FR2135570B1 - - Google Patents
Info
- Publication number
- FR2135570B1 FR2135570B1 FR727215486A FR7215486A FR2135570B1 FR 2135570 B1 FR2135570 B1 FR 2135570B1 FR 727215486 A FR727215486 A FR 727215486A FR 7215486 A FR7215486 A FR 7215486A FR 2135570 B1 FR2135570 B1 FR 2135570B1
- Authority
- FR
- France
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/533—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
- G06F7/5334—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
- G06F7/5336—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
- G06F7/5338—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm each bitgroup having two new bits, e.g. 2nd order MBA
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Complex Calculations (AREA)
- Executing Machine-Instructions (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13948771A | 1971-05-03 | 1971-05-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2135570A1 FR2135570A1 (fr) | 1972-12-22 |
FR2135570B1 true FR2135570B1 (fr) | 1973-07-13 |
Family
ID=22486899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR727215486A Expired FR2135570B1 (fr) | 1971-05-03 | 1972-05-02 |
Country Status (8)
Country | Link |
---|---|
US (1) | US3730425A (fr) |
JP (1) | JPS5615007B1 (fr) |
AU (1) | AU458593B2 (fr) |
CA (1) | CA1002662A (fr) |
DE (1) | DE2221693C3 (fr) |
FR (1) | FR2135570B1 (fr) |
GB (1) | GB1385215A (fr) |
IT (1) | IT950962B (fr) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3814924A (en) * | 1973-03-12 | 1974-06-04 | Control Data Corp | Pipeline binary multiplier |
US3949209A (en) * | 1975-04-04 | 1976-04-06 | Honeywell Information Systems, Inc. | Multiple-generating register |
JPS5378742A (en) * | 1976-12-23 | 1978-07-12 | Toshiba Corp | Multiplication control system |
GB1582958A (en) * | 1977-06-09 | 1981-01-21 | Inst Maszyn Matematycznych War | Digital system for binary multiplication of a number by a sum of two numbers |
US4130879A (en) * | 1977-07-15 | 1978-12-19 | Honeywell Information Systems Inc. | Apparatus for performing floating point arithmetic operations using submultiple storage |
US4153938A (en) * | 1977-08-18 | 1979-05-08 | Monolithic Memories Inc. | High speed combinatorial digital multiplier |
US4208722A (en) * | 1978-01-23 | 1980-06-17 | Data General Corporation | Floating point data processing system |
US4238833A (en) * | 1979-03-28 | 1980-12-09 | Monolithic Memories, Inc. | High-speed digital bus-organized multiplier/divider system |
US4334284A (en) * | 1979-12-31 | 1982-06-08 | Sperry Corporation | Multiplier decoding using parallel MQ register |
US4484301A (en) * | 1981-03-10 | 1984-11-20 | Sperry Corporation | Array multiplier operating in one's complement format |
US4523210A (en) * | 1982-06-11 | 1985-06-11 | Sperry Corporation | Fast error checked multibit multiplier |
FR2536879A1 (fr) * | 1982-11-26 | 1984-06-01 | Efcis | Multiplieur binaire rapide |
JPS6032221A (ja) * | 1983-07-30 | 1985-02-19 | 松下電工株式会社 | 交流駆動型電磁継電器 |
US4755962A (en) * | 1984-10-30 | 1988-07-05 | Fairchild Camera And Instrument | Microprocessor having multiplication circuitry implementing a modified Booth algorithm |
US4926371A (en) * | 1988-12-28 | 1990-05-15 | International Business Machines Corporation | Two's complement multiplication with a sign magnitude multiplier |
US6690315B1 (en) | 2003-01-31 | 2004-02-10 | United States Of America As Represented By The Secretary Of The Air Force | Quadbit kernel function algorithm and receiver |
US7440989B1 (en) | 2004-04-02 | 2008-10-21 | The United States Of America As Represented By The Secretary Of The Air Force | Kernel function approximation and receiver |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3372269A (en) * | 1961-06-30 | 1968-03-05 | Ibm | Multiplier for simultaneously generating partial products of various bits of the multiplier |
US3192367A (en) * | 1962-05-09 | 1965-06-29 | Sperry Rand Corp | Fast multiply system |
US3489888A (en) * | 1966-06-29 | 1970-01-13 | Electronic Associates | Floating point look-ahead binary multiplication system utilizing two's complement notation for representing negative numbers |
-
1971
- 1971-05-03 US US00139487A patent/US3730425A/en not_active Expired - Lifetime
-
1972
- 1972-03-31 IT IT22676/72A patent/IT950962B/it active
- 1972-04-04 GB GB1551372A patent/GB1385215A/en not_active Expired
- 1972-04-26 CA CA140,666A patent/CA1002662A/en not_active Expired
- 1972-04-27 AU AU41598/72A patent/AU458593B2/en not_active Expired
- 1972-05-01 JP JP4267672A patent/JPS5615007B1/ja active Pending
- 1972-05-02 FR FR727215486A patent/FR2135570B1/fr not_active Expired
- 1972-05-03 DE DE2221693A patent/DE2221693C3/de not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB1385215A (en) | 1975-02-26 |
DE2221693A1 (de) | 1972-11-09 |
US3730425A (en) | 1973-05-01 |
AU4159872A (en) | 1973-12-20 |
DE2221693B2 (de) | 1979-01-18 |
JPS5615007B1 (fr) | 1981-04-08 |
FR2135570A1 (fr) | 1972-12-22 |
DE2221693C3 (de) | 1979-09-20 |
AU458593B2 (en) | 1975-02-06 |
IT950962B (it) | 1973-06-20 |
CA1002662A (en) | 1976-12-28 |
Similar Documents
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |