FR2517138A2 - Magnetic motor using interaction of permanent magnets - facing each other with stator arranged in closed path over which second magnet moves - Google Patents

Magnetic motor using interaction of permanent magnets - facing each other with stator arranged in closed path over which second magnet moves Download PDF

Info

Publication number
FR2517138A2
FR2517138A2 FR8121853A FR8121853A FR2517138A2 FR 2517138 A2 FR2517138 A2 FR 2517138A2 FR 8121853 A FR8121853 A FR 8121853A FR 8121853 A FR8121853 A FR 8121853A FR 2517138 A2 FR2517138 A2 FR 2517138A2
Authority
FR
France
Prior art keywords
field
polarity
parallelepiped
magnetic
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR8121853A
Other languages
French (fr)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOUDET ROGER
Original Assignee
BOUDET ROGER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOUDET ROGER filed Critical BOUDET ROGER
Priority to FR8121853A priority Critical patent/FR2517138A2/en
Publication of FR2517138A2 publication Critical patent/FR2517138A2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

The magnetic motor uses a bipolar parallelepipedic magnet as the moving part. This magnet is magnetised in the sense of its width, and is displaced by the rack effect between magnetic planes of like polarity which face the moving magnet. The magnetic planes are terminated by a unipolar field having a polarity such that at start and finish of its travel the moving parallelepiped finds itself facing a field of like polarity. The magnetic planes may be arranged in a square format with triangular magnets of opposite polarity fitting the corners of the square. The moving parallelepiped then traverses the perimeter of the square under magnetic force, generating motive power.

Description

( Quatrième addition à la demande de brevet N 80 21799 du 13.10.1980)
Le moteur magnétique décrit dans la demande de brevet 80-21799. et la demande de certificat d'addition 80-22353 emploie comme force motrice une propriété dege,champs magnétiques appellée ici " effet de crémail lere ", qui est décrite dans la demande de certificat d'addition 81-09302. Mais cet effet de crémaillère ne se fait sentir que là où le parallèlipipède moteur est pros du champ unipolaire fixe. A partir d'une certaine distance, c'est l'effet de champ habituel qui se fait sentir ( figure 1 ).Par conséquents si l'on a un moteur composé de deux champs fixes unipolaires, côte-à-côte, l'un de polarité iS, l'autre de polarité 8, et d'un parallèlipipède moteur se déplaçant au-dessus ( figure 2 ), lorsque ce dernier arrivera à la fin d'un de ses deux parcours, il se trouvera à l'extrémité d'tin champ unipolaire. Aussi, pour se déplacer latéralement, et aller à l'extrémité de l'autre champ unipolaire afin d'effectuer un nouveau parcours en sens inverse, il devra vaincre un effet de champ ( figure 3 j. En effet, dans l'exemple présente sur la figure, le parallèlipipède/aura parcouru le champ N, pousse par l'effet de crémaillère. Il se trouvera alors à l'extrémité du champ N.Mais la partie N du parallèlipipède ne subira pratiquement pas l'effet de champ du champ N, puisqu'il sera à son extrémité. Par contre, sa partie g 1. subira pleinement. Cette partie sera donc retenue par le champ
N et repoussée par le champ S, alors qu'elle doit précisement quitter le champ N pour aller dans le champ 8. Four pallier cet inconvenient, il faut mettre au bord des deux champs unipolaires un champ destine à combattre cet effet de champ parasite. On placera donc un champ N d'un cSté et un champ 9 de l'autre ( figure 4 ).De cette façon, a chaque début de parcours le parallèlipède sera repoussé dans le sens de sa trajectoire par le champ supplementaire et, à chaque fin de parcours, il sera arrêté ayant la fin de sa trajectoire par l'autre champ supplémentaire.Dans les deux cas, il se trouvera en btat d'équilibre magnétique dans le sens latéral ( figure 5 ), chacune de ses faces subissant un effet de champ de même force, mais de sens inverse et, par conséquent, de résultante nulle. Dans un cycle complet, il y sura donc deux phases de déplacement proturices d'énergie ( < et 4 figure 6), et deux phases de déplacement ne consomant pas d'énergie (1 et 3, figure 6 ). ( L'effet de crémillière est représenté par des flèches faites de deux traits, l'effet de champ par des flèches faites d'un trait ).
(Fourth addition to the patent application N 80 21799 of 13.10.1980)
The magnetic motor described in patent application 80-21799. and Application for Certificate of Addition 80-22353 employs as its motive force a property of age, magnetic fields hereinafter referred to as the "liner gash effect", which is described in Application for Certificate of Addition 81-09302. But this rack effect is only felt where the parallel motor is close to the fixed unipolar field. From a certain distance, it is the usual field effect that is felt (Figure 1). Therefore, if we have a motor composed of two unipolar fixed fields, side by side, the one of polarity iS, the other polarity 8, and a parallélipipède engine moving above (Figure 2), when the latter will arrive at the end of one of its two courses, it will be at the end of a unipolar field. Also, to move laterally, and to go to the end of the other unipolar field to make a new course in the opposite direction, it will have to overcome a field effect (Figure 3 j., Indeed, in the present example in the figure, the parallelepiped / will have traversed the field N, pushed by the rack effect.It will then be at the end of the field N. But the part N of the parallelepiped will not undergo the field effect of the field N, since it will be at its end, but its part g 1. will be fully absorbed, this part will be retained by the field
N and repelled by the field S, while it must precisely leave the field N to go in the field 8. To overcome this disadvantage, it is necessary to put on the edge of the two unipolar fields a field intended to combat this parasitic field effect. We will therefore place a field N of one side and a field 9 of the other (FIG. 4). In this way, at each beginning of the course the parallelepiped will be pushed in the direction of its trajectory by the additional field and at each end of course, it will be stopped having the end of its trajectory by the other additional field. In both cases, it will be in state of magnetic equilibrium in the lateral direction (figure 5), each of its faces undergoing an effect of field of the same force, but of opposite direction and, consequently, of null resultant. In a complete cycle, therefore, there are two proturitic energy displacement phases (<and 4 in FIG. 6), and two displacement phases that consume no energy (1 and 3, FIG. 6). (The crémillière effect is represented by arrows made of two lines, the field effect by arrows made of a line).

L'effet de crémaillère appliqué d'un cEté seulement donnant un mouvement de torsion au parallèlipipède ( figure 7 ), on éliminera cet inconvénient en utilisant des champs unipolaires double-face ( figure 8 ), qui provoqueront un déplacement rectiligne.D'autre part, chacun des champs unipolaires sera constitue d'un ensemeble de petits éléments, afin d'éliminer une partie de l'effet de champ, plus developpé dans une pièce homogene. ( figure y )
La meilleure façon de réaliser le déplacement du parallèlipipède d'un champ unipolaire double-face à un autre est de coupler deux ensembles comme celui décrit ci-dessus, l'un au-dessus de l'autre, et décalés d'un quart de tour, le déplacement en longueur d'un parallèlipipède étant égal à son déplacement en largeur. Ainsi, dans le cas de deux moteurs couplés A et B, pour le moteur A le déplacement actif ( A ) du parallèlipipède sera dû à l'effet de crémaillère dans le moteur A, et le déplacement passif ( p ) à l'effet de crémaillère dans le moteur B ( figure 10 ).
The rack-and-pinion effect applied from one side only to give a torsion movement to the parallelepiped (FIG. 7), this disadvantage will be eliminated by using unipolar double-sided fields (FIG. 8), which will cause a rectilinear displacement. each of the unipolar fields will consist of a set of small elements, in order to eliminate a part of the field effect, more developed in a homogeneous piece. (figure y)
The best way to achieve the displacement of the parallelepiped from a double-sided unipolar field to another is to couple two sets like the one described above, one above the other, and offset by a quarter of turn, the displacement in length of a parallelepiped being equal to its displacement in width. Thus, in the case of two coupled motors A and B, for the motor A the active displacement (A) of the parallelepiped will be due to the rack effect in the motor A, and the passive displacement (p) to the effect of rack in motor B (Figure 10).

En utilisant les principes énoncés ci-dessus on peut concevoir un moteur complet n'utilisant qu'un seul ensemble de champs unipolaires double-face. Il est composé de quatre champs unipolaires double-face, disposes comme les quatre côtés d'un carré ( figure 11 ). L'élément moteur est constitué d'un ensemble de quatre parallèlipipèdes disposés à angle droit ( figure 12 ), et assujettis ensemble. Ce groupe est placé à l'interieur du carre constitué par les champs unipolaires double-face, de telle façon qu'il n'y ait qu'un seul parallèlipipède à la fois qui soit soumis à l'action d'un des champs #### unipolaires.Dans ces conditions, le déplacement de l'ensemble des parallèlipipèdes se fait en suivant successivement le bord intérieur de chacun des quatre champs unipolaires double-face ( figure 13 ). On voit sur cet exemple que, lorsque le parallèlipipède X arrive en bout de courses il introduit le parallèlipipède A dans le champ 1, puis est bloque par le champ triangulaire N. Ensuite le parallèlipipède @, d'abord pousse par le champ triangulbire S, parcourt le champ 1, fait sortir le parallèlipi- pède D du champ 4 et, en bout de course, fait entrer le parallèlipipède 3 dans le champ 2, suis est bloque par le champ triangulaire N, et ainsi de suite. Le bloc formé par les quatre parallèlipipèdes décrit donc un carré. sains un tel type de moteur présente l'inconvénient, d'une part, de demander un volume important dont une part seulement est occupée par des champs et, d'autre part, de demander quatre parallèlipipèdes dont un à la fois a une action motrice. Ce moteur, s'il est satisfaisant du point de vue théorique, ne l'est pas du point de vue pratique, même si l'on utilise simultanément quatre ensembles de quatres parallèlipipèdes chacun. Le modéle proposé en premier est d'un meilleur rendement par rapport à son poids et son volume.  Using the principles outlined above one can design a complete engine using only one set of unipolar double-sided fields. It is composed of four unipolar double-sided fields, arranged like the four sides of a square (Figure 11). The driving element consists of a set of four parallelipipeds arranged at right angles (Figure 12), and secured together. This group is placed inside the square formed by the double-sided unipolar fields, so that there is only one parallelipiped at a time that is subjected to the action of one of the fields # In these conditions, the displacement of the set of parallelipipeds is done successively following the inner edge of each of the four double-sided unipolar fields (FIG. 13). We see in this example that, when the parallelepiped X arrives at the end of the strokes, it introduces the parallelepiped A in the field 1, then is blocked by the triangular field N. Then the parallelipiped @, first pushes by the triangular field S, go through the field 1, move the parallelepiped D out of the field 4 and, at the end of the stroke, bring the parallelepiped 3 into the field 2, am is blocked by the triangular field N, and so on. The block formed by the four parallelipipeds thus describes a square. healthy such a type of engine has the disadvantage, on the one hand, to request a large volume of which only a part is occupied by fields and, on the other hand, to ask four parallelipipeds, one at a time has a driving action . This engine, if it is satisfactory from the theoretical point of view, is not so from a practical point of view, even if four sets of four parallelipipeds are used simultaneously. The model proposed first is of a better yield compared to its weight and its volume.

Claims (3)

REVENDICATIONS ( quatrième addition aux revendications de la demande de brevet n 80-21799 du 13 octobre 1980) ) oteur selon la revendication 1 du brevet principal, dont la pièce mobile est un parallèlipipède bipolaire, aimanté dans le sens de l'épaisseur, et caractérisé en ce que ce parallèlipipède se déplace par l'effet de crémaillère entre deux plans magnétiques de mEme polarité se faisant face.CLAIMS (fourth addition to the claims of the patent application No. 80-21799 of October 13, 1980)) oteur according to claim 1 of the main patent, wherein the moving part is a bipolar parallelepiped, magnetized in the direction of the thickness, and characterized in that this parallelepiped moves by the rack effect between two magnetic planes of the same polarity facing each other. 2) moteur selon la revendication 1, caractérisé en ce que l'ensemble des deux plans magnétiques de mime polarité est doublé d'un autre semblable, parallèle et de polarité inverse, le parallèlipipède se déplaçant alternativement dans le champ de l'un ou de l'autre. 2) motor according to claim 1, characterized in that the set of two magnetic planes of mime polarity is doubled by another similar, parallel and inverse polarity, the parallelipiped moving alternately in the field of one or the other. 3) moteur selon la revendication 1, caractérisé en ce que la paire de doubles plans magnétiques est bordée à chaque extrémité d'un champ unipolaire dont la polôrité est telle que, en début et en fin de course, la partie du parallèlipipède qui se trouve en face de lui soit de même polarité. 3) motor according to claim 1, characterized in that the pair of double magnetic planes is bordered at each end of a unipolar field whose polôrité is such that, at the beginning and end of the race, the part of the parallélipipède which is located in front of him be of the same polarity. () Moteur selon la revendication 1, caractérisé en ce que ses champs unipolaires sont constitués de petits éléments disposés les uns à cEté des autres. () Motor according to claim 1, characterized in that its unipolar fields consist of small elements arranged next to each other. 5) moteur selon la revendication 1, caractérisé en ce que il est couplé à un autre, placé en dessous et décalé d'un quart de tour, les deux parallèlipipèdes moteurs étant solidaires l'un de l'autre.  5) motor according to claim 1, characterized in that it is coupled to another, placed below and offset by a quarter turn, the two parallel motors being integral with each other.
FR8121853A 1981-11-23 1981-11-23 Magnetic motor using interaction of permanent magnets - facing each other with stator arranged in closed path over which second magnet moves Pending FR2517138A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8121853A FR2517138A2 (en) 1981-11-23 1981-11-23 Magnetic motor using interaction of permanent magnets - facing each other with stator arranged in closed path over which second magnet moves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8121853A FR2517138A2 (en) 1981-11-23 1981-11-23 Magnetic motor using interaction of permanent magnets - facing each other with stator arranged in closed path over which second magnet moves

Publications (1)

Publication Number Publication Date
FR2517138A2 true FR2517138A2 (en) 1983-05-27

Family

ID=9264245

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8121853A Pending FR2517138A2 (en) 1981-11-23 1981-11-23 Magnetic motor using interaction of permanent magnets - facing each other with stator arranged in closed path over which second magnet moves

Country Status (1)

Country Link
FR (1) FR2517138A2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074153A (en) * 1972-01-18 1978-02-14 Baker Daniel Magnetic propulsion device
JPS5556465A (en) * 1978-10-18 1980-04-25 Akira Noguchi Permanent engine
DE2846656A1 (en) * 1978-09-20 1980-05-08 Josef Heitz System which sets permanently magnetic dipoles in rotation - is applied to inhomogeneous magnetic field produced in specified manner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074153A (en) * 1972-01-18 1978-02-14 Baker Daniel Magnetic propulsion device
DE2846656A1 (en) * 1978-09-20 1980-05-08 Josef Heitz System which sets permanently magnetic dipoles in rotation - is applied to inhomogeneous magnetic field produced in specified manner
JPS5556465A (en) * 1978-10-18 1980-04-25 Akira Noguchi Permanent engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABJP/80 *

Similar Documents

Publication Publication Date Title
EP1169552B1 (en) Electromagnetic device for valve control
EP1132918A3 (en) Improved reference layer structure in a magnetic storage cell
CN102856032A (en) Installation method of Halbach structure permanent magnet
CA2295736A1 (en) Current pickup device for an electric vehicle powered by a self-insulated power line
FR2517138A2 (en) Magnetic motor using interaction of permanent magnets - facing each other with stator arranged in closed path over which second magnet moves
EP0525462B1 (en) Multi-phase electromagnetic transducer with permanent magnet, in particular driving motor
EP1102020A3 (en) Magnetic resonance imaging cryocooler positioning mechanism
EP1581991B1 (en) Hybrid single-phase bistable rotary actuator
JPS60181621U (en) electric scale
FR2968340A3 (en) UNLOCKING DEVICE
FR2925217B1 (en) HYPERFREQUENCY STRUCTURE FOR MICROWAVE TUBE WITH PERMANENT MAGNET BEAM CONFINEMENT DEVICE AND IMPROVED COOLING
CN201910307U (en) Magnet for absorbing iron-contained magnetic substance impurity in fluid
WO2005088811A1 (en) Device for converting the magnetic energy of permanent magnets into mechanical energy
Lechervy Bryan Ranftand et Geoffrey Till. The Sea in Soviet Strategy
CN219832035U (en) Magnetic attraction type teaching model
CN115030856B (en) Wave energy collecting device
FR2492186A1 (en) Permanent magnet motor running on stored energy - uses rack and rotation motions in four part cycle converted to continuous motion flywheel
JPS5851044A (en) Magnetic chuck
WO2003079450A3 (en) Quantum phase-charge coupled device
FR2865312A1 (en) Inlet and exhaust valves controlling device for internal combustion engine, has magnets occupying air-gaps defined by conductor simultaneously when movable part is in upper or lower position and excited so that magnetic fluxes are added
FR2519484A2 (en) Permanent magnet motor with linear relative motion - uses group of like polarity magnets terminated by opposite polarity magnets and pair of magnets displaced along fixed magnets
FR2510840A2 (en) Permanent magnet motor for production of kinetic energy - uses cylindrical tube with zig=zag magnetisation round its peripheral wall facing fixed magnets
FR2505576A2 (en) Permanent magnet driven motor - has ring stator with alternately magnetised portions around circumference
FR2848739A1 (en) Rotary driving device for assisting gas exhausting turbocharger, has stator with driving modules for creating magnetic field in variable intensity according to direction parallel to axis of rotation of rotor with passage zone
Mukhi et al. Stable non-BPS states and their holographic duals