FI107739B - Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa - Google Patents

Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa Download PDF

Info

Publication number
FI107739B
FI107739B FI992085A FI19992085A FI107739B FI 107739 B FI107739 B FI 107739B FI 992085 A FI992085 A FI 992085A FI 19992085 A FI19992085 A FI 19992085A FI 107739 B FI107739 B FI 107739B
Authority
FI
Finland
Prior art keywords
leu
ala
arg
gly
asp
Prior art date
Application number
FI992085A
Other languages
English (en)
Swedish (sv)
Other versions
FI19992085A (fi
Inventor
Juha Hakala
Kristiina Ylihonko
Kaj Raety
Original Assignee
Galilaeus Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galilaeus Oy filed Critical Galilaeus Oy
Priority to FI992085A priority Critical patent/FI107739B/fi
Priority to EP00960747A priority patent/EP1133562A1/en
Priority to PCT/FI2000/000819 priority patent/WO2001023578A1/en
Priority to JP2001526960A priority patent/JP2003510081A/ja
Publication of FI19992085A publication Critical patent/FI19992085A/fi
Application granted granted Critical
Publication of FI107739B publication Critical patent/FI107739B/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin

Landscapes

  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Description

1 107739
Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa
Keksinnön ala 5 Tämä keksintö koskee Streptomyces galilaeusista peräisin olevaa aklasinomysiinin biosynteesin geeniryhmittymää ja siihen sisältyvien geenien käyttöä hybridiantibioottien saamiseksi tai aklasinomysiinin tai sukulaisantibioottien saantojen nostamiseksi.
10 Keksinnön tausta
Antrasykliinit ovat yleisesti käytettyjä syöpälääkkeitä. Seitsemän eri antrasykliiniä on maailmanlaajuisessa kliinisessä käytössä: daunorubisiini, doksorubisiini, idarubisiini, epirubisiini, pirarubisiini, zorubisiini ja aklarubisiini. Tyypillinen yhdiste on doksorubi- 15 siini, joka on tehokkain ja vaikuttaa laajaan joukkoon pahanlaatuisia tautitiloja. Monet toksiset vaikutukset, kuten doksorubisiinin yhteydessä joskus havaittava kumulatiivinen kardiotoksisuus on joissain tapauksissa aiheuttanut hoidon keskeyttämisen. On lisäksi tietyntyyppisiä pahanlaatuisia tautitiloja, joihin käytettävissä olevat antrasykliinit eivät tehoa. Antrasykliinien vaikutusmekanismi, niiden kliinisen tehon kannalta, ei ole selvä, 20 vaikka useimmat tutkijat katsovat topoisomeraasi II :n inhibition toivotuksi vaikutuksek- . si. Kinonirakenteista johtuvien vapaiden radikaalien muodostamisen esitetään liittyvän « · · *1V sivuvaikutuksiin, kuten kardiotoksisuuteen. Professori Strohl ja hänen ryhmänsä ovat « i i hiljattain esittäneet antrasykliinejä koskevan katsauksen (1997).
• · • t · • · * · · • i· 25 Aklasinomysiini A (aklarubisiini), jonka Oki et ai., (1975) kuvasivat ensimmäisinä, on • · antrasykliiniantibiootti, jota tuottavat Streptomycesgalilaeus ATCC 31133 ja S. gali- • · · laeus ATCC 31615. Se tehoaa tuumorisoluihin ja sillä on doksorubisiiniin verrattuna lievemmät toksiset ominaisuudet. Sen vaikutus ei kuitenkaan saavuta kiinteitä tuumo- • · ·***; reita, mikä rajoittaa sen käyttöä leukemian hoidossa. Aklarubisiinin rakenne eroaa w ·♦1 30 muista vastaavista. Trisakkaridiosa, rodosamiini-2-deoksiilikoosi-kineruloosi A liittyy • · .··, asemaan C-7 glykosidisella sidoksella, kun taas daunomysiinien vastaavaan asemaan v · · ··» . \ liittyy vain yksi sokeritähde, daunosamiini.
• · · • · · • · · · • »i • « 2 107739
Antrasykliinien pitkästä, noin kolmen vuosikymmenen historiasta huolimatta niiden biosynteesiä koskevat tutkimukset jatkuvat yhä, ja uutta mielenkiintoa on uusien molekyylien saamiseksi syöpälääkkeiden kehittämiseen. Nykyään käytettävä menetelmä uusien molekyylien löytämiseksi lääkkeiden valikointiin on geenitekniikka. Antrasyk-5 liinin biosynteesigeenien kloonaus helpottaa hybridiantrasykliinien tuotantoa sekä niiden käyttämistä yhdistelmäbiosynteesissä uusien molekyylien luomiseksi. Mitä tulee nykyään kliinisessä käytössä olevien antrasykliinien kemialliseen luonteeseen, aklarubi-siinilla on ainutlaatuisia ominaisuuksia, jotka tekevät sen biosynteesigeeneistä kiinnostavia uusien tuotteiden kehittämisessä.
10
Mitä tulee deoksiheksoosireitin geeneihin, Madduri et ai. (1998) ovat raportoineet, että avermektiinin biosynteesiryhmittymästä peräisin oleva geeni siirrettynä S. peucetius-kantaan aiheutti hybridiantrasykliinien tuoton muuttaen sokeriosaa. Saatu tuote oli epi-rubisiini, kaupallisesti tärkeä antrasykliini. Tässä tapauksessa daunosamiiniosan hydrok-15 syyliryhmä oli avermektiinibiosynteesigeenin toiminnan johdosta stereokemiallisesti päinvastainen.
S. galilaeusta on käytetty isäntänä valmistettaessa hybridiantrasykliinejä, käyttäen S.
purpurascensin rodomysiinireitistä (Niemi et ai., 1994) ja S. nogalaterin nogalamysiini- 20 biosynteesiryhmittymästä peräisin olevia geenejä (Ylihonko et ai., 1996a). Nogalamy- . siinireitin geenejä käytettiin aikaansaamaan hybridiantrasykliinin tuotto S. steffisbur- • · · ** V gensisissa, joka tuottaa tyypillisesti steffimysiiniä (Kunnari et ai, 1997). Aktinorodiinin • · · ···, biosynteesigeenejä on aiemmin ilmennetty S. galilaeusissa, mistä tuloksena oli aloe- * · • · « : saponariinin muodostuminen (Strohl et ai, 1991). Nämä hybridiyhdisteet olivat aglyko- • · · 25 niosan osalta modifioituja. Hiljattain käytettiin nogalamysiinin deoksiheksoosireittiin . *: *. liittyviä biosynteesigeenej ä aikaansaamaan hybridiyhdisteitä käyttäen isäntinä S. gali- laeus -mutantteja (FI pat. hak. n:o 982295).
• · ·***: Kuten edellä on osoitettu, S. galilaeusta on käytetty kloonausisäntänä uusia molekyylejä 30 kehitettäessä, kun taas sen käyttöä geenien luovuttamiseen ei ole kuvattu. Tunnistetut • · • · . * · *. aklasinomysiinibiosynteesiin liittyvät geenit käsittävät polyketidireduktaasigeenin (Tsu- • « · Λ kamoto et ai, 1994), aklanonihapon metyyliesterisyklaasin (GeneBank, tallennus AF- • · » 043550) ja polyketidisyntaasin geenit (Hutchinson ja Fuji, 1995; sekvenssi ei ole saatavilla).
3 107739
Keksinnön yhteenveto Tämä keksintö koskee geeniryhmittymää, jonka useimmat geenit ovat peräisin rodos-5 amiinin, 2-deoksifukoosin ja/tai rodinoosin deoksiheksoosireitistä. Geeniryhmittymä kloonattiin S. galilaeus ATCC 31615:stä ja se on osallisena aklasinomysiinien biosynteesissä.
Keksinnön yksityiskohtainen kuvaus 10 Tämän keksinnön kokeelliset menettelytavat käsittävät alan tavanomaisia biokemiallisia ja kemiallisia menetelmiä. Tekniikoiden, joita ei tässä selitetä, yksityiskohtaiset kuvaukset esitetään käsikiijoissa Hopwood et ai. ’Genetic manipulation of Streptomyces: a laboratory manual’, The John Innes Foundation, Norwich (1985) ja Sambrook et al.
15 (1989) ’Molecular cloning: a laboratory manual’.
Tässä viitteenä käytetyt julkaisut, patentit ja patenttihakemukset esitetään kokonaisuudessaan viiteluettelossa.
20 Tämä keksintö koskee erityisesti aklasinomysiinin biosynteesin geeniryhmittymän löytämistä. S. peucetius -kantoihin tuotuna ryhmittymä aikaansai sokeriosastaan modifi- • · · . ·. ·. oitujen hybridiantibioottien tuoton.
• · · * · tämällä oli mahdollista kloonata deoksiheksoosireitin ryhmittymä rajoitetusta geeni- 4 107739 kirjastosta. Kloonausstrategian yksinkertaistamiseksi kirjasto tehtiin E. colissa replikoi-tuvaan pUC-pohjaiseen plasmidiin (esim. pBluescript tai pWHMl 109).
Aklasinomysiinin biosynteesiin liittyvien geenien kloonausstrategia keksinnön mukai-5 sesti oli lyhyesti: Kokonais-DNA eristettiin S. galilaeusista (ATCC 31615) ja hajotettiin useilla restriktioentsyymeillä, jotka tuottavat keskimäärin 10 kb.n fragmentteja. Restrik-tiofragmentit analysoitiin Southem-hybridisaatiolla käyttäen homologista DNA-frag-menttia, Sg-dht, koettimena. Bglll tuotti 8,5 kb:n hybridisoidun fragmentin, ja kaksois-digestio Ahoilla ja iVoiLlla tuotti 7 kb:n hybridisoidun fragmentin. DNA:n digestio 10 käyttäen (i) Bglll ja (ii) Xhol-Notl suoritettiin ja fragmentit liitettiin BamHLlla digestoi-tuun E. coli-Streptomyces-siirtovektoriin pWHM 1109 ja ATzoI-jVod-digestoituun pBlue-script:iin. Ligaatioseokset tuotiin E. coli XLlBlueMRF-kantaan, jolla on alentuneet restriktio-modifikaatiojärjestelmät. Pesäkkeitä maljattiin agarmaljoille laimennuksina, jotka tuottivat 200 - 600 p.m.y. (pesäkkeitä muodostavaa yksikköä) maljaa kohden.
15 Hyvin kasvaneet pesäkkeet siirrettiin nylonkalvoille hybridisaatiota varten, joka suoritettiin käyttämällä Sg-dht-koetinta. Kuusi 786:sta Bg/II-digestoidusta kloonista ja seitsemän 1523:sta ATzoI-Akrtl-fragmentteja kantavasta kloonista tuotti hybridisaatiosignaa-lin. Hybridisaatio ja pesut suoritettiin 65 °C:n tiukoissa olosuhteissa alhaisessa suolapitoisuudessa. Monet koettimen leimaus-ja hybridisaatiotekniikat ovat mahdollisia, mutta 20 Boehringer Mannheimin ohjeen ’’The DIG System User’s Guide for Filter Hybridiza- .·. tion” mukainen menettely on edullinen. Hybridisaatiosignaaleja antavat pesäkkeet vil- • · · · j1.·. jeltiin plasmidieristystä varten. Plasmidit analysoitiin Southem-hybridisaatiolla pesäke- • · : 1 ’ 1; hybridisaation luotettavuuden varmistamiseksi. Halutut DNA-ffagmentit (Sg4 ja Sg5) ··· :1·.· sisältäville plasmideille annettiin nimet pSgc4 (Bg/II-fragmentti) ja pScg5 (Xhol-Notl- • · 25 fragmentti) (ks. Kuvio 2).
• ·· • 1 · • · ·
Fragmentit Sg4 ja Sg5 subkloonattiin sekvensointia varten E. coli -vektoreihin pUC19 ’"1· ja pBluescript. Yhteensä 30 subkloonia käytettiin Sg4:n ja Sg5:n nukleotidisekvenssin ··· ’...; saamiseksi. Sekvensoitu ryhmittymä paljasti kolmetoista aklasinomysiinien biosyntee- * 1 1 1: 30 siin liittyvää geeniä. V ertailu sekvenssikiij aston sekvensseihin viittasi siihen, että sga2 • · : toimii aktivaattorina, sga3 dehydrataasina, sgaA oksidoreduktaasina, sgaS dTDP-glu- koosi-4,6-dehydrataasina, sga6 glykosyylitransferaasina, sgal otaksuttuna isomeraasi- • · : na, sgaS aklaviketonireduktaasina, sga9 otaksuttuna polyketidikokoojana, sgalQ otak- • · 5 107739 suttuna syklaasina, s gal 1 aminometylaasina, sga 12 glukoosi-1-fosfaatti-tymidylyyli-transferaasina, sga 13 aminotransferaasina. sga l:n funktiota ei ehdoteta yhtäläisyys-hakujen perusteella. Pääteltyjen funktioiden perusteella yhdeksän geeniä on osallisina glykosylaatioreittiin. Aglykonin muodostamiseen liittyvät geenit ovat sgaS, sga9, ja 5 sgalO. Aktivaation, Sga2, saattaa säädellä sekä glykosylaatiojäijestelmää että aklavi-nonin muodostumista polyketidireitin kautta.
pSgc4:stä peräsisin oleva Sg4 kloonattiin Streptomyces-zkspressiovektoriin pIJE486 (Ylihonko et ai., 1996b) S. lividans TK24:ssä siten, että saatiin pSgs4. Tämä vektori on 10 runsaslukuinen plasmidi, joka replikoituu useissa Streptomyces-lajeissa (Ward et ai., 1986) ja se sisältää konstitutiivisesti ilmentyvän promoottorin ermE (Bibb et ai., 1985) ylävirtaan monikloonauskohdasta. TK24:stä eristetty plasmidi pSgs4 tuotiin S. galilaeus -kantoihin, joissa aklasinomysiinin biosynteesin deoksiheksoosireitti on estetty, ja S.
peucetius -mutantteihin, jotka tuottavat ε-rodomysinonia glykosylaatiogeeneissä ole- 15 vaan vaurioon perustuen. Kolme S. galilaeus -mutanttia, H063, H054 ja H065, palautti kyvyn tuottaa aklasinomysiiniä. Mutanttikanta H063 akkumuloi aklavinonia ja plasmidi pSgs komplementoi sen täydellisesti. Sensijaan H054 ja H065, jotka tuottivat aklavino- niglykosideja, joilla oli samat neutraalisokerit mutta ei rodosamiinia, komplementoitui- vat vain osittain pSgs4:llä. Yllättäen H063 Jolla oli pSgs4 (H063/pSgs4), kykeni tuotta- 20 maan aklasinomysiinejä kaksinkertaisesti enemmän kuin villityyppinen S. galilaeus. S.
. ;1j peucetius M18 ja M90, jotka tuottavat ε-rodomysinonia, valittiin isänniksi pSgs4:lle. L- ·1· « : V: ramnosyyli-s-rodomysinonia (El Khamed et ai., 1977) saatiin kun pSgs4 ilmennettiin • · · :...· mutanteissa M18 ja M90, ja lisäksi M18/pSgs4 tuotti L-daunosaminyyli-s-rodomysino- • · ·.1·: nia(Esery ja Doyle, 1980). Rakenteet eivät olleet uusia, mutta tämä osoittaa geeniryh- • · · • · « * 25 mittymän kyvyn tämän keksinnön mukaisesti aikaansaada hybridituotteita heterologi- • · « • · · ’ sessa isännässä. Hybridiyhdisteiden tuottamiseksi suosimme El-alustan käyttöä sopivan antibioottilisäyksen, tässä tapauksessa tiostreptonin kanssa plasmidin sisältävien kanto- ] # / jen selektiopaineen ylläpitämiseksi. Tuotteet uutettiin orgaanisilla liuottimilla ja puhdis- • ♦ *; 1 tettiin kromatografialla yhdisteiden saamiseksi hyvin puhtaina rakenteen määritystä • · · • .1 30 varten.
• · · * · · • 1 ♦ · · • 9 j : Jäljempänä esitetään esimerkkejä keksinnön kuvaamiseksi edelleen.
• · • · · • ·· • · 6 107739
Piirustusten lyhyt kuvaus
Kuvio 1 esittää aklasinomysiinin, daunomysiinin ja ε-rodoraysinonin rakenteet.
5 Kuvio 2 on aklasinomysiinin biosynteesin geeniryhmittymän kaavio.
Kuvio 3 kuvaa aklasinomysiineissä esiintyvien sokereiden ehdotetun biosynteesireitin.
Kuvio 4 esittää Ml 8/pSgs4:n (1 ja 2) ja M90/pSgs4:n (2) tuottamien hybridiyhdisteiden 10 rakenteet.
KOKEELLINEN OSA
Käytetyt materiaalit 15 Käytettävät restriktioentsyymit hankittiin Promegalta (Madison, Wisconsin, USA), Fermentasilta (Liettua) tai Boehringer Mannheimilta (Saksa), emäksinen fosfataasi Boehringer Mannheimilta, ja niitä käytettiin valmistajan ohjeiden mukaisesti. Protei-naasi K hankittiin Promegalta ja lysotsyymi Sigmalta. Hybridisaatiossa käytettävät 20 Hybond™-N-nylonkalvot hankittiin Amershamilta (Buckinghamshire, Englanti), DIG DNA Labelling Kit ja DIG Luminescent Detection Kit Boehringer Mannheimilta. Qia- * · · · quick Gel Extraction Kit’iä Qiagenilta (Hilden, Saksa) käytettiin DNA:n eristämiseen * · agaroosista.
»·· • · • · · • · · • · lY: 25 Bakteerikannat ja niiden käyttö t · · • · · • · ·
Escherichia coli XLlBlueMRF (Stratagene, La Jolla, Kalifornia) käytettiin kloonauk-seen.
·»· • · • · · 30 Streptomyces lividans TK24 oli ensimmäinen kloonausisäntä geeniekspressiota varten.
* · · J... ί Kannan toimitti prof. Sir David Hopwood, John Innes Centre, UK. 1 · • · · • · · * 9 9 9 9 9 9 9 99 9 9 7 107739
Villityyppinen Streptomyces galilaeus ATCC 31615 tuottaa aklasinomysiinejä. Sitä käytettiin tässä luovuttamaan keksinnön geenejä.
Streptomyces galilaeus H039 (Ylihonko et ai., 1994) tuottaa Akv-(Rho)o-3- Sitä käytet-5 tiin ekspressioisäntänä pSgs4:lle, koska se transformoituu helpommin kuin villityypin muut mutantit.
Streptomyces galilaeus H054 (Ylihonko et ai., 1994) tuottaa Akv-Rho-dF-(CinA)o.i, Akv-dF-dF-(CinA)0-i ja Akv-dF-Rho-Rho. Sitä käytettiin ekspressioisäntänä pSgs4:lle.
10
Streptomyces galilaeus H063 tuottaa aklavinonia. Se on villityyppisestä S. galilaeusista johdettu mutanttikanta. H063:ta käytettiin ekspressioisäntänä pSgs4:lle.
Streptomyces galilaeus H065 tuottaa aklavinonia neutraalein glykosidein. Se on villi-15 tyyppisestä S. galilaeusista johdettu mutanttikanta. H065:ta käytettiin ekspressioisäntänä pSgs4:lle.
Streptomycespeucetius Ml 8 ja M90, jotka tuottavat ε-rodomysinonia, ovat S. peucetius var. caesiusista (ATCC 27952) johdetut mutantit. Niitä käytettiin ekspressioisäntänä 20 pSgs4:lle.
• ♦ ♦ · ♦ • ·· ·
Plasmidit • · ··· • · • · «·· : * ·. · E. co/z-kloonausvektoreita pBluescript SK (Stratagene) ja pUC 19 (Pharmacia, Ruotsi) • · : *: ’: 25 käytettiin sekvenoitavien subkloonien tekoon ja pBluescriptiä käytettiin myös geeni- • · · Y : kiijaston vektorina.
pWHM1109 (toimittaja prof. C.R. Hutchinson. Wisconsin, USA) on E. colissaja
• M
. streptomykeeteissä replikoituva siirtovektori. Sitä käytettiin geenikiijaston vektorina.
: · : 30 • · •: pIJ486 on runsaslukuinen plasmidivektori, jonka toimitti prof. Sir David Hopwood,
John Innes Centre, UK (Ward et ai., 1986).
• · • · • « · • · · • · pIJE486 (Ylihonko et ai., 1996b) on ekspressiovektori, joka sisältää ermE.n (Bibb et ai., 1985) kloonattujen geenien ilmentymisen edistämiseksi.
8 107739
Kasvualustat ja liuokset 5 S. galilaeusm viljelyyn kokonais-DNA:n eristystä varten käytettiin TSB-alustaa. Lyso-tsyymiliuosta (0,3 M sakkaroosi, 25 mM Tris, pH 8 ja 25 mM EDTA, pH 8) käytettiin kokonais-DNA:n eristykseen. TE-puskuria (10 mM Tris, pH 8,0 ja 1 mM EDTA) käytettiin DNA: n liuotuksessa.
10 TRYPTONI-SOIJALIEMI (TSB)
Litraa kohden: Oxoid Tryptone Soya Broth -jauhetta 30 g.
15 ISP4
Bacto ISP-alusta 4, Difco; 37 g/l.
El Litraa kohden vesijohtovedessä: glukoosi 20 g 20 liukoinen tärkkelys 20 g .·. Farmamedia 5 g • · · • · · ·
Hiivauute 2,5 g ;···. Κ2ΗΡ04·3Η20 1,3 g • · ·
MgS04*7H20 1 g :T: 25 NaCl 3 g
CaC03 3 g pH säädetään arvoon 7,4 ennen autoklavointia • · • · · • · ···’ Yleiset menetelmät: •« · : · : 30 • · NMR-mittaukset tehtiin JEOL JNM-GX 400-spektrometrillä. Ή- ja I3C-NMR-näytteiden sisäisenä standardina oli TMS.
• ♦ • ♦ ♦ · · • · · ♦ · 9 107739
Antrasykliinimetaboliitit määritettiin (i) HPLC:llä (LaChrom, Merck Hitachi, pumppu L-7100, detektori L-7400 ja integraattori D-7500) käyttäen LiChroCART RP-18-kolon-nia. Asetonitriili:kaliumvetyfosfaattipuskuria (60 mM, pH 3,0 sitruunahapolla säädettynä) käytettiin liikkuvana faasina. Gradienttijärjestelmää, joka lähtee 65 prosentista 30 5 prosenttiin kaliumdivetyfosfaattipuskuria, käytettiin yhdisteiden erottamiseen. Virtausnopeus oli 1 ml/min ja detektio suoritettiin 480 nm:ssä, ja (ii) TLC:llä käyttäen esi-päällystettyjä Kieselgel 60 F254-lasilevyjä (Merck, Darmstadt, Saksa) ja eluointiliuosta tolueeni:etyyliasetaatti:metanoli:muurahaishappo (50:50:15:3).
10 Tiostreptonilla (50 pg/ml) täydennettyjä ISP4-maljoja käytettiin plasmideja sisältävien viljelmien säilyttämiseen.
Esimerkki 1. Aklasinomysiinin biosynteesin geeniryhmittymän kloonaus 15 1.1 Kloonien valikointi hybridisaatiolla
Kokokais-DNA:n eristämistä varten Streptomyces galilaeusta kasvatettiin neljä päivää 50 ml.ssa TSB-alustaa, johon oli lisätty 0,5 % glysiiniä. Solut kerättiin sentrifugoimalla 15 min (3900 x g) 12 ml:n Falcon-putkissa, ja säilytettiin-20 °C:ssa. DNA:n eristämi- 20 seen käytettiin solut 50 ml:n viljelmästä. Kunkin Falcon-putken solujen päälle lisättiin 5 . ml lysotsyymiliuosta, joka sisälsi lysotsyymiä 5 mg/ml, ja inkuboitiin 20 min 37 °C:ssa.
·♦· ♦
Soluihin lisättiin 500 μΐ 10 % SDS:ää, joka sisälsi 0,7 mg proteinaasi K:ta, ja inkuboi- • · • · * ϊ.,.ϊ . tiin 80 min 62 °C:ssa, lisättiin vielä 500 μΐ 10 % SDS:ää, joka sisälsi 0,7 mg proteinaasi • ·
K:ta, ja inkubointia jatkettiin 60 min. Näyte jäähdytettiin jäissä ja 600 pl 3 M NaAc, pH
• · · • · · V * 25 5,8 lisättiin, ja seos uutettiin tasapainotetulla fenolilla (Sigma). Faasit erotettiin sentrifu- ··· • · · *·’ goimalla (1400 x g) 10 min. DNA saostettiin vesifaasista samalla tilavuudella isopropa nolia ja kerättiin lasisauvalla kiertämällä ja pestiin upottamalla 70%:iseen etanoliin, • · .,, kuivattiin ilmassa ja liuotettiin 500 pl:aan TE-puskuria.
• · • · · • · · • · · ^ ·* 30 Southem-hybridisaatio rajoitettujen plasmidikiijastojen valmistamiseen sopivien • · restriktioentsyymien määrittämiseksi tehtiin käyttämällä Bg/II, Xhol, Notl ja niiden • · :.V yhdistelmiä. Noin 9 kb:n fragmentti, joka hybridisoitui Sg-dht-koettimen kanssa, • · :.**i katsottiin hyväksi. Hybridisaatiota varten 600 ng digestoitua S. galilaeus -DNA:ta 10 107739
ladattiin agaroosigeeliin ja elektroforeesin jälkeen DNA siirrettiin geelistä nylonkalvolle vakuumiblottauksella. Hybridisaatio suoritettiin Boehringer Mannheimin ohjekirjan ’The DIG System User’s Guide for Filter Hybridization’ mukaisesti. Hybridisaatiokoe-tin, Sg-dht, jota käytettiin myös pesäkehybridisaatioon, saatiin monistamalla S. galila-5 eus -DNA: st a geenifragmentti, joka on 4,6-dehydrataasigeenin sisäinen ja vastaa SEQ
ID NO: 14:ssa esitettyä fragmenttia 6345 - 6861. Monistukseen käytettiin PCR:ää, ja degeneroitujen oligonukleotidialukkeiden sekvenssit olivat 5’-CSGGSGSSGCSGGS-TTCATSGG-3’ (eteenpäin, SEQ. ID. NO: 15) ja 5’-GGGWRCTGGYRSGGSCCGT A-GTTG-3’ (käänteinen, SEQ. ID. NO: 16). Sopivia fragmentteja olivat 9 kb:n BglII-10 fragmentti ja 7 kb: n ^ÄoI-TVoil-fragmentti.
Kymmenen mikrogrammaa kromosomaalista DNA:ta digestoitiin BglII:lla. DNA-frag-mentit erotettiin agaroosigeelielektroforeesilla ja 8-9 kb:n juova leikattiin 0,6-prosent-tisesta matalassa lämpötilassa jähmettyvästä SeaPlaque®-agaroosista. DNA-juova eris-15 tettiin geelistä käyttäen Qiagen Extraction Kit’iä. Eristetty fragmentti liitettiin 5amHI-digestoituun pWHMl 109-plasmidivektoriin ja defosforyloitiin, suhteessa 3 moolia in-sertti-DNA:ta 1 moolia vektori-DNA:ta kohden. Liitetty DNA tuotiin E. coli XLlBlue-MRF-kantaan elektroporaatiolla. Käyttäen koko liitosseosta saatiin 786 pesäkettä. Pesäkkeitä kasvatettiin agarmaljoilla vähintään 12 h ja siirrettiin nylonkalvoille. Pesäke-20 kalvojen hybridisaatio suoritettiin southern-muotoisena käyttäen Sg-dht:tä koettimena. Kuusi kloonia antoi signaaleja hybridisaatiossa ja vastaavat pesäkkeet maljattiin agarille • M · ja siirrostettiin 3 ml:aan LB-alustaa plasmidi-DNA:n eristämistä varten. Southern-hybri- • i :*”· disaatiota käytettiin tutkimaan, oliko klooneista peräisin olevissa plasmideissa haluttu »·« : * \: insertti. Nelj ä näistä plasmideista sisälsi 4,6-dehydrataasigeenifragmentin j a antoi ident- • · : V: 25 risen restriktiokartan, joten niissä oli sama fragmentti molempia orientaatioita edustaen.
M· ίφϊ : Fragmentille annettiin nimi Sg4 ja fragmentin sisältävälle plasmidille nimi pSgc4.
Samalla tavalla rakennettiin S. galilaeusista peräisin oleva 7 kb:n ATioI-AolI-DNA- #·· fragmenttia edustava plasmidikiijasto. pBluescript digestoitiinylTioI-TVoiFlla ja nom 7 j*·*: 30 kb:n fragmentit sisältävä geenikiijasto rakennettiin. Yhteensä 1523 pesäkettä hybridi- i’’|: soitiin ja seitsemän osoittautui halutuksi klooniksi. Kuten edellä kuvattiin, kloonit tut- kittiin iTioI-Abil-fragmentin suhteen. Inserttiffagmentille annettiin nimi Sg5 ja plasmi- • · :*·.· dille nimi pSgc5. Saatu kanta E. coli XLIBlue MRF’/pSgc5 talletettiin Budapestin sopi- • · muksen sääntöjen mukaisesti Deutsche Sammlung von Mikroorganismen und Zell- 11 107739 kulturen GmbH -kokoelmaan (DSMZ) elokuun 12. 1999 talletusnumerolla DSM 12999. Fragmentit Sg4 ja Sg5 ovat päällekkäisiä 836 bp:n osalta, vastaten emäksiä 6181-7016 SEQ ED NO: 14:ssa.
5 1.2. Fragmenttien subkloonaus sekvensointia varten
Sg4:n ja Sg5:n koko ryhmittymän nukleotidisekvenssin määrittämiseksi rakennettiin sopivia subklooneja. Tarkoituksenmukaisia restriktiokohtia käytettiin 14806 bp:n alueen subkloonaamiseksi plasmideihin pUC19 ja pBluescript. Yhdeksäntoista subkloonia tar-10 vittiin sekvensoimaan Sg4, ja 11 subkloonia Sg5:lle.
Subkloonatut plasmidit sisältäviä E. coli XLIBlue MRF’-soluja viljeltiin yli yön 37 °C:ssa 5 ml:ssa LB-alustaa, johon oli lisätty ampisilliinia 50 μg/ml. Plasmidien eristämiseksi sekvensointireaktioita varten käytettiin Promegan Wizard Plus Minipreps 15 DNA Purification System-pakettia tai Biomedizinische Analytik GmbH:n Biometra Silica Spin Disc Plasmid DNA Miniprep-pakettia valmistajien ohjeiden mukaisesti.
DNA: n sekvensointi suoritettiin käyttäen automaattista ABI DNA-sekvensoijaa (Perkin-Elmer) valmistajan ohjeiden mukaisesti.
20 . ·. 1.3. Geenien sekvenssianalyysi ja päätellyt funktiot • · · #·· · • · • · · ♦ · · • · . 1 1 1. S ekvenssianalyy sit tehtiin käyttäen GCG-sekvenssianalyysiohj elmistopakettia (Versio ··· 8; Genetics Computer Group, Madison, Wis., USA). Translaatiotaulukkoa modifioitiin • · :' ·’: 25 siten, että myös GTG hyväksyttiin aloituskodoniksi. Kodonien käyttö analysoitiin jul- :T: kaistuja tietoja käyttäen (Wright ja Bibb 1992).
CODONPREFERENCE-ohjelman mukaan sekvensoitu DNA-fragmentti paljasti 11 • · · täydellistä avointa lukukehystä (ORF) ja kaksi muiden ORFiien 5’-päätä (sgal ja :1·1: 30 sga\3). Geenien funktiot pääteltiin vertaamalla niiden emässekvensseistä transloituja • · • aminohapposekvenssejä tietopankeissa oleviin tunnettuihin sekvensseihin. Tulokset . V. esitetään Taulukossa 1 hakemuksessa annettuihin sekvenssitietoihin viitaten.
* · · • ♦ ♦ • · · • ·« • · 12 107739
Geeneille ehdotetut funktiot sopivat hyvin aklasinomysiinien sokerien ehdotettuun biosynteesireittiin (Kuvio 3). Aklasinomysiinien trisakkaridiosan viimeinen tähde on rodinoosi, joka muutetaan entsymaattisesti kineruloosiksi. Aklasinomysiini N, aklarubisiinin prekursori, sisältää rodinoosia kolmantena sokeritähteenä.
5
Taulukko 1.
Geeni Sijainti Amino- Päätelty funktio Huomautuksia hapot sgal -1986 >662 tuntematon epätäydellinen kömpi. Seq.ID.NO:l sgal 2523-3341 272 aktivaattori Seq.ID.NO:2 sga3 3355-4659 434 dehydrataasi Seq.ID.NO:3 kömpi.
sga4 4821-5810 329 oksidoreduktaasi Seq.ID.NO:4 sga5 5920-6891 323 dTDP-glukoosi 4,6- Seq.ED.NO:5 kömpi. dehydrataasi sga6 6879-8210 443 glukosyylitransferaasi Seq.ID.NO:6 kömpi.
sgal 8287-9618 443 otaksuttu isomeraasi Seq.ID.NO:7 kömpi, :.· : Sga8 9642-10445 267 aklaviketonireduktaasi Seq.ID.NO:8 :.V kömpi, (KRII) • M _ __ '···* sga9 10471-10905 144 otaksuttu Seq.ID.NO:9 • · 4 polyketidikokooja « · · ____________________________ __^^ *:!.* sgal® 11115-11894 259 otaksuttu syklaasi Seq.ID.NO:10 • · · • · · - ----— -- . ----- —...... ...
sgal 1 11956-12672 238 aminometylaasi Seq.ID.NO:ll sgal 2 12685-13560 291 glukoosi-1-fosfaatti- Seq.ID.NO:12 • · .*·*. kömpi. tymidylyylitransferaasi sgal3 13783-14805 341 aminotransferaasi Seq.ID.NO:13 • · • ♦ ..... *' " im··' i— 1 l'i— .—..il t ... .....- » i — "* ·*· • · « · • · · • · ♦ · · • · · • · ♦ · • · · * ·· ‘ * 10 13 107739 1.4 Ekspressiokloonaus Streptomyces-kannoissa 8 kb.n 5ör/»HI-^/>Ji/III-fragmentti pSgc4:stä liitettiin pIJE486:een siten, että saatiin pSgs4. Plasmidi pSgs4 tuotiin -S’, lividans TK24 -kantaan protoplastitransformaatiolla.
5 Saatu kanta S. lividans TK24/pSgs4 talletettiin Budapestin sopimuksen sääntöjen mukaisesti Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH-kokoel-maan (DSMZ) elokuun 12. 1999 talletusnumerolla DSM 12998. Plasmidi pSgs4 eristettiin kannasta ja siirrettiin edelleen S. galilaeus -mutanttiin H039. H039:stä eristetty plasmidipreparaatti tuotiin jälkeenpäin mutantteihin H063, H054, ja H065, joilta puut-10 tuvat aklasinomysiinien glykosylaatiojärjestelmät. H039:n käyttö primäärisenä S. ga-lilaeus-isäntänä. johtui siitä, että sen vieraan DNA:n sisäänotto oli tehokkaampaa.
S. galilaeus -mutantit tutkittiin komplementaation suhteen viljelemällä pSgs4:n sisältävät kloonit El-alustassa, johon oli lisätty tiostreptonia (10 pg/ml). Tuotteet uutettiin 15 500 μ1:η kasvatuslieminäytteestä tolueeni:metanolilla (1:1) pH:ssa 7. Metaboliitit sekä transformoiduista klooneista että mutanteista analysoitiin TLC:llä ja HPLC:llä pSgs4:n aiheuttamien erojen löytämiseksi. Endogeenisesti aklavinonia tuottava H063 palautui aklasinomysiinin tuottajaksi pSgs4:llä. Aklavinonia ei löydetty H063/pSgs4:n kasvu-liemessä. Komplementaatio ei kuitenkaan tullut täydelliseksi kun pSgs4 ilmennettiin 20 H054: ssä ja H065 :ssä. Kumpikin mutantti tuottaa aklavinonia neutraalein glykosidein.
Epätäydellinen komplementaatio johtui luultavasti plasmidin katoamisesta joistakin so- • V. luista kasvatuksen aikana, tai p Sgs4: ssä ei ole aktivaattorina tarvittavaa geenien alhaista • · ilmentymistä.
·«« • · • · · • ·· a · 25 TK24:stä eristetty pSgs4 tuotiin samalla tavalla S. peuceiius -mutantteihin Ml 8 ja M90.
··· V * Näiden mutanttien luonteenomainen tuote on ε-rodomysinoni. Plasmidin sisältävät kan nat M18/pSgs4 ja M90/pSgs4 viljeltiin El-alustassa, johon oli lisätty tiostreptonia (10 * * pg/ml), ja siinä olevat metaboliitit analysoitiin TLC.llä ja HPLC.llä. Kummallakin • · ···* kloonilla ilmeni muuttunut tuotantoprofiili verrattuna mutanteista saatuihin tuotteisiin.
«· · : ’,· 30 M90/pSgs4 akkumuloivat glykosyloitua tuotetta, ε-rodomysinonia aglykonina tuottaen.
• ·· ' Yhdiste tunnistettiin El Khamedin ei ai. (1977) aiemmin syntetisoimaksi (CAS=63252- • « ί.ί,ί 11-9) L-ramnosyyli-s-rodomysinoniksi.
• · • · · • ♦· • · 14 107739 M18/pSgs4 tuotti kahta yhdistettä, jotka erosivat emokannasta. HPLC-ja TLC-tulosten perusteella toinen yhdiste oli sama kuin M90/pSgs4 tuottama, L-ramnosyyli-s-rodomy-sinoni, ja toinen oli L-daunosaminyyli-s-rodomysinoni, jonka Essery ja Doyle (1980) ovat aiemmin karakterisoineet.
5
Taulukko 2: Hybridituotteiden TLC- ja HPLC-tiedot
Tuote Rf-arvo Retentioaika ε-rodomysinoni 0,67 6,70 L-ramnosyyli-s-rodomysinoni 0,38 5,00 L-daunosaminyyli-e-rodomysinoni 0,04 4,06 1.5. pSgs4:n käyttökelpoisuus kannan parannuksen 10 Koska H063 komplementoitui täydellisesti pSgs4:llä, tutkittiin aminoglykosidien tuottotaso. Tätä varten H063/pSgs4, H063 ja villityyppinen S. galilaeus viljeltiin El-alus-tassa Erlenmeyer-pulloissa neljä päivää. Kaksi 2 ml:n näytettä kustakin viljelmästä uutettiin ensin tolueeni:metanolilla (1:1) happamissa olosuhteissa neutraaliglykosidien ja aglykonien poistamiseksi. Uuttomenettely toistettiin, kunnes neutraalit glykosidit ja 15 aglykonit olivat kadonneet vesifaasista. Antrasykliinimetaboliittien määrä tolueenifaa- ,·. sissa määritettiin ja se esitetään taulukossa 3. Rodosamiinia sisältävät aklasinomysiinit • · · • · · · uutettiin vesifaasista kloroformilla. Sekä tolueeni-ja kloroformiuutteet analysoitiin • 1 t • · .···. TLC:llä, ja tolueenifaasit sisälsivät pääasiassa aklavinonia ja hajoamistuotteita. Kloro- ··· ' formifaasit sisälsivät pääasiallisesti aminoglykosideja, vaikkakin pieniä määriä aglyko- • · : 1 · ’; 20 neja havaittiin myös. Uutteet haihdutettiin kuiviin ja sen jälkeen liuotettiin 1 ml: aan : 1 Γ: metanolia. Antrasykliinimetaboliittien määrät detektoitiin spektrofotometrillä 430 nm aallonpituudella. Määrät suhteessa absorbanssiin laskettiin käyttämällä ekstinktioker- *:1·: rointa 13000. Tulokset annettuna mg/1 kasvulientä esitetään taulukossa 3. Aklasino- • · · *...J mysiinien tuotto H063/pSgs4:n toimesta oli ainakin kaksi kertaa parempi kuin villi- ·1·1; 25 tyypin.
• » «·· • · • · • · · • · « · · • · · • · · • i · • · · • · 15 107739
Taulukko 3.
Kloroformifaasin Tolueenifaasin aglykonifraktio aminoglykosidifraktio Näyte Absorbanssi Pitoisuus Absorbanssi Pitoisuus (mg/I) (mg/1) H063 0,401 12^6 2,956 92^3 H063/pSgs4 2,751 85^9 2,974 92^9 S. galilaeus 1,338 4^8 0,690 "2^5 pSgs4:n kyky lisätä aklasinomysiinien saantoa mutantissa H063 viittaa siihen, että tämän keksinnön mukaiset geenit ovat käyttökelpoisia kannan parannukseen.
5
Esimerkki 2. pSgs4:n tuottamat yhdisteet
Aloitusviljelmä, 180 ml plasmidin sisältävien kantojen M18/pSgs4 tai M90/pSgs4 El- viljelmää, saatiin kasvattamalla kutakin kantaa kolmessa 250 ml:n Erlenmeyer-pullossa, 10 joissa oli 50 ml tiostreptonilla (5 μg/ml) täydennettyä El-alustaa neljä päivää 30 °C:ssa, 330 rpm. Yhdistettyjä kasvuliemiä (180 ml) käytettiin siirrostamaan 13 1 El-alustaa fermentorissa (Biostat E). Fermentointi suoritettiin viiden päivän ajan 28 °C:ssa (330 . rpm, ilmastus: 4501/min).
• · • · · • · · · • · • · » • · · . · · ·, 15 S olut kerättiin sentrifugoimalla. 2,61 metanolia käytettiin rikkomaan bakteerisolut.
• · .·. ; Antrasykliinimetaboliitit uutettiin metanoliliuoksesta pH:ssa 8 käyttäen 21 etyyliase- • ·· • · taattia ja uute haihdutettiin kuiviin. Viskoosi jäännös laitettiin 4 x 10 cm:n phhappo- • · · kolonniin ja tolueeni:etyyliasetaatti:muurahaishappoa (50:50:3) käytettiin eluenttina suurenevan metanolimäärän kanssa. Puhtaat fraktiot yhdistettiin ja uutettiin 1 M fosfaat- ·:··· 20 tipuskurilla (pH 8,0) ja vedellä. Orgaaninen faasi kuivattiin vedettömällä NaiSO^lla ja ·*’*: käsiteltiin sitten heksaanilla saostumisen aikaansaamiseksi. Puhtaat yhdisteet olivat pu- • · · : ·. ·. naisia j auheita vakuumissa kuivattuina.
• · * • · · • · . · · ···
Yhdisteiden täydellinen rakennemääritys suoritettiin NMR:llä. Protoni- ja hiilimääri- • · « 25 tykset perustuivat tavanomaiseen NOE-erotus-, pHSQC- ja HMBC-mittauksiin. Erityi- • · · sesti korrelaatiot olivat vahvasti riippuvaisia HMBC-kokeesta.
16 107739
Taulukossa 4 annetuista tiedoista päätellyt rakenteet olivat kuviossa 4 esitetyt L-ramno-syyli-e-rodomysinoni (1) ja L-daunosaminyyli-s-rodomysinoni (2).
5 Vaikka nämä rakenteet eivät olleet uusia, osoittaa aklasinomysiinibiosynteesin glykosy-laatio-osuuteen liittyvien geenien hybridituotteiden tuotto hyvin sen, että pSgs4:n geenit ovat funktionaalisia ja valmiita käytettäväksi lääkekeksinnöissä uusien molekyylien löytämiseksi.
10 Talletetut mikrobit
Seuraavat mikrobit talletettiin Budapestin sopimuksen mukaisesti Deutsche Sammlung von Mikro organismen und Zellkulturen GmbH-kokoelmaan (DSMZ), Mascheroder Weg lb, D-38124 Braunschweig, Saksa.
15
Mikrobi Talletusnumero Talletuspäivämäärä S. lividans TK24/pSgs4 DSM 12998 12. elokuuta 1999 E. coli XLlBlueMRF7pSgc5 DSM 12999 12. elokuuta 1999 20 • · « · t • · · · • · • 1 « • · · • · • · · • 1 • · « · · • · " • · · • · · ♦ ♦ 1 • · ♦ i · 1 • · · • · · • · t • · • · · • · • · · • · · • · · • · • · • · · • · « · ··« • · • · · • · · • · · • · · • · ♦ • · 17 107739
Taulukko 4. Ή- ja 13C-keraialliset siirtymät yhdisteille 1 (DMS0d6) ja 2 (pieni määrä TFA DMSOd6.'ssa) 400 ja 100 MHz:n mittauksissa.
~ 1 2
Asema 1H liC 1Η UC
~T.....7,74, 1H, dd, 7,5, 0,9 118,9(d) 7,74, 1H, dd, 7,5, 1,0 119,7(d) 2 7,64, 1H, dd, 8,4,7,5 136.5(d) 7,68, 1H, dd, 8,1,7,5 137.4(d) 2__7,22, 1H, dd, 8,4, 0,9 124.1(d) 7,24, 1H, dd, 8,1, 1,0 125.0(d) 4__161,8(s)__162,6(s) 4-OH 12,00, 1H, s__-__vaihtumisen leventämä _ 4a__115,2(3)__115,9(s) _5__:__189,9(s) 190,6(s) 5a__110,4(s)__11 l,4(s) _6__^__156,2(s)__157,2(s) 6-OH 13,41, 1H, s___vaihtumisen leventämä _ 6a__135, l(s)__135,7(s) 7 5,14, 1H, d, 4,5__70,9(d) 5,15, 1H, d, 3,6__71,3(d) 8A 2,31, 1H, d, 15,1__28,9(t) 2,33, 1H, d, 14,6__34,0(t) 8B 2,14, 1H, dd, 15,1, 4,5 -__2,21, 1H, dd, 14,6, 3,8 -_ _9__-__70,0(s)__70,9(s) 10 4,16, 1H, s__51,2(d) 4,23, 1H, s__51,8(d) 10a__134,8(s)__136,1 (s) 11 156,0(s)__156,8(s) 11-OH 12,77, 1 H, s__-__vaihtumisen leventämä _ 11a__110,8(s)__11 l,l(s) 12 __185,4(s)__186,0(s) 12a__132,6(s)__133,3(s) 13A 1,73, 1H, dg, 13,9, 7,4 31,7(t) 1,83, 1H, dg, 14,1, 7,3 32,0(t) 13B 1,38, 1H, dg, 13,9, 7,4 -__1,47, 1H, dg, 14,1, 7,3 -_ 14 1,05, 3H, t, 7,4__6,09(g) 1,13, 3H, t, 7,3_ 6,90(g) *:.Y 15__170,4(s)__171;l(s) 16 3,63, 3H, s__51,7(g) 3,70, 3H, s__52,3(g) Γ 5,28, lH,brs__103,7(d) 5,52, 1H, d, 3,1__100,7(d) Λ»! 2' 3,83, 1H, d, 5,2 70,9(d) 2,18,2H, m_ 27,l(t) 3' 3,44, 1H, dd, 9,0, 5,2 70,8(d) 3,40, 1H, dd, 11,8, 5,1 55,5(d) 4' 3,41, 1H, dd, 9,1, 9,0 72,0(d) 3,98, 1H, brs__67,0(d) 5' 3,77, 1H, dg, 9,1, 6,2 68,9(d) 4,21, 1H, g, 6,3 65,3(d) 6' 1,29,3H, d, 6,2 16,9(g) 1,32,3H, t, 6,3 16,7(g) • · • ti • · • » · • · » • · · • · • ♦ • · · • · • 1 • « · · • ♦ · • · · • · • · » · · • · 18 107739
Kirjallisuusviitteet
Bibb, M. J,, Janssen, G. R. ja Ward, J. M. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus, Gene 5 38: 215-226.
El Khamed, H.S., Swartz, D.L. ja Cermak, R.C. 1977. Synthesis of ε-rhodomycinone glycosides. J Med Chem 20: 957-960.
10 Essery, J.M. ja Doyle, T.W. 1980. The synthesis of daunosaminyl-s-rhodomycinone, daunosaminyl-10-epi-s-rhodomycinone, daunosaminyl-e-pyrromycinone and 10-des-carbomethoxy-s-pyrromycin. Can J Chem 58: 1869-1874.
Hutchinson, C.R. ja Fujii, I. 1995. Polyketide synthase gene manipulation: A struc-15 ture-function approach in engineering novel antibiotics. Annu Rev Microbiol 49: 201-238.
Kunnari, T., Tuikkanen, J., Hautala, A., Hakala, J., Ylihonko, K. ja Mäntsälä, P.
1997. Isolation and characterization of 8-demethoxy steffimycins and generation of 2,8-20 demethoxy steffimycins in Streptomyces steffisburgensis by the nogalamycin biosynt hesis genes. J Antibiot 50: 496-501.
Madduri, K., Kennedy, J., Rivola,G., Inventi-Solari, A., Filippini, S., Zanuso, G., Colombo, A.L., Gewain, K.M., Occi, J.L., MacNeil, D.J. ja Hutchinson, C.R. 1998. 25 Production of the antitumor drug epirubicin (4Q-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomycespeucetius. Nature Biotech 16: 69-74.
Niemi, J., Ylihonko, K., Hakala, J., Kopio, A., Pärssinen, R. ja Mäntsälä, P. 1994. Hybrid anthracycline antibiotics: production of new anthracyclines by cloned genes 30 from Streptomycespurpurascens in Streptomycesgalilaeus. Microbiol 140: 1351-1358.
• · · · ··· ·
Oki, T., Matsuzawa, Y., Yoshimoto, A., Numata, K., Kitamura, L, Hori, S., Taka-matsu, A., Umezawa, H., Ishizuka, M., Naganawa, H., Suda, H., Hamada, M. ja Takeuchi, T. 1975. New antitumor antibiotics, Aclacinomycins A and B. J Antibiot 28: 35 830-834.
• · • · · *·* * Strohl, W. R., Dickens, M. L., Rajgarhia, V. B., W’oo, A. J. ja Priestley, N. D. 1997
Anthracyclines in Biotechnology of Antibiotics, ed. Strohl, W. R. Marcel Dekker Inc., New York. pp. 577-657.
40 ”**! Strohl, W.R., Bartel, P.L. Li, Y., Connors, N.C. ja Woodman, R.H. 1991. Express-
.*·*. ion of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J
Ind Microbiol 7: 3: 163-174.
• · · • · · • · ’··*. 45 Tsukamoto, N., Fujii, I., Ebizuka, Y. ja Sankawa, U. 1994. Nucleotide sequence of
' · · · ’ the aknk region of the aklavinone biosynthetic gene cluster of Streptomyces galilaeus. J
Bacteriol 176: 2473-2475.
• · · « · :.*·· Ward, J. M., Janssen, G. R., Kieser, T., Bibb, M. J., Buttner, M. J. ja Bibb, M. J.
50 1986. Construction and characterization of a series of multicopy promoter-probe plas- 19 107739 mid vectors for Streptomyces using the aminoglycoside phosphotransferase from Tn5 as indicator. Mol Gen Genet 203: 468-478.
Wright, F. ja Bibb, M. J. 1992. Codon usage in the G+C-rich Streptomyces genome.
5 Gene 113: 55-65.
Ylihonko K., Hakala J., Kunnari T. ja Mäntsälä P. 1996a. Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalater nogala-mycin biosynthesis genes. Microbiol 142: 1965-1972.
10
Ylihonko, K., Tuikkanen, J., Jussila, S., Cong, L. ja Mäntsälä, P. 1996b. A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater. sequence analysis and complementation of early-block mutations in the anthracycline pathway. Mol Gen Genet 251: 113-120.
15
Ylihonko, K., Hakala, J., Niemi, J., Lundell, J. ja Mäntsälä, P. 1994. Isolation and characterization of aclacinomycin A-non-producing Streptomyces galilaeus (ATCC 31615) mutants. Microbiol 140: 1359-1365.
• · • · · • · · 1 • « • · · • · · • · • · · • · • · ·1· • · · • ♦· • · ··» I · · • · · • · « « a · • · · • · ··» • · ··« • · « • · · • · • « • · · • · • · • a · •
• B
• · B
• · · • · B ♦ ♦ ♦ • · · « · 107739 20
SEQUENCE LISTING
<110> Galilaeus Oy <120> The gene cluster involved in aclacinomycin biosynthesis, and its use for genetic engineering <130> 31344 <140> <141> <160> 16 <170> Patentin Ver. 2.2
<210> 1 <211> 662 <212> PRT
<213> Streptomyces galilaeus <400> 1
Met Thr Glu Asp Arg Val Thr Thr Leu Gly Gly Glu Gin lie Ala Leu 15 10 15
Leu Ala Pro Leu Leu Asp Gly Ser Arg Asp Leu Pro Gly lie Val Ala 20 25 30
Asp Ala Ala Pro Arg Leu Pro Ala Gly Leu Ala Glu Arg Leu Val Thr 35 40 45
Arg Leu Leu Asp Ala Gly Leu Leu Cys Ala Tyr Pro Gin Asp Gly Ala 50 55 60
Asp Arg Pro Glu Arg Ala Tyr Arg Ser Leu Thr Gly Leu Gin Ala Arg 65 70 75 80 . Ser Ala Asp Ala Arg Asp Ala Val Leu Ala Ala Val Asp Leu Thr Gly 85 90 95 • · · » * : : Asp Ala Glu Ser Pro Leu Pro Glu Ala Val Ser Ala Ala Gly Leu Arg l.l 100 105 110 • · • · !**. · Ala Ala Ala Pro Gly Glu His Ala Ala Leu Thr Leu Val Leu Cys His : ·.: 115 120 125 • · ··· ϊ : : Asp Tyr Leu Asp Pro Arg Leu Ser Ala Leu Asp Ala Glu His Arg Ala '... 130 135 140 ♦ ♦ · • · ·
Thr Gly Arg Gly Trp Leu Pro Val Arg Ala Asn Gly Thr His Leu Trp 145 150 155 160 • *ί**ϊ Ile Gly Pro Phe Phe Ser Ala Gly Asp Gly Pro Cys Trp Ser Cys Leu ... 165 170 175 • .
*1* Ala Asp Arg Leu Arg Leu Arg Arg Arg Gly Glu Ala Tyr Val Gin His 180 185 190 ♦ · • ♦
Arg Leu Gly His Ser Gly Pro Ala Val His Arg Arg Ala Tyr Leu Pro *·*·* 195 200 205 • · ϊ : : Ala Gly Arg Ala Ala Ala Leu Gin Leu Ala Leu Leu Glu Ala Gly Lys '. *. 210 215 220 ...
...
Trp Leu Ser Gly His Arg Asp Thr Val Gin Asp Ser Leu Trp Arg Leu 225 230 235 240 107739 21
Asp Thr Arg Thr Leu Glu Ser Ser Arg His Pro Vai Arg Arg Arg Pro 245 250 255
Gin Cys Ser Arg Cys Gly Asp Pro Leu Leu Vai Arg Asp Arg Vai Ser 260 265 270
Ala Pro Vai Vai Leu Ser Ser Arg Pro Vai Arg Asp Glu Ser Gly Gly 275 280 285
Gly His Arg Thr Phe Gly Pro Gin Glu Met Leu Asp Arg Tyr Gly His 290 295 300
Leu Vai Asp Pro Vai Thr Gly Vai Vai Gly Glu lie Arg Arg Asp Pro 305 310 315 320
Arg Gly Pro Glu Phe Leu Asn Cys Phe Thr Arg Ser Arg Cys Arg Leu 325 330 335
Gly Pro Arg Ala Ala Pro Pro Ala Leu His Ser Pro Leu Arg Ser Pro 340 345 350
Gly Ser Gly Lys Gly Vai Thr Glu Leu His Ala Arg Vai Ser Ala Leu 355 360 365
Ala Glu Ala Leu Glu Arg Cys Ser Gly Tyr Phe Gin Gly Asp Glu Pro 370 375 380
Arg Arg Arg Gly Ser Tyr Arg Glu Leu Ala Gly Leu Ala Vai His Pro 385 390 395 400
Asp Ser Vai Gin Leu Phe Asp Arg Arg Gin Phe Glu Asp Arg Arg Ala 405 410 415
Trp Asn Arg Ala His Gly Pro Phe His Gin Vai Thr Glu Pro Phe Asp 420 425 430
Glu Asp Ala Pro Ile Asp Trp Thr Pro Vai Trp Ser Leu Thr Glu Arg 435 440 445 . : : Arg Gin Arg Leu Ala Pro Thr Ser Leu Leu Tyr Tyr Asn Ala Pro Asp ~Y 450 455 460 • · · • · ·
Ala Asp Thr Gly Phe Cys Arg Ala Thr Ser Asn Gly Ala Ala Ala Gly : : 465 470 475 480 • · ϊ *.! Thr Ser Leu Glu Asp Ala Vai Vai His Gly Cys Leu Glu Leu Vai Glu 485 490 495 • · ♦ • * ♦
Arg Asp Ala lie Ala Leu Trp Trp Tyr Asn Arg Thr Arg Gin Pro Gly : 500 505 510
Vai Thr Leu Asp Ala Arg Asp Pro Trp Ile Thr Arg Leu Arg Ala Vai . 515 520 525 ♦ · ... Leu Arg Asp Leu Gly Arg Thr Vai Trp Ala Leu Asp Leu Thr Ser Asp ' ί 530 535 540 • · · ί*.*. Leu Gly Ile Pro Vai Vai Ala Ala Vai Ser Vai Arg Thr Gly Gly Thr • ·' 545 550 555 560 e · · • · • *···' Ala Glu Asp Ile Vai Leu Gly Phe Gly Ala His Phe Asp Pro Arg Ile 565 570 575 • · · • ♦ ♦ ! *. Ala Leu Arg Arg Ala Leu Thr Glu Leu Ser Gin Met Leu Pro Pro Leu : ·.: 580 585 590 • · 107739 22
Ala Gin Glu Thr Ala Gly Asp Ala Ser Ala Tyr Thr Gly Thr Asp Pro 595 600 605
Glu Ala Met Arg Trp Phe Arg His Ala Thr Thr Ala Asn Gin Pro Tyr 610 615 620
Leu Leu Pro Ala Ala Arg Arg Ser Ala Arg Pro Pro Ala Ser Leu Arg 625 630 635 640
Pro Pro Arg Asp Ala Ala Ala Gin Ala Gly Ala Leu Vai Ala Leu Leu 645 650 655
Arg Arg His Gly Leu Glu 660
<210> 2 <211> 272 <212> PRT
<213> Streptomyces ga.llla.eus <400> 2
Vai Asp Ile Trp Leu Leu Gly Pro Leu Thr Ala Glu Vai Arg Gly Arg 15 10 15
Ser Ile Vai Pro Thr Ala Ala Lys Pro Arg Gin Ile Leu Ala Leu Leu 20 25 30
Ala Ile His Ala Asn Arg Vai Leu Pro Vai Gly Thr Leu Met Glu Glu 35 40 45
Ile Trp Gly Thr Glu Pro Pro Gin Ser Ala Leu Ala Thr Leu His Thr 50 55 60
Tyr Ile Leu Gin Leu Arg Arg Arg Leu Thr Ala Ala Tyr Gly Asp Glu 65 70 75 80 , Gly Gly Vai Ser Ala Lys Asp Vai Leu Vai Thr Gin Tyr Gly Gly Tyr . : 85 90 95 ··· · • · t ΐ : Cys Trp Gin Ala Pro Thr Asp Ser Vai Asp Vai Pro Arg Tyr Glu Arg I.* 100 105 110 • · • · !**, -· Leu Vai Thr Ala Gly Arg Ile Ala Thr Ala Glu Asp Arg Gin Glu Glu : ns i2o 125 • · • · · • i i Ala Ser Ala His Phe Arg Glu Ala Leu Ala Leu Trp Arg Gly Ser Ala 130 135 140 • · · • · *
Leu Vai Asp Vai Arg Ile Gly Pro Vai Leu Ser Ile Glu Vai Ala Arg 145 150 155 160 • ”**! Leu Glu Glu Ser Arg Leu Gly Vai Leu Glu Arg Cys Leu Glu Ala Asp ... 165 170 175 • · . Leu Arg Leu Gly Arg His Ala Glu Leu Leu Ala Glu Leu Thr Glu Leu :·.·, 180 185 190 • · • · .***. Thr Gly Arg His Pro Leu His Glu Gly Leu His Ala Gin Cys Met Thr *···’ 195 200 205 • ♦ ί ! i Ala Leu Tyr Arg Ala Gly Arg Ser Trp Gin Ala Leu Asp Vai Tyr Gin .' *. 210 215 220 * * * • · ·
Arg Leu Arg Arg Arg Leu Ala Glu Glu Leu Gly Leu Ser Pro Ser Pro 225 230 235 240 107739 23
Arg Leu Gin Arg Leu Gin Gin Ala Val Leu Ser Ala Glu Pro Trp Leu 245 250 255
Asp Ala Pro Arg Tyr Gly Gly Asp Pro Val Phe Asp Arg Met lie Ser 260 265 270
<210> 3 <211> 434 <212> PRT
<213> Streptomyces galilaeus <400> 3
Met Thr Ser Asp Thr Lys Ala Leu Val Leu Glu Gin Val Arg Glu Tyr 1 5 10 15
His Arg Gin Gin Gin Pro Gly Asn Phe Gin Pro Gly Val Thr Pro lie 20 25 30
Leu Ser Ser Gly Ala Val Leu Asp Glu Glu Asp Arg Val Ala Leu Val 35 40 45
Glu Ala Ala Leu Asp Leu Arg lie Ala Ala Gly Ala His Ser Arg Arg 50 55 60
Phe Glu Ser Lys Phe Ala Arg His lie Gly Val Arg Lys Ala His Leu 65 70 75 80
Val Asn Ser Gly Ser Ser Ala Asn Leu Leu Ala Leu Ser Ala Leu Thr 85 90 95
Ser Pro Arg Leu Gly Glu Gin Arg Leu Arg Pro Gly Asp Glu Val lie 100 105 110 . Thr Val Ala Gly Gly Phe Pro Thr Thr Val Asn Pro lie Leu Gin Asn . : : 115 120 125 • ΦΦ Φ • · ! ! ί Gly Leu Thr Pro Val Phe Val Asp Leu Glu Leu Gly Thr Tyr Asn Thr l.l 130 135 140 • Φ • Φ . .- Thr Val Glu His Val Arg Ala Ala lie Ser Asp Arg Thr Arg Ala lie V*i 145 150 155 160 • · · ·.* · Met lie Ala His Thr Leu Gly Asn Pro Tyr Gin Val Ala Glu lie Gin ... 165 170 175 • · · • Φ ·
Gin Leu Ala Thr Glu His Glu Leu Phe Leu lie Glu Asp Asn Cys Asp 180 185 190 • *·**· Ala Val Gly Ser Thr Tyr Gin Gly Arg Met Thr Gly Thr Phe Gly Asp ... 195 200 205 • Φ • Φ · . * Leu Ala Thr Val Ser Phe Tyr Pro Ala His His lie Thr Thr Gly Glu ί*.*. 210 215 220 • · • Φ j*“j Gly Gly Cys Val Leu Thr Arg Asn Leu Glu Leu Ala Arg lie Val Glu -*···* 225 230 235 240 • · ·.· ! Ser Phe Arg Asp Trp Gly Arg Asp Cys Trp Cys Glu Pro Gly Glu Asp . . 245 250 255 • Φ Φ • Φ Φ Φ Φ
Asn Thr Cys Leu Lys Arg Phe Asp Tyr Gin Leu Gly Asn Leu Pro Lys 260 265 270 107739 24
Gly Tyr Asp His Lys Tyr lie Phe Ser His lie Gly Tyr Asn Leu Lys 275 280 285
Ala Thr Asp Leu Gin Gly Ala Leu Ala Leu Ser Gin Leu Asn Lys Leu 290 295 300
Pro Glu Phe Gly Ala Ala Arg Arg Arg Asn Trp Gin Arg Leu Arg Asp 305 310 315 320
Gly Leu Ala Asp Val Pro Gly Leu Leu Leu Pro Val Ala Thr Pro Gly 325 330 335
Ser Asp Pro Ser Trp Phe Gly Phe Val lie Thr Val Leu Pro Asp Ala 340 345 350
Thr Tyr Thr Arg Arg Asp Leu Val Ala Phe Leu Glu Glu Arg Arg lie 355 360 365
Gly Thr Arg Arg Leu Phe Gly Gly Asn Leu Thr Arg His Pro Ala Tyr 370 375 380
Leu Gly Thr Pro His Arg Val Ala Gly Asp Leu Arg Asn Ser Asp lie 385 390 395 400 lie Thr Glu Gin Ser Phe Trp lie Gly Val Tyr Pro Gly lie Thr Glu 405 410 415
Glu Met Thr Asp Tyr Met Arg Glu Ser lie Val Glu Phe Val Thr Lys 420 425 430
Asn Gly
<210> 4 <211> 329 <212> PRT
. <213> Streptomyces galilaeus TV <400> 4 ϊ ί Ϊ Met Pro Lys Asp Thr Pro Arg Pro Val Leu Arg lie Gly Val Leu Gly V 1 5 10 15 • · « · I**. - Cys Ala Asp lie Ala Val Arg Arg lie Leu Pro Ala lie Val Glu His : \ί 20 25 30 % t ··· • ϊ i Pro Ser Val Arg Leu Val Ala Leu Ala Ser Arg Asp Gly Ala Arg Ala 1.. 35 40 45 • · · • · ·
Glu Arg Leu Ala Ala Arg Phe Gly Cys Ala Ala Val Thr Gly Tyr Lys 50 55 60 • ***** Ala Leu Leu Asp Arg Glu Asp lie Asn Ala Val Tyr Val Pro Leu Pro ... 65 70 75 80 • · ^ ♦ » Pro Gly Met His His Glu Trp Val Thr Glu Ala Leu Thr Ala Gly Lys ί*.'. 85 90 95 • » • a ***** His Val Leu Val Glu Lys Pro Leu Ser Thr Thr Tyr Ala Gin Ser Val ···* 100 105 110 • « V · Asp Leu Val Ala Met Ala Gly Arg Leu Gly Leu Ala Leu Thr Glu Asn . . 115 120 125 • · · * ♦*
Phe Met Phe Leu His His Ser Gin His Glu Ala Val Arg Ala Met Thr 130 135 140 107739 25
Gly Glu Ile Gly Glu Leu Arg Vai Phe Thr Ser Ser Phe Gly Val Pro 145 150 155 160
Pro Pro His Pro Ser Ser Phe Arg His Asp Ala Arg Leu Gly Gly Gly 165 170 175
Ala Leu Leu Asp Val Gly Val Tyr Pro Leu Arg Ala Ala Gin Leu His 180 185 190
Leu Ala Gly Glu Leu Asp Val Leu Gly Ala Cys Leu Arg Val Asp Glu 195 200 205
Ala Thr Gly Val Asp Val Ala Gly Ser Ala Leu Leu Ser Thr Ala Thr 210 215 220
Gly Val Thr Ala Gin Leu Asp Phe Gly Phe Gin His Ala Tyr Arg Ser 225 230 235 240
Val Tyr Ala Leu Trp Gly Ser Arg Gly Arg Leu Ser Val Pro Arg Ala 245 250 255
Phe Thr Pro Pro Arg Glu His Arg Pro Val Val Arg lie Glu Gin Gin 260 265 270
Asp Arg Leu Thr Glu Val Thr Leu Pro Ala Asp His Gin Val Gly Asn 275 280 285
Ala Leu Asp Ala Phe Ala Ser Ala Val His Ser Glu Thr Val Arg Ala 290 295 300
Ser Leu Gly Glu Ala Leu Leu Arg Gin Ala Leu Leu Val Glu Gin Val 305 310 315 320
Arg Lys Ala Ala Arg Val Val Ser Gly 325
<210> 5 <211> 323 <212> PRT
. <213> Streptomyces galllaeus ♦ 9 <400> 5 ; Met Arg Val Leu lie Thr Gly Gly Ala Gly Phe lie Gly Ser His Tyr I.! 15 10 15 » · • « ***. Val Arg Ser Leu Leu Ala Gly Thr Leu Pro Gly Pro Arg Pro Ser Arg : 20 25 30 • · : ί : Val Thr Val Val Asp Leu Leu Thr Tyr Ala Gly Asp Thr Gly Asn Leu 35 40 45 • ♦ · • · ·
Pro Leu Ala Asp Pro Arg Leu Asp Phe Arg Arg Leu Asp lie Arg Asp 50 55 60 • - *i**J Leu Asp Ala Leu Leu Thr Val Val Pro Gly His Asp Ala Val Val His ... 65 70 75 80 • · *:* Phe Ala Ala Glu Thr His Val Asp Arg Ser Leu Ser Glu Pro Ala Glu :*.·. 85 90 95 • · • · .*·*. Phe Val Arg Thr Asn Val Leu Gly Thr Gin Ser Leu Leu Glu Ala Ser *...* 100 105 110 * III Leu Arg Gly Gly Val Gly Thr Phe Val His Val Ser Thr Asp Glu Val 115 120 125 • · · • · · • · 107739 26
Tyr Gly Ser lie Ala Gin Gly Thr Trp Thr Glu Glu Ala Pro Leu Leu 130 135 140
Pro Asn Ser Pro Tyr Ala Ala Ser Lys Ala Gly Ser Asp Leu Val Ala 145 150 155 160
Arg Ser Tyr Trp Arg Thr His Gly Leu Asp Val Arg Thr Thr Arg Cys 165 170 175
Ala Asn Asn Tyr Gly Pro Arg Gin His Pro Glu Lys Leu lie Pro Leu 180 185 190
Phe Val Thr Glu Leu Leu Ala Gly Arg Pro Val Pro Leu Tyr Gly Asp 195 200 205
Gly Gly Asn Val Arg Glu Trp Leu His Val Asp Asp His Cys Arg Ala 210 215 '220
Val His Ala Val Leu Thr Gly Gly Arg Pro Gly Glu lie Tyr Asn lie 225 230 235 240
Gly Gly Gly Thr His Leu Thr Asn Arg Glu Met Thr Ala Lys Leu Leu 245 250 255
Ala Leu Cys Gly Thr Asp Trp Ser Arg Val Arg Gin Val Pro Asp Arg 260 265 270
Lys Gly His Asp Leu Arg Tyr Ala Val Asp Asp Thr Lys lie Arg Glu 275 280 285
Glu Leu Gly Tyr Arg Pro Leu Arg Ser Leu Asp Asp Gly Leu Arg Glu 290 295 300
Val Val Asp Trp Tyr Arg Asp Arg Gin Thr His Arg Pro Glu Pro Ala 305 310 315 320
Glu Arg Val . <210> 6 · <211> 443
IV <212> PRT
V.* <213> Streptomyces galilaeus • · · V.: <400> 6 • . Met Arg Val Leu Leu Thr Ser Phe Ala Leu Asp Ala His Phe Asn Gly ·.*·; 15 10 15 • · · ·.· · Ser Val Pro Leu Ala Trp Ala Leu Arg Ala Ala Gly His Glu Val Arg ... 20 25 30 • · ♦ • · ·
Val Ala Ser Gin Pro Ala Leu Thr Ala Ser lie Thr Ala Ala Gly Leu 35 40 45 • *·**· Thr Ala Val Pro Val Gly Ala Asp Pro Arg Leu Asp Glu Met Val Lys ··· 50 55 60 • · • · · • Gly Val Gly Asp Ala Val Leu Ser His His Ala Asp Gin Ser Leu Asp 65 70 75 80 • ·
Ala Asp Thr Pro Gly Gin Leu Thr Pro Ala Phe Leu Gin Gly Trp Asp 85 90 95 • · ·.·.* Thr Met Met Thr Ala Thr Phe Tyr Thr Leu lie Asn Asp Asp Pro Met • . 100 105 110 « · · • · * • · 107739 27
Vai Asp Asp Leu Vai Ala Phe Ala Arg Gly Trp Glu Pro Asp Leu Ile 115 120 125
Leu Trp Glu Pro Phe Thr Phe Ala Gly Ala Vai Ala Ala Lys Vai Thr 130 135 140
Gly Ala Ala His Ala Arg Leu Leu Ser Phe Pro Asp Leu Phe Met Ser 145 150 155 160
Met Arg Arg Ala Tyr Leu Ala Gin Leu Gly Ala Ala Pro Ala Gly Pro 165 170 175
Ala Gly Gly Asn Gly Thr Thr His Pro Asp Asp Ser Leu Gly Gin Trp 180 185 190
Leu Glu Trp Thr Leu Gly Arg Tyr Gly Vai Pro Phe Asp Glu Glu Ala 195 200 205
Vai Thr Gly Gin Trp Ser Vai Asp Gin Vai Pro Arg Ser Phe Arg Pro 210 215 220
Pro Ser Asp Arg Pro Vai Vai Gly Met Arg Tyr Vai Pro Tyr Asn Gly 225 230 235 240
Pro Gly Pro Ala Vai Vai Pro Asp Trp Leu Arg Vai Pro Pro Thr Arg 245 250 255
Pro Arg Vai Cys Vai Thr Leu Gly Met Thr Ala Arg Thr Ser Glu Phe 260 265 270
Pro Asn Ala Vai Pro Vai Asp Leu Vai Leu Lys Ala Vai Glu Gly Leu 275 280 285
Asp Ile Glu Vai Vai Ala Thr Leu Asp Ala Glu Glu Arg Ala Leu Leu 290 295 300
Thr His Vai Pro Asp Asn Vai Arg Leu Vai Asp His Vai Pro Leu His 305 310 315 320
Ala Leu Leu Pro Thr Cys Ala Ala Ile Vai His His Gly Gly Ala Gly 325 330 335 • ;,· 1 Thr Trp Ser Thr Ala Leu Vai Glu Gly Vai Pro Gin Ile Ala Met Gly 340 345 350 • · « • · · ... Trp Ile Trp Asp Ala Ile Asp Arg Ala Gin Arg Gin Gin Ala Leu Gly 355 360 365 • · ·.1·· Ala Gly Leu His Leu Pro Ser His Glu Vai Thr Vai Glu Gly Leu Arg 370 375 380 » » « • #1j« Gly Arg Leu Vai Arg Leu Leu Asp Glu Pro Ser Phe Thr Ala Ala Ala : 385 390 395 400
Ala Arg Leu Arg Ala Glu Ala Glu Ser Glu Pro Thr Pro Ala Gin Vai 405 410 415 • · ,···, Vai Pro Vai Leu Glu Arg Leu Thr Ala Gin His Arg Ala Arg Glu Pro ...1 420 425 430 :1·1; Arg Arg Pro Gly Gly Thr Ser Pro Cys Vai Ser 435 440 • · • · • · · • · • · · • · · • · · t · i • · · • · 107739 28
<210> 7 <211> 443 <212> PRT
<213> Streptomyces galllaeus <400> 7
Val Gin Thr Gin Asn Ala Pro Glu Thr Ala Glu Asn Gin Gin Thr Asp 15 10 15
Ser Glu Leu Gly Arg His Leu Leu Thr Ala Arg Gly Phe His Trp lie 20 25 30
Tyr Gly Thr Ser Gly Asp Pro Tyr Ala Leu Thr Leu Arg Ala Glu Ser 35 40 45
Asp Asp Pro Ala Leu Leu Thr Arg Arg lie Arg Glu Ala Gly Thr Pro 50 55 60
Leu Trp Gin Ser Thr Thr Gly Ala Trp Val Thr Gly Arg His Gly Val 65 70 75 80
Ala Ala Glu Ala Leu Ala Asp Pro Arg Leu Ala Leu Arg His Ala Asp 85 90 95
Leu Pro Gly Pro Gin Arg His Val Phe Ser Asp Ala Trp Ser Asn Pro 100 105 110
Gin Leu Cys His lie lie Pro Leu Asp Arg Ala Phe Leu His Ala Ser 115 120 125
Asp Ala Asp His Thr Arg Trp Ala Arg Ser Ala Ser Ala Val Leu Gly 130 135 140
Ser Ala Gly Gly Ala Pro Ala Glu Gly Val Arg Glu His Ala Gly Arg 145 150 155 160
Val His Arg Glu Ala Ala Asp Arg Thr Gly Asp Ser Phe Asp Leu Met 165 170 175
Ala Asp Tyr Ser Arg Pro Val Ala Thr Glu Ala Ala Ala Glu Leu Leu 180 185 190 . : : Gly Val Pro Ala Ala Gin Arg Glu Arg Phe Ala Ala Thr Cys Leu Ala ‘I*.* 195 200 205 • # « • 0 ·
Leu Gly Val Ala Leu Asp Ala Ala Leu Cys Pro Gin Pro Leu Ala Val I : 210 215 220 • · · : Thr Arg Arg Leu Thr Glu Ala Val Glu Asp Val Arg Ala Leu Val Gly I..* 225 230 235 240 • · · • · «
Asp Leu Val Glu Ala Arg Arg Thr Gin Pro Gly Asp Asp Leu Leu Ser : .· : 245 250 255
Ala Val Leu His Ala Gly Ser Ser Ala Ala Ser Ala Gly Gin Asp Ala . 260 265 270 • · ... Leu Ala Val Gly Val Leu Thr Ala Val Val Gly Val Glu Val Thr Ala • : 275 280 285 «·· I*.*. Gly Leu lie Asn Asn Thr Leu Glu Ser Leu Leu Thr Arg Pro Val Gin I .* 290 295 300 • · · ♦ · *.··* Trp Ala Arg Leu Gly Glu Asn Pro Glu Leu Ala Ala Gly Ala Val Glu 305 310 315 320 • · · • · · • · • · • · · • · · • · 107739 29
Glu Ala Leu Arg Phe Ala Pro Pro Val Arg Leu Glu Ser Arg lie Ala 325 330 335
Ala Glu Asp Leu Thr Leu Gly Gly Gin Asp Leu Pro Ala Gly Ala Gin 340 345 350
Val Val Val His Val Gly Ala Ala Asn Arg Asp Pro Glu Ala Phe Leu 355 360 365
Ala Pro Asp His Phe Asp Leu Asp Arg Pro Ala Gly Gin Gly Gin Leu 370 375 380
Ser Leu Ser Gly Pro His Thr Ala Leu Phe Gly Ala Phe Ala Arg Leu 385 390 395 400
Gin Ala Glu Thr Ala Val Arg Thr Leu Arg Glu Arg Arg Pro Val Leu 405 410 415
Ala Pro Ala Gly Ala Val Leu Arg Arg Met Arg Ser Pro Val Leu Gly 420 425 430
Ala Val Leu Arg Phe Pro Leu Thr Thr Ser Ala 435 440
<210> 8 <211> 267 <212> PRT
<213> Streptomyces ga.lila.eus <400> 8
Val Asn Arg Ala Ala Arg Pro Thr Val Arg Gly Met Ser Ala lie Ala 15 10 15
Glu Pro Thr Ala Pro Arg Gly Val He Val Thr Gly Gly Gly Thr Gly 20 25 30
He Gly Arg Ala Thr Ala His Ala Phe Ala Asp Arg Gly Asp Arg Val 35 40 45 . Leu Val Val Gly Arg Thr Ala Ala Thr Leu Ala Gly Thr Ala Glu Gly .:: 50 55 60 ♦ ♦· ♦ • · : : : - His Pro Gly He Ser Val Leu Thr Ala Asp Leu Thr Asp Pro Asp Gly 1/. 65 70 75 80 • · • · I**. Pro Arg Ala He Thr Asp Ala Ala Leu Asp Ala Leu Gly Arg He Asp : 85 90 95 • « ··· • : : Val Leu Val Asn Asn Ala Ala Thr Gly Gly Phe Ala Gly Leu Ala Glu 1.. 100 105 110 • · · • · ·
Thr Glu Pro Glu Ala Ala Arg Glu Gin Phe Asp Ser Asn Leu Leu Ala 115 120 125 • ·****: Pro Leu Leu Leu Thr Arg Gin Thr Leu Asp Ala Leu Ser Ala Asp Gly ... 130 135 140 • ·
Gly Gly Thr Val Leu Asn lie Gly Ser Ala Gly Ala Leu Gly Arg Arg :*.*. 145 150 155 160 • · • · .***. Ala Trp Pro Gin Asn Gly Val Tyr Gly Ala Ala Lys Ala Gly Leu Asp *·.«* 165 170 175 ♦ « : : : Phe Leu Thr Arg Thr Trp Ala Val Glu Leu Ala Pro Arg Gly He Arg * \ 180 185 190 • * ♦ ♦ ·· • · 107739 30
Vai Leu Gly Leu Ala Pro Gly Vai Ile Asp Thr Gly Ile Gly Glu Arg 195 200 205
Ser Gly Met Ser Arg Glu Ala Tyr Ala Gly Phe Leu Gly Gin Ile Ala 210 215 220
Ala Arg Vai Pro Ala Gly Arg Vai Gly Arg Pro Glu Asp Ile Ala Trp 225 230 235 240
Trp Ala Vai Gin Leu Ala Asp Pro Arg Ala Ala Tyr Ala Thr Gly Ala 245 250 255
Vai Leu Ala Vai Asp Gly Gly Leu Ser Leu Thr 260 265
<210> 9 <211> 144 <212> PRT
<213> Streptomyces galilaeus <400> 9
Met Thr Ala Gin Ala Pro Thr Ala Pro Ala Asp Vai Tyr Ala Glu Vai 15 10 15
Gin His Phe Tyr Ala Arg Gin Met Arg Tyr Leu Asp Ser Gly Glu Ala 20 25 30
Glu Thr Trp Ala Gly Thr Phe Thr Glu Asp Gly Ser Phe Ala Pro Pro 35 40 45
Ser Leu Pro Glu Pro Vai Arg Gly Arg Pro Leu Leu Ala Glu Gly Ala 50 55 60
Arg Asn Ala Ala Ala Gly Leu Ala Ala Ala Arg Glu Thr His Arg His 65 70 75 80
Trp Vai Gly Met Leu Thr Vai Thr Pro Ala Asp Asp Gly Ser Leu Thr 85 90 95 . Ala Glu Ser Leu Vai Ser Ile Vai Ala Vai Ala Gin Gly Gly Pro Ala . : : loo 105 no ··· · • · ii!· Arg Leu His Leu Vai Cys Thr Cys Arg Asp Vai Leu Vai Arg Glu Gly 115 120 125 • · • · . . Gly Arg Leu Leu Vai Arg Glu Arg Vai Vai Thr Arg Asp Asp Arg Pro Σ *.J 130 135 140 • · 107739 31
Ala Glu Leu Pro Glu Gly Glu Phe Leu Ser Leu Asp Arg Leu Gin Leu 50 55 60
Thr Thr His Thr Gly Thr His Vai Asp Ala Pro Ser His Tyr Gly Thr 65 70 75 80
Arg Ala Ala Tyr Arg Asp Gly Pro Pro Arg His Ile Asp Glu Met Pro 85 90 95
Leu Asp Trp Phe Phe Arg Pro Ala Vai Vai Leu Asp Leu Ser Asp Gin 100 105 110
Gly Thr Gly Ala Vai Gly Ala Asp Vai Leu Arg Arg Glu Met Asp Arg 115 120 . 125
Ile Gly His Thr Pro Ser Pro Met Asp Ile Vai Leu Leu Arg Thr Gly 130 135 140
Ala Asp Ala Trp Ala Gly Thr Pro Lys Tyr Phe Thr Asp Phe Thr Gly 145 150 155 160
Leu Asp Gly Ser Ala Vai His Leu Leu Leu Asp Leu Gly Vai Arg Vai 165 170 175
Ile Gly Thr Asp Ala Phe Ser Leu Asp Ala Pro Phe Gly Asp Ile Ile 180 185 190
Thr Arg Tyr Arg Ala Thr Gly Asp Pro Ser Vai Leu Trp Pro Ala His 195 200 205
Vai Ile Gly Arg Asp Arg Glu Tyr Cys Gin Vai Glu Arg Leu Ala Gly 210 215 220
Leu Asp Arg Leu Pro Ala Ala His Gly Phe Arg Vai Ala Cys Phe Pro 225 230 235 240
Vai Arg Ile Ala Gly Ala Gly Ala Gly Trp Thr Arg Ala Vai Ala Leu 245 250 255
Vai Asp Glu • · :;γ <210> 11 : : : - <2ii> 238
<212> PRT
ί Ϊ <213> Streptomyces galilaeus <4oo> ii ϋ..’ Met Tyr Gly Arg Glu Leu Ala Asp Vai Tyr Glu Ala Ile Tyr Arg Ser : : : 1 5 10 15 ··· ί ϊ Ϊ Arg Gly Lys Asp Trp Gly Gin Glu Ala Ala Asp Vai Ser Arg Ile Ile 20 25 30 , Thr Glu Arg Arg Pro Gly Ala Gly Ser Leu Leu Asp Vai Ala Cys Gly » 1:2: 35 40 45 ··· ί Thr Gly Ala His Leu Ser Vai Phe Ser Thr Leu Phe Glu Vai Ala Glu T 50 55 60 • ·· · * ♦ · • ·1 Gly Leu Glu Ile Ala Glu Pro Met Arg Arg Leu Ala Glu Gin Arg Leu .··1. 65 70 75 80 • ♦ • · ·
Pro Gly Thr Thr Vai His Ala Gly Asp Met Arg Asp Phe Arg Leu Pro : :: ss 90 95 • « ♦ • · « • e· 2 • » 107739 32
Arg Thr Tyr Asp Ala Val Ser Cys Met Phe Cys Ala lie Gly Tyr Leu 100 105 110
Glu' Thr Leu Asp Asp Met Arg Ala Ala Val Arg Ser Met Ala Ala His 115 120 125
Leu Glu Pro Gly Gly Val Leu Val Val Glu Pro Trp Trp Phe Pro Glu 130 135 140
Asn Phe lie Glu Gly Tyr Val Ala Gly Asp Leu Ala Arg Glu Glu His 145 150 155 160
Arg Thr lie Ala Arg lie Ser His Thr Thr Arg Lys Gly Arg Ala Thr 165 170 175
Arg Met Glu Val Arg Phe Thr Val Gly Asp Ala Ala Gly lie Gin Gin 180 185 190
Phe Thr Glu lie Asp Val Leu Thr Leu Phe Thr Arg Asp Glu Tyr Thr 195 200 205
Ala Ala Phe Thr Asp Ala Gly Cys Ser Val Glu Phe Leu Glu Asp Gly 210 215 220
Pro Thr Gly Arg Gly Leu Phe Val Gly Val Arg Glu Gin Arg 225 230 235
<210> 12 <211> 291 <212> PRT
<213> Streptomyces galilaeus <400> 12
Met Lys Gly lie lie Leu Ala Gly Gly Ser Gly Thr Arg Leu His Pro 15 10 15 lie Thr Val Ser Val Ser Lys Gin Leu Leu Pro Val Gly Asp Lys Pro 20 25 30 . Met lie Tyr Tyr Pro Leu Ser Val Leu Met Leu Ala Asp lie Arg Glu .:: 35 40 45 ··· · • ·
He Leu Leu lie Cys Thr Glu Arg Asp Leu Glu Gin Phe Arg Arg Leu 50 55 60 • · • · ***# Leu Gly Asp Gly Ser Gin Leu Gly Leu Arg lie Asp Tyr Ala Val Gin I ·.: 65 70 75 80 • · «I» : : ! Asn Arg Pro Ala Gly Leu Ala Asp Ala Phe Val lie Gly Ala Asp His :.. 85 90 95 • · « • · ·
Val Gly Asp Asp Asp Val Ala Leu Val Leu Gly Asp Asn lie Phe His 100 105 110 *:**: Gly His His Phe Tyr Asp Leu Leu Gin Ser Asn Val His Asp Val Gin ... 115 120 125 « · * '!* Gly Cys Val Leu Phe Gly Tyr Pro Val Glu Asp Pro Glu Arg Tyr Gly 130 135 140 • » • · ,*··, Val Gly Glu Thr Asp Ala Ser Gly Gin Leu Val Ser Leu Glu Glu Lys *...* 145 150 155 160 • · : : : Pro Leu Arg Pro Arg Ser Asp Leu Ala lie Thr Gly Leu Tyr Leu Tyr ; *. 165 170 175 • * · « · » • · 107739 33
Asp Asn Glu Vai Vai Asp Ile Ala Lys Asn Leu Arg Pro Ser Pro Arg 180 185 190
Gly Glu Leu Glu Ile Thr Asp Vai Asn Arg Asn Tyr Leu Ala Arg Gly 195 200 205
Arg Ala Arg Leu Vai Asp Leu Gly Arg Gly Phe Ala Trp Leu Asp Ala 210 215 220
Gly Thr Pro Glu Ser Leu Leu Gin Ala Thr Gin Tyr Vai Arg Thr Leu 225 230 235 240
Glu Glu Arg Gin Gly Vai Arg Ile Ala Cys Vai Glu Glu Vai Ala Leu 245 250 255
Arg Met Gly Phe Ile Asp Ala Asp Met Cys His Arg Leu Gly Glu Gin 260 265 270
Met Ser Gin Ser Gly Tyr Gly Arg Tyr Vai Met Ala Vai Ala Arg Glu 275 280 285
Phe Ser Gly 290
<210> 13 <2U> 341 <212> PRT
<213> Streptomyces galilaeus <400> 13
Met Thr Thr Leu Vai Trp Asp Tyr Leu Gin Glu Tyr Glu Asn Glu Arg 15 10 15
Ala Asp Ile Leu Asp Ala Vai Glu Thr Vai Phe Ser Ser Gly Arg Leu 20 25 30
Vai Leu Gly Asp Ser Vai Arg Gly Phe Glu Glu Glu Phe Ala Ala Tyr 35 40 45 107739 34
Asp Gly Gly Ala Vai Vai Thr Ser Arg Asp Asp Thr His Arg Ala Leu 195 200 205
Arg Arg Leu Arg Tyr Tyr Gly Met Glu Glu Arg Tyr Tyr Vai Vai Gly 210 215 220
Thr Pro Gly His Asn Ala Arg Leu Asp Glu Vai Gin Ala Glu Ile Leu 225 230 235 240
Arg Arg Lys Leu Arg Arg Leu Asp Thr Tyr Ile Glu Gly Arg Arg Ala 245 250 255
Vai Ala Arg Arg Tyr Glu Asp Gly Leu Gly Asp Thr Gly Leu Vai Leu 260 265 270
Pro His Thr Vai Pro Gly Asn Glu His Vai Tyr Tyr Vai Tyr Thr Vai 275 280 285
Arg His Pro Arg Arg Asp Asp Ile Ile Lys Ala Leu Lys Ala Tyr Asp 290 295 300
Ile Glu Leu Asn Ile Ser Tyr Pro Trp Pro Vai His Thr Met Ser Gly 305 310 315 320
Phe Ala His Leu Gly Tyr Gly Lys Gly Ser Leu Pro Vai Thr Glu Asp 325 330 335
Leu Ala Gly Gin Ile 340
<210> 14 <211> 14806 <212> DNA
<213> Streptomyces galilaeus <400> 14 ctcgaggccg tgccggcgca gcagggcgac gagggccccg gcctgtgccg cggcgtcgcg 60 gggaggccgc agcgaggcag ggggccgggc ggaccggcgc gccgcgggca ggagatacgg 120 ctggtttgcc gtggtggcgt gccggaacca gcgcatggcc tcggggtccg tgccggtgta 180 .·. cgcggaggcg tcgccggccg tctcctgcgc caacggcggg agcatctggc tgagttcggt 240 ··· S gagagcccgg cgcagggcga tacgcggatc gaagtgcgcg ccgaagccca gcacgatgtc 300 ctcggcggtg ccgcccgtcc gcaccgacac ggcggcgacc acgggaatgc cgagatcgga 360 cgtgaggtcg agggcccaca ccgtcctgcc cagatcgcgc aggacggccc ggagccgcgt 420 .··*. gatccacgga tcccgcgcgt ccagggtcac gccgggctgg cgcgtgcggt tgtaccacca 480 cagggcgatc gcgtcccgtt ccacgagttc caggcagccg tgcacgacgg cgtcctccag 540 : gctcgttccg gcggcggctc cgttggacgt ggcccggcag aagccagtgt ccgcgtccgg 600 *· *ί ggcgttgtag tagagcagac tcgtgggcgc gagccgctgc cgccgctcgg tcagtgacoa 660 gacgggggtc cagtcgatcg gggcgtcctc gtcgaagggc tcggtcacct ggtggaaggg 720 *·* * accgtgcgcg cggttccacg cccgccggtc ctcgaactgt ctgcggtcga agagctggac 780 gctgtccgga tgcacggcga gaccggccag ctcgcggtaa ctgccgcgcc ggcgcggttc 840 *·* ’ gtcgccctgg aagtagccgc tgcaccgctc cagcgcctcg gccagcgcgc tgaccctggc 900 gtggagttcg gtgacgccct tgccggatcc cgggctgcgc agcggggagt ggagcgccgg 960 cggtgcagcg cggggtccca gacggcagcg cgaccgcgtg aagcagttga ggaactccgg 1020 tccgcgcgga tcccggcgga tctcgccgac aacgccggtg acggggtcca cgagatggcc 1080 gtagcggtcc agcatctcct gcggaccgaa cgtgcggtga ccaccgccgc tctcgtcccg 1140 .***. caccggccgg gaggacagca ccacgggtgc cgagacccgg tcgcgtacca gcagcggatc 1200 ···* gccgcagcgg gagcactgcg ggcggcgccg cacgggatgg cgactgctct ccagcgtgcg 1260 ggtgtccagg cgccagaggc tgtcctgcac cgtgtcgcgg tgtccggaga gccactttcc 1320 I * I ggcttccagc agggccagtt gcagggccgc ggcacgcccc gcgggcaggt aggcccgccg 1380 gtgcacggcc ggaccgctgt gccccagccg gtgctgcacg tacgcctcac cgcgccggcg 1440 ! 2 cagccggagc cggtccgcca gacagctcca gcaggggccg tcgccggcgg agaagaacgg 1500 *1* gccgatccac aggtgggtgc cgttggcccg gacgggcagc cagccgcgtc ccgtcgcgcg 1560 gtgctccgcg tccagggcac tcagccgcgg gtcgaggtag tcgtgacaga gcaccagggt 1620 *.·.* cagagcggcg tgctcgcccg gtgccgcggc gcgcagcccc gccgcggaca cggcctcggg 1680 2 cagcggggat tccgcgtcac cggtgaggtc gaccgcggcc aggaccgcgt cccgcgcgtc 1740 « ♦ 107739 35 ggcggaccgc gcctgaagac cggtgaggga ccggtaggcc cgttcggggc ggtcggcccc 1800 gtcctgggga taggcgcaca gcagtcccgc gtccagcagc cgggtcacga gccgctcggc 1860 gagtccggcc ggcagccggg gtgccgcgtc ggcgacgatg ccoggcagat cgcggctgcc 1920 gtcgagcagc ggggccagca gggcgatctg ctccccgccc agcgtggtca cccggtcctc 1980 ggtcatcagg tagacgggct ctcccggccg cgactcgacc cgcagatgcg gtgcgaaccc 2040 cagccggggg agcccgttgc caggggccgt acggctcatc gagacgcagg gccgccgacc 2100 gtggccgacg gggtgctgga aaggggagcc cagcagatac agatcgcgct gtccgcgtgc 2160 tccccgggac cgttgccgaa ctccgtgatg acgagatcgt cggcgaactc ggcggctgcc 2220 gcgtcacctt ccaggagggg cgtgatccgt gacatgtgtg ctccttgtcg ctgtcggccg 2280 gctgctgtga gtagtgctct ggccctggtt cgagctgtgc actgccgtca tccttacggc 2340 ccgtcagggc ggctgccagt gcgtctggca taccgtgcct atgaggttta cacatcttgc 2400 acatacgttc ctcatgtgcc tgttcgggtt cagggcactg gttgattgcc gaagtggcca 2460 gcaagactcc ctgagcatgg agctcttcgc ggtgctccgt cgaccagatg ggggagaaga 2520 acgtggacat atggttgctg ggaccgctga cggccgaggt gcggggcagg tcgatcgtgc 2580 ccaccgcggc gaaaccccga cagatcctcg ccctgctcgc catccacgcc aatcgcgtcc 2640 tgcccgtcgg gaccctgatg gaggagatct ggggcaccga gccgccccag agcgccctcg 2700 ccaccctgca cacgtacatc ctccagctgc gccgccggct gaccgctgcc tacggtgacg 2760 aggggggegt gtccgccaag gacgtcotcg tcacccagta cggcggctac tgctggcagg 2820 cgcccacgga ctccgtggac gtaccgogct acgaacggct cgtcaccgcc ggacggatcg 2880 ccaccgccga ggaccgccag gaggaggcgt cggcccactt. ccgtgaggca ctcgcgctct 2940 ggcgggggtc cgcgctggtg gacgtgcgga tcggaccggt cctgagcatc gaggtggcgc 3000 ggctggagga gagcaggctc ggcgtgctgg agcgctgcct ggaggcggac ctgaggctgg 3060 gacgccacgc ggagctgctg gccgaactca ccgaactcac cgggcgccat ccgctgcacg 3120 agggcctgca cgcccagtgc atgacggcgc tgtaccgggc gggcogctcc tggcaggcgc 3180 tggacgtcta ccagaggctg cgccgccggc tggcggagga actcggactc tccccgtcgc 3240 cgcgcctgca gcgtctgcag caggcggtgc tctcggcgga gccctggctg gacgcgccca 3300 ggtacggagg ggacccggtg ttcgaccgga tgatcagctg accgtcccgg cggctcagcc 3360 gttcttggtg acgaactcga cgatggactc ccgcatgtag tcggtcatct cctccgtgat 3420 gcccggatac accccgatcc agaagctctg ctcggtgatg atgtcggagt tgcgcagatc 3480 gcccgccacc cggtgcggcg tgccgaggta cgccggatgg cgggtgaggt tgccgccgaa 3540 cagccgccgt gtgccgatcc gccgttcctc caggaaggcg accaggtcac ggcgggtgta 3600 ggtggcgtcg ggcaggaccg tgatcacgaa cccgaaccag ctgggatcgc tgcccggtgt 3660 cgcgaccggc agcagcagac cggggacgtc ggcgagcccg tcccgcagcc gctgccagtt 3720 gcgccgccgg gccgcgccga actccggcag cttgttcaac tggctgagtg ccagcgcccc 3780 ttgcagatcg gtcgccttca ggttgtaacc gatgtgggag aagatgtact tgtggtcgta 3840 gcccttgggg agattaccca gctggtagtc gaaccgcttg aggcaggtgt tgtcctcgcc 3900 cggttcgcac cagcagtccc ggccccagtc gcggaacgac tcgacgatgc gggccagttc 3960 gaggttgcgg gtcagtacgc agcccccctc gcccgtggtg atgtggtggg caggatagaa 4020 actgaccgtt gccaggtccc cgaaggtccc cgtcatacgt ccctggtagg tcgagcccac 4080 cgcgtcgcag ttgtcctcga tcaggaacag ctcgtgctcg gtggccagtt gctggatctc 4140 cgccacctgg taggggttgc cgagggtgtg cgcgatcatg atggcccggg tccggtccga 4200 gatcgccgcc cgcacgtgct ccaccgttgt gttgtacgta ccgagttcca ggtccacgaa 4260 1.; ; cacgggcgtc agcccgttct ggaggatcgg gttcaccgtg gtggggaatc cgccggccac 4320 φ· · cgtgatcacc tcgtcacccg gacgcagccg ctgctcaccg agccggggag aggtcagcgc 4380 ·.·.· . agagagcgcc agcaggttcg ccgaggaccc cgagttcacc aggtgcgcct tgcgtacgcc 4440 .··· gatgtggcgg gcgaatttgc tctcgaagcg ccgggagtgg gctccggccg cgatccgcag 4500 atccagggcg gcctccacca gggcgacccg gtcctcctcg tccaggacgg cgcccgagga 4560 .·, ; gaggatgggc gtcactccgg gctggaaatt ccctggctgc tgctgccggt gatactcgcg 4620 *. ·; aacctgctcc aggaccagag ccttggtgtc cgacgtcata gccgtccctc cgtaaggatt 4680 ,'j·, gcctcgccga ccatgctggc ccggatcggt cgaggagccg tggagtcccg gccgaaggcc 4740 ·.· · ctgctccagt gggcttcaag gggccttcga cctgccgtgg ctagcgtgtc cggcgacgca 4800 (·;· tcgaactggt gaggtggcag atgccgaagg acactccacg gcccgtactc cgcatcgggg 4860 *.· * ttctgggctg tgccgatatc gcggtgcgcc ggatcctgcc cgcgatcgtg gagcatccgt 4920 cggtccggct ggtcgctctg gcgagccggg acggggcgcg cgccgaacgg ctcgcggccc 4980 gtttcggatg cgcggcggtg accggctaca aggcgctgct ggaccgtgag gacatcaacg 5040 ccgtctacgt tcccctgccg cccggcatgc accacgaatg ggtcaccgaa gcgctgacgg 5100 * · cgggcaagca cgtgctggtg gagaagccgc tcagcacgac gtacgcgcag agcgtcgacc 5160 .···. tggtggcgat ggccggccgg ctcggcctcg cgctcaccga gaacttcatg ttcctgcacc 5220 ...* actcgcagca cgaggcggtc cgggccatga ccggcgagat cggggaactg cgggtcttca 5280 ccagttcctt cggcgfcgccg ccgccccacc cctcgtcctt ccggcacgac gcgcggctcg 5340 ·*; gcggcggcgc cctgctggac gtcggtgtct atccgctgcg cgcggcccag ctccacctcg 5400 '^1 ccggggaact cgacgtgctg ggcgcctgtc tgcgcgtgga cgaggcgacc ggcgtcgacg 5460 : ; tcgcgggaag cgcgctgctg tccacggcga cgggtgtgac cgcgcagctc gacttcggct 5520 *|* tccagcacgc gtaccggtcc gtgtacgcgc tgtggggcag ccgcggcagg ctgagcgtgc 5580 cgcgggcctt caccccgccc cgtgagcacc gcccggtggt ccgtatcgaa cagcaggacc 5640 *.·.· gtctcaccga agtgacgctg cccgccgatc accaggtggg caacgcgctc gacgcgttcg 5700 .·. ; cctcggcggt gcactcggag accgtccgtg cctccctggg ggaggcgctg ctgcgtcagg 5760 • * · • * 107739 36 cgctcctggt cgagcaggta cgcaaagccg cgcgggtcgt cagcggctga gccccccgga 5820 cgctttgcgg gcgcctgacg cccgcacgac gagagnnnnn nnnnnnnnnn nnnnngggct 5880 ctcctcacac tcctcgcggt cgcgccccgc cggggcggct cagacccgct cggccggttc 5940 cggccggtgg gtctgccggt cgcggtacca gtcgacgacc tcgcgcagac cgtcgtccag 6000 ggaccgcagc ggccggtagc cgagttcttc gcggatcttc gtgtcgtcca ccgcgtaccg 6060 caggtcgbgg cccttgcggt cgggcacctg gcggaccctg gaccagtcgg tgccgcacag 6120 cgcgagcagc ttggccgtca tctcacggtt cgtcagatgg gtaccgccgc cgatgttgta 6180 gatctcgccg ggccggccac cggtcagcac cgcgtggacg gcccggcagt ggtcgtccac 6240 gtgcagccat tccctgacgt tgcctccgtc gccgtacagc ggcaccggcc ggccggccag 6300 cagttcggtg acgaacagcg ggatgagctt ctccgggtgc tgacgggggc cgtagttgtt 6360 ggcgcagcgg gtcgtgcgca catcgaggcc gtgggtgcgc cagtaggacc gtgcgaccag 6420 gtcgcttccc gccttcgagg ccgcgtaggg ggagttgggg agcagcggcg cctcctccgt 6480 ccaggtgccc tgcgcgatcg atccgtagac ctcgtccgtg gagacgtgca cgaacgtgcc 6540 gaccccgccg cgcaggctcg cctccagcag cgactgggtg cccagtacgt tggtgcggac 6600 gaactccgcc ggctcgctca gcgaacggtc gacatgggtc tcggccgcga agtgtacgac 6660 cgcgtcgtgg ccggggacca ccgtcagcag cgcgtccagg tcgcggatgt cgagccggcg 6720 gaagtccagc cggggatcgg ccaggggcag attgccggtg tctcccgcgt acgtgagcag 6780 gtcgacgacg gtgacccggc tcgggcgggg accgggcagg gtccccgcca gcagggaacg 6840 gacgtagtgg gatccgatga aaccggcgcc gccggtgatc aggacacgca tggcgacgta 6900 cctccggggc gtcggggttc acgggcgcgg tgctgggcgg tcagccgttc cagtacgggg 6960 acgacctgcg ccggggtcgg ttcggactcg gcctcggccc gcaggcgggc ggccgccgcg 7020 gtgaacgagg gctcgtcgag gagccggacg agcctgccgc gcagtccctc caccgtcacc 7080 tcgtgcgagg ggagatggag gcccgcgccg agtgcctgct gacgctgcgc gcggtcgatc 7140 gcgtcccaga tccagcccat ggcgatctgc ggcacaccct cgaccagcgc cgtcgaccag 7200 gtgccggcgc cgccgtggtg gacgatggcc gcgcaggtcg gcagcagcgc gtgcagcggc 7260 acatggtcca ccagacgcac attgtcgggg acatgggtca gcagtgcccg ttcctcggcg 7320 tcgagggtgg cgaccacctc gatgtccagc ccctcgaccg ccttgaggac gaggtcgacc 7380 gggacggcgt tggggaactc cgaggtccgg gccgtcatgc ccagggtgac gcagacgcgg 7440 gggcgggtcg gcgggacgcg cagccagtcg ggtacgacgg caggccccgg cccgttgtag 7500 gggacgtagc gcatgcccac gaccgggcgg tccgacggcg ggcggaagct gcgcggcacc 7560 tggtccaccg accactgtcc cgtcaccgcc tcctcgtcga aggggacgcc gtagcggccg 7620 agcgtccact ccagccactg gccgagtgag tcgtcggggt gcgtcgtccc gttccccccg 7680 gccgggcccg ccggggcggc gccgagctgg gcgaggtagg cccgccgcat ggacatgaag 7740 aggtccggaa aggacagcag ccgggcgtgg gccgcgccgg tcaccttcgc ggccaccgcg 7800 ccggcgaagg tgaacggctc ccacaggatc aggtccggtt cccagccgcg ggcgaacgcg 7860 acgaggtcgt cgaccatcgg atcgtcgttg atcagggtgt agaaggtggc ggtcatcatc 7920 gtgtcccagc cctggagaaa ggccggggtg agctgtccgg gggtgtcggc gtcgagcgac 7980 tggtcggcgt ggtgggacag cacagcgtcg cccacgccct tgaccatctc gtccagccgg 8040 gggtccgcgc ccaccggcac ggcggtcagc ccggccgccg tgatgctcgc cgtcagcgcg 8100 ggctggctcg ccacccgcac ctcgtgcccg gcggcccgca acgcccaggc cagcggcacg 8160 gacccgttga agtgagcgtc cagcgcgaag gatgtcagga gaacccgcat ggtcggtcct 8220 .·. ttctctgcgg ctcggctttc ggcggctcgc aactcgggcc gcggcacgcc gggccccggc 8280 t gtgccgtcac gcggaggtgg tcagggggaa gcgcagcacc gcgcccagca cgggggaacg 8340 catccgccgc aggaccgcgc cggccggcgc gagcacgggc cggcgctccc gcagcgtgcg 8400 *.*.* gaccgcggtc tccgcctgga gccgggcgaa cgccccgaag agcgcggtgt gcgggccgga 8460 .·**. gagcgacaac tgcccctgcc cggcgggacg gtcgaggtcg aagtggtccg gggccaggaa 8520 cgcctcgggg tcccggttcg ccgcaccgac atggacgacg acctgggcgc cggccgggag 8580 : gtcctggccg cccagggtga ggtcctcggc ggcgatacgg ctctccagcc gcaccggcgg 8640 *. cgcgaagcgc agtgcctcct ccacggcgcc ggccgcgagt tcagggttct cgccgagccg 8700 cgcccactgc acgggacggg tgagcagcga ctccagggtg ttgttgatga gcccggcggt 8760 *.* * gacctcgacg ccgaccacgg cggtcagcac acccacggcg agcgcgtcct gcccggcgga 8820 ggcggcggag gagccggcgt gcagcaccgc gctgagcagg tcgtcacccg gctgcgtccg 8880 *♦* * ccgcgcctcg acgaggtcgc cgacgagggc ccgtacgtcc tcgacggcct cggtgagccg 8940 gcgggtcacg gcgagcggct gggggcagag cgcggcgtcg agggcgacac cgagggcgag 9000 gcacgtcgcc gcgaagcgtt cccgctgggc ggcggggaca ccgagcagct ccgcggcggc 9060 ctccgtggcc accgggcggg agtagtccgc catgaggtcg aagctcftccc cggtacggtc 9120 ggcggcctcc cggtgcacgc gcccggcgtg ctcgcggaca ccctccgccg gggcgccgcc 9180 .**·. cgcactgccc aggacggcgg aggcggaccg cgcccagcgc gtgtggtcgg cgtccgacgc 9240 ···* gtggaggaag gcccggtcca gcgggatgat gtggcacagc tgcggattgc tccaggcgtc 9300 ggagaagacg tgccgctgcg ggcccggcag gtcggcgtgg cgcagggcga gccggggatc 9360 j * J ggccagggcc tcggcggcga cgccgtgccg gccggtgacc caggcgccgg tggtgctctg 9420 *..* ccacagcggc gtcccggctt cccgtatccg gcgggtcagc agcgcggggt cgtcgctctc 9480 ί l ggcgcgcagg gtcagggcgt acgggtcgcc gctggtgccg tagatccagt ggaagccgcg 9540 *!’ ggcggtcagg agatgacggc ccagttcgct gtcggtctgc tggttctccg ccgtctccgg 9600 cgcgttctgt gtctgcacgg cagtctcctt cgggacgtgg ttcaggtgag ggacagaccg 9660 *·’.* ccgtcgaccg cgagcaccgc tccggtcgcg taagcggcgc gcgggtcggc cagctggacg 9720 .·. ; gcccaccagg cgatgtcctc gggccggccg acccggccgg ccgggacgcg ggcggcgatc 9780 • · · « · 107739 37 tgcccgagga agcccgcgta ggcctcccgt gacatgcccg agcgttcacc gatgccggtg 9840 tcgatoacgc cgggcgccag gccgaggaca cggatgccgc ggggtgccag ttcgacggcc 9900 caggtccggg tgaggaagtc gagcccggcc ttggcggcgc cgtagacacc gttctgcggc 9960 caggcccggc ggcccagagc tccggccgag ccgatgttca gcacggttcc cccgccgtcg 10020 gccgacaggg cgtccagggt ctgccgggtg agcagcagcg gggccaggag gttgctgtcg 10080 aactgctcgc gggcggcctc cggctcggtc tccgccaggc cggcgaaccc accggtggcc 10140 gcgttgttca cgaggacgtc gatacggccc aacgcgtcca gcgccgcgtc ggtgatggcg 10200 cgcggaccgt ccggatcggt gagatcggcg gtcaggacac tgatgccggg gtggccctcg 10260 gcggtcccgg ccagggtcgc ggcggtgcgg cctacgacga gtacccggtc gccgcggtcg 10320 gcgaaggcgt gggccgtggc ccgcccgatc ccggtcccgc cgccggtgac gatcacgccc 10380 cgcggcgctg tcggttctgc tatggcgctc atgccccgga ccgtaggccg ggccgctcga 10440 ttcacggtcg actcccgctc ggccgcggcc tcagggccgg tcgtcacggg tcaccacgcg 10500 ttcccggacc aggagccggc cgccctcccg gaccaggacg tcccggcagg tgcagaccag 10560 gtgcagccgg gcggggccgc cctgcgcgac ggcgacgatc gagaccaggc tctcggcggt 10620 cagcgagccg tcgtccgcgg gggtgacggt gagcatgccg acccagtggc ggtgcgtctc 10680 gcgggcggcg gccagacccg ccgcggcgtt gcgggcaccc tcggcgagca gcgggcgtcc 10740 gcgtaccggc tccgggagcg agggcggtgc gaaggägccg tcctcggtga aggtgccggc 10800 ccaggtctcg gcctcgcccg agtccaggta ccgcatctgc cgtgcgtaga aatgctgtac 10860 ctcggcgtag acgtccgccg gggccgtcgg tgcctgtgct gtcatgccgt gtcacctttc 10920 gccgttcccg cgtcggggac gggtgcgtgc ccgggtcccc ggtgagtgtc acgacggtcg 10980 cagcgcgact ccaggatcgg tcgagcgggg ggcgggcgga tgcgctggcg gctgttcagt 11040 cagcctccaa cgcttctcaa gccgcgctgg tgagcatggg ctggctcgca ggaacccatc 11100 gccgggaggc gcgtgtgcgc atcatcgacc tgtcctcacc cgtggacgcg gcgggttttg 11160 aacctgatcc cgtcgtgcac gacgttctcg gtccgaagga ggccgccacg caoatgagcg 11220 aggagatgcg tgagcacttc ggcatcgact tcgatccggc ggaactgccg gagggcgaat 11280 tcctctcgct cgaccgtctc cagctgacca cccacaccgg aacccatgtc gacgcgccct 11340 cgcactacgg cacgcgcgcc gcgtaccggg acggtccgcc gcggcacatc gacgagatgc 11400 cgotcgactg gttcttccgg cccgccgtcg tcctcgacct cagcgaccag ggcacgggcg 11460 cggtcggcgc cgacgtgctg cggcgggaga tggaccggat cggccacact ccctcgccca 11520 tggacatcgt cctgctcagg accggtgccg acgcgtgggc gggaaccccg aagtacttca 11580 cggacttcac cgggctggac ggttcggccg tgcacctgct gctggacctg ggggtgcggg 11640 tgatcggcac ggacgcgttc agcctggacg cgccgttcgg cgacatcatc acccgctacc 11700 gggccacggg cgacccgtcg gtcctgtggc ccgcccatgt catcgggcgg gaccgggagt 11760 actgccaggt cgagcggctc gccgggctcg accggctgcc cgccgcgcac gggttccggg 11820 tcgcgtgctt cccggtgcgg atcgccggag cgggcgccgg ctggacgagg gcggtggccc 11880 tggtcgacga gtgaggagcg cacggcgggc cgagcggacg acgcgcccac cggggcgccg 11940 acggagggaa cagacatgta cggccgggaa ctcgcggacg tgtacgaggc catctaccgc 12000 agccgcggca aggactgggg acaggaggcg gcggacgtct cgcggatcat caccgaacgg 12060 cgtccgggag ccggctcgct gctcgacgtc gcctgtggca cgggcgccca tctgagcgtg 12120 ttcagcacgc tgttcgaggt cgccgagggc ctggagatcg cggagccgat gcggcggctc 12180 gccgagcagc ggctgcccgg caccaccgtg cacgccggcg acatgcgcga cttccggctc 12240 .·. ccgcgcacct acgacgcggt gagctgcatg ttctgcgcca tcggctatct ggagacgctg 12300 :.: : gacgacatgc gggccgccgt ccggtcgatg gccgctcatc tggagcccgg cggcgtgctg 12360 gtcgtcgaac cctggtggtt ccccgagaac ttcatcgagg gctatgtcgc gggtgacctg 12420 gcccgcgagg agcaccggac catcgcccgg atctcgcaca ccacccggaa gggccgggcc 12480 acccgcatgg aggttcgctt caccgtgggg gacgccgccg gcatccagca gttcacggag 12540 *·..1 atcgacgtgc tgaccctgtt caccagggac gaatacaccg ccgcgttcac cgacgccggc 12600 : tgttccgttg aattcctgga ggacggaccc accggccgcg gtcttttcgt cggtgttcgc 12660 ’· 1t gaacagcgct gagccggagg aaggtcagcc cgagaattct cgggcgaccg ccaitcacata 12720 gcgaccgtaa ccggactgcg acatctgctc accgagtcgg tggcacatgt ccgcgtcgat 12780 *** 1 gaatcccatg cgcagcgcca cttcttcgac gcaggcgatg cgcacgccct gccgttcttc 12840 gagcgtgcgc acgtactggg tggcctgaag cagcgattcc ggggttccgg cgtcgagcca 12900 *** 1 ggcgaaaccg cggccgagat cgaccagacg cgctcggccg cgggccaggt aattccggtt 12960 cacatcggtg atctccagtt cgccgcgcgg cgagggccgg aggttcttcg cgatgtccac 13020 cacttcgttg tcgtacagat agagcccggt gatggcgagg tcggaacgcg gccggagcgg 13080 ....: cttctcctcc agggagacga gttgccccga cgcgtcggtc tcgcccacgc cgtagcgctc 13140 < 1 1 cgggtcctcc acggggtagc cgaacagcac gcagccctgg acgtcgtgga cgttgctctg 13200 ·“1« gagcaggtcg tagaagtggt gtccgtggaa gatgttgtcc ccgaggacca gtgccacgtc 13260 ···1 gtcgtcaccc acgtggtcgg cgccgatgac gaaggcgtcg gccagtccgg ccggccggtt 13320 ctgcaccgcg tagtcgatgc gcaggccgag ctgggagccg tcgcccagga gccggcggaa 13380 I 1#: ctgttccaga tcgcgctcgg tgcagatgag caggatctcc ctgatgtccg ccagcatcag 13440 caccgagagc ggatagtaga tcatcggctt gtcgccgacc ggaagaagct gttttgatac 13500 • I ggagacggtt atcggatgga gccgtgttcc cgaaccgccg gcgagaataa tccccttcat 13560 • gggtatgccc ctgtcctcga tttcttctca tgctaacgac cggattcgct cggcagcaag 13620 ccggaaaatt tctggtccag ggaaaatcga gcggtaatag agggaatttc ggggttgtgg 13680 *·1·1 accggagcga gaatgtgatg tgctgcgagg ggatggtgac gccctgtggc acggcatcgg 13740 .1· : cgtggcatcg gcaaggcatc ggcaagggga ggaaaagaat taatgacgac tctcgtctgg 13800 • · 107739 38 gactacctac aggaatacga gaacgaacgc gccgacattc tggacgccgt ggagacggtc 13860 ttcagctcgg gtcggctcgt cctcggtgac agcgttcgcg gattcgagga ggagttcgcc 13920 gcgtaccacg gcgcggcgca ctgcgtcggt gtcgacaacg gcaccaacgc gatcaagctg 13980 gccctccagg cgctcggcgt cggccccggt gacgaggtcg tcacggtgtc caacaccgcg 14040 gcccccacgg tcgtggccat cgattcggtg ggcgocaccc cggtgttcgt cgacgtccac 14100 ccggacagct acctcatgga caccgagcag gtggaggccg cactcacgcc ccggacccga 14160 tgcctgctgc cggtccatct ctacgggcag tgcgtcgacc tggctccgct ggagcggctc 14220 gccgcggagc acgacctgtt cctcgtcgag gactgcgcac aggcccacgg tgcccgccgc 14280 gccggccggc tcgccggcac caccggcgac gccgccgcct tctccttcta ccccacgaag 14340 gtgctcggcg cctacggcga cggaggcgcc gtggtgacct cccgggacga cacccaccgc 14400 gcgctgcgcc gactgcgcta ctacggcatg gaggagcggt actacgtcgt cggcaccccg 14460 ggtcacaacg cccggctcga cgaggtccag gccgagatcc tgcggcgcaa gctgcgccgg 14520 ctcgacacct acatcgaggg gcggcgggcc gtcgcccggc gctacgagga cgggctcggc 14580 gacaccggcc tggtgctccc gcacaccgtc cccggcaacg agcacgtgta ctacgtctac 14640 acggtgcgcc acccgcggcg cgacgacatc atcaaggccc tcaaggcgta cgacatcgag 14700 ctgaacatca gctatccctg gcccgtgcac accatgtccg ggttcgccca cctcggctac 14760 ggcaagggct cgctgcccgt caccgaggac ctggccggcc agatct 14806
<210> 15 <211> 22 <212> DNA
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: degenerated oligonucleotide primer <400> 15 csggsgssgc sggsttcats gg 22
<210> 16 <211> 24 <212> DNA
<213> Artificial Sequence <220> <223> Description of Artificial Sequence: degenerated oligonucleotide primer <400> 16 ί·ί ϊ gggwrctggy rsggsccgta gttg 24 * · • · » • · · • · « · • · • · · • · • ♦ · ♦ ·· • · ··· * ♦ · • ♦ · • ·· ♦ · · ♦ · · • · • · · • · ««· ♦ ♦ · ♦ ♦ · • · • · ··· • · • · »»· • · • · · • · · 1 · • « · « · · • ·

Claims (13)

107739
1. Eristettyjä puhdistettu DNA-fragmentti, joka on Streptomycesgalilaeus -bakteerin antrasykliinibiosynteesireitin geeniryhmittymä, joka sisältyy S. galilaeusin genomin 7 5 kb:n ^ÄoI-iVo/I-fragmenttiin ja viereiseen 8,5 kb:n Bg/n-fragmenttiin, kuten kuviossa 2 on esitetty.
2. Patenttivaatimuksen 1 mukainen DNA-fragmentti, joka käsittää SEQ ID NO:14:ssa annetun nukleotidisekvenssin tai sen osan, tai sekvenssin, jolla on vähintään 84 %:n 10 homologia mainitun sekvenssin kanssa.
3. Yhdistelmä-DNA, joka käsittää patenttivaatimuksen 1 tai 2 mukaisen DNA-fragmen-tin, kloonattuna plasmidiin, joka replikoituu Streptomycesissä tai E. colissa.
4. Patenttivaatimuksen 3 mukainen yhdistelmä-DNA, joka on talletusnumerolla DSM 12998 S. lividcms -kannassa TK24/pSgs4 talletettu plasmidi pSgs4.
5. Patenttivaatimuksen 3 mukainen yhdistelmä-DNA, joka on talletusnumerolla DSM 12999 E. coli -kannassa XLlBlueMRF7pSgc5 talletettu plasmidi pSgc5. 20 • · · ’**.1
6. Patenttivaatimuksen 1 tai 2 mukaisesta DNA-fragmentista peräisin olevien geenien • · · • · » 1.1 käyttö antrasykliinimetaboliittien tuotantoon. • · · • · ·
7. Patenttivaatimuksen 1 tai 2 mukaisesta DNA-fragmentista peräisin olevien geenien • · · . ·;. t 25 käyttö aklasinomysiinien tuoton lisäämiseen.
• · · ....: 8. Patenttivaatimuksen 6 tai 7 mukainen käyttö, jossa geenit koodaavat aktivaattoria, • · .·1·. dehydrataasia, oksidoreduktaasia, dTDP-glukoosi-4,6-dehydrataasia, glykosyylitrans- feraasia, isomeraasia, aklaviketonireduktaasia, polyketidikokoojaa, syklaasia, amino- • · · 30 metylaasia, glukoosi-l-fosfaattitymidylyylitransferaasia, ja aminotransferaasia. • φ • « · • · · • ·
9. Menetelmä aklasinomysiinien tuoton lisäämiseksi bakteeri-isännässä, käsittäen • 1 · ** patenttivaatimuksen 1 tai 2 mukaisen DNA-fragmentin siirtämisen Streptomyces- 107739 isäntään, saadun rekombinanttikannan kasvatuksen, ja tuotettujen aklasinomysiinien eristämisen.
10. Patenttivaatimuksen 9 mukainen menetelmä, jossa Streptomyces-isäntä. on Strepto-5 myces galilaeus -isäntä.
11. Patenttivaatimuksen 10 mukainen menetelmä, jossa Streptomyces galilaeus -isäntä on S. galilaeus ATCC 31615:stä johdettu mutanttikanta.
12. Menetelmä polyketidimetaboliittien tuottamiseksi, käsittäen patenttivaatimuksen 1 tai 2 mukaisen DNA-fragmentin siirtämisen Streptomyces-ismtäzn, saadun rekombinanttikannan kasvatuksen, ja tuotettujen polyketidiyhdisteiden eristämisen.
13. Menetelmä antrasyldiinimetaboliittien tuottamiseksi, käsittäen patenttivaatimuksen 15 1 tai 2 mukaisen DNA-fragmentin siirtämisen Streptomycespeucetius -isäntään, saadun rekombinanttikannan kasvatuksen, ja tuotettujen yhdisteiden eristämisen. 20 • · • · ·
FI992085A 1999-09-29 1999-09-29 Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa FI107739B (fi)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FI992085A FI107739B (fi) 1999-09-29 1999-09-29 Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa
EP00960747A EP1133562A1 (en) 1999-09-29 2000-09-25 The gene cluster involved in aclacinomycin biosynthesis, and its use for genetic engineering
PCT/FI2000/000819 WO2001023578A1 (en) 1999-09-29 2000-09-25 The gene cluster involved in aclacinomycin biosynthesis, and its use for genetic engineering
JP2001526960A JP2003510081A (ja) 1999-09-29 2000-09-25 アクラシノマイシン生合成に関与する遺伝子クラスター、および遺伝子操作のためのその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI992085 1999-09-29
FI992085A FI107739B (fi) 1999-09-29 1999-09-29 Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa

Publications (2)

Publication Number Publication Date
FI19992085A FI19992085A (fi) 2001-03-29
FI107739B true FI107739B (fi) 2001-09-28

Family

ID=8555368

Family Applications (1)

Application Number Title Priority Date Filing Date
FI992085A FI107739B (fi) 1999-09-29 1999-09-29 Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa

Country Status (4)

Country Link
EP (1) EP1133562A1 (fi)
JP (1) JP2003510081A (fi)
FI (1) FI107739B (fi)
WO (1) WO2001023578A1 (fi)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106041A1 (en) * 2006-03-14 2007-09-20 National University Of Singapore Polyketides and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI944556A0 (fi) * 1994-09-30 1994-09-30 Kristiina Ylihonko Foerfarande foer producering av antracykliner och deras mellanprodukter

Also Published As

Publication number Publication date
EP1133562A1 (en) 2001-09-19
FI19992085A (fi) 2001-03-29
WO2001023578A1 (en) 2001-04-05
JP2003510081A (ja) 2003-03-18
WO2001023578A9 (en) 2001-11-01

Similar Documents

Publication Publication Date Title
Madduri et al. Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius
Gaisser et al. Analysis of seven genes from the eryAI–eryK region of the erythromycin biosynthetic gene cluster in Saccharopolyspora erythraea
Rajgarhia et al. Minimal Streptomyces sp. strain C5 daunorubicin polyketide biosynthesis genes required for aklanonic acid biosynthesis
Otten et al. Cloning and characterization of the Streptomyces peucetius dnmZUV genes encoding three enzymes required for biosynthesis of the daunorubicin precursor thymidine diphospho-L-daunosamine
Räty et al. A gene cluster from Streptomyces galilaeus involved in glycosylation of aclarubicin
EP1032679A2 (fr) Genes de biosynthese et de transfert des 6-desoxyhexoses chez saccharopolyspora erythraea et chez streptomyces antibioticus et leur utilisation
TWI374187B (en) Genetically modified strains producing anthracycline metabolites useful as cancer drugs
Rajgarhia et al. The product of dpsC confers starter unit fidelity upon the daunorubicin polyketide synthase of Streptomyces sp. strain C5
Méndez et al. On the generation of novel anticancer drugs by recombinant DNA technology: the use of combinatorial biosynthesis to produce novel drugs
EP2042608B1 (en) Genetically modified Streptomyces strains for biotransformations in anthracycline production
FI107739B (fi) Aklasinomysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö geenitekniikassa
FI107053B (fi) Nogalamysiinin biosynteesiin liittyvä geeniryhmittymä ja sen käyttö hybridiantibioottien tuotossa
Hautala et al. Studies on a second and third ring cyclization in anthracycline biosynthesis
US20110171691A1 (en) Genetically modified strains for biotransformations in anthracycline production
EP0792285B1 (en) Process for producing anthracyclines and intermediates thereof
US20050089954A1 (en) Gene cluster for rabelomycin biosynthesis and its use to generate compounds for drug screening
KR0145943B1 (ko) 아클라비논 c-11 히드록실라제, 그 유전자, 발현벡터 및 이를 이용한 하이브리드 항생제의 제조방법
FR2766496A1 (fr) Genes de biosynthese et de transfert des 6-desoxyhexoses chez saccharopolyspora erythraea et leur utilisation
Inventi-Solari et al. Doxorubicin Overproduction in
FR2786200A1 (fr) Genes de biosynthese et de transfert des 6-desoxy-hexoses chez saccharopolyspora erythraea et chez streptomyces antibioticus et leur utilisation
AU2002240981A1 (en) Gene cluster for rabelomycin biosynthesis and its use to generate compounds for drug screening
JP2003174884A (ja) rhoG遺伝子およびその使用

Legal Events

Date Code Title Description
MA Patent expired