blade. However, the drainage 49 is forcibly drained 49 by the rotating means of the boost blade 2, and the overflowing water running water 43 leaked from the drainage and the regenerative flow 44 in which the through-flow water 11 remains are accelerated by the rotating means of the boost blade 2. While passing over the drainage weir 75 and circulating through the booster flow path 36 as the boost flow 45, the boost flow 45 circulates in the direction of the apex of the conical boss 1 in the process of circulating through the booster flow path 36, The agglomerated boost flow 45 is boosted to the back surface 24 of the curved blade 4 and further returned to the direction of the flow inlet 20 of the impeller 19 as a circulation flow 26 to effectively utilize the through water 11. Also enables extraction 31 of the rotational torque from the curved vanes fourth flow region side, integral guide vanes and synchronization mechanism such as the cross flow water turbine in the reverse flow region, it can be omitted in the diversion device.

また図4に示すように、前記ケーシング61が有する羽根車部19の外周縁に周設したブースター内郭部25と、前記ケーシング61が有する導水部27に設けた傾斜板51の手段によって、羽根車部19の内部と、側溝の内壁面L52のたまり部分57間を遮蔽し、導水部27の拡大開口部分50から流入した貫流水11と、前記ケーシング61の外部を浮遊する流水を遮断し、前記羽根車部19に内設した羽根車群10には何等溜まり水の影響を与えず、特許文献1記載の課題である、案内部の流体の流れ込む側の相反する側の壁面の溜まり水の影響を解消する。 Further, as shown in FIG. 4, the booster inner portion 25 provided around the outer peripheral edge of the impeller portion 19 included in the casing 61, and the inclined plate 51 provided in the water guide portion 27 included in the casing 61, the blade The interior of the vehicle portion 19 and the pooled portion 57 of the inner wall surface L52 of the side groove are shielded, the through water 11 flowing in from the enlarged opening portion 50 of the water guide portion 27 and the running water floating outside the casing 61 are blocked, The impeller group 10 provided in the impeller part 19 has no influence on the accumulated water, and is a problem described in Patent Document 1, which is the problem of Patent Document 1 that is the accumulated water on the opposite wall surface on the fluid flowing side. Eliminate the impact.

また、流が生じている水中に全没させて用いるケーシング61は、前記ケーシング61の羽根車部19に内設した羽根車群10の回転に伴い羽根車部19内の流水に、渦流や溶存気体の遊離による気泡が生じ、羽根車部19内でキャビテーション現象や圧力損出が生じ、それを防ぐために排気筒48を排出開口部14近傍に設け、羽根車部19内の圧力損失を軽減する。 In addition, the casing 61 used by being completely immersed in the water in which the flow is generated is vortexed or dissolved in the flowing water in the impeller portion 19 as the impeller group 10 provided in the impeller portion 19 of the casing 61 rotates. Bubbles are generated due to the liberation of gas, and a cavitation phenomenon or pressure loss occurs in the impeller 19. In order to prevent this, an exhaust cylinder 48 is provided in the vicinity of the discharge opening 14 to reduce the pressure loss in the impeller 19. .

〈第4の実施形態〉
第4の実施形態の、請求項4記載のブースター機能つき風力羽根車について図8と9を示し詳述するが、主体は羽根車の流体系の活用にあるので、電気関係の図及び説明は省略する。
図8は、第4の実施形態に係る風力羽根車群46を主体にした断面図と、その断面図に対する平面図を、線で結んだ説明図である。
また、図8は、風力羽根車群46を主体にした図で、アシスト羽根車89について図9に記載する。
図9は、外側羽車6bをA面記載は上からの斜視図で、B面記載は下からの斜視図。また、図1〜図7に示したブースター機能つき羽根車に設けられていた構成要素と、第4の実施形態に係る構成要素が同じものについては、同一の符号を付与しその説明を省略する。
<Fourth Embodiment>
FIG. 8 and FIG. 9 will be described in detail with respect to the wind turbine impeller with a booster function according to claim 4 of the fourth embodiment, but since the main body is in the utilization of the fluid system of the impeller, Omitted.
FIG. 8 is an explanatory diagram in which a cross-sectional view mainly including the wind impeller group 46 according to the fourth embodiment and a plan view corresponding to the cross-sectional view are connected by lines.
FIG. 8 is a diagram mainly showing the wind impeller group 46, and the assist impeller 89 is described in FIG.
FIG. 9 is a perspective view of the outer impeller 6b from the top in the A side, and a perspective view from the bottom in the B side. Moreover, the same reference numerals are given to the components provided in the impeller with a booster function shown in FIGS. 1 to 7 and the components according to the fourth embodiment, and the description thereof is omitted. .

本願発明のブースター機能つき風力羽根車を大気中に備えた、前記ブースター機能つき風力羽根車を構成する風力羽根車群46の内側羽根車3bと、外側羽根車6bを、風力羽根車群46内を流通する風力で回転駆動し回転出力軸15から回転力を抽出する。
また、外側羽根車6bに設けた湾曲型羽根4は、逆流領域においても、ブースト羽根47の回転手段によって湾曲型羽根4の表面18よりも背面24の方が空気抵抗が大きいために、背面24が押される方向に回転力が回転出力軸15に生じ、順流領域22及び逆流領域31の何れの領域においても、風力羽根車群46が有する回転出力軸15で回転力を抽出することが可能になる。
The inside impeller 3b and the outside impeller 6b of the wind impeller group 46 constituting the wind impeller with the booster function provided with the wind impeller with the booster function of the present invention in the atmosphere are arranged in the wind impeller group 46. The rotational force is extracted from the rotation output shaft 15 by being driven to rotate by the wind power flowing through
Further, the curved blade 4 provided on the outer impeller 6b has a larger air resistance than the surface 18 of the curved blade 4 due to the rotation of the boost blade 47 in the reverse flow region. Rotational force is generated in the rotational output shaft 15 in the direction in which the pressure is pushed, and the rotational force can be extracted by the rotational output shaft 15 of the wind impeller group 46 in any of the forward flow region 22 and the reverse flow region 31. Become.

前記風力羽根車群46は、内側羽根車3bと、外側羽根車6bと、変速動力伝動装置7と、回転出力軸15と、風車筺体76で構成し、内側羽根車3bは、回転出力軸15に円筒状のボス41を嵌着し、前記ボス41に内羽根をブースト羽根47として平板体を、前記内側羽根車の外周縁8と、湾曲型羽根の内周縁17とを一定間隔をあけて放射状に複数個を、前記円筒状のボス41に周設し、前記ブースト羽根47と、ボス41と、回転出力軸15が、一体的に固設して内側羽根車3bを構設する。
また外側羽根車6bは、リングドーナッ状の回転盤79の外周縁6bから、前記回転盤79の内周縁17間に、外羽根を湾曲型羽根4として、平板体を弓状に湾曲形成した複数個の湾曲型羽根4を、回転盤79の回転方向58に湾曲型羽根4の湾曲表面18を向けて放射状に一定間隔をあけて回転盤79上面に周設し、「前記回転盤79と、軸受部5と遊星歯車の軸35を埋設した輻80」を、一体的に固設して外側羽根車6bを構設する。
The wind impeller group 46 includes an inner impeller 3b, an outer impeller 6b, a transmission power transmission device 7, a rotation output shaft 15, and a windmill housing 76. The inner impeller 3b includes the rotation output shaft 15 A cylindrical boss 41 is fitted to the boss 41, and a flat plate body is formed with the inner blades as boost blades 47 on the boss 41, and the outer peripheral edge 8 of the inner impeller and the inner peripheral edge 17 of the curved blade are spaced apart from each other. A plurality of pieces are radially provided around the cylindrical boss 41, and the boost blade 47, the boss 41, and the rotation output shaft 15 are integrally fixed to form the inner impeller 3b.
Further, the outer impeller 6b includes a plurality of curved plates 4 formed in an arcuate shape with the outer blades being curved blades 4 between the outer peripheral edge 6b of the ring donut-shaped rotating disk 79 and the inner peripheral edge 17 of the rotating disk 79. The curved blades 4 are circumferentially arranged on the upper surface of the rotating plate 79 with the curved surface 18 of the curved blade 4 facing the rotation direction 58 of the rotating plate 79 at a certain radial distance, The outer impeller 6b is constructed by integrally fixing the radiation 80 "in which the bearing portion 5 and the planetary gear shaft 35 are embedded.

また、前記風力羽根車群46の構設については、内側羽根車3bに固着した円筒状のボス41に突設した回転出力軸15を、主軸受け部28方向に回転出力軸15bと、反対方向の軸受け部84側に回転出力軸15aの二方向に突設し、前記回転出力軸15bに、前記外側羽根車6bが有する輻80の軸受部5を、変速動力伝動装置7の太陽歯車A81と遊星歯車B82を介在して内側羽根車3bの回転出力軸15bに軸着し、更に前記回転出力軸15の端末15aに、リングドーナッ状の天盤77と一体化した輻78の軸受け部84を貫通軸着し、前記天盤77は、回転盤79に周設した湾曲型羽根4の上端を固着して補強する。
また、前記輻78の軸受け部84を貫通した回転出力軸15aに、「微風下において、外側羽根車6bの初期起動性を高める上で有効な」アシスト羽根車89に固着した一方向クラッチ86を軸着し、前記アシスト羽根車89は、一方向クラッチ86と、輻87と、風杯型の羽根88を一体的に固設してアシスト羽根車89を構成し、前記アシスト羽根車89に固設した風杯型の羽根88は、公知の事実である風杯型の羽根車方式を活用したもので、風を受けて回転する方向は羽根の凸面の一方向に回転する。
従って、順流領域22及び逆流領域31の何れからの風力も、アシスト羽根車89の手段によって風力羽根車群46が有する回転出力軸15で回転力を抽出することが可能になる。
Further, regarding the construction of the wind impeller group 46, the rotation output shaft 15 protruding from the cylindrical boss 41 fixed to the inner impeller 3b is opposite to the rotation output shaft 15b in the direction of the main bearing portion 28. Projecting in the two directions of the rotation output shaft 15a on the bearing portion 84 side of the shaft, the bearing portion 5 of the radiant 80 included in the outer impeller 6b is connected to the rotation output shaft 15b and the sun gear A81 of the transmission power transmission device 7. A planetary gear B82 is interposed on the rotary output shaft 15b of the inner impeller 3b, and a bearing portion 84 of a radiant 78 integrated with a ring donut-shaped top 77 is attached to the terminal 15a of the rotary output shaft 15. The top plate 77 is attached to the through shaft, and the upper end of the curved blade 4 provided around the rotary plate 79 is fixed and reinforced.
Further, a one-way clutch 86 fixed to an assist impeller 89 that is effective in improving the initial startability of the outer impeller 6b under a slight wind is attached to the rotary output shaft 15a that penetrates the bearing portion 84 of the radiation 78. The assist impeller 89 is fixed to the assist impeller 89 by integrally fixing a one-way clutch 86, a radiator 87, and a cup-shaped impeller 88 to the assist impeller 89. The provided cup-shaped blade 88 utilizes a known cup-shaped impeller system, and the direction of rotation in response to wind rotates in one direction of the convex surface of the blade.
Therefore, the wind force from any of the forward flow region 22 and the reverse flow region 31 can be extracted from the rotational output shaft 15 of the wind impeller group 46 by means of the assist impeller 89.

また、内側羽根車3bと外側羽根車6bは相間関係で互に連係して作動し、内側羽根車3bが有するブースト羽根47の回転速度が、外側羽根車6bが有する湾曲型羽根4の回転速度より高速で同一方向に回転する羽根車群46を構設する。 Further, the inner impeller 3b and the outer impeller 6b operate in a mutually linked relationship, and the rotational speed of the boost blade 47 that the inner impeller 3b has is the rotational speed of the curved blade 4 that the outer impeller 6b has. An impeller group 46 that rotates in the same direction at a higher speed is provided.

風力羽根車群46を援用してブースター機能つき風力発電装置を構築する場合、前記風力羽根車群46が有する回転出力軸15bを、変速動力伝動装置7の内歯車83を抱持した風車筺体76に埋設した主軸受け28で貫通軸支し、前記貫通した回転出力軸15bを、別に備えた発電機71の回転軸に接続し、風力羽根車群46を載設した、風車筺体76の接続部材85を、別に設けた方位制御機構を備えたタワーに装設しブースター機能つき風力発電装置が実現する。 When constructing a wind power generator with a booster function by using the wind impeller group 46, the wind turbine housing 76 that holds the rotation output shaft 15 b of the wind impeller group 46 and the internal gear 83 of the transmission power transmission device 7. A connecting member for the wind turbine housing 76, which is supported by a through shaft by a main bearing 28 embedded in the shaft, the through rotation output shaft 15b is connected to a rotating shaft of a generator 71 provided separately, and a wind impeller group 46 is mounted. A wind power generator with a booster function is realized by installing 85 in a tower equipped with a separately provided direction control mechanism.

前記ブースター機能つき風力発電装置が、微風下において、外側羽根車6bの初期起動性を高める手段として、相間関係で互に連係して作動する内側羽根車3bと外側羽根車6bを結合する変速動力伝動装置7の遊星歯車B82と太陽歯車A81の歯数及び、リング歯車C83の歯数を選択して設定し、外側羽根車6bを駆動する内側羽根車3bの慣性モーメントを軽減し、内側羽根車3bに設けた回転出力軸15bを介して駆動する発電機71を電動機として前記発電機71内に併巻してある電動機の駆動コイルに微少の電力をパルス的に、別に備えた電源装置を用いて供給し、発電機71のコギングトルクを打ち消す磁気トルクを発生させ、外側羽根車6bの回転をアシストして起動性を高めることが出来る。 The wind power generator with the booster function is a speed change power that couples the inner impeller 3b and the outer impeller 6b, which operate in cooperation with each other as a means for improving the initial startability of the outer impeller 6b under a slight wind. The number of teeth of the planetary gear B82 and the sun gear A81 of the transmission device 7 and the number of teeth of the ring gear C83 are selected and set to reduce the moment of inertia of the inner impeller 3b that drives the outer impeller 6b. Using a power supply device provided with a small amount of electric power in a pulsed manner in a drive coil of an electric motor that is wound together in the electric generator 71 using an electric generator 71 that is driven through a rotary output shaft 15b provided in 3b as an electric motor Thus, a magnetic torque for canceling the cogging torque of the generator 71 is generated, and the rotation of the outer impeller 6b is assisted to improve the startability.

また本実施の形態によっても、前記第1〜2実施の形態と同様の効果が得られ、さらに、羽根車群の構成次第で水車発電や風車発電に援用できるという効果がある。 In addition, according to the present embodiment, the same effects as those of the first and second embodiments can be obtained, and further, there is an effect that it can be used for water turbine power generation and wind turbine power generation depending on the configuration of the impeller group.

実施例1について詳述する図は次の通り。
図4 1、導水路62から排出開口部14へ向かって流れる水路に係る部材の配置平面図。
2、ケーシング61と一体化した導水部27と、羽根車部19と、ブースター内郭部25の位置関係の平面図
3、導水部27の構設手段を説明する平面図。
4、導水部27の傾斜板端末56と、ブースター内郭部25の始点40を、位置決め支柱55に定着する条件の説明する平面図。
図5、1、ケーシング底板37と、位置決め支柱55と、羽根車部19の流水入り口20の、配置関係及び、図4を補完するための斜視図である。
2、羽根車群10が有する回転出力軸15の回転エネルギを、電動発電機71の回転軸70に伝動するプロセスを説明する概念斜視図である。
図6、 ケーシング61を内設する架構部63と、貫通軸受け65を固着した中間梁64と、発電機取り付け台69の、位置関係を示す斜視図である。
図7、 発電装置74を側溝60の懸架台73に脱着自在に載着する概念斜視図。実施例1は、流が生じている水中に水没して用いる可搬式鉛直軸式クロスフロー型水力発電装置(以下発電装置74と略称する場合がある。)は、日本工業規格に基づく落し蓋式U字側溝60(以下、側溝60と略称する場合がある。)の導水路62から排出開口部14へ向かって流れる水路を形成したケーシング61を有し、前記ケーシング61は、導水部27と羽根車部19とブースター内郭部25とで構成し、前記ケーシング61を構成するいずれの部位も底板37とケーシング蓋33を備え、前記導水部27は、導水部の拡大開口部分50を、側溝60の導水路62方向に配置し、前記導水部の大開口部分50と導水部の傾斜側板51が接する位置に設けた嵌合金具で、前記ケーシング底板37に立設した位置決め支柱L53に嵌着し、前記位置決め支柱L53と側溝60の内壁面L52の接続は実状に応じ密着する。更に、傾斜側板51の端末側56に接合金具を設け、前記接合金具をケーシングの中央狭窄部54の流水入り口20のケーシング底板37に立設した位置決め支柱55に定着し、前記導水部の傾斜側板51は、導水部の傾斜板端末56と内郭部(以下ブースト内郭部25と称する場合がある)の始点40と羽根車部19の流水入り口20位置決め支柱55に定着することを条件に、導水部の拡大開口部50の形状や傾斜側板51の敷設を任意に可変し、河川の実情に適した施工が容易となる前記ケーシングの導水部27を構設する。
The figure which details Example 1 is as follows.
FIG. 41 is an arrangement plan view of members related to a water channel that flows from the water conduit 62 toward the discharge opening 14.
2, a plan view of the positional relationship of the water guide part 27 integrated with the casing 61, the impeller part 19, and the booster inner part 25 3;
4 is a plan view for explaining conditions for fixing the inclined plate terminal 56 of the water guide section 27 and the starting point 40 of the booster inner section 25 to the positioning column 55.
FIGS. 5 and 5 are perspective views for complementing the arrangement relationship of the casing bottom plate 37, the positioning column 55, and the running water inlet 20 of the impeller 19 and FIG.
2 is a conceptual perspective view illustrating a process for transmitting the rotational energy of the rotational output shaft 15 of the impeller group 10 to the rotational shaft 70 of the motor generator 71.
FIG. 6 is a perspective view showing a positional relationship among a frame portion 63 in which a casing 61 is installed, an intermediate beam 64 to which a through bearing 65 is fixed, and a generator mounting base 69.
FIG. 7 is a conceptual perspective view in which the power generation device 74 is detachably mounted on the suspension base 73 of the side groove 60. In the first embodiment, a portable vertical shaft type cross-flow hydroelectric generator (hereinafter sometimes abbreviated as a power generator 74) used by being submerged in water in which a flow is generated is a drop lid type U based on Japanese Industrial Standards. It has a casing 61 that forms a water channel that flows from the water guide channel 62 of the character side groove 60 (hereinafter sometimes referred to as a side groove 60) toward the discharge opening 14, and the casing 61 includes the water guide unit 27 and the impeller. The portion 19 and the booster inner portion 25 are provided, and each portion constituting the casing 61 includes a bottom plate 37 and a casing lid 33, and the water guide portion 27 includes an enlarged opening portion 50 of the water guide portion in the side groove 60. A fitting fitting provided in the direction of the water conduit 62 and provided at a position where the large opening portion 50 of the water guide portion and the inclined side plate 51 of the water guide portion are in contact with each other, and is fitted to the positioning column L53 erected on the casing bottom plate 37. The connection of the inner wall surface L52 of the positioning strut L53 and groove 60 are in close contact according to circumstances. Further, a joint fitting is provided on the terminal side 56 of the inclined side plate 51, and the joint fitting is fixed to a positioning column 55 erected on the casing bottom plate 37 of the flowing water inlet 20 of the central constricted portion 54 of the casing, and the inclined side plate of the water guiding portion. On the condition that 51 is fixed to the inclined plate terminal 56 of the water guide portion and the starting point 40 of the inner portion (hereinafter sometimes referred to as the boost inner portion 25) and the flowing water inlet 20 of the impeller portion 19 and the positioning column 55. The shape of the enlarged opening 50 of the water guide portion and the laying of the inclined side plate 51 are arbitrarily changed, and the water guide portion 27 of the casing that facilitates construction suitable for the river situation is constructed.

前記ケーシングの羽根車部19は、ケーシング61の中央狭窄部54に羽根車部19の流水入り口20を設け、ブースト内郭部25として、平板体を前記流水入り口20のケーシング底板37に立設した位置決め支柱55を始点として排気筒38間に、図3に示すように、時計回りに外側羽根車の外周縁16の回転軌跡に沿って円弧を描きながら前記ブースター内郭部25の内周壁30と外側羽根車の外周縁16が摺接しない間隔39をあけて羽根車部19の外周縁に周設し、前記羽根車部19に内設した羽根車群10が有する回転出力軸15を、羽根車部19の蓋板33に設けた主軸受け28で貫通軸支する。 The casing impeller portion 19 is provided with a flowing water inlet 20 of the impeller portion 19 in the central constricted portion 54 of the casing 61, and a flat plate body is erected on the casing bottom plate 37 of the flowing water inlet 20 as the boost inner portion 25. As shown in FIG. 3, between the exhaust cylinders 38 starting from the positioning column 55, the inner peripheral wall 30 of the booster inner section 25 is drawn in a clockwise direction along the rotation trajectory of the outer peripheral edge 16 of the outer impeller. The outer peripheral edge 16 of the outer impeller is provided around the outer peripheral edge of the impeller part 19 with an interval 39 at which the outer impeller 16 does not come into sliding contact. The through shaft is supported by the main bearing 28 provided on the lid plate 33 of the vehicle portion 19.

前記駆動伝動部59は、前記羽根車群10が有する回転出力軸15を、架構部63の中間梁64に設けた貫通軸受け65で貫通軸支し、更に前記貫通した出力軸を、クラッチ66を備えた回転伝動部材67に軸着し、前記回転伝動部材67の回転を、伝動部材68を介在して、前記架構部63が有する発電機取り付け台69に具設した発電機71の回転軸70に回転を伝動し、前記ケーシング部61と、前記駆動伝動部59と前記発電機71を一体的に架構部63に構設し、架構部63の懸架梁72を、前記側溝60の懸架台73に脱着自在に載設して水力発電装置74とする。 The drive transmission unit 59 supports the rotation output shaft 15 of the impeller group 10 through a through-bearing 65 provided on the intermediate beam 64 of the frame portion 63 and further passes the output shaft through the clutch 66. A rotating shaft 70 of a generator 71 provided on a generator mounting base 69 of the frame section 63 with a transmission member 68 interposed between the rotating transmission member 67 and a rotation shaft 70 attached to the rotation transmission member 67 provided. The casing portion 61, the drive transmission portion 59 and the generator 71 are integrally formed on the frame portion 63, and the suspension beam 72 of the frame portion 63 is connected to the suspension base 73 of the side groove 60. The hydroelectric power generation device 74 is detachably mounted.

実施例2を図5〜7を示して詳述する。前記側溝60を活用した開放型水路の冶水計画は、50年に一度又は、100年に一度等の計画水量に対応できる河道断面を考慮に側溝は敷設されている。通常は側溝内の70パーセント程度の空間は未使用で、側溝60の空間部を有効に活用して、前記水力発電装置74を側溝の懸架台73に脱着自在に載着し、且つ側溝に落とし蓋をして一般通路として利用を可能にし、降雨・雪解けなどによって河川の水量が平常よりも増加する時は、逃がし水48としてケ−シング蓋板33の上面を迂回水路とし排水し、羽根車群10には何等影響を与えず、雪塊等浮遊物の処理が可能にする。
また、前記導水部27の傾斜側板端末56と、羽根車部19の流水入口20の位置決め支柱55と、ブースター内郭部25の始点40が、前記位置決め支柱55に定着する条件を守れば、雪塊等浮遊物の処理機構を実情に沿った構成で、導水部の拡大開口部分50に付設する事が可能になる。
また、50年に一度、100年に一度等の一時的な洪水時には、簡単に側溝60から発電装置74を抜脱し、側溝60の機能を害すること無く維持管理が容易で汎用性に富んだ発電装置74を提供する。
Example 2 will be described in detail with reference to FIGS. In the open channel water channel plan utilizing the side ditch 60, the side ditch is laid in consideration of the river channel cross section that can accommodate the planned water volume once every 50 years or once every 100 years. Normally, about 70 percent of the space in the side groove is unused, and the space portion of the side groove 60 is effectively used to detachably mount the hydroelectric generator 74 on the side groove suspension 73 and drop it in the side groove. When it is covered and made available as a general passage, and when the amount of water in the river increases more than usual due to rain, thaw, etc., the upper surface of the casing lid plate 33 is drained as a bypass water channel as escape water 48, and the impeller The group 10 is not affected at all, and it is possible to process a suspended matter such as a snow mass.
Further, if the inclined side plate terminal 56 of the water guide section 27, the positioning column 55 of the running water inlet 20 of the impeller unit 19, and the starting point 40 of the booster inner section 25 are adhered to the positioning column 55, It becomes possible to attach to the enlarged opening part 50 of a water conveyance part by the structure according to the actual condition of the processing mechanism of floating bodies, such as a lump.
Also, in the event of a temporary flood such as once every 50 years or once every 100 years, the power generation device 74 can be easily removed from the side groove 60, and power generation that is easy to maintain and harms the function of the side groove 60 is highly versatile. A device 74 is provided.

実施例1〜2に記載した発明の主体は、羽根車の流体系の活用にあるので、電気関係の説明は省略する。 Since the subject of the invention described in the first and second embodiments is the utilization of the fluid system of the impeller, description of electrical relations is omitted.

1 円錐形状のボス
2 ブースト羽根
3 内側羽根車
4 湾曲型羽根
5 軸受け部
6 外側羽根車
7 変速動力伝動装置
8 ブースト羽根縁と内羽根車の外周縁
9 貫流路
10 羽根車群
11 貫流水
12 溢水分流
13 翼後渦
14 排出開口部
15 回転出力軸
16 外側羽根車の外周縁
17 貫流路画と湾曲型羽根縁の内周
18 湾曲型羽根の表面
19 羽根車部
20 羽根車部の流入口
21 順流水
22 順流領域の回転トルク抽出を表す
23 頂点方向に傾斜した面
24 湾曲型羽根の背面
25 ブースター内殻部
26 循環流
27 導水部
28 主軸受け部
29 羽根車のキャリア側
30 ブースター内殻内壁
31 逆流領域の回転トルク抽出を表す
32 噛合A
33 羽根車部の蓋板
34 噛合B
35 遊星歯車軸
36 ブースター流路
37 ケーシングの底板
38 排気筒
39 摺接しない間隔
40 ブースター内殻武始点
41 円筒形状のボス
42 台形類似区画断面
43 排水から漏洩した溢水分流水
44 回生流
45 ブースト流
46 風力羽根車群
47 ブースト羽根B
48 逃し水
49 排水
50 拡大開口部分
51 傾斜板
52 U字側溝の内壁面L
53 位置決め支柱L
54 中央狭窄部
55 位置決め支柱
56 傾斜側板端末
57 溜まり部分
58 回転方向
59 駆動伝動部
60 落とし蓋式U字側溝
61 ケーシング
62 導水路
63 架構部
64 中間梁
65 貫通軸受け
66 クラッチ
67 回転伝動部材
68 伝動部材
69 発電機取り付け台
70 発電機回転軸
71 電動発電機
72 懸架梁
73 懸架台
74 水力発電装置
75 ブースター流路の堰
76 風車の筺体
77 天盤
78 天盤の輻
79 回転盤
80 回転盤の輻
81 歯車A
82 歯車B
83 内歯車C
84 輻の軸受け
85 取り付けフランジ
86 一方向クラッチ
87 風杯羽根の輻
88 風杯羽根
89 アシスト羽根車
1 Conical boss 2 Boost blade
DESCRIPTION OF SYMBOLS 3 Inner impeller 4 Curved type blade 5 Bearing part 6 Outer impeller 7 Shift power transmission device 8 Boost blade edge and outer peripheral edge 9 of inner impeller Through-flow passage 10 Impeller group 11 Through-flow water 12 Overflow water flow 13 Back vortex 14 Discharge Opening 15 Rotation output shaft 16 Outer peripheral edge 17 of outer impeller Through-passage picture and inner periphery 18 of curved blade edge Curved blade surface
19 Impeller part 20 Impeller part inlet 21 Forward water 22 Represents rotational torque extraction in the forward flow area 23 Inclined surface 24 Curved blade rear face 25 Booster inner shell part 26 Circulating flow 27 Water guide part 28 Main bearing Part 29 Impeller carrier side 30 Booster inner shell inner wall 31 Represents rotational torque extraction in the backflow region
32 Meshing A
33 Impeller part cover plate 34 Engagement B
35 Planetary gear shaft 36 Booster flow path 37 Casing bottom plate 38 Exhaust tube 39 Non-sliding distance 40 Booster inner shell starting point 41 Cylindrical boss 42 Trapezoidal similar cross section 43 Excess water flow leaked from drainage 44 Regenerative flow 45 Boost flow 46 Wind Impellers
47 Boost Feather B
48 Escape water 49 Drainage 50 Enlarged opening 51 Inclined plate 52 Inner wall surface L of U-shaped side groove
53 Positioning support L
54 Central constriction 55 Positioning column 56 Inclined side plate terminal 57 Reserving part
58 Rotating direction 59 Drive transmission part 60 Drop lid type U-shaped side groove 61 Casing 62 Water conduit 63 Frame part
64 Intermediate beam 65 Through bearing 66 Clutch 67 Rotation transmission member
68 Transmission member 69 Generator mounting base 70 Generator rotating shaft 71 Motor generator 72 Suspension beam 73 Suspension base 74 Hydroelectric generator 75 Booster channel weir 76 Windmill housing 77 Top panel 78 Top panel radiation 79 Rotation panel 80 Rotation Panel Radiant 81 Gear A
82 Gear B
83 Internal gear C
84 Radiance bearing 85 Mounting flange 86 One-way clutch 87 Cup blade radius 88 Cup blade 89 Assist impeller

〈第4の実施形態〉
第4の実施形態の、請求項4記載のブースター機能つき羽根車について図8と9を示し詳述するが、主体は羽根車の流体系の活用にあるので、電気関係の図及び説明は省略する。
図8は、第4の実施形態に係る風力羽根車群46を主体にした断面図と、その断面図に対する平面図を、線で結んだ説明図である。
また、図8は、風力羽根車群46を主体にした図で、アシスト羽根車89について図9に記載する。
図9は、外側羽車6bをA面記載は上からの斜視図で、B面記載は下からの斜視図。また、図1〜図7に示したブースター機能つき羽根車に設けられていた構成要素と、第4の実施形態に係る構成要素が同じものについては、同一の符号を付与しその説明を省略する。
<Fourth Embodiment>
The impeller with a booster function according to claim 4 of the fourth embodiment will be described in detail with reference to FIGS. 8 and 9, but since the main body is in the utilization of the fluid system of the impeller, the electrical diagrams and explanation are omitted. To do.
FIG. 8 is an explanatory diagram in which a cross-sectional view mainly including the wind impeller group 46 according to the fourth embodiment and a plan view corresponding to the cross-sectional view are connected by lines.
FIG. 8 is a diagram mainly showing the wind impeller group 46, and the assist impeller 89 is described in FIG.
FIG. 9 is a perspective view of the outer impeller 6b from the top in the A side, and a perspective view from the bottom in the B side. Moreover, the same reference numerals are given to the components provided in the impeller with a booster function shown in FIGS. 1 to 7 and the components according to the fourth embodiment, and the description thereof is omitted. .

本願発明のブースター機能つき羽根車を大気中に備えた、前記ブースター機能つき羽根車を構成する風力羽根車群46の内側羽根車3bと、外側羽根車6bを、風力羽根車群46内を流通する風力で回転駆動し回転出力軸15から回転力を抽出する。
また、外側羽根車6bに設けた湾曲型羽根4は、逆流領域においても、ブースト羽根47の回転手段によって湾曲型羽根4の表面18よりも背面24の方が空気抵抗が大きいために、背面24が押される方向に回転力が回転出力軸15に生じ、順流領域22及び逆流領域31の何れの領域においても、風力羽根車群46が有する回転出力軸15で回転力を抽出することが可能になる。
The inner impeller 3b and the outer impeller 6b of the wind impeller group 46 constituting the impeller with the booster function provided in the atmosphere with the impeller with the booster function of the present invention are distributed in the wind impeller group 46. The rotational force is extracted from the rotational output shaft 15 by being driven to rotate by the wind power.
Further, the curved blade 4 provided on the outer impeller 6b has a larger air resistance than the surface 18 of the curved blade 4 due to the rotation of the boost blade 47 in the reverse flow region. Rotational force is generated in the rotational output shaft 15 in the direction in which the pressure is pushed, and the rotational force can be extracted by the rotational output shaft 15 of the wind impeller group 46 in any of the forward flow region 22 and the reverse flow region 31. Become.

Claims (4)

請求項1に記載の発明は、回転出力軸に固設した円錐状のボスに羽根を複数個周設し、前記円錐状のボスと一体的に固設した内側羽根車に、複数個の羽根と軸受部を一体的に固設した外側羽根車を、変速動力伝動装置を介在して構成し、前記内側羽根車の外周縁と外側羽根車に周設した羽根の内周縁を一定間隔をあけ、その区画を貫流路として画成し、前記内側羽根車と外側羽根車の羽根の延設面を対面して、前記外側羽根車に固設した軸受部を、内側羽根車に突設した回転出力軸に軸着して構設した羽根車群を具備するブースター機能つき羽根車。   According to the first aspect of the present invention, a plurality of blades are provided around a conical boss fixed to the rotary output shaft, and a plurality of blades are provided on the inner impeller fixed integrally with the conical boss. And an outer impeller in which the bearing portion is fixed integrally, with a transmission power transmission device interposed therebetween, and the outer peripheral edge of the inner impeller and the inner peripheral edge of the blade provided around the outer impeller are spaced apart from each other. Rotating the compartment defined as a through-flow passage, facing the extended surfaces of the inner impeller and the outer impeller, and a bearing portion fixed to the outer impeller protruding from the inner impeller An impeller with a booster function that includes a group of impellers attached to an output shaft. 請求項2記載の発明は、請求項1記載のブースター機能つき羽根車において、前記羽根車群をケーシングの羽根車部に内設し、前記羽根車部の流入口から流入する流体エネルギで、前記、内側羽根車と外側羽根車を回転駆動し、前記内側羽根車と外側羽根車は、前記変速動力伝動装置の手段によって相間関係で互に連係して作動し、内側羽根車は外側羽根車の回転速度より高速で同一方向に回転し、前記内側羽根車に突設した回転出力軸を、前記羽根車部の蓋板に設けた主軸受けで回転自在に貫通軸支し、前記回転出力軸と、ケーシングと前記ケーシングの羽根車部に内設した前記羽根車群と、それぞれ一体的に固設している機構を更に具備したブースター機能つき羽根車。   According to a second aspect of the present invention, in the impeller with a booster function according to the first aspect, the impeller group is installed in the impeller portion of the casing, and the fluid energy flows from the inlet of the impeller portion, The inner impeller and the outer impeller are driven to rotate, and the inner impeller and the outer impeller are operated in cooperation with each other by means of the transmission power transmission device. A rotation output shaft that rotates in the same direction at a higher speed than the rotation speed and protrudes from the inner impeller is rotatably supported by a main bearing provided on a cover plate of the impeller unit, and the rotation output shaft An impeller with a booster function further comprising a casing, the impeller group provided in the impeller portion of the casing, and a mechanism that is integrally fixed. 請求項3記載の発明は、請求項1から2のいずれかに記載のブースター機能つき羽車において、前記羽根車部の逆流領域側の外周縁に、流体入り口と排出開口部に設けた排気筒間に内郭を設け、前記内郭の内周壁面と、前記内側羽根車に固設したボスの頂点方向に傾斜した円錐面との区画を流路とし、前記区画した流路の排出開口部の排気筒に排水堰を設けた一切の機構を、更に具備したブースター機能つき羽根。   According to a third aspect of the present invention, in the impeller with a booster function according to any one of the first to second aspects, an exhaust pipe provided at a fluid inlet and a discharge opening at an outer peripheral edge of the impeller portion on the reverse flow region side. An inner wall is provided between the inner circumferential wall surface of the inner wall and a conical surface inclined in the apex direction of the boss fixed to the inner impeller, and a discharge opening of the partitioned flow path Vane with booster function, further equipped with a drainage weir in the exhaust pipe. 請求項4記載の発明は、請求項1から3のいずれかに記載のブースター機能つき羽根車において、風力エネルギの作用によって回転する羽根車の回転出力軸に、円筒状のボスを嵌着し前記ボスに内側羽根を複数個周設し、前記回転出力軸に、外側羽根を複数個周設した回転盤と一体化した輻を、変速動力伝動装置を介在して前記回転出力軸上に構設し、前記円筒状のボスに周設した内側羽根の回転速度が、回転盤に周設した外側羽根の回転速度より高速で同一方向に回転し、前記内側羽根を周設した円筒状のボスに突設した回転出力軸を、筺体に埋設した主軸受けで回転自在に貫通軸支して風力羽根車群を構設し、前記風力羽根車群と前記回転出力軸と筺体と取り付け部材と、それぞれ一体的に固設している機構を、更に具備したブースター機能つき風力羽根車。
According to a fourth aspect of the present invention, in the impeller with a booster function according to any one of the first to third aspects, a cylindrical boss is fitted on the rotation output shaft of the impeller rotated by the action of wind energy. A plurality of inner blades are provided around the boss, and a radiation integrated with a rotating disk having a plurality of outer blades provided around the rotation output shaft is installed on the rotation output shaft via a transmission power transmission. And the rotational speed of the inner blade provided around the cylindrical boss rotates in the same direction at a higher speed than the rotational speed of the outer blade provided around the rotating disk, and the cylindrical boss provided around the inner blade The projecting rotary output shaft is rotatably supported by a main bearing embedded in the housing to construct a wind impeller group, and the wind impeller group, the rotary output shaft, the housing, and an attachment member, Booster machine further equipped with an integrally fixed mechanism Noh wind turbine.
JP2013133612A 2013-06-26 2013-06-26 Impeller with booster function Expired - Fee Related JP5725575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133612A JP5725575B2 (en) 2013-06-26 2013-06-26 Impeller with booster function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133612A JP5725575B2 (en) 2013-06-26 2013-06-26 Impeller with booster function

Publications (2)

Publication Number Publication Date
JP2015007414A true JP2015007414A (en) 2015-01-15
JP5725575B2 JP5725575B2 (en) 2015-05-27

Family

ID=52337829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133612A Expired - Fee Related JP5725575B2 (en) 2013-06-26 2013-06-26 Impeller with booster function

Country Status (1)

Country Link
JP (1) JP5725575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852766A (en) * 2020-07-15 2020-10-30 广州国智机电设备有限公司 Variable pitch transmission equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110848072B (en) * 2019-11-20 2021-06-04 山东同其智能科技有限公司 Underwater power generation device based on worm transmission principle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236866A (en) * 1976-12-13 1980-12-02 Valentin Zapata Martinez System for the obtainment and the regulation of energy starting from air, sea and river currents
JPS5799279A (en) * 1980-12-11 1982-06-19 Yukichi Kimura Water turbine with guide vanes
JPS5977081A (en) * 1982-10-22 1984-05-02 Toshiba Eng Co Ltd Cross flow water-wheel
FR2811720A1 (en) * 2000-07-13 2002-01-18 Jacques Coste Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions
JP2011117314A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Plant Engineering Corp Fluid energy recovering apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236866A (en) * 1976-12-13 1980-12-02 Valentin Zapata Martinez System for the obtainment and the regulation of energy starting from air, sea and river currents
JPS5799279A (en) * 1980-12-11 1982-06-19 Yukichi Kimura Water turbine with guide vanes
JPS5977081A (en) * 1982-10-22 1984-05-02 Toshiba Eng Co Ltd Cross flow water-wheel
FR2811720A1 (en) * 2000-07-13 2002-01-18 Jacques Coste Air or water driven turbine having twin concentric counter rotating rotors for electricity generation or water pumping, counter rotation is achieved by use of conic pinions
JP2011117314A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Plant Engineering Corp Fluid energy recovering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852766A (en) * 2020-07-15 2020-10-30 广州国智机电设备有限公司 Variable pitch transmission equipment

Also Published As

Publication number Publication date
JP5725575B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
CN103397975B (en) Standard type floating pipe type hydraulic generator
KR100579036B1 (en) Generator for a hydro-electric station
JP2007177797A (en) Hydraulic power generating device
KR20100071977A (en) Flow energy installation
JP5865572B2 (en) Low flow hydropower system for rivers
JP5725575B2 (en) Impeller with booster function
US5905311A (en) Integrated hydroelectric unit
JP2013245618A (en) Mooring floating type hydraulic power generation system
CN203430690U (en) Standard-type floating-tube-type hydroelectric generator
KR20110006357A (en) Submerged hydraulic power turbine
RU2746822C2 (en) Turbogenerator device for electrical power generation, methods of its installation and operation
KR102220554B1 (en) Tubular type watertightness permanent magnet synchronous power generation system with vortex prevention guide vane
JP2015140802A (en) Hydraulic generating equipment
WO2019206103A1 (en) Water flow power generation apparatus
KR101611857B1 (en) Underwater installation type small hydroelectric power generator
CN209908657U (en) Tide hydroelectric generating set
JP2009019532A (en) Phase inversion cross-flow type super-small power generator
JP2001263217A (en) Float type waterwheel generator
KR20110006349A (en) Hydraulic turbine generator
KR102581083B1 (en) Submerged type small hydroelectric power generator
KR101293537B1 (en) Water power generator using AFPM generator
CN107681829B (en) A kind of direct-drive type wave generator structure
JP6078101B2 (en) Conical propeller water turbine device and hydroelectric power generator using the same
KR101264872B1 (en) Water power generator
KR101183172B1 (en) Horizontal Type Windmill And Marine Based Horizontal Type Power Generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150320

R150 Certificate of patent or registration of utility model

Ref document number: 5725575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees