FI128814B - Menetelmä nikkeliä sisältävien kovetettujen kromiittipellettien tuottamiseksi, menetelmä ferrokrominikkeliseoksen tuottamiseksi ja kovetettu kromiittipelletti - Google Patents

Menetelmä nikkeliä sisältävien kovetettujen kromiittipellettien tuottamiseksi, menetelmä ferrokrominikkeliseoksen tuottamiseksi ja kovetettu kromiittipelletti Download PDF

Info

Publication number
FI128814B
FI128814B FI20166046A FI20166046A FI128814B FI 128814 B FI128814 B FI 128814B FI 20166046 A FI20166046 A FI 20166046A FI 20166046 A FI20166046 A FI 20166046A FI 128814 B FI128814 B FI 128814B
Authority
FI
Finland
Prior art keywords
nickel
indurated
chromite
bearing material
pellets
Prior art date
Application number
FI20166046A
Other languages
English (en)
Swedish (sv)
Other versions
FI20166046L (fi
Inventor
Pasi Mäkelä
Lauri Närhi
Petri Palovaara
Olli Pekkala
Jarmo Saarenmaa
Original Assignee
Outotec Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outotec Finland Oy filed Critical Outotec Finland Oy
Priority to FI20166046A priority Critical patent/FI128814B/fi
Priority to CN201780080776.0A priority patent/CN110114481B/zh
Priority to BR112019012882-4A priority patent/BR112019012882B1/pt
Priority to CA3048120A priority patent/CA3048120A1/en
Priority to PCT/FI2017/050956 priority patent/WO2018122465A1/en
Priority to EA201991274A priority patent/EA201991274A1/ru
Priority to EP17825892.7A priority patent/EP3562965B1/en
Publication of FI20166046L publication Critical patent/FI20166046L/fi
Priority to ZA2019/04237A priority patent/ZA201904237B/en
Application granted granted Critical
Publication of FI128814B publication Critical patent/FI128814B/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/11Removing sulfur, phosphorus or arsenic other than by roasting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/04Blast roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/214Sintering; Agglomerating in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/216Sintering; Agglomerating in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Described is a method for producing nickel containing indurated chromite pellets. The method comprises providing a ground mixture containing iron and chromium containing material and optionally carbon and optionally additives, providing nickel bearing material, binding agent, and optionally fluxing agent, mixing nickel bearing material, binding agent and optionally fluxing agent into the ground mixture to produce an agglomerating mixture, agglomerating the agglomerating mixture to produce green pellets, and indurating the green pellets to produce indurated chromite pellets. The nickel bearing material that is provided comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing raw material. The method comprises heat-treating the nickel bearing material prior mixing the nickel bearing material into the ground mixture to remove sulfur, water, possible carbonates and volatiles from the nickel bearing material and to produce nickel oxides in the nickel bearing material.

Description

METHOD FOR PRODUCING NICKEL CONTAINING INDURATED CHROMITE PELLETS, METHOD FOR PRODUCING FERROCHROME
NICKEL ALLOY AND INDURATED CHROMITE PELLET Field of the invention The invention relates to a method for producing nickel containing indurated chromite pellets as defined in the preamble of independent claim 1. The invention also relates to a method for producing ferrochrome nickel alloy as defined in claim
24. The invention relates also to an indurated chromite pellet as defined in claim 31. Nickel containing indurated chromite pellets can be used in processes for producing ferrochrome nickel alloy that can be used as an essential alloy in the production of metal such as stainless steel. Publication WO 2010/092234 relates to a method for producing a ferroalloy containing nickel. From a fine- grained chromite concentrate containing iron and chromium and a fine-grained raw material containing nickel, a mixture is formed with binding agent, and the mixture is agglomerated so that objects of desired size are obtained. The obtained objects are heat treated at a temperature sufficient for removal of water of crystallization bound in the raw material. In the heat- treatment step of the objects, which is also called = induration, the objects are sintered so that the N objects withstand conveyance and loading into a smelter = 30 furnace. The objects formed of nickel containing N material and iron containing chromite concentrate can = be simultaneously calcined and desulphurized in c connection and within the heat treating process also S known as the sintering process. Further, the objects O 35 are smelted under reducing circumstances in order to N achieve ferrochromenickel, a ferroalloy of a desired composition containing at least iron, chromium and nickel.
Objective The object is to provide a method for producing nickel containing indurated chromite pellets and a method for producing ferrochrome nickel alloy from low- cost material.
Short description of the invention The method for producing nickel containing indurated chromite pellets is characterized by the definitions of claim 1. Preferred embodiments of the method for producing nickel containing indurated chromite pellets are defined in the dependent claims 2 to 23. The method for producing ferrochrome nickel alloy is correspondingly characterized by the definitions of claim 24. Preferred embodiments of the method for producing ferrochrome nickel alloy are defined in the claims 25 to 30. The indurated chromite pellet is characterized by the definitions of claim 31. Preferred embodiments of the indurated chromite pellet are defined in claims 32 to 37. The invention is based on providing nickel bearing material comprising precipitated nickel compounds from a hydrometallurgical refining process of nickel bearing raw material and heat-treating the nickel bearing = precipitated material prior mixing the nickel bearing N material into the ground mixture containing iron and = 30 chromium containing material, such as chromite, and N optionally carbon and optionally additives.
In the = heat-treatment of the nickel bearing comprising c precipitated nickel compounds from a hydrometallurgical 3 refining process of nickel bearing raw material, part O 35 of the sulfur, water such as chemically bound water and & free water, possible carbonates and volatiles from the nickel bearing material are removed of decomposed.
In other words and according to the invention, the nickel bearing material is heat-treated before mixing it in the form of heat treated nickel bearing material with the ground mixture to produce an agglomerating mixture from which green pellets are formed by agglomeration. Resulting from the heat-treatment of the nickel bearing material, nickel is at least partly present in form of nickel oxide in the heat treated nickel bearing material. The nickel bearing material that is mixed into the ground mixture to produce the agglomerating mixture comprises stoichiometric or non-stoichiometric compounds of oxygen and nickel. It is also possible to heat-treat other green pellet additives together with nickel bearing material if desired.
An advantage of the present invention is that volatiles of the nickel bearing material, especially volatile components discharging as result of thermally induced chemical reactions of nickel hydroxide or of nickel sulphide, are not released in the subseguent indurating step of the green pellets. Because the physical characteristics of the nickel bearing material changes in the heat-treatment for example when nickel oxide is formed of nickel hydroxide, the mechanical properties of indurated chromite pellets are advantageous. Because the amount volatile components in the agglomerating mixture of the green pellets is decreased in the heat-treatment of the nickel raw material prior = to mixing it into the ground mixture to produce the N agglomerating mixture, the density the green pellets = 30 remain on an advantageous level. The advantageous N density of the green pellets has a positive effect on = the capacity of the induration apparatus such as a c steel belt sintering machine or travelling grate, where S the green pellets are indurated to produce indurated O 35 and sintered nickel bearing chromite pellets. The N capacity of the induration apparatus is a key factor when assessing the economic and technical efficiency of the induration process. The benefit of using heat-
treated nickel bearing material instead nickel bearing material containing for example nickel in the form of nickel hydroxide is that the capacity of a steel belt sintering machine increases roughly by 10 % for each 10 % of added nickel bearing material into the ground mixture (the pellet feed) as is illustrated in examples 2 and 3 in this document.
Because the nickel bearing material that is mixed into the ground mixture (the pellet feed) is heat- treated before the mixing, the compressive strength of the pellets is high, which reduces the need of adding fluxing agent into the ground mixture. If the nickel bearing material was added to the ground mixture, for example, in the form of nickel bearing material containing nickel in the form of nickel hydroxide, the need of fluxing agent would be higher so as to achieve a sufficient compressive strength. Higher amount of flux (es) (fluxing agent) in the indurated chromite pellets increases the amount of slag formed in the smelting stage, which fact again causes higher energy consumption in the smelting stage.
One more benefit of the heat-treatment of the nickel bearing material prior mixing it to the ground mixture is that the hot loading temperature will not remarkably drop. The hot loading temperature values give information about the refractoriness under load and the behavior of the indurated chromite pellets in = the upper layer of the bed in the smelting furnace.
N If the nickel bearing material was in the form of = 30 nickel bearing material containing nickel in the form S of nickel hydroxide, the hot loading temperature would = greatly drop when more than 10 % nickel bearing c material would is added.
S When using heat-treated nickel bearing material in O 35 the conventional chromite pellet process that is based & on steel belt sintering, energy is saved in the drying- stage of the chromite pellet sintering (also may called as induration) process. When nickel bearing material is for example added to the ground mixture in the form of material containing nickel hydroxide, the delay time in the drying-stage of the green pellets in the steel belt sintering machine nearly doubles, because the 5 evaporating water from the green pellets is increased up to 50 %.
The heat-treatment of the nickel bearing material comprising precipitated nickel compounds from a process for Thydrometallurgical refining of nickel bearing material, such as lateritic or sulfidic based materials, prior mixing it into the agglomeration mixture, also prevents corrosion of the apparatus, such as a steel belt sintering machine or travelling grate, where the pellets are processed. The nickel bearing material from a hydrometallurgical treatment, when used as such without heat-treatment, releases corrosive gases such as sulfur oxides resulting in the induration process of the green pellets.
Surprisingly it was noticed that the indurated nickel bearing chromite pellets produced in accordance with the process of the present invention also have good reducing characteristics in the subsequent smelting process. Further, the high-temperature strength of the indurate pellets of this invention is on a good level.
Increasing of the temperature in the heat- treatment of the nickel bearing raw material used in = this invention decreases the moisture content of the N green pellets in the following agglomeration step and = 30 makes it possible to achieve other good quality N characteristics of the indurated chromite pellets such = as heat strength and compressive strength.
c Consequently, the residence time of the pellets in a 3 possible drying stage of the induration machine is O 35 shorter.
& Heat-treating of the nickel bearing material comprising precipitated nickel compounds from a process for Thydrometallurgical refining of nickel bearing material such as lateritic or sulfidic based materials prior mixing into the ground mixture allows adjusting of the physical properties of the nickel bearing material, whereby the moisture content of the green pellets and the porosity of the indurated chromite pellets is low concluding higher capacity of the indurating vessel for green pellets.
Detailed description of the invention Next, the method for producing nickel containing indurated chromite pellets and some preferred embodiments and variants of the method for producing nickel containing indurated chromite pellets will be described in greater detail.
The method comprises providing a ground mixture that can also be called "pellet feed”, containing iron and chromium containing material and optionally carbon and optionally additives.
The method optionally comprises a step of filtrating the ground mixture so that the ground mixture has a specific particle size distribution.
The method comprises providing nickel bearing material, binding agent, and optionally fluxing agent. The method comprises mixing nickel bearing material, binding agent, liquid such as water, and optionally fluxing agent into the ground mixture (the pellet feed) to produce an agglomerating mixture.
= The method comprises agglomerating the N agglomerating mixture to produce green pellets.
= 30 The method comprises indurating the green pellets N to produce indurated chromite pellets.
= The nickel bearing material that is provided in c the method comprising precipitated nickel compounds 3 from a process for hydrometallurgical refining of O 35 nickel bearing material.
& The method comprises heat-treating the nickel bearing material prior mixing the nickel bearing material into the ground mixture for removing sulfur,
water such as chemically bound water or free water, possible carbonates and other volatiles from the nickel bearing material, and to produce nickel oxide in the nickel bearing material, wherein the nickel bearing material that is mixed into the ground mixture to form the agglomerating mixture is in the form of nickel bearing material containing nickel in the form of nickel oxide.
The heat-treating of the nickel bearing material can be performed in the presence of oxygen containing gas. The oxygen containing gas originates preferably, but not necessarily, from a smelting stage where gas is collected and can be used as burning energy in the heat-treating of the nickel bearing material. The heat- treating of the nickel bearing material can be performed as direct or indirect heating.
The agglomerating mixture contains following components preferably, but not necessarily, in percentages of weight and mostly as an oxide form (on dry basis): Ni: 1 to 25 wt-%, C: 0 to 5 wt-%, optional additives: 0 to 50 wt-%, binding agent: 0.05 to 2 wt-%, and fluxing agent: 0 to 10 wt-%, the balance being iron and chromium containing material and unavoidable impurities.
= The agglomerating mixture contains following N components preferably, but not necessarily, in = 30 percentages of weight and mostly as an oxide form (on N dry basis): = Ni: 1 to 25 wt-%, e C: 0 to 5 wt-%, 3 Fe: 10 to 50 wt-%, © 35 Cr: 10 to 50 wt-%, & optional additives: 0 to 50 wt-%, binding agent: 0.05 to 2 wt-%, fluxing agent: 0 to 10 wt-%, and unavoidable impurities. the balance being unavoidable impurities such as Na, K, Ti, V, Cl, Zn, Cu and main slag forming components in smelting stage such as Mg, Si, Ca and Al similar to these and mostly in oxide form. These components can be 25 to 70 wt-%. Indurating of the green pellets is preferably, but not necessarily, done in an induration furnace that is in the form of a steel belt sintering machine, or in a shaft kiln or in a rotary kiln or in a furnace comprising a traveling grate or similar convenient way. The indurating is preferably done, but not necessarily, under oxidizing atmosphere or conditions.
The binding agent contains preferably, but not necessarily, bentonite or similarly behaving material such as organic binders.
The Nisgv of the agglomerating mixture (on dry basis) in preferably, but not necessarily, between 1 and 25 %, such as between 5 and 25 %.
The unavoidable impurities can for example be at least one of S, Na, Cl, V, Ti, K, Zn, Co, Cu, Mo and Mn and others as trace elements.
The optional additives can be iron bearing material, chromium bearing material, recyclable material such as dust from smelter(s) or steel mills, dust from heat-treatment or the like.
The fluxing agent can contain Ca, Si, Mg and/or Al = bearing materials. N The nickel bearing material comprising = 30 precipitated nickel compounds from a process for S hydrometallurgical refining of nickel bearing material = can be heat-treated by heating the nickel bearing c material to a temperature between 200 and 1400 °C, 3 preferably to a temperature between 400 and 1200 °C, O 35 more preferably to a temperature between 600 and 1200 & °C, and most preferably to a temperature between 800 and 1200 °c. Heating of the nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material to a temperature between 200 and 400°C can result in that 1 to 30 % of the total weight of the nickel bearing material is evaporated and lost.
Heating of the nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material to a temperature between 400 and 800°C can result in that 3 to 40 % of the total weight of the nickel bearing material is evaporated and lost.
Heating of the nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material to a temperature between 800 and 1200°C can result in that 5 to 50 % of the total weight of the nickel bearing material is evaporated and lost.
The nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material can contain in percentages of weight (in dry basis): Ni: 25 to 80 wt-% Chemically bound water: 0.001 to 40 wt-%, and S: 0.001 to 50 wt-%.
The nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material = can contain in percentages of weight (as dry basis): N Ni: 25 to 80 wt-%, = 30 Chemically bound water: 5 to 40 wt-%, = S: 0.001 to 10 wt-%, and = inevitable impurities such as Co, Mn, Cu and the c like.
3 The nickel bearing material comprising O 35 precipitated nickel compounds from a process for & hydrometallurgical refining of nickel bearing material can contain in percentages of weight (as dry basis): Ni: 25 to 80 wt-%,
Chemically bound water: 5 to 40 wt-%, and S: 0.001 to 10 wt-%, the balance being inevitable impurities such as Co, Mn, Cu and the like.
The nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material can contain in percentages of weight (as dry basis): Ni: 25 to 80 wt-%, Chemically bound water: 0.001 to 10 wt-%, S: 5 to 50 wt-%, and inevitable impurities such as Co, Mn, Cu and the like.
The nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material can contain in percentages of weight (as dry basis): Ni: 25 to 80 wt-%, Chemically bound water: 0.001 to 10 wt-%, and S: 5 to 50 wt-%, the balance being inevitable impurities such as Co, Mn, Cu and the like. The nickel to iron ratio in the nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material can be over 1.
In the method, roasting of the nickel bearing = material comprising precipitated nickel compounds from N a process for hydrometallurgical refining of nickel = 30 bearing material can be carried out during the heat- S treating of the nickel bearing material. = In the method, calcination of the nickel bearing c material comprising precipitated nickel compounds from 3 a process for hydrometallurgical refining of nickel O 35 bearing material can be carried out during the heat- & treating of the nickel bearing material.
The nickel bearing material that is provided and that comprises precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material can additionally contain at least one of sulfur, such as sulphides, sulphates, or similar to these, carbon such as carbonate and carbides, and oxides such as nickel oxides.
The nickel bearing material comprising precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material can comprise at least one of nickel hydroxide, nickel oxide, nickel sulphide, nickel sulphate, and nickel carbonate or the like or combination of these.
The method can comprise agglomerating the green pellets from the agglomerating mixture in a pelletizing drum or disc.
In the method, indurated chromite pellets having a diameter between 5 and 30 mm, more preferably between 6 and 20 mm, most preferably between 8 and 16 mm, is preferably, but not necessarily, produced.
In the method, indurated chromite pellets having compressive a strength (calculated as Fiomm) in average over 100 kg/pellet, more preferably over 150 kg/pellet, and most preferably over 200 kg/pellet, is preferably, but not necessarily, produced.
The invention relates also to a method for producing ferrochrome nickel alloy.
The method for producing ferrochrome nickel alloy comprises producing nickel containing indurated = chromite pellets with a method according to any N embodiment as described herein, forming a smelting feed = 30 containing the nickel containing indurated chromite S pellets, and additionally smelting the smelting feed = under reducing conditions and preferably by carbon c bearing material to produce slag and ferrochrome nickel S alloy. The smelting and reduction of the smelting feed O 35 is preferably done in a closed furnace so that the & formed gases can be collected. The collected gases can be utilized, but not necessary, in heat treatment of nickel bearing material and in other convenient ways.
The smelting feed can be formed so that the smelting feed in addition to the nickel containing indurated chromite pellets comprises reducing agent such as carbon bearing material or similarly behaving substances, fluxing agent such Si, Al, Ca, Mg, bearing materials, possible lumpy materials such lumpy ore, possible other iron and chromium bearing materials.
The method for producing ferrochrome nickel alloy can comprise collecting gases released during the smelting of the smelting feed, and using said gases as oxygen containing gas in the indurating of the green pellets to produce indurated chromite pellets.
The method for producing ferrochrome nickel alloy can comprise collecting gases released during the smelting of the smelting feed, and using said gases as oxygen containing gas in the heat-treating of the nickel bearing material.
The method for producing ferrochrome nickel alloy can comprise smelting the smelting feed in a submerged arc furnace.
The method for producing ferrochrome nickel alloy can additionally comprise prereduction of nickel containing indurated chromite pellets or of the smelting feed to produce partly metallizated nickel containing indurated chromite pellets. The prereduction can be done in reducing atmosphere with or without the presence of carbon. The prereduction vessel is = preferably rotary kiln or similar convenient equipment. N The prereduction temperature is preferably between 800 = 30 and 1600 °C, more preferably between 1000 and 1250 °C. S The retention time is to several minutes to several = hours. c The method for producing ferrochrome nickel alloy S can additionally comprises the preheating of nickel © 35 containing indurated chromite pellets or of the N smelting feed prior the smelting stage, advantageously by using the energy containing gas collected in the smelting or residual heat from the prereduction stage.
The smelting feed comprises normally chromium, iron and nickel bearing indurated chromite pellets, flux (es), reducing agent (s), possible other agglomerates or possible lumpy materials or possible fine materials.
The fluxing materials can be for example Si, Ca, Al, Mg, bearing oxides or similar to these. Fluxing materials are typically 10 to 50 wt-% of the total smelting feed. The fluxing amount out of this range is also possible if smelting feed contains already some of the smelting fluxing materials. Otherwise, fluxing amount out of preferable range may cause practical problems such as too viscous slag or higher energy consumption.
The reducing agent can be carbon containing material such coke, anthracite, coal, char coal or similar to these or combination of these. The reducing carbon content is preferably over 60 wt-%, more preferably over 80 wt-% (as dry basis). The amount of reductant is adjusted so that the desired element yields are achieved The smelting can be conducted preferably at 1500 to 1900 °C and more preferably at 1550 to 1750 °C. The produced ferrochrome alloy can contain in percentages of weight: Ni: 1 to 30 wt-%, Si: 0.1 to 5 wt-%, and = C1 to 8 wt-%, N the balance being iron and chromium and inevitable = 30 impurities such as 5, V, Ti, Mn, Cu, Co, Mo or the like N The chromium to nickel ratio in the produced = ferrochrome alloy can be between 0.9 and 8.0. c The invention relates also to an indurated S chromite pellet for a smelting feed for production of O 35 ferrochromenickel alloy. & The indurated chromite pellet containing in percentages of weight between 1 to 25 wt-% nickel as oxides.
The nickel oxide in the indurated chromite pellet is preferably, but not necessarily, heat-treated precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material such as heat-treated nickel hydroxide.
The heat-treated precipitated nickel compounds from a process for hydrometallurgical refining of nickel bearing material such as has preferably, but not necessarily, been added to an agglomeration feed prior indurating of a green pellet formed from the agglomeration feed to produce the indurated chromite pellet.
The indurated chromite pellet has preferably, but not necessarily, a diameter between 5 and 30 mm, more preferably between 6 and 20 mm, most preferably between 8 and 16 mm.
The indurated chromite pellet can have a porosity in average between 15 and 40 %, more preferably between and 35 %, and most preferably between 20 and 32 %. 20 The indurated chromite pellet has preferably, but not necessarily, a compressive strength in average over 100 kg/pellet, more preferably over 150 kg/pellet, and most preferably over 200 kg/pellet (calculated as F12mm) « The nickel as oxide is preferably, but not necessarily, present both within the chromite grains and on the outside of the chromite grains in the = microstructure of the indurated chromite pellet.
This N promotes reduction of the pellet, because the nickel to = 30 be reduced is close to the chromite-iron-oxide N (promotes kinetics, because the liguid-solid-reactions = are faster than the gas-solid-reactions and by nickel c addition the formation of liquids starts earlier than 3 in conventional iron and chromium reduction). O 35 Additionally, in an electric furnace, which function is N based on resistive heating, it is of advantage that the metallized part is within the indurated chromite pellet in the reducing conditions.
Here the indurated chromite pellet will function as an isolator. In such case, the electrical characteristics (resistance and power factor) of the smelting feed that comprises the indurated chromite pellets are better compared to a situation where chromite and nickel bearing material are fed separately.
The indurated chromite pellet can be free of additional fluxing agent such Ca, Si, Mg and/or Al bearing materials or the like, with the exception for possible trace and/or impurity levels, required in a smelting stage for smelting a smelting feed containing a plurality of such indurate pellets to produce ferrochrome nickel alloy.
Alternatively, the indurated chromite pellet can comprise at least a part of the fluxing agenti(s) such Ca, Si, Mg and/or Al bearing materials or the like required in a smelting stage for smelting a smelting feed containing a plurality of such indurate pellets to produce ferrochrome nickel alloy.
Examples In the following the method will be described thorough examples.
In each example the same amount and bentonite was used in the agglomeration mixture.
In each example the agglomerating to produce green pellets of the agglomerating mixture and the indurating = of the green pellets was performed in the same way. N In each example the indurating temperature of the = 30 green pellets was 1450 °C. N Examples 1 to 3 are examples of the prior art and E example 4 is performed as in the invention. o 3 Example 1 © 35 - Content of the agglomeration feed (in N percentages of weight) o 10 % nickel hydroxide (containing sulfur and chemically bound water (~35%)),
. with nickel content of 36 weight % and sulphur content below 5 weight %. o 90 % Iron and chromium bearing material (chromite) o 3% of calcite
- Moisture of the green pellets was 8.0%
- Compressive strength of the indurated chromite pellets was 194 kg/pellet (calculated as F:2mm)
- Relative density of the individual indurated chromite pellets was 90 %. This has direct impact on the capacity of the machine, where the induration of the green pellets is performed
- Total porosity of the indurated chromite pellets was 32.4 %
- Hot loading temperature of the indurated chromite pellets where 5% compression occurs was 1334 °C
The composition of indurated chromite pellets was as components (in percentages of weight)
- Fe oxides calculated as Fe03 26.8 wt-3
- Cro03 36.8 wt-%
- NiO 4.8 wt-%
Chromium (Cr) to Nickel (Ni) ratio was 6.7 and
Chromium (Cr) to Iron (Fe) ratio was 1.3
Example 2
- Content of the agglomeration feed (in = percentages of weight) N o 20 % nickel hydroxide (containing sulfur = 30 and chemically bound water (~35 wt-%)), N . with nickel content of 36 weight % = and sulphur content below 5 weight %. c o 80 w-t% Iron and chromium bearing material S (chromite) O 35 o 3 wt-% of wollastonite + 2 wt-% of calcite N - Moisture of the green pellets was 10.0 %
- Compressive strength of the indurated chromite pellets was 200 kg/pellet (calculated as F:2mm)
- Relative density of individual indurated chromite pellets was 84 %. This has direct impact on the capacity of the machine, where the induration of the green pellets is performed - Total porosity of the indurated chromite pellets was 38.2 % - Hot loading temperature of the indurated chromite pellets where 5% compression occurs was 1259 °C The composition of indurated chromite pellets as components (in percentages of weight): - Fe oxides calculated as Fe03: 24.1 wt-3 - Cro03:! 33.0 wt-% - NiO 9.4 wt-% Chromium (Cr) to Nickel (Ni) ratio was 3.1 and Chromium (Cr) to Iron (Fe) ratio was 1.3 Example 3 - Content of the agglomeration feed (in percentages of weight) o 20 % nickel hydroxide (containing sulfur and chemically bound water (~35%)), = with nickel content of 36 wt-% and sulphur content below 5 wt-%. o 80 wt-% Iron and chromium bearing material (chromite) = o No fluxing were used N - Moisture of the green pellets was 14.8 wt-% = 30 - Compressive strength of indurated chromite N pellets 142 kg/pellet (calculated as Fiom) = - Relative density of the individual indurated c chromite pellets 86 % (direct impact on the 3 capacity of induration machine) O 35 - Total porosity of the indurated chromite & pellets 37.4 3 .This has direct impact on the capacity of the machine, where the induration of the green pellets is performed
- Hot loading temperature of the indurated chromite pellets where 5% compression occurs was 1233 °C The composition of indurated chromite pellets as components - Fe oxides calculated as Feo03 : 25.5 wt-% - Cro03 : 35.2 wt-% - NiO: 9.9 wt-% Chromium (Cr) to Nickel (Ni) ratio was 3.1 and Chromium (Cr) to Iron (Fe) ratio was 1.4. Example 4 - Content of the agglomeration feed (in percentages of weight): o 9.3 wt-% Heat-treated nickel hydroxide (major amount of sulfur and volatiles has been removed) o 90.7 wt-% Chromite concentrate o No fluxes and no other additives - Moisture of the Green pellets was 6.8 % - Compressive strength of indurated chromite pellets was 293 kg/pellet (calculated as Fiom) - Relative density of individual indurated chromite pellets was 106 % - Total porosity of the indurated chromite pellets was 22.4 3 - Hot loading temperature of the indurated = chromite pellets where 5% compression occurs N was 1387 °C = 30 The composition of indurated chromite pellets as N components = - Fe oxides calculated as Feo0O3 : 25.8 wt-% e - Cr20s : 38.3 wt-% 3 - NiO : 5.4 wt-% © 35 Chromium (Cr) to Nickel (Ni) ratio was 6.2 and & Chromium (Cr) to Iron (Fe) ratio was 1.4. It is apparent to a person skilled in the art that as technology advanced, the basic idea of the invention can be implemented in various ways. The invention and its embodiments are therefore not restricted to the above examples, but they may vary within the scope of the claims.
Nn
O N N N
I jami a
O <
O O
O o
N

Claims (37)

Patenttivaatimukset
1. Menetelmä nikkeliä sisältävien kovetettujen kro- miittipellettien tuottamiseksi, jossa menetelmä käsit- tää järjestetään jauhettu seos, joka sisältää rautaa ja kromia sisältävää materiaalia ja valinnaisesti hiil- tä ja valinnaisesti lisäaineita, järjestetään nikkelipitoista materiaalia joka kä- sittää saostettuja nikkeliyhdisteitä prosessista nikke- lipitoisen raaka-aineen rikastamiseksi hydrometallurgi- sesti, sideainetta ja valinnaisesti fluksia, sekoitetaan nikkelipitoinen materiaali, sideaine ja valinnaisesti fluksi jauhettuun seokseen agglome- rointiseoksen tuottamiseksi, aggromeloidaan agglomerointiseos raakapellettien tuottamiseksi, ja kovetetaan raakapelletit kovetettujen kromiitti- pellettien tuottamiseksi, tunnettu siitä, että nikkelipitoinen materiaali lämpökäsi- tellään ennen nikkelipitoisen materiaalin sekoittamista jauhettuun seokseen rikin, veden, mahdollisten karbo- naattien ja haihtuvien aineiden poistamiseksi nikkeli- pitoisesta materiaalista ja nikkelioksidien tuotta- miseksi nikkelipitoiseen materiaaliin.
NM S 2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu N siitä, että nikkelipitoinen materiaali lämpökäsi- W 30 tellään happea sisältävän kaasun läsnä ollessa. E 3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, © tunnettu 3 siitä, että agglomerointiseos sisältää painopro- = 35 senttiosuuksina (kuivapaino): N Ni: 1 — 25 p-%, C: 0 — 5 p-%, valinnaisia lisäaineita: 0 - 50 p-%,
sideainetta: 0,05 - 2 p-%, ja fluksia: 0 - 10 p-%, jossa loppuosa on rautaa ja kromia sisältävää ma- teriaalia ja väistämättömiä epäpuhtauksia.
4. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, tunnettu siitä, että agglomerointiseos sisältää painoprosenttiosuuksina (kuivapaino): Ni: 1 — 25 p-$, C: 0 — 5 p-%, Fe: 10 — 50 p-%, Cr: 10 — 50 p-%, valinnaisia lisäaineita: 0 - 50 p-%, sideainetta: 0,05 - 2 p-%, fluksia: 0 — 10 p-%, ja jossa loppuosa on väistämättömiä epäpuhtauksia tai hivenalkuaineita kuten Na, K, Ti, V, Cl, Zn, Cu ja su- latusvaiheessa pääasiallisia kuonan muodostavia kom- ponentteja kuten Mg, Si, Ca ja Al, näitä vastaavia ja pääasiassa oksidimuodossa.
5. Jonkin patenttivaatimuksista 1 - 4 mukainen mene- telmä, tunnettu siitä, että agglomerointiseoksen Niegv (kuivapaino) on 1 - 25 3, kuten 5 - 25 %.
MN S 6. Jonkin patenttivaatimuksista 1 - 5 mukainen mene- N telmä, tunnettu N 30 siitä, että raakapelletit kovetetaan kovetusuunis- = sa, joka on teräsnauhasintrauskoneen muodossa, tai kui- E lu-uunissa tai kiertouunissa uunissa, joka käsittää © liikkuvan arinan. o = 35 7. Jonkin patenttivaatimuksista 1 - 6 mukainen mene- N telmä, tunnettu sideaineesta kuten bentoniitista tai vastaavasti vaikuttavista sideaineista kuten orgaanisia sideaineis-
ta.
8. Jonkin patenttivaatimuksista 1 - 7 mukainen mene- telmä, tunnettu siitä, että väistämättömät epäpuhtaudet agglome- rointisyötteessä ovat ainakin yksi joukosta S, Na, Cl, Co, Cu, Mo, Mn, V ja Ti.
9. Jonkin patenttivaatimuksista 1 - 8 mukainen mene- telmä, tunnettu siitä, että valinnaiset lisäaineet ovat rautapi- toista materiaalia, kromipitoista materiaalia, kierrä- tettävää materiaalia kuten pölyä sulato(i)sta tai te- rästehtaista, pölyä lämpökäsittelyistä tai vastaavista.
10. Jonkin patenttivaatimuksista 1 - 9 mukainen mene- telmä, tunnettu siitä, että fluksi sisältää Ca-, Si-, Mg- ja/tai Al-pitoisia materiaaleja.
11. Jonkin patenttivaatimuksista 1 - 10 mukainen mene- telmä, tunnettu siitä, että nikkelipitoinen materiaali lämpökäsi- tellään kuumentamalla nikkelipitoinen materiaali lämpö- tilaan joka on 200 - 1400 °C, edullisesti lämpötilaan joka on 400 - 1200 °C, edullisemmin lämpötilaan joka on 600 - 1200 °C, ja edullisimmin lämpötilaan joka on 800 3 - 1200 °C.
N Tt 30 12. Jonkin patenttivaatimuksista 1 - 11 mukainen mene- = telmä, tunnettu E siitä, että nikkelipitoinen materiaali sisältää O painoprosenttiosuuksina (kuivapaino): S Ni: 25 — 80 p-%, = 35 kemiallisesti sitoutunutta vettä: 0,001 - 40 p-%, N S: 0,001 - 50 p-%, ja väistämättömiä epäpuhtauksia kuten Co, Mn, Cu ja vastaavat.
13. Jonkin patenttivaatimuksista 1 - 11 mukainen mene- telmä, tunnettu siitä, että nikkelipitoinen materiaali sisältää painoprosenttiosuuksina (kuivapaino): Ni: 25 — 80 p-%, kemiallisesti sitoutunutta vettä: 5 -— 40 p-%, S: 0,001 - 10 p-%, ja väistämättömiä epäpuhtauksia kuten Co, Mn, Cu ja vastaavat.
14. Jonkin patenttivaatimuksista 1 - 11 mukainen mene- telmä, tunnettu siitä, että nikkelipitoinen materiaali sisältää painoprosenttiosuuksina (kuivapaino): Ni: 25 — 80 p-%, kemiallisesti sitoutunutta vettä: 0,001 - 10 p-%, S: 5 - 50 p-%, ja väistämättömiä epäpuhtauksia kuten Co, Mn, Cu ja vastaavat.
15. Jonkin patenttivaatimuksista 1 - 14 mukainen mene- telmä, tunnettu siitä, että nikkelin ja raudan suhde nikkelipitoi- sessa materiaalissa, joka käsittää saostettuja nikke- liyhdisteitä prosessista nikkelipitoisen materiaalin U rikastamiseksi hydrometallurgisesti, on suurempi kuin S 1.
N Tt 30 16. Jonkin patenttivaatimuksista 1 - 15 mukainen mene- = telmä, tunnettu E siitä, että nikkelipitoisen materiaalin pasutus O suoritetaan nikkelipitoisen materiaalin lämpökäsittele- S misen aikana. 2 35 N 17. Jonkin patenttivaatimuksista 1 - 16 mukainen mene- telmä, tunnettu siitä, että nikkelipitoisen materiaalin kalsinoin-
ti suoritetaan nikkelipitoisen materiaalin lämpökäsit- telemisen aikana.
18. Jonkin patenttivaatimuksista 1 - 17 mukainen mene- telmä, tunnettu siitä, että saostetut nikkeliyhdisteet sisältävät nikkeliä nikkelihydroksidin muodossa.
19. Jonkin patenttivaatimuksista 1 - 17 mukainen me- netelmä, tunnettu siitä, että saostetut nikkeliyhdisteet sisältävät nikkeliä nikkelisulfidin muodossa.
20. Jonkin patenttivaatimuksista 1 - 19 mukainen mene- telmä, tunnettu siitä, että nikkelipitoinen materiaali sisältää ainakin yhtä rikistä kuten sulfideista tai sulfaateista tai vastaavista, hiilestä kuten karbonaatista ja kar- bideista, ja oksideista kuten nikkelioksideista.
21. Jonkin patenttivaatimuksista 1 - 20 mukainen mene- telmä, tunnettu siitä, että raakapelletit agglomeroidaan agglome- rointiseoksesta pelletointirummussa tai -lautasella.
22. Jonkin patenttivaatimuksista 1 - 21 mukainen mene- = telmä, tunnettu N siitä, että muodostetaan kovetettuja kromiittipel- Tt 30 lettejä, joiden läpimitta on 5 - 30 mm, edullisemmin 6 = - 20 mm, edullisimmin 8 - 16 mm. z ©
23. Jonkin patenttivaatimuksista 1 - 22 mukainen mene- S telmä, tunnettu = 35 siitä, että muodostetaan kovetettuja kromiittipel- N lettejä joiden puristuslujuus on keskimäärin suurempi kuin 100 kg/pelletti, edullisemmin suurempi kuin 150 kg/pelletti, ja edullisimmin suurempi kuin 200 kg/pelletti (laskettu arvona F12mm).
24. Menetelmä ferrokromi-nikkeliseoksen tuotta- miseksi muodostamalla sulatussyöttö ja sulattamalla su- latussyöttö pelkistävissä olosuhteissa kuonan ja ferro- kromi-nikkeliseoksen tuottamiseksi, tunnettu siitä, et- tä sulatussyöttö sisältää nikkeliä sisältäviä kovetet- tuja kromiittipellettejä, jotka on tuotettu jonkin pa- tenttivaatimuksista 1 — 23 mukaisella menetelmällä.
25. Patenttivaatimuksen 24 mukainen menetelmä, tunnet- tu siitä, että sulatussyöttö muodostetaan siten, että sulatussyöttö käsittää nikkeliä sisältävien kovetettu- jen kromiittipellettien lisäksi pelkistysainetta kuten hiilipitoista materiaalia tai vastaavasti käyttäytyviä aineita, fluksia kuten Si-, Al-, Ca-, Mg-pitoisia mate- riaaleja, mahdollisia palamateriaaleja kuten palamal- mia, mahdollisia muita rauta- ja kromipitoisia materi- aaleja.
26. Patenttivaatimuksen 24 tai 25 mukainen menetelmä, tunnettu siitä, että kerätään sulatussyötön sulattamisen aikana vapautuneita kaasuja, ja siitä, että käytetään mainittuja kaasuja tuorepel- lettien kovettamisessa kovetettujen kromiittipellettien = tuottamiseksi.
N
N Tt 30
27. Jonkin patenttivaatimuksista 24 - 26 mukainen me- = netelmä, tunnettu E siitä, että kerätään sulatussyötön sulattamisen O aikana vapautuneita kaasuja, ja S siitä, että käytetään mainittuja kaasuja nikkeli- = 35 pitoisen materiaalin lämpökäsittelemisessä.
N
28. Jonkin patenttivaatimuksista 24 - 27 mukainen me- netelmä, tunnettu siitä, että sulatussyöttö sulatetaan valokaariuu- nissa, edullisesti uppokaariuunissa pelkistävissä olo- suhteissa.
29. Jonkin patenttivaatimuksista 24 — 28 mukainen me- netelmä, tunnettu siitä, että kovetetut kromiittipelletit esikuumen- netaan ennen kovetettujen kromiittipellettien sulatta- mista.
30. Jonkin patenttivaatimuksista 24 - 29 mukainen me- netelmä, tunnettu siitä, että kovetetut kromiittipelletit esipelkis- tetään ennen kovetettujen kromiittipellettien sulatta- mista.
31. Kovetettu kromiittipelletti sulatussyöttöä varten ferrokromiseoksen tuottamiseksi, joka kovetettu kro- miittipelletti sisältää painoprosenttiosuuksina 1 - 25 p-% nikkeliä oksideina, ja kovetetussa kromiittipelle- tissä esiintyvä nikkelioksidi on lämpökäsiteltyjä saos- tettuja nikkeliyhdisteitä jotka on saatu prosessista nikkelipitoisen materiaalin rikastamiseksi hydrometal- lurgisesti, kuten lämpökäsiteltynä nikkelihydroksidina tai nikkelisulfidina, nikkelisulfaattina tai nikkeli- karbonaattina, tunnettu siitä, että lämpökäsitellyt saostetut nikkeliyh- = disteet, jotka on saatu prosessista nikkelipitoisen ma- N teriaalin rikastamiseksi hydrometallurgisesti, on 1li- Tt 30 sätty agglomerointisyöttöön ennen agglomerointisyötöstä = muodostetun tuorepelletin kovettamista kovetetun kro- E miittipelletin tuottamiseksi. o 3
32. Patenttivaatimuksen 31 mukainen kovetettu kromiit- = 35 tipelletti, tunnettu N siitä, että kovetetun kromiittipelletin läpimitta on 5 - 30 mm, edullisemmin 6 - 20 mm, ja edullisimmin 8 - 16 mm.
33. Patenttivaatimuksen 31 tai 32 mukainen kovetettu kromiittipelletti, tunnettu siitä, että kovetetun kromiittipelletin puristus- lujuus on keskimäärin suurempi kuin 100 kg/pelletti, edullisemmin suurempi kuin 150 kg/pelletti, ja edulli- simmin suurempi kuin 200 kg/pelletti (laskettu arvona F12mm) «
34. Jonkin patenttivaatimuksista 31 - 33 mukainen ko- vetettu kromiittipelletti, tunnettu siitä, että kovetetun kromiittipelletin huokoisuus on keskimäärin 15 - 40 %, edullisemmin 20 - 35 %, ja edullisimmin 20 - 32 3.
35. Jonkin patenttivaatimuksista 31 - 34 mukainen ko- vetettu kromiittipelletti, tunnettu siitä, että oksidina esiintyvää nikkeliä on läsnä sekä kromiittirakeiden sisällä että kromiittirakeiden ulkopuolella kovetetun kromiittipelletin mikroraken- teessa.
36. Jonkin patenttivaatimuksista 31 - 35 mukainen ko- vetettu kromiittipelletti, tunnettu siitä, että kovetettu kromiittipelletti ei sisällä ylimääräistä fluksia kuten Ca-, Si-, Mg- ja/tai Al- pitoisia materiaaleja tai vastaavia, lukuun ottamatta = mahdollisia hivenalkuaine- ja/tai epäpuhtausmääriä joi- N ta tarvitaan sulatusvaiheessa useita tällaisia kovetet- Tt 30 tuja pellettejä sisältävän sulatussyötön sulattamiseksi = ferrokromi-nikkeliseoksen tuottamiseksi. z o 3
37. Jonkin patenttivaatimuksista 31 - 35 mukainen ko- = 35 vetettu kromiittipelletti, tunnettu N siitä, että kovetettu kromiittipelletti käsittää ainakin osan fluksista (flukseista) kuten Ca-, Si-, Mg- ja/tai Al-pitoisista materiaaleista tai vastaavista joita tarvitaan sulatusvaiheessa useita tällaisia kove- tettuja pellettejä sisältävän sulatussyötön sulatta- miseksi ferrokromi-nikkeliseoksen valmistamiseksi.
NM
O
N
N
N
I jami a © + oO © © Oo
N
FI20166046A 2016-12-30 2016-12-30 Menetelmä nikkeliä sisältävien kovetettujen kromiittipellettien tuottamiseksi, menetelmä ferrokrominikkeliseoksen tuottamiseksi ja kovetettu kromiittipelletti FI128814B (fi)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FI20166046A FI128814B (fi) 2016-12-30 2016-12-30 Menetelmä nikkeliä sisältävien kovetettujen kromiittipellettien tuottamiseksi, menetelmä ferrokrominikkeliseoksen tuottamiseksi ja kovetettu kromiittipelletti
CN201780080776.0A CN110114481B (zh) 2016-12-30 2017-12-29 用于制备含镍的固结铬铁矿球团的方法、用于制备铬铁镍合金的方法和固结的铬铁矿球团
BR112019012882-4A BR112019012882B1 (pt) 2016-12-30 2017-12-29 Método para produzir pelotas de cromita endurecidas contendo níquel, método para produzir liga de níquel ferrocromo e pelota de cromita endurecida
CA3048120A CA3048120A1 (en) 2016-12-30 2017-12-29 Method for producing nickel containing indurated chromite pellets, method for producing ferrochrome nickel alloy and indurated chromite pellet
PCT/FI2017/050956 WO2018122465A1 (en) 2016-12-30 2017-12-29 Method for producing nickel containing indurated chromite pellets, method for producing ferrochrome nickel alloy and indurated chromite pellet
EA201991274A EA201991274A1 (ru) 2016-12-30 2017-12-29 Способ производства никельсодержащих отвержденных хромитовых окатышей, способ производства феррохромникелевого сплава и отвержденные хромитовые окатыши
EP17825892.7A EP3562965B1 (en) 2016-12-30 2017-12-29 Method for producing nickel containing indurated chromite pellets
ZA2019/04237A ZA201904237B (en) 2016-12-30 2019-06-27 Method for producing nickel containing indurated chromite pellets, method for producing ferrochrome nickel alloy and indurated chromite pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI20166046A FI128814B (fi) 2016-12-30 2016-12-30 Menetelmä nikkeliä sisältävien kovetettujen kromiittipellettien tuottamiseksi, menetelmä ferrokrominikkeliseoksen tuottamiseksi ja kovetettu kromiittipelletti

Publications (2)

Publication Number Publication Date
FI20166046L FI20166046L (fi) 2018-07-01
FI128814B true FI128814B (fi) 2020-12-31

Family

ID=60937789

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20166046A FI128814B (fi) 2016-12-30 2016-12-30 Menetelmä nikkeliä sisältävien kovetettujen kromiittipellettien tuottamiseksi, menetelmä ferrokrominikkeliseoksen tuottamiseksi ja kovetettu kromiittipelletti

Country Status (7)

Country Link
EP (1) EP3562965B1 (fi)
CN (1) CN110114481B (fi)
CA (1) CA3048120A1 (fi)
EA (1) EA201991274A1 (fi)
FI (1) FI128814B (fi)
WO (1) WO2018122465A1 (fi)
ZA (1) ZA201904237B (fi)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055731B (zh) * 2018-09-26 2020-12-04 中冶长天国际工程有限责任公司 一种粉尘制粒工艺及铁矿烧结工艺
CN112226615B (zh) * 2020-10-15 2021-11-12 中南大学 一种不锈钢固废的综合利用方法
CN115261612A (zh) * 2022-08-24 2022-11-01 武汉科技大学 一种焙烧红土镍矿的ros竖窑及其rosef含镍铁水生产法
CN115305346B (zh) * 2022-09-14 2023-06-02 中南大学 一种降低烧结过程炉篦条腐蚀的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI93975C (fi) * 1990-06-05 1995-06-26 Outokumpu Oy Menetelmä seosainekomponentin valmistamiseksi
FI127721B (fi) 2009-02-11 2019-01-15 Outokumpu Oy Menetelmä nikkeliä sisältävän ferroseoksen valmistamiseksi
FI123241B (fi) * 2011-06-13 2013-01-15 Outokumpu Oy Menetelmä pelkistymisasteen parantamiseksi ferroseosta sulatettaessa
WO2013071956A1 (en) * 2011-11-15 2013-05-23 Outotec Oyj Metallurgical composition for the manufacture of ferrochrome

Also Published As

Publication number Publication date
ZA201904237B (en) 2020-12-23
EP3562965B1 (en) 2020-12-02
WO2018122465A1 (en) 2018-07-05
EP3562965A1 (en) 2019-11-06
CA3048120A1 (en) 2018-07-05
BR112019012882A8 (pt) 2023-03-21
FI20166046L (fi) 2018-07-01
EA201991274A1 (ru) 2019-12-30
CN110114481B (zh) 2021-12-14
BR112019012882A2 (pt) 2019-11-26
CN110114481A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
KR101345063B1 (ko) 니켈 함유 합금철의 제조 방법
EP3562965B1 (en) Method for producing nickel containing indurated chromite pellets
AU2009238168B2 (en) Process for production of nickel and cobalt using metal hydroxide, metal oxide and/or metal carbonate
US8557019B2 (en) Process for production of nickel and cobalt using metal hydroxide, metal oxide and/or metal carbonate
US8574540B2 (en) Process for manufacturing prefluxed metal oxide from metal hydroxide and metal carbonate precursors
EP3084019B1 (en) Method for producing manganese containing ferroalloy
RU2399680C2 (ru) Способ металлизации титаномагнетитовых концентратов с получением железных гранул и титанованадиевого шлака
Pal et al. Improving reducibility of iron ore pellets by optimization of physical parameters
EP3124628A1 (en) Method for the manufacture of agglomerate containing ferrous material
WO2024018692A1 (ja) 含ニッケル酸化鉱石の製錬方法
BR112019012882B1 (pt) Método para produzir pelotas de cromita endurecidas contendo níquel, método para produzir liga de níquel ferrocromo e pelota de cromita endurecida
EP3481969A2 (en) Process for manufacturing chromium and iron bearing agglomerates with different addition of manganese, nickel and molybdenum bearing materials
Zhu et al. Utilization of high sulfur raw materials in iron ore pellets
GB2578275A (en) Agglomerate for use in iron-making and/or steel-making
WO2018037154A1 (en) Method for producing reduced manganese pellets, reduced manganese pellets and a plant for their production
TW201501839A (zh) 含鐵及鎢之團塊

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 128814

Country of ref document: FI

Kind code of ref document: B