FI125099B - Menetelmä ja laitteisto platinaryhmän metallien ja ferrokromin talteen ottamiseksi kromiittimalmista, jossa on platinaryhmän metalleja - Google Patents

Menetelmä ja laitteisto platinaryhmän metallien ja ferrokromin talteen ottamiseksi kromiittimalmista, jossa on platinaryhmän metalleja Download PDF

Info

Publication number
FI125099B
FI125099B FI20135284A FI20135284A FI125099B FI 125099 B FI125099 B FI 125099B FI 20135284 A FI20135284 A FI 20135284A FI 20135284 A FI20135284 A FI 20135284A FI 125099 B FI125099 B FI 125099B
Authority
FI
Finland
Prior art keywords
furnace
slag
platinum group
alloy
molten
Prior art date
Application number
FI20135284A
Other languages
English (en)
Swedish (sv)
Other versions
FI20135284A (fi
Inventor
Lauri Närhi
Original Assignee
Outotec Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outotec Oyj filed Critical Outotec Oyj
Priority to FI20135284A priority Critical patent/FI125099B/fi
Priority to CN201480017592.6A priority patent/CN105164285A/zh
Priority to BR112015024481A priority patent/BR112015024481A2/pt
Priority to CA2907005A priority patent/CA2907005C/en
Priority to EP14720990.2A priority patent/EP2978866A1/en
Priority to EA201591659A priority patent/EA029428B1/ru
Priority to PCT/FI2014/050214 priority patent/WO2014154945A1/en
Publication of FI20135284A publication Critical patent/FI20135284A/fi
Application granted granted Critical
Publication of FI125099B publication Critical patent/FI125099B/fi
Priority to ZA2015/07020A priority patent/ZA201507020B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/02Obtaining noble metals by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

METHOD AND APPARATUS FOR RECOVERING PGM AND FERRO-CHROME FROM PGM BEARING CHROMITE ORE
FIELD OF THE INVENTION
The invention relates to a method and an apparatus for recovering platinum group metals and fer-rochrome from PGM bearing chromite ore.
BACKGROUND OF THE INVENTION
Most of the world's known platinum reserves are located in South Africa, which produces most of the world's platinum. South Africa is also the world's largest single producer of ferrochrome. Platinum group metals, or PGMs, include platinum, rhodium, palladium, ruthenium, iridium, osmium. PGMs frequently occur together with chromites. The platinum industry in South Africa is increasingly moving from traditional Meren-sky reef to UG2 reef as a raw material. The UG2 reef contains most of the world's known PGM reserves, and it also has high chromite content.
There are some challenges in using UG2 based raw material with current PGM recovery processes. One of the challenges is that traditional smelting furnaces cannot use a concentrate that contains over 2.5% Cr. If the chromium content is too high, Cr tends to create crust in the smelting furnace and the explosion risk is high. Traditional six-in-line smelting furnaces are susceptible to build-ups of high-melting chromite spinels if the Cr203 content of the feed is too high. Also the furnace control is very challenging. Furthermore, concentration process is rather complicated when the target is to separate the chromite from the PGMs. Traditionally, UG2 ore has been concentrated by removing chromite from the ore as far as possible to reach low chromite content in the PGM smelting furnace feed. It is very difficult to totally remove chromite from the concentrate by flotation. Chrome melts at temperatures above 1600°C, whereas PGM smelting furnaces operate at 1400-1500°C. The presence of chromium in the feed leads to lower furnace reduction efficiency and chromite can also damage the smelting furnace .
The UG2 concentration process used by the platinum industry in South Africa produces lots of chromite-containing tailings. Ferrochrome producers can use these tailings as raw material. South Africa suffers from shortage of electricity, which is why local producers cannot use all chromite-containing tailings of platinum industry but tailings are exported to China. The Chinese are building a lot of ferrochrome capacity now, which is worrying for the South African producers. One of the targets of the present invention is to provide a process that allows the South Africans to use their UG2 reserves more completely in their own country.
Attempts have been made to develop pyrometal-lurgical processes that tolerate higher chromite contents in the PGM concentrate. US 6,699,302 B1 discloses a method for processing metal sulfide concentrate that contains at least one metal selected from the group consisting of the PGMs, nickel, cobalt and zinc. The method comprises dead-roasting the metal sulfide concentrate, smelting the dead-roasted concentrate under reducing conditions in an electrically stabilized open-arc furnace, and collecting the metals from the smelting step in the form of an alloy or vapor. Chrome is an unwanted element and it is removed from the metal alloy in a converter.
Although the process of US 6, 699,302 B1 can use raw materials with high chromium content, chrome is finally discarded from the process. Furthermore, the process is designed only for use with sulfide raw materials .
The industry lacks a process that effectively combines the recovery of PGMs and ferrochrome from a PGM bearing chromite ore, such as UG2.
PURPOSE OF THE INVENTION
The purpose of the present invention is to eliminate or at least reduce the problems of the prior art. A further purpose is to provide a new process for effective utilization of PGM bearing chromite ore.
SUMMARY
The method according to the present invention is characterized by what is presented in claim 1.
The apparatus according to the present invention is characterized by what is presented in claim 10.
The new method comprises preparing a concentrate that contains most of the PGMs and chromite of the ore, subjecting the concentrate to a heating step to dry and/or preheat the concentrate, and smelting the concentrate under reducing conditions in a DC smelting furnace to produce molten metal alloy that contains the PGMs of the feed and molten slag that contains the chromium of the feed. The molten slag is tapped from the smelting furnace into an AC slag furnace, where reduction of the oxides of iron and chromium contained in the slag takes place so that ferrochrome is produced.
According to one embodiment of the invention the heating step additionally comprises roasting the concentrate to remove sulfur and/or volatiles contained in the concentrate.
According to one embodiment of the invention the slag properties are controlled with flux.
Advantageously the method comprises adding flux and/or reductant into the smelting furnace and/or into the slag furnace.
According to one embodiment of the invention the reducing conditions in the smelting furnace and/or in the slag furnace are controlled with the addition of reductant.
According to one embodiment of the invention the slag properties in the smelting furnace and/or in the slag furnace are controlled with the addition of flux.
Advantageously molten metal alloy is tapped from the smelting furnace, after which PGMs are recovered from the metal alloy by hydrometallurgical processes or a combination of pyrometallurgical and hydrometallurgical processes.
According to one embodiment of the invention molten metal alloy from the smelting furnace is tapped to a Peirce-Smith converter, after which the converted metal alloy is subjected to atomization and hydrometallurgical process steps.
According to another embodiment of the invention molten metal alloy is tapped from the smelting furnace directly to an atomizer, after which the atomized metal alloy is subjected to hydrometallurgical process steps.
The new apparatus comprises a DC smelting furnace for producing a molten metal alloy containing the PGMs of the feed and a molten slag containing the chromium of the feed, and an AC slag furnace for producing a ferrochrome alloy from the molten slag tapped from the DC smelting furnace.
According to one embodiment of the invention the apparatus further comprises a heating unit for drying and/or preheating the concentrate before it is fed to the smelting furnace. The heating unit is preferably selected from a group comprising a fluidized bed reactor, a rotary kiln, a drying tower, or similar .
The slag furnace can be an open bath alternating current furnace, or similar.
According to one embodiment of the invention the apparatus further comprises a Peirce-Smith converter for removing iron from the molten metal alloy tapped from the smelting furnace.
According to another embodiment of the invention the apparatus further comprises an atomizer for atomizing the molten metal alloy tapped from the smelting furnace or from the converter.
Instead of using tailings from a PGM concentrator, the present invention proposes using molten slag from a PGM smelter as a raw material in ferro-chrome production. According to the new method both PGMs and ferrochrome are produced at the same time, which gives flexibility for the use of raw material and makes the concentration of PGM and chromite containing ore easier. The process also saves energy compared to current recovery processes. The ferrochrome containing slag fraction need not to be cooled and reheated before introduction into ferrochrome process.
The present invention allows adjusting the Cr/Fe ratio in the ferrochrome by controlling how much iron is reduced in the smelting furnace. Typical use of pure UG2 ore results in Cr/Fe ratio of around 1.35, which means that the Cr content in the ferrochrome is below 50%. Higher Cr contents are preferred by the end users of ferrochrome, i.e. stainless steel industry.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawing, which is included to provide further understanding of the invention and constitutes a part of this specification, illustrates an embodiment of the invention and together with the description helps to explain the principles of the invention .
The enclosed Figure 1 is a flow chart illustration of one embodiment of a process according to the present invention.
DETAILED DESCRIPTION OF AN EMBODIMENT PGM bearing chromite ore is fine grinded to liberate the PGM particles. The fine grinded ore is concentrated in a concentrator 10, where the target is to remove gangue while keeping iron, chromium, base metals and PGMs in the concentrate. The process is simpler than the concentration processes currently used in PGM recovery, because there is no need to separate chrome and iron from the base metals and PGMs.
The concentrate is subjected to heat treatment in a heating unit 12, where the concentrate is dried, if necessary, and possibly preheated before it is fed to a smelting furnace 14. The heating unit 12 can be, for instance, a fluidized bed reactor, a rotary kiln, or a drying tower. If the raw material contains lots of sulfides and/or volatiles, roasting can be carried out in the heating unit 12 to oxidize the metal sulfides. CO gas generated in subsequent smelting and slag furnaces 14, 16 can be used as a heat source in the heating unit 12.
The preheated concentrate is charged as a feed into a DC smelting furnace 14. At the same time, carbonaceous reductant, such as anthracite or coke, is charged to the smelting furnace 14. Also some flux may be charged, if necessary.
In the DC smelting furnace 14 the concentrate is melted and the PGMs, base metals and part of the iron contained in the feed are reduced to elemental metal, which is separated as a molten metal alloy below the lighter slag phase. However, most of the feed goes into the slag phase. For instance, all Cr and most of Fe, AI2O3, Si02, MgO and CaO of the feed go into the slag phase. Reduction in the smelting furnace 14 is limited by controlling the amount of carbon charged to the furnace 14. The target is only to get the PGMs into metal phase together with just a part of the iron. Iron droplets capture the PGMs and other base metals, forming molten metal alloy. Ni and Cu can also be present in the molten metal alloy produced in the smelting furnace 14.
In the direct current (DC) smelting furnace 14 the charged material is directly exposed to an electric arc, and the current between a cathode and an anode passes through the charged material. Energy is supplied by open plasma arc. The temperature in the smelting furnace 14 is relatively high, which is why reactions are quick. The plasma arc agitates the slag phase and creates strong currents, which further improves reactions. A carbon monoxide atmosphere is created in the closed furnace. One more advantage of using a DC smelting furnace is that it allows charging fine grinded material.
Liquid slag is tapped from the DC smelting furnace 14 to an AC slag furnace 16. Liquid metal alloy is tapped from the bottom of the DC smelting furnace 14 to further refining steps in pyrometallurgical and/or hydrometallurgical processes.
The slag furnace 16 is preferably an open bath alternating current furnace where electrodes are buried in a burden of lumpy materials comprised of molten slag received from DC smelting furnace. Carbonaceous reductant and flux are charged to the AC furnace to control the reduction reactions and to optimize the amount and quality of slag. Typical ferro-chrome furnace operations comprise reduction of oxides of iron and chromium into metal phase. The resulting slag mainly contains A1203, MgO, CaO and Si02. Metal alloy received from the slag furnace 16 contains Fe,
Cr, some C and Si. All the rest of the feed is retained in the slag. Products received from the slag furnace 16 are ferrochrome metal and slag. Typically, the temperature of the slag tapped from the AC slag furnace 16 is 1650-1750°C and the temperature of the ferrochrome tapped from the AC slag furnace 16 is 1550-1600°C. PGM rich metal alloy tapped from the smelting furnace 14 can either be directly passed to hydromet-allurgical treatment steps or it can be converted in a Peirce-Smith converter 18 before passing to hydromet-allurgical treatment. The purpose of converting is to remove iron and other impurities from the metal alloy. The recovery of PGMs can comprise, for instance, atomization in an atomizer 20 and leaching.
The basic idea of the present innovation is to smelt the concentrate in a DC smelting furnace 14, where PGMs are reduced, and then to produce FeCr alloy from the slag of the DC smelting furnace in a separate AC slag furnace 16. This gives flexibility as regards the raw materials and simplifies the concentrating process 10.
Benefits of the new process comprise simplicity of the preceding concentration process as there is no need to remove chromite at an early stage. As FeCr and PGMs are produced at the same time, less concentration, cooling and melting is needed and the process is more energy efficient. The safety of the process is improved as there is no risk of crust formation or explosion. There are fewer restrictions for raw materials and no limits for the Cr content of the feed. Neither Cr nor PGMs are lost in the process.
It is obvious to a person skilled in the art that with the advancement of technology, the basic idea of the invention may be implemented in various ways. The invention and its embodiments are thus not limited to the examples described above; instead they may vary within the scope of the claims.

Claims (14)

1. Menetelmä platinaryhmän metallien ja ferrokromin ottamiseksi talteen platinaryhmän metalleja sisältävästä kromiittimalmista käsittäen vaiheet, joissa: - valmistetaan rikaste, joka sisältää suurimman osan malmin platinaryhmän metalleista ja kromiitista, altistetaan rikaste kuumennusvaiheelle rikasteen kuivaamiseksi ja/tai esikuumentamiseksi, sulatetaan rikaste pelkistävissä olosuhteissa DC-sulatusuunissa (14) sulan metalliseoksen, joka sisältää syötteen platinaryhmän metallit, ja sulan kuonan, joka sisältää syötteen kromin, tuottamiseksi, tunnettu siitä, että lasketaan sula kuona sulatusuunista (14) AC-kuonauuniin (16), ja - pelkistetään kuonan sisältämät raudan ja kromin oksidit AC-kuonauunissa (16) ferrokromiseoksen tuottamiseksi.
2. Patenttivaatimuksen 1 mukainen menetelmä, jossa kuumennusvaihe käsittää myös rikasteen pasutta-misen rikasteen sisältämän rikin ja/tai haihtuvien aineiden poistamiseksi.
3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, jossa kuonan ominaisuuksia kontrolloidaan fluk-silla.
4. Jonkin patenttivaatimuksista 1-3 mukainen menetelmä, joka käsittää fluksin ja/tai pelkisti-men lisäämisen sulatusuuniin (14) ja/tai kuonauuniin (16) .
5. Patenttivaatimuksen 4 mukainen menetelmä, jossa pelkistäviä olosuhteita sulatusuunissa (14) ja/tai kuonauunissa (16) kontrolloidaan lisäämällä pelkistintä.
6. Jonkin patenttivaatimuksista 3-5 mukainen menetelmä, jossa kuonan ominaisuuksia sula tusuunissa (14) ja/tai kuonauunissa (16) kontrolloidaan lisäämällä fluksia.
7. Jonkin patenttivaatimuksista 1-6 mukainen menetelmä, joka käsittää sulan metalliseoksen laskemisen sulatusuunista (14) ja platinaryhmän metallien ottamisen talteen metalliseoksesta.
8. Patenttivaatimuksen 7 mukainen menetelmä, joka käsittää sulan metalliseoksen laskemisen sulatusuunista (14) Peirce-Smith-konvertteriin (18) ja/tai konvertoidun metalliseoksen altistamisen atomisoinnil-le ja hydrometallurgisille prosessivaiheille.
9. Patenttivaatimuksen 7 mukainen menetelmä, joka käsittää sulan metalliseoksen laskemisen sulatusuunista (14) atomisoijaan (20) ja atomisoidun metalliseoksen altistamisen hydrometallurgisille prosessivaiheille .
10. Laitteisto platinaryhmän metallien ja ferrokromin ottamiseksi talteen platinaryhmän metalleja ja kromiittia sisältävästä malmirikasteesta käsittäen DC-sulatusuunin (14) sulan metalliseoksen, joka sisältää syötteen platinaryhmän metallit, ja sulan kuonan, joka sisältää syötteen kromin, tuottamiseksi, tunnettu siitä, että laitteisto käsittää myös AC-kuonauunin (16) ferrokromiseoksen tuottamiseksi sulasta kuonasta, joka on laskettu DC-sulatusuunista (14).
11. Patenttivaatimuksen 10 mukainen laitteisto, joka käsittää kuumennusyksikön (12) rikasteen kuivaamiseksi ja/tai esikuumentamiseksi ennen sen syöttämistä sulatusuuniin (14), joka kuumennusyksikkö (12) on valittu ryhmästä, joka käsittää leijupetireaktorin, kiertouunin, kuivaustornin tai vastaavan.
12. Patenttivaatimuksen 10 tai 11 mukainen laitteisto, jossa kuonauuni (14) on avoinkylpyvaihto-virtauuni tai vastaava.
13. Jonkin patenttivaatimuksista 10 - 12 mukainen laitteisto, joka käsittää edelleen Peirce- Smith-konvertterin (18) raudan poistamiseksi sulasta metalliseoksesta, joka on laskettu sulatusuunista (14) .
14. Jonkin patenttivaatimuksista 10 - 13 mukainen laitteisto, joka käsittää edelleen atomisoijan (20) sulatusuunista (14) tai konvertterista (18) lasketun sulan metalliseoksen atomisoimiseksi.
FI20135284A 2013-03-25 2013-03-25 Menetelmä ja laitteisto platinaryhmän metallien ja ferrokromin talteen ottamiseksi kromiittimalmista, jossa on platinaryhmän metalleja FI125099B (fi)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FI20135284A FI125099B (fi) 2013-03-25 2013-03-25 Menetelmä ja laitteisto platinaryhmän metallien ja ferrokromin talteen ottamiseksi kromiittimalmista, jossa on platinaryhmän metalleja
CN201480017592.6A CN105164285A (zh) 2013-03-25 2014-03-25 用于从含有pgm的铬铁矿中回收pgm和铁铬合金的方法和装置
BR112015024481A BR112015024481A2 (pt) 2013-03-25 2014-03-25 método e aparelho para recuperar pgm e ferro-cromo a partir de minério de cromita portadora de pgm
CA2907005A CA2907005C (en) 2013-03-25 2014-03-25 Method and apparatus for recovering pgm and ferro-chrome from pgm bearing chromite ore
EP14720990.2A EP2978866A1 (en) 2013-03-25 2014-03-25 Method and apparatus for recovering pgm and ferro-chrome from pgm bearing chromite ore
EA201591659A EA029428B1 (ru) 2013-03-25 2014-03-25 Способ и устройство для получения металлов платиновой группы (мпг) и феррохрома из содержащей мпг хромитовой руды
PCT/FI2014/050214 WO2014154945A1 (en) 2013-03-25 2014-03-25 Method and apparatus for recovering pgm and ferro-chrome from pgm bearing chromite ore
ZA2015/07020A ZA201507020B (en) 2013-03-25 2015-09-21 Method and apparatus for recovering pgm and ferro-chrome from pgm bearing chromite ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20135284 2013-03-25
FI20135284A FI125099B (fi) 2013-03-25 2013-03-25 Menetelmä ja laitteisto platinaryhmän metallien ja ferrokromin talteen ottamiseksi kromiittimalmista, jossa on platinaryhmän metalleja

Publications (2)

Publication Number Publication Date
FI20135284A FI20135284A (fi) 2014-09-26
FI125099B true FI125099B (fi) 2015-05-29

Family

ID=50630817

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20135284A FI125099B (fi) 2013-03-25 2013-03-25 Menetelmä ja laitteisto platinaryhmän metallien ja ferrokromin talteen ottamiseksi kromiittimalmista, jossa on platinaryhmän metalleja

Country Status (8)

Country Link
EP (1) EP2978866A1 (fi)
CN (1) CN105164285A (fi)
BR (1) BR112015024481A2 (fi)
CA (1) CA2907005C (fi)
EA (1) EA029428B1 (fi)
FI (1) FI125099B (fi)
WO (1) WO2014154945A1 (fi)
ZA (1) ZA201507020B (fi)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323302B2 (en) * 2016-11-18 2019-06-18 Heraeus Deutschland GmbH & Co. KG Process for the production of a PGM-enriched alloy
PE20210977A1 (es) 2018-03-01 2021-05-26 Aurum Integra Inc Metodo para oxidar selectivamente metales de una aleacion
US10435767B2 (en) 2019-04-29 2019-10-08 Techemet, LP Low-flux converting process for PGM collector alloy
US10472700B1 (en) 2019-04-29 2019-11-12 Techemet, LP Converting process with partial pre-oxidation of PGM collector alloy
CN112760549B (zh) * 2020-12-30 2022-02-22 邬海宇 一种中频炉冶炼稀贵金属铁合金的工艺
WO2023096525A1 (ru) * 2021-11-28 2023-06-01 Татьяна Михайловна ПАРПОЛИТО Печь для производства феррохромовых сплавов

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295881A (en) * 1979-04-23 1981-10-20 Texasgulf Inc. Process for extraction of platinum group metals from chromite-bearing ore
AU759420B2 (en) * 1999-02-26 2003-04-17 Mintek Treatment of metal sulphide concentrates by roasting and arc furnace smelt reduction
DE102006052181A1 (de) * 2006-11-02 2008-05-08 Sms Demag Ag Verfahren zur kontinuierlichen oder diskontinuierlichen Gewinnung eines Metalls oder mehrerer Metalle aus einer das Metall oder eine Verbindung des Metalls enthaltenden Schlacke

Also Published As

Publication number Publication date
CN105164285A (zh) 2015-12-16
CA2907005C (en) 2017-07-25
ZA201507020B (en) 2017-01-25
EP2978866A1 (en) 2016-02-03
BR112015024481A2 (pt) 2017-07-18
WO2014154945A1 (en) 2014-10-02
CA2907005A1 (en) 2014-10-02
FI20135284A (fi) 2014-09-26
EA201591659A1 (ru) 2016-04-29
EA029428B1 (ru) 2018-03-30

Similar Documents

Publication Publication Date Title
FI125099B (fi) Menetelmä ja laitteisto platinaryhmän metallien ja ferrokromin talteen ottamiseksi kromiittimalmista, jossa on platinaryhmän metalleja
US8771396B2 (en) Method for producing blister copper directly from copper concentrate
AU759420B2 (en) Treatment of metal sulphide concentrates by roasting and arc furnace smelt reduction
US4588436A (en) Method of recovering metals from liquid slag
CN105861851A (zh) 一种铂族金属二次资源高效富集的方法
CN105886771A (zh) 一种铁粉和铁矿混合还原熔炼高效捕集铂族金属的方法
KR101787305B1 (ko) 캐소드 구리를 제조하는 방법
KR20150076168A (ko) 플라스마 유도 퓨밍
JP2659807B2 (ja) 直接製錬方法
CN107574278A (zh) 一种用红土镍矿富集镍制备镍铁的方法
Wang et al. Tin recovery from a low-grade tin middling with high Si content and low Fe content by reduction—sulfurization roasting with anthracite coal
NO146995B (no) Fremgangsmaate ved smelteutvinning av bly og soelv fra bly-soelvrester.
JPH0665657A (ja) 高純度ニッケルマットと金属化硫化物マットの生産方法
Jones ConRoast: DC arc smelting of deadroasted sulphide concentrates
Cui et al. Pyrometallurgical recovery of valuable metals from flue dusts of copper smelter through lead alloy
RU2682197C1 (ru) Способ пирометаллургической переработки окисленной никелевой руды
AU708224B2 (en) Ferro-nickel smelting
US2868635A (en) Method of treating iron sulfide-containing ore or concentrates
US20190144970A1 (en) Method for refining sulfidic copper concentrate
RU2193605C1 (ru) Способ переработки железомарганцевых конкреций, содержащих фосфор
Zhao et al. The role of CaCO3 in the extraction of valuable metals from low-nickel matte by calcified roasting—acid leaching process
Andrews et al. Outotec’s Ausmelt Top Submerged Lance (TSL) technology for the Nickel Industry
JPH04147926A (ja) 硫化亜鉛精鉱の熔融脱硫方法
KR20170047227A (ko) 규산철암 가공 방법 및 장치
MXPA94009508A (en) Method for producing high-grade nickel matte from at least partly pyrometallurgically refined nickel-bearing raw materials

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 125099

Country of ref document: FI

Kind code of ref document: B

MM Patent lapsed