FR2746168A1 - Procede d'equilibrage d'un reseau de distribution de fluide non compressible a deux tubes, a plusieurs branches ou colonnes derivees - Google Patents

Procede d'equilibrage d'un reseau de distribution de fluide non compressible a deux tubes, a plusieurs branches ou colonnes derivees Download PDF

Info

Publication number
FR2746168A1
FR2746168A1 FR9603416A FR9603416A FR2746168A1 FR 2746168 A1 FR2746168 A1 FR 2746168A1 FR 9603416 A FR9603416 A FR 9603416A FR 9603416 A FR9603416 A FR 9603416A FR 2746168 A1 FR2746168 A1 FR 2746168A1
Authority
FR
France
Prior art keywords
branch
balancing
coefficient
network
branches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9603416A
Other languages
English (en)
Other versions
FR2746168B1 (fr
Inventor
Pierre Fridmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comap SA
Original Assignee
Comap SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comap SA filed Critical Comap SA
Priority to FR9603416A priority Critical patent/FR2746168B1/fr
Priority to DE69706458T priority patent/DE69706458T2/de
Priority to EP97420041A priority patent/EP0795724B1/fr
Publication of FR2746168A1 publication Critical patent/FR2746168A1/fr
Application granted granted Critical
Publication of FR2746168B1 publication Critical patent/FR2746168B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/14Conveying liquids or viscous products by pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Ce procédé consiste à décomposer l'installation en réseaux élémentaires dont chacun comporte un organe d'équilibrage de tête (2) et un organe d'équilibrage (3) sur chaque branche dérivée, à mesurer dans chaque branche le débit de fluide et la différence de pression pour déterminer le coefficient de résistance hydraulique Z, à déterminer les coefficients Z des différents tronçons du circuit principal puis, connaissant le débit souhaité dans chaque branche et en appliquant les formules de couplage en série et en parallèle des coefficients Z successivement dans les différentes branches, à calculer la position de réglage de chaque organe d'équilibrage pour obtenir effectivement le débit souhaité.

Description

La présente invention a pour objet un procédé d'équilibrage d'un réseau de
distribution de fluide non compressible à deux tubes, à plusieurs branches ou colonnes dérivées, ainsi qu'un réseau pour la mise
en oeuvre de ce procédé.
Lors du calcul d'une installation de distribution de fluide, cette installation est calculée afin d'obtenir les débits souhaités dans les différentes branches de cette installation. L'obtention de ces débits peut être obtenue grâce au réglage de l'ouverture d'organes d'équilibrage qui équipent les différentes branches du réseau. L'équilibrage d'un réseau consiste donc à régler l'ouverture des organes d'équilibrage, en régime nominal de fonctionnement, afin d'obtenir précisément les débits souhaités, c'est-à-dire les débits déterminés lors des calculs de
dimensionnement de l'installation.
Cette opération d'équilibrage peut poser des difficultés lorsque le réglage de l'une des branches modifie le débit dans les branches voisines. Cette situation, due à l'importance des pertes de pression du circuit principal, est très fréquemment rencontrée en pratique, ce qui a conduit les professionnels à développer différents types de procédures pour tenter d'obtenir un réglage rapide et efficace de tous les organes
d'équilibrage du réseau.
Une première solution consiste à réaliser un réglage fondé sur le calcul préalable des pertes de pression dans toutes les branches du réseau. Lorsqu'un réseau de distribution de fluide est correctement dimensionné, il fait nécessairement l'objet d'un calcul détaillé des pertes de pression qui conduisent à déterminer, pour chaque organe d'équilibrage, le débit nécessaire et la perte de pression à créer. Ces deux paramètres permettent de déterminer facilement le degré d'ouverture correspondant de chacun des organes d'équilibrage, dès lors que l'on
dispose des diagrammes de réglage établis par le fabricant de robinetterie.
Dans ces conditions, il suffit de régler les organes d'équilibrage selon les valeurs calculées, pour obtenir les débits voulus avec une approximation suffisante dans la majorité des cas. On s'affranchit ainsi
complètement des interférences débimétriques.
Une seconde solution consiste en un réglage fondé sur la mesure du débit. Les calculs de dimensionnement ne sont pas toujours réalisés avec toute la rigueur souhaitée, de telle sorte que l'on ne dispose pas toujours des éléments nécessaires pour déterminer à priori les
positions de réglage des organes d'équilibrage.
Face à cette situation, certains fabricants de robinetterie ont conçu et commercialisé des organes d'équilibrage équipés d'un dispositif de mesure du débit. Dans ces conditions, il suffit de connaître le débit devant circuler dans chaque organe d'équilibrage pour pouvoir procéder au réglage adapté, puisque l'on mesure en permanence le débit réellement obtenu. Mais on se trouve confronté au problème d'interférences débimétriques, qui obligent à utiliser différentes procédures dont les
principes sont indiqués ci-après.
Une procédure consiste en un réglage direct lorsqu'il n'y a pratiquement pas d'interférence débimétrique, comme tel est le cas, par
exemple, d'un circuit principal à très faible perte de pression.
On règle successivement chaque organe d'équilibrage, dans n'importe quel ordre, pour obtenir soit le débit souhaité, soit le même rapport de débit (rapport du débit obtenu sur le débit souhaité) pour tous
les organes d'équilibrage.
Cette procédure de réglage est très simple, mais il est rare de
pouvoir la mettre en oeuvre sans altérer la qualité de l'équilibrage.
A l'issue des réglages, il est possible d'agir, si nécessaire, sur un organe d'équilibrage de tête, ou sur la pompe de circulation, pour
obtenir un rapport de débit égal à un pour tous les organes d'équilibrage.
Une autre procédure met en oeuvre le réglage référencé.
Cette procédure, indispensable lorsqu'existent des interférences débimétriques, comprend plusieurs variantes, qui ont toutes un point commun: celui de se référer en permanence au débit qui circule dans la branche défavorisée du réseau. Il convient donc au préalable de repérer
cette branche, qui est généralement la plus éloignée de la tête de réseau.
La branche défavorisée est celle dont le rapport de débit est le
plus faible.
Chacun des organes d'équilibrage est réglé de façon à obtenir le même rapport de débit que celui de la branche défavorisée, qui est mesuré soit en continu, ce qui implique l'intervention de deux opérateurs munis chacun d'un mesureur électronique et d'un moyen de communication radio, soit de façon discrète, le même opérateur muni d'un seul mesureur électronique mesurant le débit dans la branche défavorisée après chaque réglage de branche. Il s'agit donc d'un réglage en valeur relative. L'ordre dans lequel les organes sont réglés n'est pas indifférent. Il faut progresser d'aval en amont le long du circuit principal. A l'issue des réglages, on peut agir, si nécessaire, sur l'organe d'équilibrage de tête ou sur la pompe de circulation pour obtenir un rapport de débit égal à un pour la branche défavorisée et, par conséquent,
pour toutes les autres branches du réseau.
Quelle que soit la solution mise en oeuvre, celle-ci est très contraignante, et nécessite des manipulations nombreuses et un soin tout particulier apporté par le ou les opérateurs aux opérations de réglage des
organes d'équilibrage.
Le but de l'invention est de fournir un procédé d'équilibrage d'un réseau de distribution de fluide, dans lequel le nombre de mesures à réaliser sur chacune des branches soit le plus faible possible, de préférence limité à deux, en limitant le nombre de manipulations, et à en
déduire la position de réglage de chaque organe d'équilibrage.
A cet effet, le procédé qu'elle concerne, consiste à - décomposer l'installation en réseaux élémentaires, dont chacun comporte un organe d'équilibrage de tête et un organe d'équilibrage sur chaque branche dérivée, - à équiper chaque branche dérivée de deux prises de pression
disposées de part et d'autre de l'organe d'équilibrage, ou intégrées à celui-
ci, et d'une troisième prise de pression située à distance des deux premières, - à réaliser une mesure du débit de fluide dans une branche quelconque, par mesure de la différence de pression de part et d'autre de son organe d'équilibrage, - à mesurer, à l'aide de la troisième prise de pression et de l'une des deux autres prises situées de l'autre côté de l'organe, la différence de pression, sans modifier la position de l'organe d'équilibrage, - à partir de ces valeurs, à calculer le coefficient Z (coefficient de résistance hydraulique) de la branche considérée, - à effectuer successivement des mesures sur toutes les branches pour en calculer le coefficient Z, - à déterminer à partir des coefficients Z des différentes branches, les coefficients Z de chaque tronçon du circuit principal, puis - connaissant le débit souhaité dans chaque branche et en appliquant les formules de couplage en série et en parallèle des coefficients Z successivement dans les différentes branches, à calculer la position de réglage de chaque organe d'équilibrage pour obtenir
effectivement le débit souhaité.
Ce procédé limite à deux le nombre de mesures réalisées sur chaque branche, en procédant à des mesures cohérentes du débit et de la différence de pression disponible, c'est-à-dire à des mesures pour la situation de réglage constatée. L'approche du procédé selon l'invention consiste à identifier grâce à cette double mesure, non seulement les branches et les organes d'équilibrage correspondants, mais également les différents tronçons du circuit principal. Ce procédé consiste à déterminer précisément tous les coefficients Z de la distribution. Il n'est alors pas besoin de supposer une différence de pression disponible constante en tête de chaque branche, qui est une hypothèse qui se révèle souvent peu réaliste. Une fois tous les coefficients Z déterminés, pour une situation de déséquilibre constatée, et connaissant le débit souhaité dans chaque branche, il est possible, en appliquant les formules de couplage en série et en parallèle des coefficients Z, de calculer la position de réglage de chaque organe d'équilibrage pour obtenir effectivement le débit voulu dans
chacune des branches.
Avantageusement, ce procédé consiste à disposer chaque organe d'équilibrage d'une branche sur la tuyauterie "aller" ou sur la tuyauterie "retour", à proximité du circuit principal et la troisième prise de pression respectivement sur la tuyauterie "retour" ou sur la tuyauterie
"aller", à proximité du circuit principal.
Cet agencement permet de disposer de prises de pression qui sont proches les unes des autres et auxquelles il est possible d'accéder
simultanément à l'aide du même appareil.
Suivant une caractéristique, ce procédé consiste, pour déterminer la position de réglage définitif de chaque organe d'équilibrage, à ouvrir totalement l'organe d'équilibrage de la branche dérivée la plus en aval, ou à une valeur d'ouverture entraînant une perte de charge suffisante pour effectuer une mesure de différence de pressions avec une précision suffisante en tenant compte des caractéristiques de l'appareil de mesure, à prendre en considération les débits souhaités dans cette branche et dans la branche immédiatement en amont, à calculer la position de réglage de I'organe situé sur cette branche amont pour que le rapport des résistances hydrauliques respectivement de la branche amont et de la branche aval associée aux tronçons du circuit principal disposés entre la branche amont et la branche aval, permette la répartition des débits souhaités dans les deux branches considérées, la détermination de la position de réglage de lI'organe situé sur la branche amont étant réalisée par calcul de la valeur de la résistance hydraulique de cet organe, cette détermination étant effectuée en calculant par deux expressions distinctes, dont l'une contient la valeur de la résistance hydraulique de cet organe de réglage, la résistance hydraulique d'une maille fermée, constituée par les deux branches aval et amont et les deux tronçons de circuit principal disposés entre eux, puis pour les autres organes d'équilibrage, en procédant successivement branche par branche, en considérant globalement d'un point de vue de la résistance hydraulique et du débit toute la partie du réseau située en aval de la branche dont l'organe de réglage doit être
réglé.
En outre, dans le cas o le calcul de la position d'un organe d'équilibrage conduit à un degré d'ouverture supérieur à 100 %, il consiste, en imposant un degré d'ouverture maximale à cet organe, à recalculer le coefficient Z de la maille ouverte constituée par la partie du réseau située en aval de la branche comprenant cet organe d'équilibrage, pour obtenir la répartition souhaitée des débits entre cette branche et la partie du réseau située en aval, à recalculer les coefficients Z de toutes les branches aval et les positions de réglage des organes d'équilibrage correspondants pour retrouver les répartitions de débits souhaitées, puis à progresser de façon successive, branche par branche, vers l'amont du
réseau pour définir la position de chaque organe d'équilibrage.
Il est également avantageux de pouvoir réaliser le réglage de
l'organe d'équilibrage de tête.
A cet effet, le procédé selon l'invention consiste, après réglage définitif de tous les organes d'équilibrage, à calculer le coefficient Z global du réseau, à en déduire le coefficient Z de l'organe d'équilibrage de tête, égal à la différence entre le coefficient A de la pompe et le coefficient Z global du réseau, le coefficient A étant l'équivalent actif du coefficient Z pour la pompe de circulation avec
A = HM
Dnom2 o HM est la hauteur manométrique de la pompe pour le débit nominal du réseau,
et Dnom est le débit nominal de la pompe.
Suivant une autre caractéristique, il consiste à utiliser un dispositif de mesure comprenant deux prises de pression susceptibles d'être reliées aux prises de pression des branches de l'installation, un clavier de saisie d'informations telles que: adresse d'un organe d'équilibrage, modèle, diamètre, position de réglage relevée, débit souhaité, et un calculateur à microprocesseur réalisant le calcul du coefficient Z des différentes branches et du réseau, et de la position de
réglage définitive des différents organes de réglage.
Il suffit donc à l'opérateur d'effectuer les deux mesures de débit et de différence de pression sur chaque branche, et d'introduire dans le dispositif le débit souhaité pour chaque branche, pour que ce dispositif lui fournisse la position de réglage définitive de chacun des organes d'équilibrage. Pour permettre la mise en oeuvre de ce procédé, chaque branche est équipée d'un organe d'équilibrage disposé sur la tuyauterie "aller" ou sur la tuyauterie "retour", à proximité du circuit principal, avec des prises de pression de part et d'autre de l'organe d'équilibrage et à proximité de celui-ci, et d'une troisième prise de pression respectivement sur la tuyauterie "retour" ou sur la tuyauterie "aller", à proximité du circuit principal. De toute façon, I'invention sera bien comprise à l'aide de la
description qui suit en référence au dessin schématique annexé
représentant, à titre d'exemples non limitatifs, plusieurs exemples de mise en oeuvre de ce procédé: Figure 1 est une vue du couplage en série de deux branches d'un réseau; Figure 2 est une vue du couplage en parallèle de deux branches d'un réseau; Figure 3 représente cinq schémas référencés de 3a à 3e correspondant à cinq étapes successives du calcul du coefficient Z global d'un réseau à partir des coefficients Z des branches; Figures 4 à 6 sont trois vues de trois schémas de distribution de chauffage ou de climatisation; Figures 7 et 8 sont deux vues illustrant les mesures effectuées sur une branche d'un réseau; Figure 9 est une vue schématique de la structure d'un réseau de distribution; Figure 10 est une vue de l'identification d'une partie du réseau de distribution de figure 9; Figures 11 et 12 illustrent deux mailles du réseau de figure 9
respectivement une maille ouverte et la même maille fermée.
Tout réseau, branche ou circuit peut être défini par un coefficient Z dès lors que l'on connaît sa perte de pression Ap pour un débit donné D: àp _D2 L'hypothèse adoptée est la loi en carré du débit dont le degré
d'approximation est suffisant compte tenu des objectifs du procédé.
Dans certaines configurations de circuits, la loi en carré du débit pourrait être remplacée par une loi en puissance 1,9, par exemple,
sans modifier la structure générale des formules de calcul.
Ce coefficient Z peut être considéré comme invariant quelles que soient les variations ultérieures de débit et de pression qui affectent le réseau, la branche ou le circuit. Inversement, le coefficient Z d'un réseau peut être modifié, dans la mesure o l'on modifie la géométrie du réseau,
par exemple par fermeture d'une vanne ou modification de la tuyauterie.
Ainsi, si l'on connaît le débit et la perte de pression d'un réseau complet de distribution, il est facile de calculer directement son coefficient
Z global en utilisant la relation précédente.
Il est également possible de calculer le coefficient Z global d'un réseau à partir des coefficients Z des différentes branches du réseau en
appliquant des règles de couplage en série et en parallèle.
La figure 1 représente deux éléments E1 et E2 disposés en série, possédant des coefficients de résistance hydraulique Z1, Z2 et des pertes de pression AP1 et AP2, traversés par un débit D. Il est possible d'écrire
AP1 = Z1D2
àP2 = Z2D2
AP = AàP1 + àP2 = Z1D2 + Z2D2 = (Z1 + Z2) D2
Z = Z1 +Z2
La figure 2 représente le couplage en parallèle entre deux points A et B de deux branches B1 et B2 traversées respectivement par des débits D1 et D2 et dont les coefficients de résistance hydraulique sont Z1 et Z2. Il est possible d'écrire les relations suivantes
APAB = ZD2 = Z1D12 = Z2D22
1 I 1
D1 = D Z
Z2 Pour un réseau donné, on obtient le même coefficient Z global que l'on utilise les coefficients Z des différentes branches constitutives du réseau en leur appliquant les précédentes règles de couplage ou que l'on
procède à partir de la relation de base.
Mais lorsque, par exemple, on modifie la position de réglage d'un organe d'équilibrage sur l'une des branches de ce réseau, on modifie du même coup la répartition des débits et des pressions dans l'ensemble du réseau et, par conséquent, le coefficient Z global du réseau, ainsi que
le débit total et la perte de pression associés.
Pour déterminer le nouveau coefficient Z global, il faut nécessairement utiliser les règles de couplage des coefficients Z des
branches du réseau en procédant d'aval en amont et de maille en maille.
Ce mode de détermination est illustré à la figure 3, qui schématise cinq étapes successives du calcul de coefficients Z: - 3a: calcul du coefficient Z de la maille A ouverte; couplage
en série.
- 3b calcul du coefficient Z de la maille A fermée; couplage
en parallèle.
- 3c calcul du coefficient Z de la maille AB ouverte; couplage
en série.
- 3d calcul du coefficient Z de la maille AB fermée; couplage
en parallèle.
- 3e calcul du coefficient Z de la maille ABC ouverte;
couplage en série.
On continue ainsi de maille en maille pour aboutir au coefficient
Z global du réseau.
Une fois ce nouveau coefficient Z calculé, on peut déterminer le nouveau point de fonctionnement de la pompe de circulation (point de coupure des courbes caractéristiques du réseau et de la pompe), et par
conséquent le nouveau débit total.
Pour calculer la nouvelle répartition des débits, on procède d'amont en aval en déterminant, en chaque noeud du réseau, le débit dans chacune des branches issues de ce noeud selon les relations suivantes Zav D D av
D2= V Z2
Avec D: débit en amont du noeud.
D1 et D2: débit dans chacune des deux branches issues de ce noeud.
Z1 et Z2 sont les coefficients Z des branches 1 et 2.
Zav est le coefficient Z de la partie de réseau en aval du noeud,
c'est-à-dire des branches 1 et 2 couplées en parallèle.
Cette méthode dite des coefficients Z permet donc de déterminer précisément les conséquences hydrauliques d'une modification
quelconque de la géométrie du réseau.
Il est également possible de déterminer la valeur du coefficient Z d'une branche, et par conséquent la position de réglage de son organe
d'équilibrage, pour obtenir la répartition souhaitée des débits.
On utilise alors les relations suivantes Zav = [D-].Z1 Z2.Z1 Zav= 2- 1]
[-\Z2 ±Z1]'2
En égalant ces deux expressions de Zav, on peut expliciter Z2 et calculer sa valeur en connaissant celle de Z1. Cette procédure peut être mise en application pour obtenir les positions de réglage d'un réseau de distribution bitube dont on connaît la répartition souhaitée des débits et
que l'on a préalablement identifié.
Il existe différents types de réseau de distribution de fluide,
dont trois exemples sont donnés aux figures 4, 5 et 6.
La figure 4 représente un schéma d'une distribution de chauffage ou de climatisation bitube à deux niveaux d'équilibrage, un réglage du réseau principal à l'aide d'un organe d'équilibrage 2, et un réglage de chaque terminal T à l'aide d'un organe d'équilibrage 3. La
circulation du fluide est assurée dans ce réseau par une pompe 4.
Les figures 5 et 6 représentent respectivement un circuit à trois
niveaux et un circuit à quatre niveaux montrant des imbrications de sous-
ensembles. Suivant une caractéristique commune, le réseau principal est toujours équipé d'un organe d'équilibrage 2, chaque branche est équipée d'un organe d'équilibrage 3 du terminal considéré, et chaque circuit dérivé
alimentant des branches est équipé d'un organe d'équilibrage 5.
Les figures 7 et 8 représentent un circuit principal avec une branche dérivée dont une partie est représentée, les symboles A et R schématisant l'aller et le retour au circuit principal. Dans la forme d'exécution représentée sur la tuyauterie aller est disposé un organe d'équilibrage OE et sur la tuyauterie retour est disposée à proximité du circuit principal une prise de pression PP. L'organe d'équilibrage est équipé
de deux prises de pression permettant la mesure du débit.
Dans un premier temps, il est procédé à l'aide d'un dispositif de mesure M à la mesure du débit en utilisant les prises de pression associées à l'organe d'équilibrage, puis dans un second temps, comme montré à la figure 8, à la mesure de la perte de pression sur la branche considérée en mesurant la pression, d'une part, au niveau de la prise de pression PP et, d'autre part, au niveau de la prise de pression située à proximité de
l'organe d'équilibrage OE de l'autre côté de celui-ci.
l1 Il doit être noté qu'il pourrait être possible d'installer l'organe d'équilibrage OE sur la tuyauterie retour et d'installer la prise de pression
associée sur la tuyauterie aller.
Le procédé selon l'invention est explicité ci-après en référence aux figures 9 à 12, qui concernent un réseau de distribution comportant
un circuit principal et quatre branches dérivées.
Il est prévu une pompe de circulation p. un organe d'équilibrage OE0 du réseau, chaque branche dérivée comportant des organes d'équilibrage OE1, OE2, OE3, OE4. Les quatre branches définissent des mailles M1, M2, M3, M4. Les débits de fluide dans les différentes mailles
sont respectivement D1, D2, D3, D4.
Comme montré à la figure 10, il est procédé à l'identification du
réseau de distribution.
Pour la maille 1: - ZD1 = coefficient Z du tronçon 1 (aller et retour) du réseau horizontal, - ZC1 = coefficient Z de la branche 1, à l'exclusion de l'organe d'équilibrage, - ZV1 = coefficient Z de l'organe d'équilibrage grand ouvert de la branche 1, - Z1 = ZC1 + ZV1. L'expression du coefficient Z de la maille 1 ouverte est ZM10 = ZD1 + ZC1 + ZV1. Il est possible d'établir une première expression du coefficient Z de la maille 1 fermée, à partir des [Dl]2 débits: ZM1F = ZM10. [DAM-]2
DAM2 = D1 + D2
Il est possible d'établir une deuxième expression du coefficient Z de la maille 1 fermée à partir des coefficients Z
ZMF Z2.ZM1 O
ZM1F = [/- + ZM10]2
[ÀZ +NIM1]2
En égalant ces deux expressions, on peut expliciter Z2 ZM10
Z2 = ZM1
DAM2 2
[D1 i ZV2 comme Z2 = ZC2 + 2 Y22 O Y2 est le degré d'ouverture de l'organe d'équilibrage de la branche 2. On en déduit la valeur de Y2 V2ZV2 Y2 -- ZMi1
/\ IZ,( - ZC2
[D Ce raisonnement tient compte d'une courbe caractéristique linéaire. Dans la pratique, il faut se reporter aux courbes caractéristiques des organes d'équilibrage pour déterminer précisément le degré
d'ouverture y.
La même approche algorithmique est effectuée pour les mailles
suivantes en allant d'aval en amont.
On retrouve rigoureusement les positions de réglage nominal de tous les organes d'équilibrage quelle que soit la situation de départ et le
niveau de déséquilibre des branches.
Lorsque l'on considère un sous-ensemble tel que celui de la figure 9, on fait a priori l'hypothèse, généralement vérifiée, que la branche défavorisée est celle la plus éloignée de la tête de réseau. C'est pour cette raison que l'organe d'équilibrage de cette branche est ouvert. Si ce n'est pas cette branche qui est la branche la plus défavorisée, le calcul conduit forcément, pour l'une des branches située plus en amont, à un degré d'ouverture supérieur à 100 %. Si la branche considérée est la branche i, le coefficient Zi, imposé par le calcul selon la procédure mathématique
décrite précédemment, conduit à une valeur yi supérieure à 1.
Dans ces conditions, on impose yi = 1, sous réserve que cette valeur entraîne une perte de charge suffisante pour la mesure, ce qui correspond à l'ouverture maximale de l'organe d'équilibrage de la branche i, et l'on recalcule le coefficient Z de la maille ouverte de rang M (i - 1) O, pour obtenir la répartition des débits souhaités entre la branche i et la partie de réseau située en aval de la branche i, c'est-à-dire Di et
(D1 +... + D (i- 1)).
On recalcule ensuite les coefficients Z de toutes les branches aval et les positions de réglage des organes d'équilibrage correspondant pour retrouver les répartitions de débit souhaitées. Cela se traduit nécessairement par des positions de réglage plus faibles que celles
obtenues lors de la première phase de calcul.
On continue ensuite les calculs à partir de la branche i en progressant de nouveau vers l'amont du réseau toujours selon la procédure décrite précédemment. Il est enfin possible de régler l'organe
d'équilibrage de tête.
Pour régler convenablement cet organe, il convient de connaître: - le coefficient Z global du réseau ayant fait l'objet du réglage, et - le coefficient A de la pompe de circulation pour le débit nominal Dnom o A est l'équivalent actif du coefficient Z pour la pompe de circulation avec HM
A- H
A -Dnom2 o HM est la hauteur manométrique de la pompe pour le débit nominal du réseau, ce qui permet de calculer la position de l'organe d'équilibrage de tête: /Zoenom Yoe tête =' Zoe
Dans le cas d'une caractéristique théorique linéaire.
Dans le cas o le calcul aboutirait à un coefficient Z négatif pour l'organe de tête, cela signifierait que la résistance hydraulique du réseau est plus importante que prévu, ce qui entraînerait un débit de fonctionnement plus faible que le débit total souhaité. Dans le cas o celui-ci serait diminué de plus de 10 %, il faudrait envisager d'augmenter la hauteur manométrique de la pompe et par conséquent sa puissance électrique. Comme il ressort de ce qui précède, I'invention apporte une grande amélioration à la technique existante en fournissant un procédé de mise en oeuvre simple, rapide et très fiable. Ce procédé consiste de façon résumée à opérer de la façon suivante: - brancher le mesureur M sur l'organe d'équilibrage d'une branche, n'importe laquelle, sans que l'ordre dans lequel on procède
possède une importance.
- repérer - I'adresse de l'organe d'équilibrage, - le modèle, - le diamètre, - la position de réglage, - et introduire ces éléments dans le mesureur à l'aide du clavier, - mesurer le débit, - introduire dans le mesureur, par l'intermédiaire du clavier, le débit souhaité, - débrancher l'un des deux flexibles de raccordement à l'organe d'équilibrage et le connecter sur la prise de pression associée, - mesurer la pression différentielle, - débrancher le mesureur et recommencer ces mêmes opérations avec chacune des branches suivantes, - lorsque toutes les mesures ont été effectuées, le logiciel contenu dans le micro-ordinateur du mesureur ou dans un micro-ordinateur extérieur donne la position deréglage définitive de tous les organes d'équilibrage. Si le sous-ensemble à équiper dispose d'un organe d'équilibrage de tête, la différence de pression disponible à l'entrée du sous-ensemble est constante. On introduit cette valeur à la demande du logiciel puis les
caractéristiques de l'organe d'équilibrage.
Le logiciel donne la position de réglage de l'organe d'équilibrage
de tête.
Si le sous-ensemble à équilibrer est équipé d'une pompe de circulation et d'un organe d'équilibrage de tête, on introduit à la demande du logiciel les caractéristiques de cette pompe et celles de l'organe
d'équilibrage de tête.
Le logiciel donne la position de réglage de l'organe d'équilibrage
de tête.
Si le sous-ensemble à équilibrer est raccordé sur un réseau de distribution qui dessert d'autres sous-ensembles analogues, le réglage des organes d'équilibrage de tête des différents sous-ensembles est conduit sous la même procédure que celle mise en oeuvre pour régler les organes
d'équilibrage des branches de chacun des sous-ensembles.

Claims (7)

REVENDICATIONS
1. Procédé d'équilibrage d'un réseau de distribution de fluide non compressible à deux tubes, à plusieurs branches ou colonnes dérivées, caractérisé en ce qu'il consiste à: - décomposer l'installation en réseaux élémentaires, dont chacun comporte un organe d'équilibrage de tête (2) et un organe d'équilibrage (3) sur chaque branche dérivée, - à disposer pour chaque branche dérivée de deux prises de pression disposées de part et d'autre de l'organe d'équilibrage (3) ou intégrées à celui-ci, et d'une troisième prise de pression située à distance des deux premières, - à réaliser une mesure du débit de fluide dans une branche quelconque, par mesure de la différence de pression de part et d'autre de son organe d'équilibrage (3), - à mesurer, à l'aide de la troisième prise de pression et de l'une des deux autres prises situées de l'autre côté de l'organe, la différence de pression, sans modifier la position de l'organe d'équilibrage (3), - à partir de ces valeurs, à calculer le coefficient Z (coefficient de résistance hydraulique) de la branche considérée, - à effectuer successivement des mesures sur toutes les branches pour en calculer le coefficient Z, - à déterminer à partir des coefficients Z des différentes branches, les coefficients Z de chaque tronçon du circuit principal, puis - connaissant le débit souhaité dans chaque branche et en appliquant les formules de couplage en série et en parallèle des coefficients Z successivement dans les différentes branches, à calculer la position de réglage de chaque organe d'équilibrage pour obtenir
effectivement le débit souhaité.
2. Procédé selon la revendication 1, caractérisé en ce qu'il consiste à disposer chaque organe d'équilibrage (3) d'une branche sur la tuyauterie "aller" ou sur la tuyauterie "retour", à proximité du circuit principal et la troisième prise de pression respectivement sur la tuyauterie
"retour" ou sur la tuyauterie "aller", à proximité du circuit principal.
3. Procédé selon l'une quelconque des revendications 1 et 2,
caractérisé en ce qu'il consiste, pour déterminer la position de réglage définitif de chaque organe d'équilibrage (3), à ouvrir totalement l'organe d'équilibrage (3) de la branche dérivée la plus en aval ou à une valeur d'ouverture entraînant une perte de charge suffisante pour effectuer une mesure de différence de pressions avec une précision suffisante en tenant compte des caractéristiques de l'appareil de mesure, à prendre en considération les débits souhaités dans cette branche et dans la branche immédiatement en amont, à calculer la position de réglage de l'organe situé sur cette branche amont pour que le rapport des résistances hydrauliques respectivement de la branche amont et de la branche aval associée aux tronçons du circuit principal disposés entre la branche amont et la branche aval, permette la répartition des débits souhaités dans les deux branches considérées, la détermination de la position de réglage de l'organe situé sur la branche amont étant réalisée par calcul de la valeur de la résistance hydraulique de cet organe, cette détermination étant effectuée en calculant par deux expressions distinctes, dont l'une contient la valeur de la résistance hydraulique de cet organe de réglage, la résistance hydraulique d'une maille fermée, constituée par les deux branches aval et amont et les deux tronçons de circuit principal disposés entre eux, puis pour les autres organes d'équilibrage, en procédant successivement branche par branche, en considérant globalement d'un point de vue de la résistance hydraulique et du débit toute la partie du réseau située en aval de la branche dont l'organe de réglage doit être réglé.
4. Procédé selon la revendication 3, caractérisé en ce que, dans le cas o le calcul de la position d'un organe d'équilibrage (3) conduit à un degré d'ouverture supérieur à 100 %, il consiste, en imposant un degré d'ouverture maximale à cet organe, à recalculer le coefficient Z de la maille ouverte constituée par la partie du réseau située en aval de la branche comprenant cet organe d'équilibrage, pour obtenir la répartition souhaitée des débits entre cette branche et la partie du réseau située en aval, à recalculer les coefficients Z de toutes les branches aval et les positions de réglage des organes d'équilibrage correspondants pour retrouver les répartitions de débits souhaitées, puis à progresser de façon successive, branche par branche, vers l'amont du réseau pour définir la
position de chaque organe d'équilibrage.
5. Procédé selon l'une quelconque des revendications 1 à 4,
caractérisé en ce qu'il consiste, après réglage définitif de tous les organes d'équilibrage (3), à calculer le coefficient Z global du réseau, à en déduire le coefficient Z de l'organe d'équilibrage de tête (2), égal à la différence entre le coefficient A de la pompe et le coefficient Z global du réseau, le coefficient A étant l'équivalent actif du coefficient Z pour la pompe de circulation avec
A= HM
Dnom2 o HM est la hauteur manométrique de la pompe pour le débit nominal du réseau,
et Dnom est le débit nominal de la pompe.
6. Procédé selon l'une quelconque des revendications 1 à 5,
caractérisé en ce qu'il consiste à utiliser un dispositif de mesure (M) comprenant deux prises de pression susceptibles d'être reliées aux prises de pression des branches de l'installation, un clavier de saisie d'informations telles que: adresse d'un organe d'équilibrage, modèle, diamètre, position de réglage relevée, débit souhaité, et un calculateur à microprocesseur réalisant le calcul du coefficient Z des différentes branches et du réseau, et de la position de réglage définitive des différents
organes de réglage.
7. Réseau de distribution de fluide non compressible à deux tubes, à plusieurs branches, pour la mise en oeuvre du procédé selon l'une
quelconque des revendications 1 à 6, caractérisé en ce que chaque
branche est équipée d'un organe d'équilibrage (3) disposé sur la tuyauterie "aller" ou sur la tuyauterie "retour", à proximité du circuit principal, avec des prises de pression de part et d'autre de l'organe d'équilibrage et à proximité de celui-ci, et d'une troisième prise de pression respectivement sur la tuyauterie "retour" ou sur la tuyauterie "aller", à proximité du circuit
principal.
FR9603416A 1996-03-14 1996-03-14 Procede d'equilibrage d'un reseau de distribution de fluide non compressible a deux tubes, a plusieurs branches ou colonnes derivees Expired - Fee Related FR2746168B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR9603416A FR2746168B1 (fr) 1996-03-14 1996-03-14 Procede d'equilibrage d'un reseau de distribution de fluide non compressible a deux tubes, a plusieurs branches ou colonnes derivees
DE69706458T DE69706458T2 (de) 1996-03-14 1997-03-13 Ausgleichsverfahren eines Netzes für eine nicht-komprimierbare Flüssigkeit
EP97420041A EP0795724B1 (fr) 1996-03-14 1997-03-13 Procédé d'équilibrage d'un réseau de distribution de fluide non compressible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9603416A FR2746168B1 (fr) 1996-03-14 1996-03-14 Procede d'equilibrage d'un reseau de distribution de fluide non compressible a deux tubes, a plusieurs branches ou colonnes derivees

Publications (2)

Publication Number Publication Date
FR2746168A1 true FR2746168A1 (fr) 1997-09-19
FR2746168B1 FR2746168B1 (fr) 1998-04-30

Family

ID=9490321

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9603416A Expired - Fee Related FR2746168B1 (fr) 1996-03-14 1996-03-14 Procede d'equilibrage d'un reseau de distribution de fluide non compressible a deux tubes, a plusieurs branches ou colonnes derivees

Country Status (3)

Country Link
EP (1) EP0795724B1 (fr)
DE (1) DE69706458T2 (fr)
FR (1) FR2746168B1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805622B1 (fr) * 2000-02-29 2002-09-13 Didier Catherin Reglage des debits dans une installation constituee de canalisations reliees en parallele ou en serie dans lesquelles circule un fluide
FR2870927B1 (fr) * 2004-05-26 2007-10-05 Patrick Delpech Procede d'equilibrage des emetteurs d'une installation de chauffage
FR2903763B1 (fr) * 2006-07-11 2008-10-10 Tecofi Soc Par Actions Simplif Systeme de controle et d'equilibrage d'une installation a circulation de fluide, par exemple de chauffage ou de climatisation
US7857233B2 (en) * 2006-09-01 2010-12-28 Flow Design, Inc. Electronically based control valve with feedback to a building management system (BMS)
DE102008003315A1 (de) * 2008-01-07 2009-07-09 Viessmann Werke Gmbh & Co Kg Heizungsanlage und Verfahren zum Betrieb einer Heizungsanlage
FR2931226B1 (fr) * 2008-05-19 2013-08-16 Acome Soc Coop Production Procede et systeme de controle d'un circuit hydraulique a plusieurs boucles d'echange de chaleur
US8109289B2 (en) * 2008-12-16 2012-02-07 Honeywell International Inc. System and method for decentralized balancing of hydronic networks
DE102009011522B4 (de) * 2009-03-06 2018-03-08 Viessmann Werke Gmbh & Co Kg Verfahren zur Analyse eines Rohrnetzes einer Heizungsanlage
DE102010022763A1 (de) * 2010-06-05 2011-12-08 Oventrop Gmbh & Co. Kg Verfahren zum automatischen hydraulischen Abgleich in fluidführenden Anlagen
EP2395288B1 (fr) * 2010-06-08 2019-01-23 Comap Vanne d'équilibrage
CH705143A1 (de) 2011-06-30 2012-12-31 Belimo Holding Ag Verfahren und Vorrichtungen zum Abgleichen einer Gruppe von Verbrauchern in einem Fluidtransportsystem.
AT513042B1 (de) 2012-12-21 2014-01-15 Engel Austria Gmbh Vorrichtung zur Temperiermedienversorgung und Verfahren zur Überwachung derselben
DK2871539T3 (da) 2013-11-07 2019-07-22 Grundfos Holding As Diagnosemetode til diagnosticering af den korrekte funktion af et opvarmnings- og/eller køleanlæg
CN103556681A (zh) * 2013-11-15 2014-02-05 卢云飞 供水管网区间压力智能补偿系统
WO2016086986A1 (fr) * 2014-12-03 2016-06-09 Grundfos Holding A/S Ensemble convertisseur électronique à des fins de montage en rattrapage sur une partie externe d'un boîtier d'une unité de pompage
CN104613317A (zh) * 2015-01-16 2015-05-13 江苏华伦化工有限公司 一种防止管道内液体膨胀的系统
US9864383B2 (en) 2015-04-02 2018-01-09 Belimo Holding Ag Method and system for determining characteristic parameters of a hydraulic network
CN109477644B (zh) 2016-06-22 2021-12-21 贝利莫控股公司 用于控制流体输送网络的方法和装置
CN107326959B (zh) * 2017-06-15 2019-06-11 温州大学 一种并联供水系统输出流量均衡控制方法
EP3751205A1 (fr) * 2019-06-13 2020-12-16 E.ON Sverige AB Procédé et serveur de commande pour commander un système de distribution d'énergie thermique urbain
WO2021013406A1 (fr) 2019-07-22 2021-01-28 Belimo Holding Ag Procédé et système d'équilibrage d'un réseau hydronique
CN114637269B (zh) * 2022-04-15 2023-04-07 安徽中科大国祯信息科技有限责任公司 一种智慧园区水资源的在线管控调度系统及其方法
AT526512B1 (de) * 2023-02-10 2024-04-15 Engel Austria Gmbh Verfahren zur Überwachung einer Vorrichtung zur Temperiermedienversorgung eines Werkzeugs einer Formgebungsmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE19507E (en) * 1935-03-19 Heating system
US4279381A (en) * 1979-09-28 1981-07-21 Yang Yueh Method for uniformly heating a multi-level building
DE3202168A1 (de) * 1982-01-25 1983-08-04 Siemens AG, 1000 Berlin und 8000 München Regeleinrichtung fuer eine warmwasser-zentralheizung
EP0128808A1 (fr) * 1983-06-09 1984-12-19 SAUNIER DUVAL EAU CHAUDE CHAUFFAGE S.D.E.C.C. - Société anonyme Procédé d'équilibrage d'une installation de chauffage central de type bitube et installation pour la mise en oeuvre de ce procédé
FR2711775A1 (fr) * 1993-10-21 1995-05-05 Tour Andersson Sa Dispositif de contrôle et de mesure énergétique.
EP0677708A2 (fr) * 1994-04-12 1995-10-18 Landis & Gyr Technology Innovation AG Chauffage à eau chaude

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE19507E (en) * 1935-03-19 Heating system
US4279381A (en) * 1979-09-28 1981-07-21 Yang Yueh Method for uniformly heating a multi-level building
DE3202168A1 (de) * 1982-01-25 1983-08-04 Siemens AG, 1000 Berlin und 8000 München Regeleinrichtung fuer eine warmwasser-zentralheizung
EP0128808A1 (fr) * 1983-06-09 1984-12-19 SAUNIER DUVAL EAU CHAUDE CHAUFFAGE S.D.E.C.C. - Société anonyme Procédé d'équilibrage d'une installation de chauffage central de type bitube et installation pour la mise en oeuvre de ce procédé
FR2711775A1 (fr) * 1993-10-21 1995-05-05 Tour Andersson Sa Dispositif de contrôle et de mesure énergétique.
EP0677708A2 (fr) * 1994-04-12 1995-10-18 Landis & Gyr Technology Innovation AG Chauffage à eau chaude

Also Published As

Publication number Publication date
DE69706458D1 (de) 2001-10-11
DE69706458T2 (de) 2002-04-11
EP0795724B1 (fr) 2001-09-05
FR2746168B1 (fr) 1998-04-30
EP0795724A1 (fr) 1997-09-17

Similar Documents

Publication Publication Date Title
FR2746168A1 (fr) Procede d'equilibrage d'un reseau de distribution de fluide non compressible a deux tubes, a plusieurs branches ou colonnes derivees
EP2211300B1 (fr) Procédé de prévision de la production électrique d'un dispositif photovoltaïque
CA2927482A1 (fr) Etalonnnage en ligne de compteurs et detection de non-conformites electriques
EP2395288B1 (fr) Vanne d'équilibrage
WO2011117356A1 (fr) Dispositif pour l'analyse du comportement thermique en regime transitoire d'un local equipe d'une installation de chauffage ou de climatisation
CA2099056C (fr) Procede d'etalonnage d'un couple de capteurs places dans un circuit de dialyse
EP0019518A1 (fr) Dispositif de commande automatique de la fonction de transfert d'un système de transmission vidéofréquence en vue d'améliorer la perception des images
EP3772634B1 (fr) Procede de surveillance d'un ensemble de compteurs
EP1754005B1 (fr) Procede d'equilibrage des emetteurs d'une installation de chauffage
FR2949146A1 (fr) Procede et systeme de controle de l’equilibrage d’un reseau de chauffage
FR3131988A1 (fr) Prévision bayésienne de consommation individuelle et équilibrage d'un réseau électrique
FR3135798A1 (fr) Procédé de prévision d’une puissance produite par au moins un panneau photovoltaïque
WO2010067322A1 (fr) Dispositif et procédé de détection de fuite
EP3896419B1 (fr) Évaluation d'une quantité de fluide perdue dans un réseau de distribution
FR3044799A1 (fr) Procede de gestion d'un ensemble d'appareils consommateurs d'energie electrique, et module gestionnaire d'energie electrique
US9316715B2 (en) Process and system for calibrating a first loop feature value estimation method using a first locally measurable loop characteristic and a first set of parameters
FR3131995A1 (fr) Support de calculs sur nombres reels au niveau des commutateurs physiques
EP1843137A1 (fr) Dispositif de saisie et de traitement d'informations relevées sur des compteurs
FR3028602A1 (fr) Systeme de production d'eau chaude comprenant un champ photovoltaique alimentant de maniere optimisee la resistance d'une pluralite de ballons electriques de production d'eau chaude
FR3104294A1 (fr) Procédé de prévision d’une grandeur physique d’intérêt, procédé de gestion et dispositif associés
EP3572929A1 (fr) Procédé d`envoi de données, programme d`ordinateur et système associés
FR3105518A1 (fr) Procédé de mise à jour d'une base de données dans laquelle sont enregistrées des valeurs de caractéristiques techniques d'équipements électriques d'un réseau de distribution électrique
FR3097087A1 (fr) Procédé de gestion de consommation dans un réseau de distribution
FR2992129A1 (fr) Selection d'un chemin de routage en fonction de la consommation d'energie electrique des liens reseaux
FR3118182A1 (fr) Procédé de contrôle d’état de serrage d’une installation électrique dispositif et système associés

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20131129